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Abstract
Though iterated maps and dynamical systems are not new to combinatorics, they have enjoyed a
renewed prominence over the past decade through the elevation of the subfield that has become
known as dynamical algebraic combinatorics. Some of the problems that have gained popularity can
also be cast and analyzed as finite asynchronous cellular automata (CA). However, these two fields
are fairly separate, and while there are some individuals who work in both, that is the exception
rather than the norm. In this article, we will describe our ongoing work on toggling independent sets
on graphs. This will be preceded by an overview of how this project arose from new combinatorial
problems involving homomesy, toggling, and resonance. Though the techniques that we explore
are directly applicable to ECA rule 1, many of them can be generalized to other cellular automata.
Moreover, some of the ideas that we borrow from cellular automata can be adapted to problems in
dynamical algebraic combinatorics. It is our hope that this article will inspire new problems in both
fields and connections between them.
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1 Dynamical algebraic combinatorics

The subfield of dynamical algebraic combinatorics covers a wide swath of problems involving
actions on combinatorial objects. Of particular interest is the study of the orbit structure,
such as their sizes, and the variation of combinatorial statistics within or across orbits. One
such example is the concept of homomesy, which is a statistic whose average value is constant
over all orbits. Another popular new idea in dynamical algebraic combinatorics involves
breaking up global maps into compositions of local involutions called toggles. These generate
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so-called toggle groups, which can be useful in explaining certain structural properties of
the orbits, such as the phenomenon of resonance. In this paper, we will show how, in some
settings, these toggles can be modeled as an asynchronous cellular automaton (CA). For
two fun and easy-to-read articles on dynamical algebraic combinatorics, homomesy, and
toggling, containing many examples and colorful pictures, we will refer the reader to surveys
by Roby [20] and Striker [24]. We will begin this paper with a crash course on homomesy
and toggling – just enough to motivate the idea of why one should be interested in toggling
independent sets, and then we will show how this can be realized with ECA rule 1. We will
discuss our techniques from combinatorics, some of which can be extended to study other
CAs, and conversely, how ideas from CAs can be used to pose and explore new questions in
combinatorics. However, before we will do any of that, we will begin with a few concepts
from the theory of Coxeter groups, which underlies both subjects.

1.1 Some basic Coxeter theory
The toggling operations that we will introduce in this section are involutions, and so the
groups generated by these toggles will always be quotients of Coxeter groups [2]. A Coxeter
system (W, S) consists of a group W generated by a set S = {s1, . . . , sn} with presentation

W =
〈
s1, . . . , sn | s2

i = 1, (sisj)mij = 1 for i ̸= j
〉

,

where mij = |sisj | ∈ {2, 3, . . . } ∪ {∞}. We can encode this by a Coxeter diagram Γ(W, S),
which is a graph with vertex set S and an edge {si, sj} for each non-commuting pair, labeled
with mij .1 We will refer to the unlabeled version as the Coxeter graph, Γ. A Coxeter
element of W is the product of the generators in some order, i.e.,

cπ := sπ1sπ2 · · · sπn
∈ W,

for some permutation π = π1 · · · πn ∈ Sn. We denote the set of Coxeter elements by
C(W, S). There is an obvious bijection between Coxeter elements and the set Acyc(Γ) of
acyclic orientations, where we orient the edge {si, sj} as si → sj if si comes before sj in
cπ. Conversely, every acyclic orientation of Γ defines a partial order on S, and the Coxeter
element arises from any of its linear extensions.

It is well known that two Coxeter elements c, c′ ∈ C(W, S) are conjugate if and only
their corresponding acyclic orientations are torically equivalent, which means that they
differ by a sequence of source-to-sink conversions [8]. In [18], Pretzel showed that a complete
invariant for this is the circulation ν around each cycle, which is the number of “forward”
edges minus the number of “backward” edges.2

Figure 1 shows five acyclic orientations of a Coxeter graph. The circulation around the
unique cycle of the first three orientations is ν = 0. For the fourth, ν = 2, and for the fifth,
ν = −2. This means that the first three orientations represent conjugate Coxeter elements,
while the other two fall into two different conjugacy classes.

1.2 Homomesy, rowmotion, promotion, and toggles
Consider a set X of combinatorial objects. There are a surprising number of group actions
on X where some statistic X → R, though not constant, has a constant average of c over all
orbits. This is called a homomesy, and such a statistic is said to be homomesic, or c-mesic.

1 Note that si and sj commute if and only if mij = 2.
2 If the graph is planar, then we can take “forward” to be clockwise and “backward” to be counterclockwise.

It is elementary to extend this notion for non-planar graphs, but we do not need to do that here.
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“left-to-right” “top-to-bottom” “middle row last” “clockwise” “counterclockwise”

Figure 1 Five acyclic orientations of a Coxeter graph Γ. The first three describe conjugate
Coxeter elements, because their circulations around the cycle is ν = 0. The last two have circulations
of ν = 2 and ν = −2, respectively.

In many cases, the analysis into why such phenomena arise uncovers the often unexpected
fact that the actions can be broken up into a sequence of involutions called toggles.

To introduce this idea, let P be a poset over [n] = {1, . . . , n}, and let J(P) be its set
of order ideals (i.e., I ⊆ P such that if y ∈ I and x ≤ y, then x ∈ I). The operation
of rowmotion, introduced in 1995 by Cameron and Fon-Der-Flaass [3], is a bijection
J(P) → J(P) defined by sending an ideal I to the ideal generated by the antichain of
minimal elements of P \ I. An example of rowmotion on the root poset of type A3 is shown
in Figure 2. Elements in the ideals are denoted by solid black dots. Notice that for this
example, there are three orbits of sizes 8, 4, and 2.

Figure 2 Rowmotion maps an order ideal to the ideal generated by the antichain of minimal
elements of its complement. This can also be realized by “toggling” elements in/out (when possible)
from top-to-bottom, i.e., along any linear extension of the second acyclic orientation from Figure 1.
The number of maximal elements is homomesic because its average is 3/2 on all orbits.

A statistic on order ideals is a function J(P) → R. Three examples, which we will refer
back to, include the cardinality of the ideal, the number of minimal elements, and the number
of maximal elements. Notice how over the large orbit in Figure 2, the average cardinality
is 5/2, the average number of minimal elements is 2, and the average number of maximal
elements is 3/2. On the medium orbit, these averages are 7/2, 9/4, and 3/2, respectively.
Finally, on the small orbit, they are all 3/2. Consequently, the statistic that counts the
number of maximal elements is 3

2 -mesic.
Though it appears infeasible to analyze rowmotion systematically on arbitrary posets, it

has some surprising properties on certain families. One such example is the family of rc-posets
[26], which are characterized by having well-defined notions of “rows” and “columns,” such as
in Figure 2. For example, if a and b are chains of size a and b, respectively, then rowmotion
on their product P = a × b has order a + b and exhibits the cyclic sieving phenomenon [19].
These properties arise because rowmotion can be decomposed as a product of n involutions,
called toggles, one for each k ∈ P. Loosely speaking, given an ideal I and an element k ∈ P
of a poset, toggling at k attempts to add/remove k to/from I. More precisely, toggling I

at k means:
1. if k ̸∈ I and I ∪ {k} ∈ J(P), then add it;
2. if k ∈ I and I \ {k} ∈ J(P), then remove it;
3. otherwise, do nothing.

AUTOMATA 2021
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Toggles corresponding to elements k, ℓ commute when neither k nor ℓ covers the other. Thus,
in an rc-poset such as in Figure 2, the toggles of any two elements in the same horizontal
row commute, as do the toggles of any two elements in the same vertical column. Therefore,
it is well-defined to speak of toggling elements from top-to-bottom, from left-to-right, etc.

Since each individual toggle is a bijection on J(P), the set of toggles forms a group that
we call the toggle group, or more specifically, the order ideal toggle group Tog(J(P)) =
⟨t1, . . . , tn⟩ . Clearly, each generating toggle is an involution, and so Tog(J(P)) is the quotient
of a Coxeter group. Following Coxeter theory, we will define a Coxeter element to be the
product of all toggles of P in some order. The name “rowmotion” is partially inspired by the
fact that it is one of these Coxeter elements, which we will denote as Row.

▶ Theorem 1. If P is a ranked poset, then rowmotion is the Coxeter element Row ∈ Tog(J(P))
defined by toggling across rows, from top-to-bottom.

One can also ask what is the result of “toggling by columns”. Doing so from left-to-right
is called promotion, denoted Pro ∈ Tog(J(P)), because for certain posets, it agrees with a
well-known operation with the same name, first introduced in 1972 by Schützenberger [23].
Promotion was originally defined as an action on the set L(P) of linear extensions of a poset.
Striker and Williams showed that promotion on two-row rectangular tableaux SYT(2 × b) is
equivalent to promotion on the positive root poset of Coxeter type Ab−1 [26]. The action of
promotion on the root poset of type A3 is shown in Figure 3.

Figure 3 Promotion can be realized by toggling from left-to-right, i.e., any linear extension of
the first acyclic orientation in Figure 1. The average cardinality of the ideals, and of the minimal
elements, is the same as for rowmotion, but the statistic that counts the number of maximal elements
is no longer homomesic. In particular, its average is 13/8, 5/4, and 3/2 across the three orbits.

One immediate observation from Figures 2 and 3 is that promotion and rowmotion have
the same orbit structure. This is a simple consequence from Coxeter theory – since the
acyclic orientation defined by toggling top-to-bottom has the same circulation as the one
defined by toggling left-to-right, they are torically equivalent. Therefore, the corresponding
Coxeter elements Row and Pro are conjugate in Tog(J(P)). However, not all statistics are
preserved by conjugation. Observe that the average order ideal cardinality, and the average
number of minimal elements, are the same for promotion and rowmotion. However, the
number of maximal elements is no longer homomesic: it is 13/8 for the large orbit, 5/4 for
the medium orbit, and 3/2 for the small orbit. It is easy to check from Figures 2 and 3
that none of these statistics are preserved elementwise by conjugation from rowmotion to
promotion, but the average number of elements in each orbit is preserved.

Another fundamental feature of an action on a set of combinatorial objects is the collection
of orbit sizes. Though each of these has to divide the size of the toggle group, in practice,
such groups are often large, and this does not provide meaningful information. In a number
of cases, computational experiments are used to answer this question for small n. It has
often been observed that most, but not necessarily all, of the orbits in an action are divisible
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by some integer ω > 1. Such actions are said to resonate with ω, though for years, people
did not know exactly how to precisely define this, because it involved “most,” rather than
“all” orbits. For example, on the poset P = a × b × c, a product of three chains, the sizes of
most orbits under rowmotion are multiples of a + b + c − 1. The sizes of all 21156 rowmotion
orbits of P = 4 × 4 × 4 are multiples of 11: six have size 33 and the others all have size 11.
However, for the rowmotion orbits of P = 4 × 4 × 5, most of the orbits have sizes divisible
by 12 (136822 of size 12, 4 of size 24, 100 of size 36), but there are also 6 orbits of size 2, 8
of size 3, and 162 of size 6. In 2015, the concept of resonance was formally defined, involving
commutative diagrams of actions of cyclic groups [6].

1.3 Generalized toggling
The idea of toggling an order ideal I at an element k by attempting to add/remove it is easy
to generalize to other combinatorial objects [25]. Consider a finite set X, such as a graph
or a poset, and a collection L ⊆ 2X of subsets that have a particular property (such as “is
an order ideal”). For each k ∈ X and subset E ∈ L, we say that toggling E at k is the
function

tk : L −→ L, tk(E) =


E ∪ {k} k ̸∈ E and E ∪ {k} ∈ L
E \ {k} k ∈ E and E \ {k} ∈ L
E otherwise.

We sometimes speak of the first case above as “toggling in k” and the second case as “toggling
out k.” It should be clear that tk is either the identity or an involution.

For some examples of generalized toggling, we can always toggle out, but not always
toggle in. For example, if we toggle the set L = A(P) of antichains of a poset P, then
tk(A) = A \ {k} whenever k ∈ A, because removing any element from an antichain results in
another antichain. This is closely related to order ideal toggling, because every order ideal is
uniquely determined by an antichain – the minimal elements of its complement. In particular,
the toggle groups are isomorphic, despite the individual toggles having fundamentally different
properties [9]. In contrast, there are other settings where we can always toggle in, but not
necessarily toggle out. Toggling vertex covers, edge covers, or dominating sets of a graph are
such examples.

Sometimes, there are sets of objects that do not seem to be “togglable” upon first glance,
but admit a nice toggle action if one views them the right way. For example, a noncrossing
partition of [n] is a partition such that if the numbers 1, . . . , n are arranged cyclically, then
the convex hulls of the blocks are disjoint. An alternate way to represent a noncrossing
partition is with an arc diagram: draw the numbers 1, . . . n in a line, and draw an arc
between all consecutive vertices in the same block. By construction, every collection of arcs
on [n] represents a noncrossing partition if it does not contain any of the three motifs shown
in Figure 4.

i j k ℓ i j k i j k

Figure 4 Disallowed pairs of arcs in a noncrossing partition: crossing, left-nesting, and right-
nesting, respectively.

Let X = {{i, j} | 1 ≤ i < j ≤ n} be the set of arcs on [n], and NC(n) ⊆ 2X the set of
noncrossing partitions. It should now be easy to see how to toggle a noncrossing partition
π ∈ NC(n). Specifically, for each arc {i, j} ∈ X, the toggle ti,j removes it from π if it already

AUTOMATA 2021
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contains it. Otherwise, ti,j adds the arc, as long as π ∪ {{i, j}} does not contain one of
the forbidden motifs from Figure 4. Notice that arcs can always be toggled out, but not
necessarily in. Figure 5 shows an example of toggling a noncrossing partition of size n = 12,
both as arc diagrams and as convex hulls. Computational experiments originally suggested
the surprising fact that under any Coxeter element, the arc count statistic is n−1

2 -mesic, and
this was proven in [7].

1 2 3 4 5 6 7 8 9 10 11 12

τ6,7

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5
6

7

8

9

10

11
12

τ6,7

1

2

3

4

5
6

7

8

9

10

11
12

Figure 5 An example of toggling a noncrossing partition of [n] = [12].

The Coxeter graph of Tog(NC(n)) can be constructed by putting the toggle ti,j in the
(i, j) position of a grid, arranged in the upper-triangular entries of a matrix. In doing so, each
column and each row is a complete graph (i.e., no two toggles in the same row or column
commute), and there are some other edges as well, the details of which are not important
here, other than the fact that they all have a “negative slope.” An example of this graph for
n = 5 is shown in Figure 6. One key observation is that the Coxeter element by rows (from
top-to-bottom) and the Coxeter element by columns (from left-to-right) both arise from the
same acyclic orientation, constructed by orienting all edges in the “south, east, or southeast
directions.” In other words, toggling by rows is the same element in the toggle group as
toggling by columns. It turns out that this element is the inverse of the well-studied Kreweras
complement κ on noncrossing partitions [11], an operation that has the curious property
that κ2 is a rotation of the “convex hull” diagram by 2π/n. In [1], this map, along with
rowmotion, was used to construct a uniform bijection between noncrossing and nonnesting
partitions in Weyl groups of all classical types.

1

2

34

5

1 2 3 4 5

π =
{

{1, 4}, {2, 3}, {4, 5}
}

.

(1,2) (1,3) (1,4) (1,5)

(2,3) (2,4) (2,5)

(3,4) (3,5)

(4,5)

Figure 6 There is a bijection between noncrossing partitions on [n] and independent sets of the
Coxeter diagram of the NC toggle group. An example of this for n = 5 is shown.

The arcs in a noncrossing partition form an independent set of the Coxeter graph,
and every such independent set corresponds to a noncrossing partition. In other words,
toggling noncrossing partitions is just a special case of a more general construction: toggling
independent sets in a graph. However, the Coxeter graphs of the NC toggle group are quite
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complicated. The third author and Roby studied toggling independent sets of the path graph
in [10], and the toggle groups were recently shown to be symmetric groups [17]. In an ongoing
project [4], the authors of this paper are studying toggling independent sets of the cycle
graph. Early computational experiments, motivated by the search for examples of homomesy
and resonance, brought other curious properties to light. For example, if one records the
frequency with which each vertex is toggled in over time, this cyclic vector always has odd
period under the update order π = 1, . . . , n, but not necessarily under other update orders.
There are interesting observations to be made about the period and the sizes of the orbits, as
well as how this depends on the update order and on n. In the next section, we will show how
this framework can be viewed as an asynchronous CA. We will also describe the analytical
tools and techniques we developed, inspired by ideas from dynamical algebraic combinatorics,
that we think are mostly new in the field of cellular automata. Additionally, we will discuss
ideas from cellular automata that we are bringing back to the field of dynamical algebraic
combinatorics.

2 Toggling independents sets in a cellular automata framework

2.1 Asynchronous cellular automata
A cellular automaton (CA) is a discrete dynamical system over a regular grid. A one-
dimensional CA is either over an infinite path or a cycle graph Cn. We will assume that Cn

has vertex set v(Cn) = [n], sometimes called cells, and take the indices modulo n, when
appropriate. Vertex i has a Boolean state xi ∈ F2 = {0, 1} and a function that updates this
state based on the states of itself and its neighbors. We encode each function fi : F3

2 → F2
with a number between 0 and 255, based on the binary string a7a6 · · · a1a0, defined from its
truth table, as follows:

xi−1xixi+1 111 110 101 100 011 010 001 000
fi(xi−1, xi, xi+1) a7 a6 a5 a4 a3 a2 a1 a0

These functions are called elementary cellular automata (ECA) rules, and have been
well-studied since CAs gained popularity in the 1980s. In a classical CA, the individual
functions are updated synchronously to define the dynamical system map f : Fn

2 → Fn
2 , which

is iterated to generate the global dynamics. In this section, we will consider a common
asynchronous framework, where the dynamical system map is defined by updating each
function in some predetermined order, sometimes called a fixed sweep [22].

Fix an ECA rule, and for each vertex function fi : F3
2 → F2, define the function

Fi : Fn
2 −→ Fn

2 , Fi : (x1, . . . , xi, . . . , xn) 7−→
(
x1, . . . , fi(xi−1, xi, xi+1), . . . , xn

)
, (1)

which simply updates the global state vector (x1, . . . , xn) at only the ith position. Let
π = π1 · · · πn ∈ Sn be a permutation of the vertices of Cn, written as a word in v(Cn). The
fixed sweep asynchronous cellular automaton (ACA) map with respect to π is

Fπ : Fn
2 −→ Fn

2 , Fπ = Fπn
◦ · · · ◦ Fπ1 .

A point x ∈ Fn
2 is periodic if F k

π (x) = x for some k ≥ 1, and transient otherwise. The fixed
points are those for which Fπ(x) = x, and they do not depend on π. The periodic points
are partitioned into periodic orbits. An ACA is a special case of a sequential dynamical
system (SDS), which is defined over arbitrary graphs and with update functions that need
not be the same at every vertex [16].

AUTOMATA 2021
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The dynamics of an ACA depends on the update order π = π1 · · · πn, which we can
encode as an acyclic orientation Oπ of Cn, just as we did for Coxeter elements. This defines
a map

Sn −→ Acyc(Cn), π 7−→ Oπ,

and it is easy to see that if Oπ = Oπ′ , then Fπ = Fπ′ as ACA maps, for any fixed ECA
rule. Moreover, if Oπ and Oπ′ are torically equivalent, then the ACA maps Fπ and Fπ′ are
topologically conjugate when restricted to their respective sets of periodic points [14].

2.2 Togglable ACAs
An ACA is togglable if its set of periodic points does not depend on the update order π ∈ Sn.
When this happens, each function Fi restricted to the periodic points is a bijection, and
F 2

i = 1, since it either fixes or flips each ith bit. In other words, if ECA rule k is togglable,
then we have a natural toggle action on the set Per(k)

n of periodic points, and we denote the
toggle group by

Tog(k)
n = ⟨F1, . . . , Fn⟩ .

It is known that 104 of the 256 ECA rules are togglable [13], and their toggle groups have
been classified [12]. Those two papers predate the notion of generalized toggling, and so
in them, the property of being togglable is called order independent, and the toggle groups
are called dynamics groups. It is easy to see that Tog(k)

n is trivial if and only if all periodic
points are fixed points.

Every ECA rule is equivalent to the ECA rules formed by “mirror reflection” (swapping
xi−1 with xi+1), “logical complement” (swapping 0 with 1), and doing both operations. Some
rules are their own reflection, own complement, or both. As such, the 256 ECA rules are
partitioned into 88 equivalence classes, of sizes 1, 2, and 4. Of these, exactly 41 classes
are togglable, but some are for obvious reasons: 26 have trivial toggle groups (i.e., only
fixed points), 9 are reversible (i.e., the maps Fn

2 → Fn
2 in Eq. (1) are invertible), and 1 is

both. Some of the invertible rules have interesting toggle groups, and these are described
in Section 5 of [12]. The conjectured group for ECA rules 54 and 57 (also conjectured
independently in [27]) was recently proven by Salo [21]. Two of the invertible rules: the parity
function and its complement (rules 150 and 105), each of which is in a size-1 equivalence
class, were recently studied in the context of toggling by the second author [5].

In this paper, we are doing the opposite: taking a problem from combinatorics, toggling
independent sets in Cn, and studying it in an ACA framework. Specifically, an independent
set of Cn is a length-n binary string with no consecutive 1’s, including wrapping around the
end. Let In be the set of independent sets of Cn. Toggling in In can be realized by one of
several rules, such as ECA rule 1, or the invertible rule 201:

xi−1xixi+1 111 110 101 100 011 010 001 000
f

(1)
i (xi−1, xi, xi+1) 0 0 0 0 0 0 0 1

f
(201)
i (xi−1, xi, xi+1) 1 1 0 0 1 0 0 1

The only differences between these two rules are on the three inputs that do not arise for
independent sets: 111, 110, and 011. We are primarily interested in studying the dynamics of
ECA rule 1 and Tog(1)

n , because Per(1)
n = In, whereas Per(201)

n = Fn
2 . However, since rule 201

is invertible, we have a surjective homomorphism Tog(201)
n → Tog(1)

n between toggle groups.
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The third author and Roby studied toggling independent sets of path graphs [10]. One
simplification of this framework is that all acyclic orientations of a tree are torically equivalent,
and so all Coxeter elements are conjugate. In contrast, over the cycle graph Cn, there are
n − 1 toric equivalence classes, distinguished by their circulations ν = n − 2, n − 4, . . . , −(n −
4), −(n − 2). An example of this for n = 6 is shown in Figure 7. However, since a vertical
reflection, which is an automorphism of Cn, reverses the sign of the circulation, there are at
most ⌊ n

2 ⌋ equivalence classes up to dynamical equivalence.

1 2

3

45

6 ν = 4

π = 123456

1 2

3

45

6 ν = 2

π = 123465

1 2

3

45

6 ν = 0

π = 123654

1 2

3

45

6 ν = −2

π = 126543

1 2

3

45

6 ν = −4

π = 165432

Figure 7 Representatives of the five torically non-equivalent Coxeter elements of C6 and their
circulations ν, which fall into only three classes under the action of Aut(C6).

As a consequence, to understand toggling independent sets over Cn, we only need to
consider ⌊ n

2 ⌋ update orders. Specifically, we may choose those of the form

π = 12 · · · k n(n − 1) · · · (k + 1), for k =
⌈n

2

⌉
, . . . , n − 1. (2)

Experimental evidence has shown that, for even n, under the identity update order
π = 12 · · · n, the ACA map tends to have larger orbits than over other update orders. We
have also observed a peculiar feature about the periodicity of the average number of 1s. For
these reasons, we began our analysis using this update order, and that is what we will use for
the remainder of this paper. In the next section, we will describe the methods we developed
and preliminary results.

Though our focus in the remainder of this paper is on ECA rule 1 under π = 12 · · · n,
we want our techniques to be adaptable to other update orders, other togglable ECA rules,
and more general toggle actions. Since ECA rule 1 only has one 1 in its truth table, the
occurrences of 1s in its periodic orbits are sparse. As such, to understand the dynamics,
it helps to look at the pattern of the 1s. If we have a rule that has mostly 1s, then its
complement is an equivalent rule that has mostly 0s. Thus, we can always assume, without
loss of generality, that we are studying a rule that has at least as many 0s as 1s in its periodic
orbits. We will refer to such rules as being sparse.

2.3 Scrolls and ticker tapes
In this section, we will describe some tools and results for toggling independent sets of Cn. We
will view them in two formats: a bi-infinite periodic table of 0s and 1s called the scroll, and a
bi-infinite sequence called the ticker tape. A function called the successor on the live entries
(the set of 1s) defines equivalence classes called snakes. A “dual” commuting function called
the shadow allows us to travel between snakes, and defines less visually obvious equivalence
classes called co-snakes. These functions generate the abelian snake group that acts simply
transitively on the set of live entries. If we quotient out by a periodic orbit, sending the
infinite scroll to a finite table, then each snake (respectively, co-snake) merges into a finite
ouroboros (respectively, co-ouroboros) on a torus. Topologically, this is a covering map, and
it induces a homomorphism from the snake group to the ouroboros group, that acts simply
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transitively on the live entries in the finite orbit table. Studying this action algebraically
allows us to deduce properties about the structure of the dynamics. Near the end of this
paper, we will formalize an abstraction of this, called commuting complementary pairs, which
can be adapted to other update orders, other ECA rules, and even arbitrary binary tables
and other combinatorial actions.

Fix an initial state x = x(0) = (x1, . . . , xn) ∈ In and update order π = π1 · · · πn ∈ Sn.
Let x(i) be the result of iterating Fπ exactly i times from x. Since Fπ is bijective on In,
we can define this for all i ∈ Z. Consider the bi-infinite table with n columns, indexed by
j = 1, . . . , n, and rows indexed downward by i ∈ Z. The (i, j)-entry Xi,j is the state of cell
vπj

in x(i). In other words, the ith row consists of the states of the cells at time t = i, in the
order that they are updated. This infinite table is called the scroll of x and π, and denoted
S = (Xi,j) = Scroll(x, π).

The global dynamics of Fπ is read off the scroll as one reads from a book: left-to-right
across rows, and the rows vertically downward. This defines a bi-infinite sequence called
the ticker tape, denoted X = (Xk) = Tape(x, π). We will index the entries so X0 = X0,π1 ,
X1 = X0,π2 , and so on, so in general, Xr = X⌊r/n⌋,π1+(r mod n) . It is elementary to translate
results in the orbit table framework to ticker tapes or vice-versa, but sometimes, one format
is easier to work with that the other. Formally, the live entries, in both formats, are the sets

Live(S) =
{

(i, j) ∈ Z × Zn | Xi,j = 1
}

, Live(X ) =
{

k ∈ Z | Xk = 1
}

.

An example of a portion of a scroll, corresponding to a single periodic orbit, is shown
twice in Figure 8. In the top one, the live entries are colored by equivalence classes called
snakes, and in the bottom one, by co-snakes. We will refer back to this example when we
formally define these and related terms, such as the successor, shadow, and slither.

· · · 0 0 · · ·
· · · 0 1 0 a · · ·
· · · 0 0 a 0 · · ·

“successor of (i, j)”

· · · 0 0 · · ·
01 · · ·· · ·

0
0
0 · · ·· · ·

· · · bb · · ·
“shadow of (i, j)”

x v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

x(0) 0 0 0 0 1 0 1 0 0 0 0
x(1) 1 0 1 0 0 0 0 1 0 1 0
x(2) 0 0 0 1 0 1 0 0 0 0 1
x(3) 0 1 0 0 0 0 1 0 1 0 0
x(4) 0 0 1 0 1 0 0 0 0 1 0
x(5) 1 0 0 0 0 1 0 1 0 0 0
x(6) 0 1 0 1 0 0 0 0 1 0 1

x v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

x(0) 0 0 0 0 1 0 1 0 0 0 0
x(1) 1 0 1 0 0 0 0 1 0 1 0
x(2) 0 0 0 1 0 1 0 0 0 0 1
x(3) 0 1 0 0 0 0 1 0 1 0 0
x(4) 0 0 1 0 1 0 0 0 0 1 0
x(5) 1 0 0 0 0 1 0 1 0 0 0
x(6) 0 1 0 1 0 0 0 0 1 0 1

Figure 8 The scroll of ECA rule 1, with π = 12 · · · n, consists of the seven rows x(0), . . . , x(6),
repeated indefinitely. This is shown twice to emphasize the snakes and co-snakes, separately. The top
scroll highlights the two snakes, which are generated by the successor function, and have standard
slither (D2)3. In the bottom scroll, the colors distinguish the six co-snakes, generated by the shadow
function, which have standard co-slither S2.
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2.4 Snakes in scrolls
For the remainder of this section, we will assume that our update order is π = 12 · · · n,
and we will omit this from the notation and write, e.g., Scroll(x) and Tape(x). If we take
an arbitrary live entry (i, j), we can draw conclusions about its surrounding entries. For
example, the entries to the left and right (Xi,j−1 and Xi,j+1) are both 0, as are the entries
directly above and below (Xi−1,j and Xi+1,j). Since the scroll is just a rendering of the
ticker tape, when we get to the end of a row, the next entry is the first entry of the following
row. As such, we will assume that Xi,n+1 = Xi+1,1.

It is not hard to show that for every live entry (i, j), we must have Xi,j+2 + Xi+1,j+1 = 1.
We will call the coordinates of whichever of these states is live the successor of (i, j), denoted
s(i, j). Similarly, we also must have Xi+2,j−2 + Xi+2,j−1 = 1, and we call the coordinates
of whichever of these is live the shadow, denoted c(i, j). Iterating the successor function
defines equivalence classes on Live(S) that we will call snakes, due to their visual appearance
in the scroll, as shown in Figure 8. Iterating the shadow function defines equivalence classes
that we will call co-snakes.

▶ Definition 2. Given a live entry (i, j) in a scroll, the snake and the co-snake containing
it are the sets

Snake(i, j) =
{

sk(i, j) | k ∈ Z
}

, CoSnake(i, j) =
{

ck(i, j) | k ∈ Z
}

.

A key property about the successor and shadow functions, illustrated by Figure 9, is that
they commute.

▶ Proposition 3. The successor of the shadow is the shadow of the successor. That is, for
any live entry (i, j), we have s(c(i, j)) = c(s(i, j)).

· · · 0 0 · · ·
· · · 0 1 0 a · · ·

· · · 0 0 0 a 0 · · ·
· · · 0 1 0 a 0 · · ·

0 0· · · a 0 · · ·

· · · 0 0 · · ·
· · · 010 a · · ·
· · · 00 a 0 · · ·

· · · 0 1 0 a · · ·
· · · 00 a 0 · · ·

Figure 9 Given a live entry Xi,j = 1, the two cases shown here illustrate the property that “the
successor of the shadow is the shadow of the successor”.

We can record the “shape” of a snake by starting at any live entry (i, j), iterating the
successor function, and recording a 2 or a D depending on whether the successor is (in
ticker tape notation) Xi+2 or Xi+n+1. This defines a periodic bi-infinite sequence, and
a subsequence that generates it is called a slither. Two slithers are equivalent if they
generate the same bi-infinite sequence. We can use exponents for ease of notation, e.g.,
(2D)3 = 2D2D2D ∼ D2D2D2 = (D2)3. Of course, these are equivalent to 2D and D2, but
as we will see, the most canonical form of a slither is not necessarily a minimal periodic
subsequence. Similarly, we can record the shape of a co-snake with a bi-infinite sequence
called its co-slither. If (i, j) is live, then its shadow is either (i − 1, j + 2) or (i − 2, j + 2).
We will refer to the former as a short step and the latter as a long step, and denote these by
S and L, respectively.

▶ Proposition 4. In any scroll, all snakes have a common slither, and all co-snakes have a
common co-slither.
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If we start at (i, j) ∈ Live(S) and iterate the successor function until we return to the
same co-snake, then the corresponding sequence of 2s and Ds is called the standard slither.
Similarly, iterating the shadow function until we return to the same snake, defines the
standard co-slither. This allows us to prove the following.

▶ Proposition 5. For any live entry (i, j) in S,

s#co-snakes(i, j
)

= c#snakes(i, j
)
. (3)

Returning to our example in Figure 8, it is easy to check that the two snakes have
standard slither (D2)3, the six co-snakes have standard slither S2, and that s6 = c2.

The successor and shadow functions generate an abelian group, which we write mul-
tiplicatively to suggest function composition, and because biologically, not all snakes are
adders.

▶ Definition 6. Suppose S has α snakes and β co-snakes. The snake group is defined as

G(S) =
〈
s, c | sc = cs, sβ = cα

〉
.

It is not clear a priori whether there are other relations between the successor and shadow
functions, but the following guarantees that there are none.

▶ Theorem 7. The snake group G(S) acts simply transitively on Live(S).

This action endows Live(S) with the structure of a Cayley diagram for G(S). Moreover,
the snakes and co-snakes are cosets of ⟨s⟩ and ⟨c⟩, respectively. The number of snakes is
[G(S) : ⟨c⟩], the length of the standard co-slither, and the number of co-snakes is [G(S) : ⟨s⟩],
the length of the standard slither.

2.5 Ouroboroi in orbit tables
Though the scroll is infinite, it will often be helpful to restrict our attention to a single orbit,
and allow snakes and co-snakes to “wrap around” from bottom-to-top. We will refer to such
a “circular snake” as an ouroboros, inspired by the ancient symbol of a snake swallowing its
tail. Suppose x lies in a periodic orbit x = x(0), . . . , x(m−1), x(m) = x of size m. The m × n

table with top row x(0) and bottom row x(m−1) is the orbit table, denoted T = Table(x, π),
or Table(x) if π = 12 · · · n is understood.

Let Live(T ) ⊆ Zm × Zn be the set of live entries in the orbit table, which is the image
of the set of live entries of the scroll under the natural quotient map p : Live(S) → Live(T )
that reduces the first coordinate modulo m. The shadow and successor functions descend
to bijections on Live(T ) that we will call the mod m successor function s̄, and mod m

shadow function c̄, respectively. This is illustrated by the following commutative diagram;
there is an analogous one for c and c̄.

Live(S)

p

��

s // Live(S)

p

��
Live(T ) s̄ // Live(T )

(a + km, b)
_

p

��

� s // s(a + km, b)
_

p

��
(a, b) � s̄ // s̄(a, b)

The functions s̄ and c̄ generate a finite abelian group called the ouroboros group, denoted
G(T ). Cosets of ⟨s̄⟩ and ⟨c̄⟩ are called ouroboroi and co-ouroboroi, respectively.
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▶ Definition 8. Given a live entry (i, j) in an orbit table, the ouroboros and co-ouroboros
containing it are the sets

Ouro(i, j) =
{

s̄k(i, j) | k ∈ Z
}

, CoOuro(i, j) =
{

c̄k(i, j) | k ∈ Z
}

.

The quotient map p : Live(S) → Live(T ) induces a homomorphism p∗ : G(S) → G(T )
sending s 7→ s̄ and c 7→ c̄. The (co-)ouroboros degree is the number of (co-)snakes in the
p-preimage of each (co-)ouroboros. We denote these as

deg(p∗) := [G(S) : ⟨s⟩]
[G(T ) : ⟨s̄⟩] , codeg(p∗) := [G(S) : ⟨c⟩]

[G(T ) : ⟨c̄⟩] .

Returning back to the example from Figure 8, the portions of the scrolls shown can also
be considered as orbit tables. It is easy to check by applying the mod m shadow function
to any live entry on the bottom row that both snakes merge into a single ouroboros, hence
the ouroboros degree is two. Similarly, the co-ouroboros degree is three, because the six
co-snakes merge into two co-ouroboroi.

▶ Theorem 9. Suppose S has α snakes, β co-snakes, ᾱ ouroboroi, β̄ co-ouroboroi, and that
τ = |Live(T )|. The ouroboros group has presentation

G(T ) =
〈

s̄, c̄
∣∣ s̄c̄ = c̄s̄, s̄β = c̄α, s̄ τ/ᾱ = c̄ τ/β̄ = 1

〉
,

and it acts simply transitively on Live(T ).

Recall that we can endow Live(S) with a natural Cayley diagram structure of the snake
group. The simply transitive action of G(T ) on Live(T ) gives it a Cayley diagram structure
for the ouroboros group, and the quotient map p : Live(S) → Live(T ) is a covering map.

Another advantage of orbit tables is that we can easily define the sum vector as the
n-tuple that records the number of live entries in each column. Early computational results
suggested the curious property that the period of the sum vector, viewed as a cyclic word, is
always odd.

▶ Proposition 10. For update order π = 12 · · · n, the sum vector of any orbit table has odd
period.

x v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12

x(0) 1 0 1 0 0 0 0 0 1 0 1 0
x(1) 0 0 0 1 0 1 0 0 0 0 0 1
x(2) 0 1 0 0 0 0 1 0 1 0 0 0
x(3) 0 0 1 0 1 0 0 0 0 1 0 1
x(4) 0 0 0 0 0 1 0 1 0 0 0 0

Sum: 1 1 2 1 1 2 1 1 2 1 1 2

Figure 10 An orbit of ECA rule 1 with update order π = 12 · · · n. Note that the period of the
sum vector (1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2) is 3, as guaranteed by Proposition 10.

The sum vector of the orbit table in Figure 8 has period 1, as each column contains
exactly two live entries. See Figure 10 for an orbit table with a sum vector of period 3. The
proof of Proposition 10 follows from translating into ticker tape notation, the fact that the
standard slither must have an odd number of Ds. This last fact is due to the relation in
Eq. (3) with the observation that the shadow function always skips exactly two rows, but

AUTOMATA 2021



5:14 Dynamical Algebraic Combinatorics, ACAs, & Toggling Independent Sets

loses one when it wraps around the end of the table. For example, in Figure 10, where
s6 = c2, we can travel from position (0, 1) to (3, 10) via the standard slither (D2)3 or the
standard co-slither SL. Both S and L skip two rows, but we lose one with the S because it
wraps back to (1, 12).

It is worth noting that Proposition 10 does not necessarily hold for other update orders.
For example, if n = 4 with update order π = 1243, there is a size-2 orbit {0100, 0001} whose
sum vector (0, 1, 0, 1) has period 2. More generally, the methods and theory developed here
do not carry over seamlessly to toggling independent sets under other update orders, but we
are working on adapting them. It helps that for many problems, we only need to consider
the ⌈ n

2 ⌉ update orders described in Eq. (2).
By knowing that the standard slither must contain an odd number of Ds, we can construct

and characterize all possible scrolls and orbit tables. Without loss of generality, we can
assume that the “first entry,” i.e., cell 1 at t = 0, is live.

▶ Theorem 11. For a fixed n, we can construct all scrolls having X0,1 = 1 through the
following procedure:
1. Take a solution to the equation

2a + 3b + 4c = n + 1 with a, b, c ∈ Z≥0 and b + c > 0. (4)

2. Choose any sequence of 2(b + c) − 1 instances of D and a instances of 2. This gives the
standard slither of each snake.

3. Choose any sequence of b instances of S, and c instances of L. This gives the standard
co-slither of each co-snake.

Furthermore, each solution descends to a unique orbit table under the quotient map p (though
some of these orbit tables may arise from ticker tapes that differ only by translation).

Being able to characterize all possible scrolls for a fixed n by constructing their standard
slithers and co-slithers also tells us the possible snake and ouroboros groups. In other words,
it gives essential information about the feasible topological structures on the set of live entries.
It should be possible to say more for special cases, such as when n is prime, even, odd, etc.
This would relate fundamental topological and dynamical properties of ECA rule 1.

3 Ongoing and future work

This paper arose out of our work on toggling independent sets from combinatorics, the
connections we saw to cellular automata, and how both fields complement each other. Our
original goal was to prove our data-driven conjecture that the period of the sum vector is
always odd under the ACA map F12···n. We expected this to lead us to explore homomesies
and how the dynamics behaves under toric equivalent update orders, because these questions
arose in earlier work of toggling independent sets over the path graph [10]. However, once
we encountered the algebraic and topological structures that arose from the commuting
successor and shadow functions, our research went in a different direction.

Many of the general ideas in this paper, such as studying tables of 0s and 1s in a CA, are
obviously not new, and have been around for decades. Nevertheless, there are many novel
approaches within our techniques that we think should open up new avenues for research
within the fields of both combinatorics and cellular automata. We would still like to return
to studying homomesy, resonance, and toric equivalence in ECA rule 1. We would also like
to investigate this over other families of graphs, such as the “distance-2 cycle graph”. In the
literature, some of this is done under the name of “SDSs with logical NOR functions” [15].
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However, to our knowledge, these have not been studied using the algebraic framework in
this paper. More generally, studying homomesy and resonance in other asynchronous cellular
automata beyond rule 1, and relating them to the algebraic features of toggle groups and the
combinatorial features of the Coxeter elements, is mostly unexplored. This is an example of
theory from dynamical algebraic combinatorics contributing to the field of cellular automata.

For another example, the idea behind the shadow and successor functions can be general-
ized to other ECA rules. Namely, if Xi,j = 1, then we will call positions (i′, j′) and (i′′, j′′)
in a scroll a complementary pair of (i, j) if Xi′,j′ + Xi′′,j′′ = 1. Given a live position (i, j),
every complementary pair defines a function that outputs the position of the unique live entry.
By Proposition 3, the successor and shadow functions are commuting complementary
pairs. This defines the abelian “snake group,” and it guarantees that all (co-)snakes have
a common (co-)slither, because they arise as cosets. The natural simply transitive actions
of these groups define Cayley diagram structures on the live entries of the scrolls and orbit
tables, and a topological covering map relating the two. We have a paper in preparation,
which also includes the proofs of many results stated here, that uses the theory of covering
spaces and deck transformations to deduce properties about the periodicity within the scrolls
and ticker tapes. It would be interesting to find examples of complementary pairs arising
from other ECA rules, either under a fixed sweep Fπ, or synchronous update. If two such
pairs commute, then this opens to door to using algebraic and topological tools to analyze
those dynamical systems. Even if they do not commute, it is still likely that much of the
framework still carries over, but with a nonabelian group.

The complementary pairs that define the successor and shadow functions are characterized
by Xi,j+2 + Xi+1,j+1 = 1 and Xi+2,j−2 + Xi+2,j−1 = 1. We can try to directly define other
commuting complementary pairs by modifying these indices, and investigate which ones give
rise to infinite binary scrolls of width n, that a so-called “generalized snake group” acts on
simply transitively. When this happens, we can ask whether or not such a scroll arises from
a togglable CA, SDS, or automata network (i.e., possibly over a different graph), how to
characterize those that do, and whether all of the orbits can be specified in a number-theoretic
manner, such as in Theorem 11.

Of course, these ideas can be extended beyond just pairs – e.g., to a set of 3 entries that
must contain exactly 1 (or 2) live entries. Scrolls of ECA rule 1 with π = 12 · · · n have two
commuting complementary pairs, but rules that are less sparse might have scrolls that are
characterized by three or more. It seems like if this were to happen, the resulting three-
generator abelian group would not act freely on the live entries, because of the two-dimensional
structure of a scroll. However, this is all speculative, and deserves investigation.

The previous examples are all instances of ideas from dynamical algebraic combinatorics
posing new questions in the field of cellular automata. On the other hand, ideas from CAs
can lead to new problems in combinatorics. For example, it is easy to define what it means
to toggle other graph-theoretic objects, such as vertex covers or dominating sets. Over the
cycle graph Cn, each of these can also be viewed as a CA, albeit a distance-2 one. Though
it is more complicated, the idea of complementary pairs should be adaptable for certain
toggling problems that do not involve CAs, such as order ideal or antichain toggling. This
amounts to finding invariants of an arbitrary live entry at time t, in terms of a pair of entries
at, e.g., time t′ and time t′′. Each such pair will define a bijection on the live entries and
thereby generate an equivalence relation. This is just one example of how it might be feasible
to adapt tools developed from analyzing tables of 0s and 1s arising from ECA rule 1 to new
techniques applicable to generalized toggling problems in combinatorics.
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