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—— Abstract

The fixed point construction is a method for designing tile sets and cellular automata with highly
nontrivial dynamical and computational properties. It produces an infinite hierarchy of systems
where each layer simulates the next one. The simulations are implemented entirely by computations
of Turing machines embedded in the tilings or spacetime diagrams. We present an overview of the
construction and list its applications in the literature.
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1 Introduction

In this short survey we present an overview of the fized point construction of Wang tile sets
and cellular automata, also known as programmatic self-simulation. It is a method of defining
an infinite sequence of tile sets (T%)r>o with the property that each T} simulates Tyy1, in
the sense that valid tilings over T} have the form of infinite regular Ny x N} grids for some
constant N > 1 and each grid cell behaves like a tile of T)41. The simplest variant has
Ty = Ty for all k, so that Ty simulates itself. The defining property of the technique is that
the simulations are implemented almost entirely “in software” by computations of embedded
universal Turing machines. This provides considerable flexibility, since modifying the next
tile set Tk is as easy as modifying the program of the machine that runs on 7j. On the flip
side, the flexibility comes with the price of nonmodularity, as nontrivial constructions are
hard to reuse without presenting them in detail. The tile sets produced by the fixed point
method are also inevitably massive, and it is usually impractical to determine them exactly.
Of course, this is true for most constructions in symbolic dynamics that involve simulating
nontrivial computation, but the fixed point construction stands out by requiring it even for
results that do not have a computational flavor, such as the existence of an aperiodic tile set.

The fixed point construction has its roots in Kurdyumov’s informal article [24] on
probabilistic cellular automata. Kurdyumov’s ideas were implemented rigorously by Géacs in
his disproof of the positive rates conjecture [13, 14], which uses programmatic self-simulation
as the basis of an extremely intricate construction. Durand, Romashchenko and Shen isolated
this part of the construction and applied it to Wang tile sets in a series of papers [8, 9, 10, 11]
culminating in [12]. A series of further applications by them and other authors has followed.
Interestingly, many of these share a common theme: a result on tiling systems, sofic shifts
or cellular automata was proved in all dimensions except one or two using a geometric
construction, such as Robinson tiles [28] or Mozes’s realization of substitutive shifts [27], and
the remaining low-dimensional cases were settled by a fixed point construction.
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2 Definitions and notation

Let A be a finite alphabet and d > 1. A pattern is a function P : D — A with domain
D = D(P) C Z%. Patterns of domain Z¢ are called configurations, and they form the
d-dimensional full shift A, Define the shift map T : Z% x ALY 5 A2 by (772)y = 245 A
set of finite patterns F' defines a subshift as the subset Xp = {z € AZ* |VP e F,veZ:
(7%2)|p(py # P} where no pattern from F occurs at any position. If F' is finite, Xp is a
shift of finite type (SFT), and if F' is computably enumerable, X is an effective subshift.
A pattern is locally valid for F' if no element of F' occurs in it as a sub-pattern. The set
of domain-D patterns occurring in a subshift X is denoted Lx (D) = {z|p |z € X}. If a
subshift X does not properly contain another nonempty subshift, it is minimal. If a subshift
X is a union of minimal subshifts, it is quasiperiodic.’

A particular class of 2-dimensional SFTs is given by sets of Wang tiles, which are squares
with colored edges. Formally, a Wang tile set is a subset of C* for a finite set C' of colors,
with the four components representing the colors of the east, north, west and south edges
of the square. We forbid exactly those 1 x 2 and 2 x 1 patterns where the adjacent edges
of the two tiles have different colors. A d-dimensional SFT X is aperiodic if for all z € X
and p € Z¢ there exists 7 € Z? with 5,5 # r5. A set of Wang tiles is called aperiodic if it
defines a nonempty aperiodic SFT.

A function ¢ : X — Y between subshifts X C AZd, Y C BZ" is a block map if there is a
finite neighborhood N C Z4 and local function ® : Lx(N) — B such that ¢(z)5 = ®((772)|n)
for all z € X and ¥ € Z%. If X is an SFT and ¢ is surjective, then Y is a sofic shift and
X is an SFT cover of Y. A cellular automaton (CA) is a block map from a full shift to
itself. A spacetime diagram of a CA ¢ : ALY 5 AZY g a configuration x € AL with
T|zax iv1} = P(]zaxy) for each i € Z. In a spacetime diagram, the d-dimensional slices
obtained by fixing the last coordinate form a trajectory of ¢.

A standard reference for one-dimensional subshifts, with a short appendix on the multidi-
mensional setting, is [25]. See [23] for a survey on the theory of CA. Wang tiles were first
defined in [32], and aperiodic sets of Wang tiles were first constructed in [2].

3 The fixed point construction

3.1 Tile sets

In this section we present an outline of the fixed point construction in the context of Wang
tiles following [12]. We omit much of the detail.

» Definition 1. Let T and S be two sets of Wang tiles. A simulation of S by T with zoom
factor N is an injective function o : S — TN*N such that:
For any s1,s2 € S, the horizontal concatenation s1so is locally valid over T if and only if
a(s1)a(sz) is locally valid over S, and similarly for their vertical concatenation.

For every walid tiling © € TZQ, there is a unique vector v € [0,N — 1]® such that
(TU+(iN’jN){E)|[07N_1]2 € a(9) for all (i,7) € Z2.

Suppose first that we are given the tile set S and wish to define, for each large enough
zoom factor N, a tile set T = T(N) and a simulation a : S — TV XN, We will implement T
in a way that makes the choice S = T possible with relatively minor modifications. Assume

! Note that an arbitrary union of minimal subshifts is generally not a subshift.
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the colors of S-tiles are binary strings of some length &, that is, elements of {0, 1}*. First,
each tile T has an address (i,j) € [0, N — 1]?. Local rules ensure that its east and north
neighbors have addresses (i 4+ 1,j) and (i,7 + 1) modulo N, respectively. Concretely, the
set of colors of T is [0, N — 1] x C for some auxiliary set C, and each tile with address (4, j)
has the form ((j + 1,¢e), (i + 1, ¢n), (J, cw), (¢, ¢s)) for some ce, ¢y, €y, cs € C. Then in a valid
tiling = € TZ27 the tiles are partitioned into a grid of N x N blocks called macrotiles whose
southwest corners are the tiles with address (0,0). The address of each tile is its relative
position within the macrotile containing it.

Each tile of a macrotile t € TV*¥ has a specific role that depends on its address. A fixed
rectangular subset R = [a,b] x [c,d] C [0, N — 1]? of addresses forms the computation zone.
It stores a simulated computation of a Turing machine M, which recognizes the set S in the
sense that it halts on input w € {0, 1}** if and only if w encodes a tile of S. A reasonable
choice for the parameters is a = ¢ = |[N/3| and b = d = |2N/3], so that the dimensions of
R increase linearly in N. The simulation of M is implemented in some standard way, such
as the one presented in [28]. The bottom row of R initializes the computation, and each row
above it simulates one computation step. If M does not halt before reaching the top row
of R, a tiling error is produced. As long as N (and thus R) is large enough, the simulated
machine has enough time and space to verify any input that encodes a tile of S.

Fix an interval I C [0, N — 1] of length k, the number of bits in a color of S. Each tile
with address in B = ({0, N — 1} x I) U (I x {0, N — 1}) stores an additional bit, called a
border bit. Their purpose is to encode the four colors of the simulated tile of S. The border
bits are constrained to be equal to those of the neighboring macrotiles. For each address in
B, we fix a contiguous path of addresses to the bottom row of the computation cone, making
sure that paths originating from distinct addresses are pairwise disjoint. Using local rules,
we force all tiles with addresses on a given path to store the same bit. In this way the border
bits are routed to the computation zone, and the resulting binary word of length 4k forms
the input to the simulated machine M. If M accepts this word, then it represents a tile
s €S, and we set a(s) = t. With this construction the set of locally valid macrotiles equals
a(S), and the adjacency rules of macrotiles are identical to those of S. Thus T simulates S
with zoom factor N.

We would now like to choose S =T, so that T'= T'(N) simulates itself. There are a few
complications that we need to handle. First, the colors of T" must be binary words of constant
length. We encode one component of the address in [log, N bits and the remaining data in
another m = [log, |C|] bits. Second, the state set and transition rules of the Turing machine
M, which are part of the tile set T, depend on S. We replace M by a fixed universal Turing
machine My that takes as input a binary word w € {0,1}* and, on a separate track of the
tape, a program p € {0,1}*, and computes p(w). The machine My should also be efficient in
the sense that for any Turing machine M’, there is a program p such that My (p, w) = M’ (w)
for all w and the number of computation steps in My (p, w) is polynomial in p|, |w|, and the
number of computation steps in M’(w). Now the set C of auxiliary colors of T(N) (and thus
the number m) is fixed, and to simulate T(N) itself, it suffices to find a suitable program
pr = pr(n)- We enforce the simulation by requiring that each tile with address (a + i, b)
stores the bit (pr); on the program track of the simulated tape of My, where (a,b) is the
southeast corner of the computation zone. We call this the program condition, and it is part
of the definition of T'.

Since we introduced the program condition into 7', we must enforce it in the simulated
version as well. Namely, suppose for a moment that the machine My always has enough time
and space to finish its simulated computation in a macrotile. At this point of the construction
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we then have a tile set T that simulates “tile set T" without the program condition,” which is
of course not equal to T. We can enforce the program condition in the simulated tiling as
well by modifying the program pr as follows. If the machine My simulated inside a macrotile
t € TN*N is given inputs that correspond to a tile with address (a + 4,b) on the bottom row
of the computation zone, then it reads the program bit d € {0, 1} of any tile of ¢ with address
(a+1i,b") for b’ € [0, N — 1] (which are all equal), and verifies that the simulated program bit
of t equals d. The program condition of T ensures that the initial tape of the machine My
contains the program pr, so we are guaranteed that d = (pr);. After this modification, T
simulates itself (given the assumption on My).

Finally, consider the time and space requirements of My. The number of bits needed to
store a color of T(N) is £ = [logy N+ m = O(log N), since m is fixed. The program pr can
store the number N in a variable, so its length is likewise O(log N). It should be clear that
for each w € {0,1}* the computation of pr(w) runs in time and space O(poly(log N)) as
long as we implement T and pr in a reasonable way. For large enough N the computation
zone can accommodate the computation, and then T' = T'(N) is a self-simulating tile set.
Each valid tiling over T is divided into macrotiles of level 1, which form macrotiles of level
2, which form macrotiles of level 3, and so on. In particular, the tile set is aperiodic. In
the standard terminology, a level-k macrotile is a child of the level-(k 4+ 1) macrotile that
contains it.

The simulation function o : T — TV*Y can be seen as a two-dimensional substitution.
We can iterate it to obtain substitutions of : T — TNkXN}c for £ > 0, and define the
substitutive subshift X, C T by forbidding all finite patterns that do not occur in any o (t)
for k > 0 and t € T. The set of valid tilings over T contains X, and T can quite easily
be modified to guarantee that these subshifts are equal. In [7], Durand and Romashchenko
presented a variant of the construction in which « is primitive, meaning that for some k£ > 0,
every t € T occurs in o¥(s) for every s € T. In this case X,, is a minimal subshift. We will
discuss their results more thoroughly in Section 4.2.

3.2 Cellular automata

The main idea of the fixed point construction for one-dimensional cellular automata is the
same as for tile sets, and in fact the “good” spacetime diagrams of a fixed point CA have
a similar substitutive structure to those of fixed point tilings, except that the width and
height of the macrotiles are distinct. The usual terminology is somewhat different, as is the
implementation of information transfer between macrotiles. As before, we first construct a
CA ¢ : AZ — A? that simulates a given CA v : BZ — BZ. The notion of simulation has long
been used informally in CA literature, but for the sake of being exact, let us use a version of
injective bulking as studied in [5].

» Definition 2. A cellular automaton ¢ : AZ — A? simulates another CA ) : B — B%
if there exist integers Q,U > 1 and s € [0,Q — 1] and an injection o : B — A% such that
oY (1% (a())) = a(y(z)) for all x € B%. Here a(x) € A” is defined by concatenating the
blocks a(x;) fori € Z.

We assume that ¢ has neighborhood N = {—1,0,1} and its state set consists of binary
words of constant length %k, and construct ¢ so that it also has neighborhood N. The
simulation parameters Q < U are called the colony size and work period, and we choose s = 0.
The work period U is typically vastly larger than @, but it is possible to implement the CA so
that Q/U is arbitrarily close to 1. Every state of ¢ consists of an element of [0, Q—1]x[0, U —1]
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called its address and age? plus some additional data. Say that a configuration x € A% is
valid at i € Z if the states x;_jx;x;41 have addresses 7,5 + 1,7 + 2 mod @ for some j and
their ages are equal. We only define the prototypical CA ¢ on configurations that are valid
everywhere. In this case, the address of a cell never changes and its age increases by 1 modulo
U on every time step.

A colony is a sequence of @) adjacent cells with addresses 0,1,2,...,Q — 1 and equal ages.

Each cell of a colony stores a simulation bit, and the k leftmost bits form the simulated state
of the colony. The “life cycle” of a colony, usually called a work period when it cannot be
confused with U, begins at age 0 and ends at age U — 1. At the first step of the work period
when each cell has age 0, the simulation bits of the cells are copied onto two separate tracks
called the left and right mailboxes. If the age of a cell is between 1 and @, it copies the

contents of these tracks from its left and right neighbors. Otherwise they remain unchanged.

In this way, during the first @ + 1 steps of its life cycle every colony transmits its simulation
bits to its nearest neighbors. The details of this process vary between implementations. Here
we have followed [31] and in particular assumed that ¢ is synchronous and deterministic. If
it is asynchronous or subject to local errors, a different scheme is needed to minimize loss of
transmitted data.

Each cell of a colony also stores a program bit, and these bits together form a program
p € {0,1}*. At age @ + 1, the leftmost cell of each colony initializes the computation of
the efficient universal Turing machine My. The simulated head of My is usually called
the agent. The agent scans the program bits, simulation bits and mailboxes of the colony,
computes a new simulated state w € {0,1}* according to the program p, and writes w onto
the simulation bits of the k leftmost cells. We assume that the agent never steps outside the
colony and halts before the work period ends at age U — 1. Then the age of the colony resets
to 0 and its life cycle begins anew.

As in the previous section, the CA ¢ simulates ¢ as long as Q and U are large enough to
satisfy the time and space requirements of My. A suitable choice of the parameters allows
self-simulation, meaning that we can choose ¢ = 1. Note that a correct simulation hierarchy
requires a program p, implementing ¢ to be stored in every colony of the initial configuration,
on every simulation level. On the first level this can be enforced by restricting the state set
of ¢ analogously to the program condition of the tile set construction, and then My can
check whether the next simulation level uses an identical program. It depends entirely on the
application how the CA behaves if the programs do not match, or if the simulation structure
is invalid in some other way: it can try to correct the error, produce a special error state, or
have only a partially defined local rule.

3.3 Variable zoom factor and communication between simulation levels

The construction is flexible enough that instead of having the tile set or the CA simulate
itself, we can modify the simulated system depending on the simulation level, resulting in a
sequence of tile sets (Tj)k>0 or automata (¢y)k>0. The motivation is that the tile set or CA
has some desirable property P(N) that is limited by the zoom factor N, and by increasing
the zoom factor on consecutive simulation levels it may be possible to obtain P(NV) for all
N € N. A common use case is that P(N) has a computational flavor, such as tiling the plane
only if a fixed Turing machine halts within N steps.

2 Notice the difference in terminology to the tile set construction, where address referred to a two-
dimensional vector.
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We discuss the implementation only in the case of tile sets, as the same ideas apply to the
CA construction. Our goal is then to define a sequence (T}, Ni)i>o of tile sets and numbers
such that each tile set T}, simulates Ty11 with zoom factor N, and we would like to have
as much freedom as possible in choosing the latter. For this, we modify the construction
of Section 3.1 as follows. The program pr has an additional integer parameter: pr(k,w)
determines if w encodes a tile of Ty. The program condition is extended so that in addition
to the program pr, each tile of Tj stores the number 0. For each k > 0, the tile set T}
implements a variant of the program condition where each tile of T} stores ppr and the
number k 4 1. This ensures that all macrotiles have access to their simulation level.

The constraints on the zoom factors are slightly different than in the uniform case.
First, both Ni1q and Tk41 should be computable from & in time and space O(Ng). Second,
Ni, = Q(log Nj.41 + log k) since the binary representation of any address in [0, Ny;1 — 1]?
and the simulation level k should fit in any level-k macrotile. To get a sense of the class
of allowed sequences, Ny, = [log k] for large enough k grows too slowly, while Ny, = 2V*

grows too fast. The choices Ny = O(k?) for a € Qsq, Ny = O(2%) and Ny, = @(222k) are all
acceptable.

In most applications, each macrotile stores some amount of additional information not
listed above, and there are additional relations between the data stored by macrotiles of
consecutive levels. In some sense, a macrotile can “communicate” with its children. The
technical details vary, but the main idea is that each level-k macrotile contains a special
field in its state set which the simulated machine My of its parent is allowed to access. The
parent may thus read an arbitrary “message” from a subset of macrotiles on the bottom row
of the computation zone. The children can synchronize this message among themselves using
local rules, so that it is visible to all of them or some convenient subset. In the CA context,
the agent of a colony can read and modify any data that was stored in the children during
the last work period, so inter-level communication is slightly easier to implement.

4 History and applications

4.1 Fault-tolerant cellular automata

The fixed point construction was first introduced in the context of probabilistic cellular
automata (PCA). We give some basic definitions; see [26] for a more thorough review on the
subject. A d-dimensional PCA ¢ on AZ" consists of a neighborhood N C Z? and a local rule
@ : AN — P(A), where P(A) is the set of probability distributions over A. The local rule is
applied to every coordinate of a configuration = € A" as in the case of deterministic CA, but
the result is the probability distribution ¢(x) € P(Azd) where the value of each cell ¢(z)z is
drawn independently from ®((772)|x). In this way ¢ lifts to a function ¢ : ]P’(AZd) — ]P’(AZd)
on distributions, denoted pu — pu¢. Every PCA has at least one fixed point, called an
invariant measure. If ¢ has a unique invariant measure p and for every other measure v
the sequence (v¥¢™),en converges weakly to p, then ¢ is ergodic. Intuitively, an ergodic
PCA gradually forgets all details about its initial state. We say ¢ has positive rates if the
probability of ®(P) = a is positive for all P € AN and a € A. In other words, every local
transformation occurs under ¢ with positive (but possibly very small) probability. The
positive rates conjecture states that if a one-dimensional PCA has positive rates, then it must
be ergodic.

In 1986 (and with an expanded paper in 2001), Gacs disproved the conjecture by an
intricate construction of a PCA that behaves like a deterministic CA except that at each
time step, each cell has an extremely small but positive probability of “making an error” and
ending up in an arbitrary state [13, 14]. The design is based on a short paper of Kurdyumov
from 1978 that likewise claims to refute the conjecture, but lacks detail [24].
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» Theorem 3 (Gacs). There exists a nonergodic 1D PCA with positive rates.

The construction uses self-simulation to recognize and correct clusters of errors that occur
at various scales. Non-ergodicity is achieved by defining the state set as a product {0,1} x A,
initializing each cell in some state x; € {b} x A for the same bit b, and “remembering” the bit
in the sense that the probability of seeing the opposite bit 1 — b in any given cell at any given
time is low.? If the error rate is small enough, an argument from percolation theory shows
that errors will almost surely occur in semi-isolated “bursts” that fit in finite (but unbounded)
space-time rectangles. At the lowest simulation level, each cell contains information about
its own simulation values (address, age...) and the bit to remember, as well as those of its
nearest neighbors, and isolated individual errors can be fixed in one time step by a majority
vote between three cells. Larger bursts of errors are detected and repaired by higher-level
colonies. One of the main difficulties is that long sequences of errors can produce a segment
of states that resembles a valid simulation structure. Its incompatibility with the global
hierarchy is only visible on its endpoints, where it cannot be determined locally which side
belongs to the erroneous segment. See Gray’s condensed version of the construction for more
(but not nearly all) technical details [16]. Gacs and Capuni have applied the same ideas to
fault-tolerant Turing machines [4].

4.2 Realizations by sofic shifts

In [20], Hochman proved that d-dimensional effectively closed subshifts can be realized as
the projective sybdynamics of (d 4+ 2)-dimensional sofic shifts, that is, sets of d-dimensional
hyperplanes occurring in them. The construction uses the older result of Mozes that two-
dimensional substitutive subshifts are sofic [27] to divide each configuration into regions of
increasing size containing simulations of Turing machines. The dimension was reduced from
d+ 2 to d + 1 independently by Aubrun and Sablik in [1] with Robinson tiles [28], and by
Durand, Romashchenko and Shen in [12] using fixed point tilings. It has since been used as
a “black box” in numerous other constructions. Incidentally, the realization result of Mozes
was also reproved with a fixed point construction in [12].

» Theorem 4 (Aubrun & Sablik; Durand & Romashchenko & Shen). Let X C AZ" be an
effectively closed subshift. Then the higher-dimensional subshift Y = {y € Az | Jx € X :
Vi € 2 yg = Ty, (7))} U5 sofic, where Tq : 7Y — 72 is defined by my(iy, ..., iq11) =
(i1, ., 04)-

The article [12] is a culmination of a series of shorter papers by the same authors. It
presents the prototypical fixed point construction, collects their previous results into one
place, and extends some of them. In their proof of Theorem 4 (in the case d = 1), there
is a separate layer of A-tiles in which each vertical stripe is tiled with copies of a single
A-symbol. The simulations have zoom factors N = Qck for some large constant () and ¢ > 2.
A macrotile of level k with address (z,y), where y < Hf:o N;, is tasked with retrieving and
storing the symbols of f(k) consecutive columns of the A-layer situated y steps away from
its left border, where f : N — N is a very slowly growing function. The definition of Nj
ensures that N1 < Hf:o N;, so that in a level-(k 4+ 1) macrotile ¢, every length- f (k) word
of the A-layer occurring within it (or right at the border between it and its neighbor) is
stored in at least one child. Using a series of inter-level messages, t is in turn able to retrieve

3 In fact, the construction can remember an infinite sequence of bits.
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its designated length-f(k + 1) word. It also computes a prefix of the sequence of forbidden
patterns that defines X and verifies that none of them occur in the word it retrieved. As a
direct application, the authors reprove the main result of [6]: there exists a tile set where
the Kolmogorov complexity of every N x N pattern that occurs in a tiling is Q(N), which
is asymptotically optimal for an SFT. Namely, we can define X C {0, 1} by forbidding all
words w whose Kolmogorov complexity is below a|w| — b for suitable constants a,b > 0 and
apply Theorem 4.

Some dynamical properties of the subshift X in Theorem 4 can be lifted to the SFT
cover Z of Y. One of the main results of Durand and Romashchenko in [7] states that if
X is minimal or quasiperiodic, then the same property can be imposed on Z. They modify
the construction so that every macrotile contains a zone of “diversification slots” where all
valid 2 x 2 patterns of tiles are manually forced to appear. In the minimal case, there is the
additional complication that if the positions of the macrotile grids and the layer of A-tiles in
the SF'T cover can be independent, the result is generally not minimal. This is overcome by
choosing a canonical configuration from each and implementing the minimal shift generated
by their combination. In the same article, the authors characterize the Turing degree spectra
of quasiperiodic SF'Ts, which are exactly the upper closures of effectively closed subsets of
{0, 1} (see [7, Theorem 4] for details). In particular, there exist nonempty quasiperiodic
SFTs with only noncomputable configurations.

In [33], Westrick proves two sofic realization results that utilize the fixed point construction.
They concern two-dimensional binary subshifts where every connected component of 1-cells
is a (possibly degenerate) square.

» Theorem 5 (Westrick). Let Xg C {0,1Y% be the 2D subshift where every connected

component of 1-cells is either a finite square, a quarter-plane, a half-plane, or the entire Z2.

(a) Every effectively closed subshift X C Xy that forbids all pairs of distinct squares of
identical size (and possibly other patterns) is sofic.

(b) For S CN, let Xg C Xyq be the subshift that forbids the n x n squares for alln € N\ S.
If S is computably enumerable, then Xg is sofic.

We only sketch the construction proving the first result, as the other is quite similar. The
subshift X is easily seen to be sofic, so we focus on the additional constraints of X. Westrick

uses the variable zoom factors N = 222k. In addition to the simulation structure, each
macrotile ¢ stores the following information: first, the size and relative position of each finite
square of 1-cells that has at least one side completely inside ¢ or one of its neighbors; second,
the orientation and relative position of each corner and horizontal or vertical boundary of
1-cells in ¢ or its neighbors that if not part of an already stored finite square; third, auxiliary
bits that help enforce the consistency of this information between ¢ and its parent.

If the sizes of all squares are distinct, then each level-k macrotile can contain at most
O(Li/g) squares, where L = Hf:o Ny, is its side length, and their sizes and positions can
be encoded in O(Li/3 log Li) bits. This data is small enough to fit in the macrotile, but
transporting it from its children to the computation zone is nontrivial, since it is too large to
be simply broadcast to each child. Westrick uses a graph theoretical argument to show that
one can route the information in a nondeterministic way. Additionally, the universal Turing
machine My needs to be replaced by a multi-tape machine to speed up the computation of
the relative offsets of the squares. As in Theorem 4, the number of additional time steps
used for computing the forbidden patterns of X is increased at each simulation level. The
patterns formed by small squares are checked first, so any forbidden pattern will be eventually
discovered and leads to a tiling error.



l. Torma

4.3 Robust tilings

In addition to Theorem 4 and related realization results, the paper [12] presents tile sets that
are robust with respect to random errors, meaning that a configuration that is locally valid
on a large subset of Z?2 is guaranteed to be equal to a single valid tiling in a large? subset of
Z2. In fact, the main result is the construction of a tile set that combines robustness with
the aforementioned property that every tiling is algorithmically complex.

» Definition 6. Let T be a set of Wang tiles and E C Z2. A (T, E)-tiling is a configuration
z € T% such that for all neighboring coordinates v,w € Z* \ E, the colors at the common
border of x5 and x5 match. The Bernoulli distribution on subsets of Z2 with P(7 € E) = €
for each ¥ is denoted Be.

» Theorem 7 (Durand & Romashchenko & Shen). There exists a tile set T that tiles the
plane and a,b > 0 with the following properties. In every valid x € TZ2, every n X n square
has Kolmogorov complexity at least an — b. For small enough € > 0, for B.-almost every
E C 72, for each (T, E)-tiling z, the Kolmogorov complezity of T[—ppp2 s Q(n), and there is
a valid tiling y € T% with limsup,, |{7 € [-n,n)? | 25 # ys}|/(2n + 1) < 1/10.

The construction of robust self-simulating tile sets turns out to be much simpler than
the error-correcting CA discussed in Section 4.1. Similarly to that construction, if € is small
enough, then almost all error sets E' can be decomposed into isolated finite subsets that can
be handled separately. It is then enough to modify the prototypical fixed point construction
so that every locally valid pattern shaped like the 5 x 5 annulus [—2,2]? \ [-1,1]? can be
extended into a valid 5 x 5 rectangle in a unique way. Namely, this property is inherited
by macrotiles of all simulation levels, which can then correct arbitrarily large (but finite)
incorrect patterns. The additional condition on the Kolmogorov complexity of (7', E)-tilings
requires a little more machinery, since the uniformity of the vertical columns that store the
bits of the high-complexity shift X can be broken by the error set E. This is remedied by
duplicating the information in several columns of macrotiles and periodically checking it
against an error-correcting code.

4.4 Unique ergodicity

The article [31] by Térmé is an application of the fixed point construction to the dynamics
of cellular automata. It concerns a weakening of the notion of nilpotency.

» Definition 8. A CA ¢ : ALY 5 AL with a quiescent state 0 € A is nilpotent if there
ezists n € N such that ¢”(AZd) = {Ozd}, It is asymptotically nilpotent if for each x € Az
we have ¢"(z) — 0Z* in the product topology as n — oo. It is uniquely ergodic if it has a
unique invariant measure.

A nilpotent CA sends every initial configuration into the same uniform “sink” in a
bounded number of steps. Asymptotic nilpotency means that for every initial configuration,
each cell will be in a nonzero state on only a finite (but not necessarily uniform) number
of time steps. It was shown in [17] that asymptotically nilpotent one-dimensional CA are
in fact nilpotent, and the result was generalized in [29, 30]. As for unique ergodicity, note
that since 0 is quiescent, the unique invariant measure cannot be any other than the Dirac

4 Large in a slightly different sense: the first subset comes from a measure-1 set with respect to a biased
Bernoulli distribution, the second has asymptotic density close to 1.
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point measure concentrated on 0Z°. Then by classical results of ergodic theory, ¢ is uniquely
ergodic if and only if for every initial configuration, the asymptotic proportion of time steps
that any given cell spends in a nonzero state equals zero. The main result of [31] states that
even one-dimensional uniquely ergodic CA are not necessarily nilpotent.

» Theorem 9 (Térmi). There exists a uniquely ergodic CA ¢ : AZ — A” that has a quiescent
state and is not nilpotent.

This CA is defined by a fixed point construction with variable zoom factors. The alphabet
of the CA ¢y, on each simulation level k contains a designated “blank” state By, with By = 0.
Each cell of a level-k colony will spend a proportion py of its work period simulating the
state By, with p, — 1 as k — co. If a colony and both of its neighbors simulate the state By,
it is temporarily replaced by a segment of 0-cells. Any local inconsistency in the simulation
structure causes all nearby colonies to assume the blank state. These properties ensure
that every locally correct simulation structure is asymptotically infinitely sparse, and locally
incorrect structures are quickly destroyed. On the other hand, since a carefully chosen initial
condition gives rise to an infinite nested simulation, the CA is not nilpotent.

4.5 Realization of topological entropy

The topological entropy of a topological dynamical system measures its complexity and
unpredictability. In the case of subshifts and cellular automata, it can be characterized as
a limit of counting patterns of increasing sizes that occur in the valid configurations and
spacetime diagrams.

» Definition 10. The topological entropy of a subshift X C AL s the limit h(X) =
lim,, 00 7~ %log Hx,n-1)¢ | * € X}|. The topological entropy of a CA ¢ on AZY s h(g) =

100, o0 1m0 1 log [ {(8(2) 0.0 110) 0 | = € AZ'Y.

By classical results in symbolic dynamics (see Sections 4 and 11 of [25]), the entropy
of a one-dimensional SFT is efficiently computable and its possible values are exactly the
nonnegative integer multiples of logarithms of Perron numbers. The entropies of two- and
higher-dimensional SFTs were characterized by Hochman in [22] as the nonnegative right-
computable numbers, that is, limits of computable decreasing sequences of rational numbers.
Independently in the preprint [15] using a variant of Robinson tiles and in [7] using fixed
point tile sets, it was shown that they can be realized with transitive SF'Ts.

» Theorem 11 (Gangloff & Sablik; Durand & Romashchenko). The topological entropies of
transitive 2D SFTs are exactly the nonnegative right-computable numbers.

The topological entropies of three- and higher-dimensional CA were characterized in [20].
Guillon and Zinoviadis handled the remaining dimensions, 1 and 2, in [19]. Their proof uses
the fixed point construction.

» Theorem 12 (Hochman; Guillon & Zinoviadis). The topological entropies of one-dimensional
CA are exactly the nonnegative right-computable numbers, and those of two- and higher-
dimensional CA are exactly the limits of increasing computable sequences of nonnegative
right-computable numbers (including oo ).

The high-level idea in each construction is the same. In the SF'T case, given a number

d

a > 0 in the appropriate class, construct an SFT that factors onto a subshift X C {0, 1}Z
where the maximal asymptotic density of 1-symbols in a configuration equals «, and then
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allow any subset of 1s to be independently replaced by 2s. In the case of cellular automata,
a d-dimensional self-simulating CA with variable zoom factor is used to analyze a separate
binary layer of the configuration, which is not modified by the CA except when erased by
the error state. The CA produces a spreading error state if the local density of 1-symbols is
too high, which guarantees that such patterns are transient and thus do not contribute to
the entropy. This density is converted into entropy by replacing an arbitrary subset of 1s by
2s and composing the CA with a shift.

4.6 Expansive directions

Subshifts are expansive dynamical systems: a configuration z € X C AZ* can be reconstructed
from any family of good enough approximations of the shifts 7%z for ¥ € Z%. Boyle and Lind
studied a stronger variant called directional expansivity, where a certain subset of the shifts

suffices to determine x, in [3]. For convenience, we define it only in the two-dimensional case.

» Definition 13. Let 0 € L C R? be a line through the origin with direction (slope)
leR=RU {o0}. We say ¢ is expansive for a subshift X C AZz, if there exists r > 0 such
that the function x — z|p is injective on X, where D = (L + [—r,7]?) N Z%. Denote the
nonezxpansive directions by N(X) C R.

For any infinite two-dimensional subshift X, the set N(X) is nonempty and closed. Boyle,
Lind and Hochman proved in [3, 21] that every nonempty closed subset L C R occurs
as N(X) for some subshift X. The subshifts constructed by Boyle and Lind consist of
two layers, each of which contains regularly spaced discrete approximation of lines, and it
realizes every L except singleton irrational directions. Hochman handled the remaining case
with a subshift resembling the set of spacetime diagrams of a fixed point CA with variable
zoom factor, but without the simulated Turing machines. Since X is not required to be
of finite type, the hierarchical structure can be enforced. Building on Hochman’s proof,
Guillon and Zinoviadis have characterized the sets of nonexpansive directions of SF'Ts in an
unpublished manuscript [18], which also contains several realization results of SFTs with a

unique nonexpansive direction. The results are reported in Zinoviadis’s PhD dissertation [34].

In the next result, a subset A C R is effectively closed if there exists a computable sequence
(I)nen of open intervals (which may have the form (a, c0] U (—o0, b)) with rational endpoints
such that R\ A = UJ,,cy In-

» Theorem 14 (Guillon & Zinoviadis). The sets N(X) for two-dimensional SFTs X are
ezactly the effectively closed subsets of R.

The main technical contribution of the dissertation is a fixed point construction for
reversible partial cellular automata (RPCA), which are defined by a local rule that is a

partial function. Note that the fixed point CA presented in Section 3.2 is not reversible.

The set of spacetime diagrams of a one-dimensional RPCA is a two-dimensional SFT for
which all directions —1 < ¢ < 1 are expansive. For an RPCA obtained by the fixed point
construction with variable zoom factor, if [[,-, Qx/Ux = 0, then every direction except oo
(the vertical line) is expansive. A shift map by Dy € Z cells is then applied to each level k of
the simulation hierarchy, which changes the direction of the unique nonexpansive line. These
numbers and the simulation parameters @, Uy are allowed to vary within a suitable set of
sequences computed by the simulated Turing machines, which provides enough control on
the nonexpansive directions to realize any effectively closed set.
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