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Abstract
We give an explicit and effective construction for rhombus cut-and-project tilings with global n-fold
rotational symmetry for any n. This construction is based on the dualization of regular n-fold
multigrids. The main point is to prove the regularity of these multigrids, for this we use a result on
trigonometric diophantine equations. A SageMath program that computes these tilings and outputs
svg files is publicly available in [7].
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1 Introduction

In the 70s Penrose presented a quasiperiodic rhombus tiling with global 5-fold rotational
symmetry and local 10-fold rotational symmetry [8]. This tiling is one of the most thoroughly
studied tilings, for more details on the class of Penrose rhombus tilings and on the canonical
Penrose rhombus tilings see [9, 1]. In 1981 de Bruijn proposed an algebraic definition of this
tiling by the dualization of a pentagrid [4]. Later on a generalized multigrid method has
been shown to be equivalent to the cut-and-project method or projection method for the
construction of tilings by Gähler and Rhyner [5]. Here we use this dualization of multigrid
method to give an effective construction of cut-and-project rhombus tilings with global 2n-
fold rotational symmetry for any n, and a similar construction with global n-fold rotational
symmetry for odd n.

The main point of our work is to prove the regularity of the multigrids involved because
when the multigrid is not regular its dual tiling contains tiles that are not rhombuses as
depicted in Figure 3. Note that, by a non-constructive cardinality argument, the existence of
such tilings has been known since the multigrid method was introduced and even though
some might consider it known as folk we were not able to find any reference for explicit
construction of regular grids with global n-fold rotational symmetry outside of the case of
pentagrids [4] and tetragrids [2]. This explicit construction is used as an intermediate step
for the construction of substitution discrete planes with n-fold rotational symmetry in [6], in
that construction some regions of the multigrid dual tilings studied here are used to define
substitution metatiles.
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(a) G4( 1
2 ). (b) G5( 1

2 ).

Figure 1 Examples of multigrids.

Let us now give the relevant definitions for rhombus tilings and for the multigrid method
before stating the main results.

A rhombus tiling is a covering of the plane without overlap by a set of rhombus tiles. Here
we actually consider rhombus tilings of the complex plane C and we only consider the case
where the set of tiles is finite up to translation and where the tiling is edge-to-edge i.e. any
two tiles in the tiling either do not intersect, intersect on a single common vertex or intersect
along a full common edge. A patch is a finite simply-connected set of non-overlapping tiles
and a pattern is a patch up to translation.

A tiling is called periodic of period v⃗ ̸= 0⃗ when it is invariant under the translation of
vector v⃗ and non-periodic when it admits no period. A tiling is called uniformly recurrent
or uniformly repetitive when for any pattern p that appears in the tiling, there exists an
“appearance” radius R such that in the intersection of any open ball of radius R with the
tiling there is an occurrence of the pattern p. A tiling is called quasiperiodic when it is both
non-periodic and uniformly recurrent.

A tiling is said to have global n-fold rotational symmetry when there exists a point z,
usually the origin, such that the tiling is invariant under the rotation of center z and angle
2π
n . The crystallographic restriction theorem states that the only rotational symmetries

possible for periodic tilings are 2-fold, 3-fold, 4-fold and 6-fold. Hence a tiling that has n-fold
rotational symmetry for n /∈ {2, 3, 4, 6} is non-periodic.

Cut-and-project tilings are tilings that can be seen as the projection of a discrete plane of
some Rn to the plane. The tiles of a cut-and-project tiling are the projection of the facets that
form the corresponding discrete plane. We will not give here a precise definition since we will
not use it later, for precise definitions see [1] or [9]. Note that cut-and-project tilings are used
to model quasicrystals which means that they are not only of interest to mathematicians and
theoretical computer-scientists but also to physicists and crystallographists. The only result
we will use on cut-and-project tilings is that they are uniformly recurrent [9], in particular
this implies that cut-and-project tilings with n-fold rotational symmetry for n /∈ {2, 3, 4, 6}
are quasiperiodic.
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Let us now define grids, multigrids and their dual tilings. The grid of direction ξ ∈ C
with |ξ| = 1 and offset γ ∈ R, denoted by H(ξ, γ), is the set of equidistant lines orthogonal
to ξ and with offset γ from the origin

H(ξ, γ) :=
{

z ∈ C | Re
(
z · ξ̄

)
− γ ∈ Z

}
.

In this definition the important offset is actually the fractional part of γ so we restrict
the definition to the case 0 ⩽ γ < 1. The multigrid of pairwise non-collinear directions
ξ = (ξi)0⩽i<n and offsets γ = (γi)0⩽i<n, denoted by Gξ(γ) is the union of the grids

Gξ(γ) :=
⋃

0⩽i<n

H(ξi, γi).

For an integer n ⩾ 3 we define the n-fold direction ζn as

ζn =

ei 2π
n if n is odd

ei π
n if n is even

The n-fold multigrid of offsets γ = (γi)0⩽i<n denoted Gn(γ) is the multigrid with
directions (ζi

n)0⩽i<n

Gn(γ) :=
⋃

0⩽i<n

H(ζi
n, γi)

For simplicity for some real number x ∈ [0, 1[ we denote Gn(x) the multigrid with all offsets
equal to x i.e.

Gn(x) := Gn(x, . . . x) =
⋃

0⩽i<n

H(ζi
n, x)

See Figure 1 for a picture of G4( 1
2 ) and G5( 1

2 ).
From a multigrid Gξ(γ) we can define a tiling Pξ(γ) by a duality process. This tiling is

dual to the multigrid in the sense that the multigrid, seen as a graph, is the adjacency graph
of the tiling, see Figure 2 for an example. We will define this tiling only in the n-fold case,
but one can easily adapt it to the general case by replacing the directions ζi

n by ξi.
Given a n-fold multigrid Gn(γ) we define two functions K : C → Zn and f : C → C as

K(z) :=
(⌈

Re
(

z · ζ̄i
n

)
− γi

⌉)
0⩽i<n

f(z) :=
n−1∑
i=0

⌈
Re

(
z · ζ̄i

n

)
− γi

⌉
ζi

n.

Remark that the functions K and f are constant on the interior of each cell, also called mesh,
of the multigrid, so f sends a cell of the multigrid to a single vertex.

The multigrid dual tiling of a n-fold multigrid Gn(γ), denoted by Pn(γ), is defined by its
set of vertices V and of edges E as

V := f(C) E :=
{

{z, z′}, z, z′ ∈ V | ∃i, z′ = z + ζi
n

}
In this dualization process each cell or mesh of the multigrid is sent to a vertex of the

dual tiling, see for example the cells in red and yellow and their dual in Figure 2, and
each intersection point of the multigrid is sent to a tile of the dual tiling. The dual of an
intersection point where k lines intersect is a 2k-gon with unit sides as shown in Figure 3
for the case of 5-fold multigrids. The dual of a line of the multigrid is a chain or ribbon of
tiles that share an edge, see for example the green and blue line and their dual in Figure 2.
Recall that multigrid dual tilings are cut-and-project tilings [9, 5, 1].

AUTOMATA 2021
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(a) The 5-fold multigrid or pentagrid G5( 1
2 ). (b) The dual tiling P5( 1

2 ).

Figure 2 Example of a regular grid and its dual tiling, some elements of the multigrid and their
dual in the tiling have been colored.

Figure 3 Some possible intersection points in G5(γ) and their dual tiles.

A multigrid is called singular when there is at least one intersection point where at least
3 lines intersect, and is called regular otherwise. By definition, the dual tilings of regular
multigrids are edge-to-edge rhombus tilings. For an example of a regular multigrid and its
dual tiling, see Figure 2 where some elements of the multigrid and their dual are highlighted
to emphasize the dualization process.

Now that we have defined all relevant terms, we can state the main result.

▶ Theorem 1.
1. For any integer n ⩾ 4, the n-fold multigrid dual tiling Pn( 1

2 ) is a cut-and-project qua-
siperiodic edge-to-edge rhombus tiling with global 2n-fold rotational symmetry.

2. For any odd integer n ⩾ 5, the n-fold multigrid dual tiling Pn( 1
n ) is a cut-and-project

quasiperiodic edge-to-edge rhombus tiling with global n-fold rotational symmetry.

Theorem 1 is actually a corollary of Theorem 2 on the regularity of n-fold multigrids. See
Figures 4 and 6 for examples of tilings Pn( 1

2 ) and Pn( 1
n ), these figures have been produced

using a SageMath program which is publicly available in [7].

▶ Theorem 2.
1. For any n ⩾ 3 and any non-zero rational offset r ∈ Q ∩ ]0, 1[ the n-fold multigrid Gn(r)

is regular.
2. For any odd n ⩾ 3 and any tuple of non-zero rational offsets γ = (γi)0⩽i<n ∈ (Q ∩ ]0, 1[)n

the n-fold multigrid Gn(γ) is regular.
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(a) 7-fold : P7( 1
7 ) . (b) 8-fold : P4( 1

2 ). (c) 9-fold : P9( 1
9 ).

(d) 10-fold : P5( 1
2 ). (e) 11-fold : P11( 1

11 ). (f) 12-fold : P6( 1
2 ).

Figure 4 Central patch of the multigrid dual tiling with exactly n-fold rotational symmetry for
n ∈ {7, 8, 9, 10, 11, 12}.

Remark that Theorem 2 is not an exact characterization of regular n-fold multigrid but
rather an easily checked sufficient condition for regularity. In [4] N. G. de Bruijn gives an
exact characterization of regular pentagrids in the specific Penrose case (sum of the offsets is
an integer), but this characterization is not easily generalized to the non-Penrose case and to
all n-fold multigrids.

In Section 2 we show how Theorem 1 is a corollary of Theorem 2. In Section 3 we present
the link between the regularity of multigrids and some trigonometric equations. In Section 4
we present the results of Conway and Jones on trigonometric diophantine equations [3]. In
Section 5 we combine the results of Sections 3 and 4 to prove Theorem 2.

2 From regular n-fold multigrids to tilings with global n-fold symmetry

Let n ⩾ 3 be an integer. By Theorem 2 the multigrid Gn( 1
2 ) and Gn( 1

n ) are regular, so their
dual tilings Pn( 1

2 ) and Pn( 1
n ) are edge-to-edge rhombus tilings. As mentioned above, the

multigrid dual tilings are cut-and-project [5] and therefore also uniformly recurrent.
Let us remark that the dualization process commutes with rotations around the origin,

so if a multigrid has some rotational symmetry around the origin then so does its dual tiling.
So for odd n, Pn( 1

n ) has global n-fold rotational symmetry because the grid also has
global n-fold rotational symmetry, indeed applying the rotation of angle 2π

n centered on the
origin to the multigrid sends ζk

n to ζk+1
n and since the offset is the same on all directions the

rotated multigrid is the same as the original one. However this does not hold for even n

since in that case we chose ζn = ei π
n so we have ζn

n = eiπ = −1 = −ζ0
n so the grid of offset 1

n

for even n ⩾ 4 does not have any rotational symmetry.

AUTOMATA 2021
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Also for odd n, Pn( 1
2 ) has global 2n-fold rotational symmetry because the image of ζ0

n by
the rotation of angle π

n is

ei π
n = −ei (n+1)π

n = −ei
2⌈ n

2 ⌉π

n = −ζ
⌈ n

2 ⌉
n

so with 1 − 1
2 = 1

2 (i.e. the offset in direction ζi
n and in its reverse direction −ζi

n is the same)
we get global 2n-fold rotational symmetry for Gn( 1

2 ) and Pn( 1
2 ). For even n we use also the

fact that with offset 1
2 we get offset along ζi

n is the same as along the opposite direction
−ζi

n together with ζn = ei π
n which means that ζn+i

n = −ζi
n to get global 2n-fold rotational

symmetry for Gn( 1
2 ) and Pn( 1

2 ).
When we combine these with the crystallographic restriction which implie that for any

n ⩾ 4 these tilings are non-periodic we get Theorem 1. Remark that for even n, Pn( 1
2 ) has

global 2n-fold rotational symmetry and P n
2

( 1
2 ) has exactly n-fold global rotational symmetry.

So for any n there exists a tiling with exactly n-fold global rotational symetry, see the
examples for n ∈ {7, 8, 9, 10, 11, 12} in Figure 4, and for n = 23 in Figure 6.

Remark also that for odd n, for any r ∈ Q ∩ ]0, 1[ the multigrid Gn(r) is regular and
the multigrid dual tiling Pn(r) has global n-fold rotational symmetry, except the specific
case r = 1

2 that has global 2n-fold rotational symmetry. The choice of r = 1
n is mainly due

to the fact that the canonical Penrose rhombus tiling is P5( 1
5 ) so Pn( 1

n ) is in that sense a
generalization of the canonical Penrose rhombus tiling.

Note that Theorem 1 is stated for n > 3 because for n = 3 the multigrid dual tilings with
offset 1

2 and 1
3 are periodic.

3 Regularity of n-fold multigrids and trigonometric equations

In this section we present the link between the regularity or singularity of n-fold multigrids
and some trigonometric equations.

▶ Proposition 3 (Regularity of multigrids and trigonometric equations). Let n ∈ N, and
γ0, γ1, . . . γn−1 be offsets in [0, 1[. Assume that for any p, q such that 0 < q < p < n and any
r0 ∈ Z − γ0, rq ∈ Z − γq and rp ∈ Z − γp we have either Inequation (1) when n is odd, or
Inequation (2) when n is even.

(n odd ) r0 sin 2(p−q)π
n + rp sin 2qπ

n − rq sin 2pπ
n ̸= 0 (1)

(n even ) r0 sin (p−q)π
n + rp sin qπ

n − rq sin pπ
n ̸= 0 (2)

Then the grid Gn(γ0, γ1, . . . γn−1) is regular.

Proof. We will prove this proposition by contradiction i.e. we assume a grid is singular and
we show that it implies the existance of r0, rp, rq such that the Inequation (1) is contradicted
if n is odd, and Inequation (2) is contradicted if n is even.

We will actually prove it for odd n, the proof for even n is exactly the same and it is only
needed to replace the formula of ζk

n which in the even case is ei kπ
n instead of ei 2kπ

n , which
means that in the angles we remove the factor 2.

Let n be an odd integer and let γ0, γ1, . . . γn−1 ∈ [0, 1[ such that Gn(γ0, γ1, . . . γn−1) is
singular. This means that there exist z ∈ C at the intersection of three lines, up to relabeling
and rotation we chose to consider it is at the intersection of H(ζ0

n, γ0), H(ζq
n, γq) and H(ζp

n, γp)
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Figure 5 Intersection of three lines.

for some 0 < q < p < n, see Figure 5. This means that there exist k0, kq, kp ∈ Z such that
Re(z) = k0 − γ0

Re(z · ζ̄q
n) = kq − γq

Re(z · ζ̄p
n) = kp − γp

Write z = k0 − γ0 + iy and ζn = e
2iπ
n . Now we have

z = k0 − γ0 + iy

(k0 − γ0) cos 2qπ
n + y sin 2qπ

n = kq − γq

(k0 − γ0) cos 2pπ
n + y sin 2pπ

n = kp − γp

Let us now cancel out the y terms by substituting the third line by sin 2pπ
n times the seconde

equality minus sin 2qπ
n times the third equality.

z = k0 − γ0 + iy

(k0 − γ0) cos 2qπ
n + y sin 2qπ

n = kq − γq

(k0 − γ0)(cos 2qπ
n sin 2pπ

n − cos 2pπ
n sin 2qπ

n ) = (kq − γq) sin 2pπ
n − (kp − γp) sin 2qπ

n

Now let us study the third line to simplify it.

(k0 − γ0)
(
cos 2qπ

n sin 2pπ
n − cos 2pπ

n sin 2qπ
n

)
= (kq − γq) sin 2pπ

n − (kp − γp) sin 2qπ
n

⇔ (k0 − γ0) sin 2(p−q)π
n + (kp − γp) sin 2qπ

n − (kq − γq) sin 2pπ
n = 0

If we rewrite k0 − γ0, kp − γp, kq − γq as r0, rp, rq we obtain

r0 sin 2(p−q)π
n + rp sin 2qπ

n − rq sin 2pπ
n = 0

which is exactly the contradiction of Inequation (1). ◀

In the next section we consider the solutions to these kind of trigonometric equations.

AUTOMATA 2021
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4 Trigonometric diophantine equations

We call rational angles the set πQ. We consider now equations of the type

A cos a + B cos b + C cos c = 0 (3)

with a, b and c rational angles.
In the previous paragraph we had sine instead of cosine but we can always convert sine

to cosine, and we had A ∈ Z − γ for some real number 0 ⩽ γ < 1 and similarly for B and C

but now we will consider A, B and C to be rationals.
The following result is from Conway and Jones.

▶ Theorem 4 ([3]). Suppose we have at most four distinct rational angles strictly between 0
and π

2 for which some rational linear combination of their cosines has rational value but no
proper subset has this property.
Then the appropriate linear combination is proportional to one from the following list:

cos π
3 = 1

2 (4)
− cos ϕ + cos

(
π
3 − ϕ

)
+ cos

(
π
3 + ϕ

)
= 0 (0 < ϕ < π

6 ) (5)
cos π

5 − cos 2π
5 = 1

2 (6)
cos π

7 − cos 2π
7 + cos 3π

7 = 1
2 (7)

cos π
5 − cos π

15 + cos 4π
15 = 1

2 (8)
− cos 2π

5 + cos 2π
15 − cos 7π

15 = 1
2 (9)

cos π
7 + cos 3π

7 − cos π
21 + cos 8π

21 = 1
2 (10)

cos π
7 − cos 2π

7 + cos 2π
21 − cos 5π

21 = 1
2 (11)

− cos 2π
7 + cos 3π

7 + cos 4π
21 + cos 10π

21 = 1
2 (12)

− cos π
15 + cos 2π

15 + cos 4π
15 − cos 7π

15 = 1
2 (13)

See the original article [3] for the proof. The proof is based on a more general result on
vanishing sums of roots of unity. And this is proved using complex numbers and the theory
of vanishing formal sums. If we adapt this result for sums of three cosines that have value
zero we get:

▶ Corollary 5. Let a ⩽ b ⩽ c be rational angles strictly between 0 and π
2 and not all equal,

and let A, B, C be non-zero rationals.
If A cos a + B cos b + C cos c = 0 then either

a = π
5

b = π
3

c = 2π
5

B = C = −A

or


0 < a < π

6

b = π
3 − a

c = π
3 + a

B = C = −A

Proof. We just need to apply Theorem 4. First remark that there is no solution for
A cos a + B cos b = 0 with a and b distinct and strictly between 0 and π

2 , and A and B non
zero. Now with 0 < a < b < c < π

2 , we have either a combination of Equations (4) and (6)
(first case) or Equation (5) (second case). ◀

5 Proof of Theorem 2

Here we use Proposition 3 and Corollary 5 to prove Theorem 2.
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5.1 For odd n

First let us remark that in Theorem 2 the first statement when restricted to odd n is a strict
subcase of the second statement, so here we will prove the second statement which is as follows:
for any odd n ⩾ 3 and any tuple of non-zero rational offsets γ = (γi)0⩽i<n ∈ (Q ∩ ]0, 1[)n

the n-fold multigrid Gn(γ) is regular. We reformulate this with Proposition 3 as: for any
odd n ⩾ 3, for any 0 < p < q < n and any three non-zero rational offsets γ0, γp, γq, for any
r0 ∈ Z − γ0, rp ∈ Z − γp and rq ∈ Z − γq we have

r0 sin 2(p−q)π
n + rp sin 2qπ

n − rq sin 2pπ
n ̸= 0.

Actually we prove a slitghly reformulated version: for any odd n ⩾ 3, for any 0 < p < q < n

and any three non-zero rationals r0, rp, rq ∈ Q\{0} we have

r0 sin 2(p−q)π
n + rp sin 2qπ

n − rq sin 2pπ
n ̸= 0.

To apply Corollary 5 we first need to translate the formula with sine and with angles in
[0, 2π[ as a formula with cosine and angles in

]
0, π

2
[
.

▶ Lemma 6 (Sine and Cosine). For θ ∈ [0, 2π[ we have

sin θ = (−1)⌊
θ
π ⌋ cos

(
(−1)⌊

2θ
π ⌋(

⌊
θ
π

⌋
π + π

2 − θ)
)

and (−1)⌊
2θ
π ⌋(

⌊
θ
π

⌋
π + π

2 − θ) ∈
[
0, π

2
]
.

Proof. This result is just a rewriting of :
if 0 ⩽ θ < π

2 then sin θ = cos( π
2 − θ) and ( π

2 − θ) ∈
[
0, π

2
]

if π
2 ⩽ θ < π then sin θ = cos(θ − π

2 ) and (θ − π
2 ) ∈

[
0, π

2
]

if π ⩽ θ < 3π
2 then sin θ = − cos( 3π

2 − θ) and ( 3π
2 − θ) ∈

[
0, π

2
]

if 3π
2 ⩽ θ < 2π then sin θ = − cos(θ − 3π

2 ) and (θ − 3π
2 ) ∈

[
0, π

2
]

◀

We define ϵ(θ) := (−1)⌊
θ
π ⌋ and ϕ(θ) := (−1)⌊

2θ
π ⌋(

⌊
θ
π

⌋
π + π

2 − θ). Remark that this means
that θ =

⌊
θ
π

⌋
π + π

2 − (−1)⌊
2θ
π ⌋ϕ(θ).

Let n, p, q be integers such that n is odd, n ⩾ 3 and 0 < q < p < n. By contradiction
suppose that there exists r0,rp and rq non-zero rationals such that

r0 sin 2(p−q)π
n + rp sin 2qπ

n − rq sin 2pπ
n = 0.

By Lemma 6 we have

r0ϵ( 2(p−q)π
n ) cos(ϕ( 2(p−q)π

n )) + rpϵ( 2qπ
n ) cos(ϕ( 2qπ

n )) − rqϵ( 2pπ
n ) cos(ϕ( 2pπ

n )) = 0.

Which we reformulate as

r′
0 cos θ0 + r′

p cos θq + r′
q cos θp = 0,

with r′
0 := r0ϵ( 2(p−q)π

n ), r′
p := rpϵ( 2qπ

n ), r′
q := −rqϵ( 2pπ

n ) and θ0 := ϕ( 2(p−q)π
n ), θq := ϕ( 2qπ

n ),
θp := ϕ( 2pπ

n ).
Remark that for odd n and any 0 < k < n we have 2kπ

n /∈ {0, π
2 , π, 3π

2 }, so ϕ( 2kπ
n ) /∈ {0, π

2 }.
This implies that 0 < θ0, θp, θq < π

2 .
Moreover for odd n we have that θ0, θp, θq are not all equal. By contradiction if θ0 = θp =

θq we have that 2pπ
n , 2qπ

n , 2(p−q)π
n ∈ ϕ−1({θ0}) = { π

2 − θ0, π
2 + θ0, 3π

2 − θ0, 3π
2 + θ0} which is

impossible. So we have

r′
0 cos θ0 + r′

p cos θq + r′
q cos θp = 0,

with non-zero rationals r′
0, r′

p, r′
q and with three angles strictly between 0 and π

2 and not all
equal.

AUTOMATA 2021
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So we can apply Corollary 5 and we now have two cases:
1. {θ0, θp, θq} = { π

5 , π
3 , 2π

5 }
2. {θ0, θp, θq} = {θ, π

3 − θ, π
3 + θ} for some 0 < θ < π

6
Let us now show that both cases lead to a contradiction. In the first case we have that
{ 2pπ

n , 2qπ
n , 2(p−q)π

n } = {θ1, θ2, θ3} with

θ1 ∈ ϕ−1({ π
5 }) = { 3π

10 , 7π
10 , 13π

10 , 17π
10 }

θ2 ∈ ϕ−1({ π
3 }) = { π

6 , 5π
6 , 7π

6 , 11π
6 }

θ3 ∈ ϕ−1({ 2π
5 }) = { π

10 , 9π
10 , 11π

10 , 19π
10 }

This is impossible because by definition 2pπ
n = 2qπ

n + 2(p−q)π
n and we have no θ1, θ2, θ3 as

defined above such that one is the sum of the two other.
In the second case we have that {θ0, θp, θq} = {θ, π

3 − θ, π
3 + θ} for some 0 < θ < π

6 . Now
we use 2pπ

n = 2qπ
n + 2(p−q)π

n and by definition we have

2pπ
n =

⌊ 2p
n

⌋
π + π

2 − (−1)⌊
4p
n ⌋θp =

⌊ 2p
n

⌋
π + π

2 ± θp

2qπ
n =

⌊ 2q
n

⌋
π + π

2 − (−1)⌊
4q
n ⌋θq =

⌊ 2q
n

⌋
π + π

2 ± θq

2(p−q)π
n =

⌊
2(p−q)

n

⌋
π + π

2 − (−1)
⌊

4(p−q)
n

⌋
θ0 =

⌊
2(p−q)

n

⌋
π + π

2 ± θ0

By assembling these two we get

(
⌊ 2p

n

⌋
−

⌊ 2q
n

⌋
−

⌊
2(p−q)

n

⌋
− 1)π + π

2 = ±θp ± θ0 ± θq

And with {θ0, θp, θq} = {θ, π
3 − θ, π

3 − θ} we get

(±θp ± θ0 ± θq) ∈ {±3θ, ±θ, ± 2π
3 ± θ}

However this is impossible since for 0 < θ < π
6 , we have(

Zπ + π
2

)
∩ {±3θ, ±θ, ± 2π

3 ± θ} = ∅

By contradiction we proved that for odd n, any n-fold multigrid with non-zero rational
offsets is regular.

5.2 For even n

Let us now prove the first statement of Theorem 2 for even n which is: for any even n ⩾ 4
and any non-zero rational offset r ∈ Q ∩ ]0, 1[ the n-fold multigrid Gn(r) is regular. We
reformulate it using Proposition 3 as: for any even n ⩾ 4 and any non-zero rational offset
r ∈ Q ∩ ]0, 1[, for any 0 < q < p < n and any r0 ∈ Z − r, rp ∈ Z − r and rq ∈ Z − r we have

r0 sin (p−q)π
n + rp sin qπ

n − rq sin pπ
n ̸= 0.

We will prove this by contradiction. Let n ⩾ 4 be an even integer and r be a non-zero
rational offset. Suppose that there exists p, q, r0, rp, rq with p, q integers, 0 < q < p < n and
r0 ∈ Z − r, rp ∈ Z − r and rq ∈ Z − r, such that

r0 sin (p−q)π
n + rp sin qπ

n − rq sin pπ
n = 0.

We apply Lemma 6 with the fact that since 0 < pπ
n , qπ

n , (p−q)π
n < π we have ϵ(kπ

n ) = 1 and
ϕ( kπ

n ) = (−1)⌊
2k
n ⌋( π

2 − θ) for k ∈ {p, q, (p − q)}. We obtain

r0 cos θ0 + rp cos θq − rq cos θp = 0
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with θ0 = ϕ( (p−q)π
n ), θp = ϕ( pπ

n ) and θq = ϕ( qπ
n ). And since 0 < pπ

n , qπ
n , (p−q)π

n < π we have
θ0, θp, θq ∈

[
0, π

2
[
. In particular since n is even we can have pπ

n = π
2 which means that we can

have θp = 0 (and also for θ0 or θq). Note also that with n even (contrary to the odd case) we
can have θ0 = θp = θq, for example with n = 6, q = 2 and p = 4 we have θ0 = θp = θq = π

6 .
Which means that now we have a disjunction of four cases:
1. θ0 = θp = θq

2. 0 < θ0, θp, θq < π
2 and not all equal

3. two of the angles are 0 and the other one is not
4. one of the angles is 0 and the other two are not

The first case reduces to (r0 + rp − rq) cos θ0 = 0 and with θ0 ∈
[
0, π

2
[

we have cos θ0 ̸= 0
so (r0 + rp − rq) = 0 but this is impossible because (r0 + rp − rq) ∈ Z− r and 0 /∈ (Z− r) for
r ∈ (Q ∩ ]0, 1[).

The second case is the same as the one discussed in Subsection 5.1 above, the main thing
we used in the proof for odd n is the fact that 2pπ

n = 2qπ
n + 2(p−q)π

n but we have the same for
even n with pπ

n = qπ
n + (p−q)π

n . So the proof holds and this case is impossible.
The third case is impossible because for two angles to be 0, we need two of { pπ

n , qπ
n , (p−q)π

n }
to be π

2 but this is impossible with 0 < q < p < n.
The fourth case reduces to A cos a + B cos b = C with A, B, C ∈ Z − r ⊂ Q so we can

apply Theorem 4 and we get that either a = b = π
3 or a = π

5 and b = 2π
5 . The first subcase

is impossible because {θ0, θp, θq} = {0, π
3 } implies { pπ

n , qπ
n , (p−q)π

n } ⊆ { π
6 , π

2 , 5π
6 } and this is

incompatible with pπ
n = qπ

n + (p−q)π
n . The second subcase is also impossible for the same

reason as (up to interchanging θ0, θp and θq) we would have θ0 = 0, θp = π
5 and θq = 2π

5
which means that (p−q)π

n = π
2 , pπ

n ∈ { 3π
10 , 7π

10 } and qπ
n ∈ { π

10 , 9π
10 } and this is incompatible

with pπ
n = qπ

n + (p−q)π
n .

Note that only in the first case we use the fact that the offset are all the same r ∈ Q∩]0, 1[,
the three other case work for any non-zero rational offsets as for the odd cases. And actually
we could refine the condition because what is important here is that 0 /∈ (Z − γ0 − γq + γp)
with γ0, γp and γq the rational offsets. So for even n if we have a tuple of rational offsets
γ = (γi)0⩽i<n such that for any distinct i, j, k we have γi − γj − γk ̸= 0 then the multigrid
Gn(γ) is regular.
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