
A Teaching Assistant for the C Language
Rui C. Mendes #Ñ

Centro Algoritmi, Departamento de Informática, University of Minho, Braga, Portugal

José João Almeida #Ñ

Centro Algoritmi, Departamento de Informática, University of Minho, Braga, Portugal

Abstract
We introduce a C tutor that can help instructors manage classes with many students learning to
program in C. Nowadays, it is easy to evaluate code but it is hard to provide good feedback. We
introduce a tool to help instructors provide students with feedback concerning their implementation
and documentation for honing their programming skills. This tool is implemented in Python and is
available at https://github.com/rcm/C_teaching_assistant.

2012 ACM Subject Classification Applied computing → Computer-assisted instruction; Software
and its engineering → Empirical software validation

Keywords and phrases Software metrics, Documentation extractor, Domain specific language, Query
language, Report generation

Digital Object Identifier 10.4230/OASIcs.ICPEC.2021.13

Category Short Paper

Supplementary Material Software: https://github.com/rcm/C_teaching_assistant

Funding This research has been supported by FCT – Fundação para a Ciência e Tecnologia within
the R&D Units Project Scope: UIDB/00319/2020.

1 Introduction

Learning to program is a difficult task [8]. There are many concerns involved when teaching
the first imperative programming language. Students are often fairly disorganized and have
difficulty writing and understanding code. The common difficulty involved in learning to
program is that students often write code tentatively by applying several patches until it finally
is able to solve the given task. However, when involved in a project, this ad hoc methodology
is quite detrimental. It is important to provide feedback concerning implementation. This
means that students should realize which functions implemented are poorly written and
should be improved.

When teaching classes with many students, it is hard to have enough teaching assistants
for accompanying them and providing feedback on all fronts: writing code that implements
the required specifications, is well documented and is easy to understand and maintain. In
order to help instructors provide feedback to students, it makes sense to follow an automatic
assessment strategy based on three pillars: functionality, readability and documentation.

The goal of the tool presented in this work is to offer a solution that will help instructors
provide automatic assessment on two of these pillars: program readability/maintainability
and documentation. With it, instructors will be able to produce reports that will provide
feedback and help students fulfill these tasks. This system may also be used for summative
assessment.

2 Software metrics

Using a tool capable of testing programs helps instructors understand whether the students
were able to implement a solution capable of solving a given problem. This may be done
by using many different online judge systems capable of automatically evaluating source

© Rui C. Mendes and José João Almeida;
licensed under Creative Commons License CC-BY 4.0

Second International Computer Programming Education Conference (ICPEC 2021).
Editors: Pedro Rangel Henriques, Filipe Portela, Ricardo Queirós, and Alberto Simões; Article No. 13; pp. 13:1–13:8

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:azuki@di.uminho.pt
https://www.di.uminho.pt/~rcm/
https://orcid.org/0000-0002-5321-6863
mailto:jj@di.uminho.pt
https://www.di.uminho.pt/~jj/
https://orcid.org/0000-0002-0722-2031
https://github.com/rcm/C_teaching_assistant
https://doi.org/10.4230/OASIcs.ICPEC.2021.13
https://github.com/rcm/C_teaching_assistant
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

13:2 A Teaching Assistant for the C Language

code [10]. However, it is possible to create a program that solves a task while writing code
that is hard to read and maintain. In fact, this could be detrimental because it would give
students the wrong feedback: as long as it solves the problem, the solution is accepted.

There is a known relationship between code that is difficult to understand and software
metrics. This was also reported when creating questions for exams [5]. Some studies suggest
that it is important to include software metrics in feedback given to students [2] and have
reported including these metrics in Fuzzy rules used for giving advice to students [4]. Both
of these studies have used these metrics and incorporated them when evaluating small
programming assignments for providing feedback. Our aim is to extend these studies by
providing a tool in order to automatically collect these statistics over all functions in a
project.

Given all these clues from literature, it makes sense to incorporate information about
software metrics when evaluating programming projects. Thus, the authors decided to include
some measures like lines of code, cyclomatic complexity [7] or software maintainability index [3]
in summative assessment. These were incorporated with other concepts like not defining
code in include files, not having warnings and not having global variables. However, when
presenting these measures to students, they reported difficulties in understanding how to
improve their program in order to improve their evaluation. One of the difficulties reported
was in identifying the functions that were responsible for their low results.

One way of helping both instructors and students would be to create a report that details
these measures on a per function basis. If students are able to peruse a table that details this
information for each function, they will have further clues as to which functions are more
complex and should be rewritten. Thus, they can try to refactor the code to address these
issues and better understand these concepts. Even thought there are tools readily available
that can help gather these software metrics [11], they are not easy to use and only provide
feedback per source code file. We aim to provide a tool that helps instructors evaluate
students and/or create detailed reports using a large number of software metrics over all
functions in a project.

3 Concerning documentation

The Bloom taxonomy is well known and can be applied when teaching computer science [9].
The cognitive categories involved in the taxonomy are to remember, understand, apply,
analyse, evaluate and create. Some of these concepts can be applied when producing
documentation. This task helps students understand and evaluate their code. While they
write the documentation, they have to answer some key questions like how to explain what
each function does, what it returns, what is the importance of each of the arguments it
receives and what is the program flow necessary to implement the functionalities needed by
their project. While producing code helps students to apply the knowledge they learned and
use it to create a solution for a problem, documentation helps students analyse and evaluate
their solution because it forces them to better understand how it works.

Evaluating documentation quality in a project is a cumbersome task because it involves
checking that all the concepts in the program were explained: macros, types, functions and
their arguments and return values. While a documentation coverage tool does not help
instructors understand if the documentation that was produced is clear and well written, it
can reduce the burden drastically. As far as the authors know, the automatic evaluation of
documentation available when using Doxygen is coverxygen [6] that checks for documentation
coverage. There are some common mistakes concerning student documentation. They usually:

Forget to document some of the arguments;
Copy information from other functions and thus document non-existing arguments;

R. C. Mendes and J. J. Almeida 13:3

Forget to update the documentation after changing the function (e.g., adding or removing
arguments);
Document other entities as function arguments, like local variables or constants;
State that a void function returns something.

Many of these mistakes can be checked automatically but there are no tools that help
in this task. Coverxygen only gives information about documentation coverage, including
datatypes, macros and function coverage but not argument coverage. Thus, while it is
possible to use it to check whether all functions were documented, it does not help to identify
the problems mentioned above.

4 The C Teaching Assistant

We introduce a tool, the C Teaching Assistant, that helps instructors produce documents that
report what problems exist with the students’ code or documentation. This tool analyses
the users’ submissions and gathers information about all the functions they contain. All the
fields that can be used on the reports are presented in appendix A.

The tool is invoked by passing it several arguments that represent pathnames containing
C code. Each of the arguments passed corresponds to a different project.

$ teaching_assistant.py PL[1-9]G[0-9]*
Enter query >

The tool recursively searches through all the existing C files (both header files and code
files) and creates a table concerning all the information gathered. After consulting all the
information, the user can use a domain specific language (DSL) to query the system. The
DSL uses a syntax similar to SQL and is described in Listing 1. The queries can either be
executed interactively or the resulting table may be converted into many formats including
most markdowns, LATEX or HTML.

Listing 1 The description of the query language. expression can contain arbitrary Python code
and use field names.
SHOW <expressions separated by spaces or semicolons >
[HEADER <fields separated by spaces >]
[COND <conditions using fields and Python operands and functions >]
[SORT <fields separated by spaces >]
[COLOR <field > : <expression >[; <field > : <expression >]*]
[
GROUP_BY <fields separated by spaces >
[AGGREG <expressions separated by spaces or semicolons >]
]

5 Some examples of queries

Listing 2 shows an example that uses some of the measures collected by Multimetric,
applies some functions to the values presented and uses a color code for signaling when these
measures have non recommended values. When using something that returns a Boolean
value, the system uses the green and red colors; when using a real number between zero and
one, the system uses a palette. It is possible to use Python functions that return one color
based on the value that was passed as well. The functions scale_lower and scale_upper
will create functions that scale the values to the [0, 1] interval using the lower and upper

ICPEC 2021

13:4 A Teaching Assistant for the C Language

bounds. The function scale_upper will create a scaler that returns 0 for values lower or
equal than the lower bound, 1 for values greater or equal than the upper bound and uses
interpolation between these bounds. The function scale_lower is reciprocal. This example
also sorts the table results by decreasing values of maintainability_index and increasing
values of cyclomatic_complexity and name. Figure 1 shows a snippet of what can be seen
on the terminal. While it is possible to produce the output with less decimal places, it would
involve a more complicated query.

Listing 2 Functions and some software engineering measures color coded by their severity. The
query language allows the use of semicolons instead of spaces to be able to break lines in order for
the query to be more readable.
SHOW name; cyclomatic_complexity ; maintainability_index ;

scale_lower (1 ,10)(cyclomatic_complexity);
scale_upper (60 ,100)(maintainability_index);
0.5* scale_lower (1 ,10)(cyclomatic_complexity) +
0.5* scale_upper (60 ,100)(maintainability_index)

HEADER name complexity maint_idx cmplxty_grd maint_grd assessment
SORT -maintainability_index cyclomatic_complexity name
COLOR

complexity : scale_lower (1 ,10)(complexity);
maint_idx : maint_idx > 80; cmplxty_grd : cmplxty_grd ;
maint_grd : maint_grd ; assessment : assessment

Listing 3 shows two examples of queries containing aggregation. These can use any Python
function over fields and, in the current implementation of this tool, uses some functions
declared in the statistics module. The first example reports some statistics concerning
the number of effective lines of code for each project and function return type. The second
example presents the mean number of useful lines of code and counts the number of functions
with less than 10 lines of code for all projects. This example is not very readable but is
there to illustrate the reason why the AGGREGATE keyword can receive tokens separated by
semicolons and that it can use arbitrary Python code.

Listing 3 Examples using aggregation.
SHOW name project return loc
GROUP_BY project return
AGGREG len(name) min(loc) mean(loc) max(loc)

SHOW name project return loc
GROUP_BY project
AGGREG mean(loc); (lambda L: len ([x for x in L if x < 10]))(loc)

The system can also be used inside other programs. It is just a matter of first using the
function extract_all_functions with a project and subsequently calling either the lower
level function function_query that returns a list of lists containing the table or using the
function query and pass it the structure returned from extract_all_functions and a string
containing the query as illustrated in the examples given above (cf. Listing 4). Function
query can also be passed an optional argument fmt that specifies which format (used by the
module tabulate [1]) to use for the table.

Listing 4 Using inside other Python scripts.
from teaching_assistant import *
info = extract_all_functions ("/ home/rui/repos/ PL2G01 ")

R. C. Mendes and J. J. Almeida 13:5

result = query(info , """ SHOW name return args
SORT name """)
print(result)
result = query(info , [" SHOW name project "," SORT name "], fmt = "html ")

Listing 5 shows an example of generating a report. In order to use this functionality, the
command is executed with the -t keyword.

teaching_assistant -t example_report PL[1-9]G[0-9]*

Listing 5 Example of generating a report.
List of problematic functions
These functions are too complex and should be rewritten :

‘‘‘
SHOW project name cyclomatic_complexity maintainability_index
COND cyclomatic_complexity > 10 or maintainability_index < 80
SORT project -maintainability_index cyclomatic_complexity name
COLOR

cyclomatic_complexity : scale_lower (0 ,50)(cyclomatic_complexity);
maintainability_index : scale_upper (0 ,100)(maintainability_index)

‘‘‘

Bad documentation
The following functions have no documentation :

‘‘‘
SHOW name
COND not comment
‘‘‘
These functions have a * @return * keyword for *void* functions :

‘‘‘
SHOW name comment
COND comment and return == ’void ’ and ’@returns ’ in comment
‘‘‘

The following functions have problems with the definition of
their arguments . They either :
- Forget to document some of the function arguments , or
- Document things that are not function arguments

‘‘‘python
def arg_doc_problems (args , comment):

actual = set(args.keys ())
reported = set(re. findall (r" @param \s+(\S+)", comment , re.M))
return actual != reported

def arg_names (args):
return list(args.keys ())

‘‘‘

‘‘‘
SHOW name filetype filename arg_names (args) documented (comment)
COND arg_doc_problems (args , comment)
‘‘‘

ICPEC 2021

13:6 A Teaching Assistant for the C Language

Figure 1 Result of running query on listing 2 on a given project.

The example is more or less self explanatory. It starts by creating a table of the functions
that are too complex. Then it displays a table of the functions that don’t have documentation.
It shows the name of the functions and the condition uses a Python statement that checks if
the string containing the comment is empty. Then it checks for functions that erroneously
document the return value for void functions and those whose documentation either does
not document all the arguments or has documentation for arguments that do not belong to
the current function. This was achieved by creating two Python functions inside a Python
environment called arg_names and arg_doc_problems. The first one just returns a list with
the argument names from the dictionary than contains the argument names as keys and their
type as value. The second one takes the dictionary of arguments and the comment with the
documentation, extracts all the @param keywords therein and checks if both sets are equal.

The output can then be passed to a system that will take its output and generate another
format. In this case, we used pandoc that can generate many different formats including
HTML and LATEX. The following statement illustrates how to generate a report in HTML.

teaching_assistant -t report.txt PL[1-9]G[0-9]* | pandoc -o report.html

6 Conclusions

This tool helps instructors create reports concerning students’ code. Instructors can easily
create reports about all projects with this tool since it enables a lot of sophistication. With
a little thought, it is capable of both grading students or provide reports to help instructors
understand the problems with the students’ code and better help them address it. Since
most of the keywords accept Python code, it is very easy to extend to one’s needs. As the
tabulate model can generate tables in many formats including most markdowns, HTML
and LATEX, the tables produced can be easily incorporated in many types of reports.

The main advantages of this tool is its simple syntax, it can use arbitrary Python code
and automatically substitutes the values of fields, it can use all the statistics gathered by
Multimetric. Tables may be generated with colors in a very straightforward fashion, they

R. C. Mendes and J. J. Almeida 13:7

can be generated in many formats and more advanced queries using aggregation can be
used. The fact that it is possible to use markdown to create the report and have templating
possibilities is also quite useful since it is possible to create small functions inside the text
file for addressing a situation and embed tables inside the report.

Its main disadvantages is that is depends on other tools, like Multimetric and Universal
C tags, it is currently not very graceful when encountering parsing errors and only works in
Linux. It is also not capable of creating automatic advice. Future work will focus on some of
the disadvantages mentioned above and to extend this tool to the Python language.

References
1 Sergey Astanin. Tabulate. https://pypi.org/project/tabulate/. Accessed: 2021-04-09.
2 Rachel Cardell-Oliver. How can software metrics help novice programmers? In Proceedings of

the Thirteenth Australasian Computing Education Conference-Volume 114, pages 55–62, 2011.
3 Don Coleman, Dan Ash, Bruce Lowther, and Paul Oman. Using metrics to evaluate software

system maintainability. Computer, 27(8):44–49, 1994.
4 Francisco Jurado, Miguel A Redondo, and Manuel Ortega. Using fuzzy logic applied to

software metrics and test cases to assess programming assignments and give advice. Journal
of Network and Computer Applications, 35(2):695–712, 2012.

5 Nadia Kasto and Jacqueline Whalley. Measuring the difficulty of code comprehension tasks
using software metrics. In Proceedings of the Fifteenth Australasian Computing Education
Conference-Volume 136, pages 59–65, 2013.

6 Xavier Marcelet. Coverxygen. https://pypi.org/project/coverxygen/. Accessed: 2021-04-
09.

7 Thomas J McCabe. A complexity measure. IEEE Transactions on software Engineering,
SE-2(4):308–320, 1976. doi:10.1109/TSE.1976.233837.

8 Simon, Andrew Luxton-Reilly, Vangel V. Ajanovski, Eric Fouh, Christabel Gonsalvez, Juho
Leinonen, Jack Parkinson, Matthew Poole, and Neena Thota. Pass rates in introductory
programming and in other stem disciplines. In Proceedings of the Working Group Reports on
Innovation and Technology in Computer Science Education, ITiCSE-WGR ’19, page 53–71, New
York, NY, USA, 2019. Association for Computing Machinery. doi:10.1145/3344429.3372502.

9 Errol Thompson, Andrew Luxton-Reilly, Jacqueline L Whalley, Minjie Hu, and Phil Robbins.
Bloom’s taxonomy for cs assessment. In Proceedings of the tenth conference on Australasian
computing education-Volume 78, pages 155–161, 2008.

10 Szymon Wasik, Maciej Antczak, Jan Badura, Artur Laskowski, and Tomasz Sternal. A survey
on online judge systems and their applications. ACM Computing Surveys (CSUR), 51(1):1–34,
2018.

11 Konrad Weihmann. Multimetric. https://pypi.org/project/multimetric/. Accessed: 2021-
04-09.

A List of keywords

This appendix shows a list of the keywords that can be used by the tool. The software
engineering statistics that are provided by Multimetric include measures that are only
available for other languages and thus are omitted from this list. The keywords are the
following:
name Function name
folder The path of the project containing the file where the function was defined
project The basename of folder
filename The path of the file where the function was defined
filetype Whether the function was defined in a C file or include file

ICPEC 2021

https://pypi.org/project/tabulate/
https://pypi.org/project/coverxygen/
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1145/3344429.3372502
https://pypi.org/project/multimetric/

13:8 A Teaching Assistant for the C Language

return Function return type
args Dictionary of function arguments and their types
comment Comment before the function that may be the Doxygen documentation
vars Dictionary of local variables and their types
stat Software engineering statistics provided by Multimetric for each function

comment_ratio Percentage of commments
cyclomatic_complexity Cyclomatic complexity according to McCabe
halstead_bugprop Number of delivered bugs according to Halstead
halstead_difficulty Difficulty according to Halstead
halstead_effort Effort according to Halstead
halstead_timerequired Time required to program according to Halstead
halstead_volume Volume according to Halstead
lang Programming language
loc Lines of code
maintainability_index Maintainability index
operands_sum Number of used operands
operands_uniq Number of unique used operands
operators_sum Number of used operators
operators_uniq Number of unique used operators

	1 Introduction
	2 Software metrics
	3 Concerning documentation
	4 The C Teaching Assistant
	5 Some examples of queries
	6 Conclusions
	A List of keywords

