
Experiments on PR-Based Gamification
Alberto Simões # Ñ

2Ai, School of Technology, IPCA, Barcelos, Portugal

Ricardo Queirós # Ñ

CRACS - INESC-Porto LA, Portugal
uniMAD - ESMAD, Polytechnic of Porto, Portugal

Abstract
This article documents some experiments on teaching a class on a Master Degree Program using a
different perspective on gamification. Instead of winning badges or getting achievements, students
earn classification points. This allows them to work as hard as they are willing, having in mind their
current classification and how far they can reach. In the specific experiment being reported, students
can earn final grade points with pull requests to a shared class project. The article describes the
details of the experiment, extrapolates on different ideas for implementing this in other classes, and
concludes with the pros and cons of such approach for student evaluation.

2012 ACM Subject Classification Social and professional topics → Computer science education

Keywords and phrases computer education, gamification on class, GIT

Digital Object Identifier 10.4230/OASIcs.ICPEC.2021.16

Category Short Paper

Funding This paper is based on the work done within the Framework for Gamified Programming
Education project supported by the European Union’s Erasmus Plus programme (agreement no.
2018-1-PL01-KA203-050803).

1 Introduction

Computer Science teaching is a complex task, not just on the first years, but also in advanced
courses, like Master Degrees. Usually, teachers tend to use hybrid evaluation methodologies,
comprised of theoretical and practical parts. Both types require different strategies for
engaging students. In this contribution we are not dealing with theoretical evaluation, but
only on how to engage students on practicing writing code.

A common approach for evaluating the student competences on writing code is to ask
them to develop some kind of solution. Sadly, for some courses, that is not easy. For instance,
when the solution that makes more sense to request to students is a large application, and
just a part is related to the goals of the curricular unity. To remedy this problem, teachers
require students to work in groups, dividing the work load. This leads to other kind of
issues, like non balanced competences among the group elements, making it hard to properly
evaluate each one independently.

This document described an experiment in a Master Degree on Digital Games Development
Engineering, at the School of Technology of the Polytechnic Institute of Cávado and Ave, in
Barcelos, Portugal, especially in the course of “Game Engines,” where the students learn
how to structure and build from scratch the basic functionalities for a game engine. This is
a 45 hours course, of the fist year of this Master’s degree.

This document is structured as follows: Section 2 discusses on different gamification
approaches already discussed by other authors; Section 3 explains the methodology used in
this experiment; Section 4 does an analysis of the experiment, pointing out for different areas
where this kind of gamification can lead; finally Section 5 draws some conclusions.

© Alberto Simões and Ricardo Queirós;
licensed under Creative Commons License CC-BY 4.0

Second International Computer Programming Education Conference (ICPEC 2021).
Editors: Pedro Rangel Henriques, Filipe Portela, Ricardo Queirós, and Alberto Simões; Article No. 16;
pp. 16:1–16:10

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:asimoes@ipca.pt
https://ambs.zbr.pt/
https://orcid.org/0000-0001-6961-2660
mailto:ricardoqueiros@esmad.ipp.pt
http://www.ricardoqueiros.com
https://orcid.org/0000-0002-1985-6285
https://doi.org/10.4230/OASIcs.ICPEC.2021.16
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


16:2 Experiments on PR-Based Gamification

2 Related Work

Gamification can be defined as the use of game elements in non-game contexts [5]. In practice,
game elements can be considered as a conceptual toolkit which can be applied in a system in
order to motivate certain behaviors. Among all relevant game elements, the classic PBL triad
(Points, Badges, and Leader-boards) is often adopted in most of the gamification projects to
reward/notify individuals upon the accomplishment of specific tasks. The primary reason for
their use is its simplicity (common sense in understanding their rules) and its effectiveness to
achieve early motivation.

2.1 Motivation
Gamification is no longer a buzzword. Nowadays, gamification plays a central role and is being
considered as the solution for many issues related with lack of retention and demotivation in
education and business domains. In order to successfully apply gamification it is crucial to
understand the level and type of motivation that we want individuals to achieve using our
system.

Motivation can be defined as the core element which drives individuals to accomplish
a task. Beyond the amount of motivation that is necessary to achieve in order to be able
to complete a specific task, it is important to distinguish and manipulate their two major
flavors: extrinsic and intrinsic motivation [22].

Extrinsic motivation is gained by pursuing tangible rewards acquired after successfully
doing an activity (e.g., rankings, levels, points, badges, awards, financial incentives) [19].
Intrinsic motivation is acquired by doing an activity for the own purpose of the individuals
inherent satisfaction and, most of the time, as an opportunity to learn or recycle their
potentials. In this context, it is important to foster cooperation, competition, self-esteem,
ego, sense of belonging and love [19].

Most of the time, intrinsic motivation offers long-term and high-quality behavioral
engagement, whereas extrinsic motivation is relatively less effective. Nevertheless, extrinsic
motivation is still necessary in scenarios where the activity is itself neither engaging nor
rewarding to the individual. In this case, external rewards are delivered to foster participation.
Yet it should not be overused, since excessive external rewards might impair individuals
spontaneous interest in the activity [4].

Based on these facts, the balance between both types of motivation should be encouraged
and applied in the gamification construction process. Although advised, this balance is very
difficult to achieve. The majority of the gamified systems can involve users in the first weeks,
but then users lose motivation either due to the game mechanics’ routine, or sometimes due
to lack of transparency in the application’s point system. This routine or lack of confidence
leads the user to feel discredited and to abandon the application. Thus, the perfect symbiosis
of these two types of motivation perpetuates the users’ confidence, leading them to be able
to complete the tasks in order to be rewarded and, at a later stage, to achieve an inner
satisfaction that goes beyond any reward and is more related to self-improvement and the
desire to be better [5].

2.2 Gamification in the Computer Programming domain
Gamification is being widely used in education and business contexts. In the education
realm, gamification is often used to facilitate the learning process of tedious and/or complex
subjects. One of these subjects is computer programming.



A. Simões and R. Queirós 16:3

It is a fact that learning how to code is a complex process [11, 21]. Early systems started
by trying to mimic traditional teaching methodologies to the virtual world with few success.
In fact, those systems were characterized by the excessive focus on the language syntax
and the availability of programming exercises without full coverage of the course curricula,
unbalanced in terms of complexity and not suitable for heterogeneous classes with students
with different profiles. In the beginning of the century, most systems included automatic
evaluation systems to foster practice. However, we continue to assist to students’ lack of
motivation and the consequent poor grades and dropouts. In the last decade, gamification
began to be used to circumvent this scenario and several programming learning platforms
appeared.

These platforms can be grouped in three major categories:
Massive Open Online Courses (MOOC),
Competition Systems, and
Serious Games.

The next subsections describes the most notable examples of the three categories. Other
categories were left out such as code playgrounds1 and sandboxes. The main reason for
discarding those categories is the fact that their main focus is not learning and for their lack
of game elements.

2.2.1 Massive Open Online Courses
Currently, there is a large number of open online programming courses available on the web
such as Coursera2, Udacity3, edX4, Codecademy5, Khan Academy6, and Free Code Camp7.
Most of theses platforms offer a wide variety of learning material from top universities’
courses, with the possibility, at the end of the course, of getting paid certificates.

These platforms typically use gamification to attract learners, adopting elements which
go beyond the PBL triad such as different levels, progress indicators and experience points.
For example, Khan Academy uses badges and progress tracking to engage students to enlist
and complete courses. Codecademy uses levels to organizes lessons and progress indicators
to notify learns of their current learning status.

In the context of educational institutions, the most widely used approach to create
gamified open online courses is to rely on an Learning Management System (LMS) with
game mechanics. LMSs were created to deliver course contents, and collect assignments
of the students. However, many of them evolved to provide more engaging environments
resorting to gamification. Some of the most notable examples are Academy LMS8, Moodle9,
and Matrix10 which include badges, achievements, points, and leader-boards. Moodle also
has several plugins which offer a variety of other gamification elements [17].

1 CodePen (https://codepen.io), CodeSandbox (https://codesandbox.io/), PlayCode (https://
playcode.io/), JSFiddle (https://jsfiddle.net/), SoloLearn (https://www.sololearn.com/).

2 Available at https://www.coursera.org/.
3 Available at https://www.udacity.com/.
4 Available at https://www.edx.org/.
5 Available at https://www.codecademy.com/.
6 Available at https://www.khanacademy.org/.
7 Available at https://www.freecodecamp.org/.
8 Available at https://academy-lms.com/.
9 Available at https://moodle.org/.
10 Available at https://www.matrixlms.com/.

ICPEC 2021

https://codepen.io
https://codesandbox.io/
https://playcode.io/
https://playcode.io/
https://jsfiddle.net/
https://www.sololearn.com/
https://www.coursera.org/
https://www.udacity.com/
https://www.edx.org/
https://www.codecademy.com/
https://www.khanacademy.org/
https://www.freecodecamp.org/
https://academy-lms.com/
https://moodle.org/
https://www.matrixlms.com/


16:4 Experiments on PR-Based Gamification

One of the most relevant examples is Enki [17] which is a tool that blends learning with
assessment and gamification,. In Enki, the content is presented in several forms as well
as delivering programming assignments with automatic feedback, while allowing anyone to
create courses freely.

2.2.2 Competition Systems
It is part of the human condition to be competitive. Despite some dangers associated
with learning based competition systems [12], it has proven to be an effective technique to
stimulate students to exceed their capabilities [14, 3]. In this realm, programming contests
are becoming more popular among learners [25]. This section presents some platforms and
tools that use competition as a way to engage students in learning programming.

The most notable example of competition systems are the programming contests which
can be defined as environments with a set of competitive activities where individuals or
teams strive to find solutions for a specific set of problems. In these contests, the evaluation
of submissions are handled by special components (often called automatic judges) allowing
participants to make as many submissions as they want during competition, and learn from
their mistakes. In this way, “losers” actually win knowledge which may compensate the
negative effects typically associated with competitive learning activities [20].

The most popular automatic judges are DOMJudge [8], PC2 [1], PKU JudgeOnline [18],
and Mooshak [13]. Despite being used primarily to support programming contests, currently
the majority of them are capable of providing rich and immediate feedback to students,
allowing the motivation by using timed challenges and leader-boards [9].

There are several platforms that can be used to compete or train as part of the recruit-
ment process for top technology companies. Some notable examples are HackerRank11,
CodeSignal12, Codility13, HackerEarth14 Assessments, TestDome15, HireVue16, DevSkiller17,
iMocha18 and CodinGame For Work19. Usually so-called as Tech Recruiting Platform or
Remote Online Code Testing, these platforms offer PBL facilities and include contests which
can assume different time frames (opened indefinitely, in which challenges are proposed every
week/day/month, or run for a limited amount of time – 48 hours). These contests enable
users to increase/decrease their rating, win medals (which are given to top solutions), and
cash prizes or, even, jobs at top technology companies.

2.2.3 Serious games
A serious game is a game designed for a primary purpose other than pure entertainment [6].
Currently, serious games are applied in several domains including healthcare, well-being,
advertisement, and education. In the later, serious games are used to mitigate the difficulties
found when learning a specific subject, either because it is complex or boring. In this scope,
serious games are being applied in computer programming learning in order to explain

11 Available at https://www.hackerrank.com/.
12 Available at https://codesignal.com/.
13 Available at https://www.codility.com/.
14 Available at https://www.hackerearth.com/.
15 Available at https://www.testdome.com/.
16 Available at https://www.hirevue.com/.
17 Available at https://devskiller.com/.
18 Available at https://www.imocha.com.my/.
19 Available at https://www.codingame.com/.

https://www.hackerrank.com/
https://codesignal.com/
https://www.codility.com/
https://www.hackerearth.com/
https://www.testdome.com/
https://www.hirevue.com/
https://devskiller.com/
https://www.imocha.com.my/
https://www.codingame.com/


A. Simões and R. Queirós 16:5

programming concepts or to foster the practice of skills that, for some reason, are harder to
assimilate.

Many studies were made aiming to identify requirements for an educational game to
promote the learning of problem-solving techniques in introductory programming [26].

A survey [16] including 49 serious games analysed the most common features, and
those which may increase the game’s adoption. In this scope, the importance of fostering
collaboration and competition within the game and the game’s coverage based on the ACM
reference curriculum for Fundamental Concepts in Programming were the most cited missing
features. Other conclusion of this study was the weak attention to the adoption of the best
accessibility and inclusion practices.

A recent survey [23] analysed 41 games and founded that most of them emphasize
mechanics and dynamics rather than aesthetics, making in general, the games tiring and
boring. Other weak point was that the majority of the games analysed are not directed
linked to the undergraduate level and the poor coverage of the items in the ACM curriculum.
As a main conclusion of this study, authors recommended considering the student’s previous
skills and knowledge and providing automatic and rich feedback when specific error events
occurs.

As some notable examples, selected without any criteria, are NoBug’s SnackBar, Wu’s
Castle and Robocode:

NoBug’s SnackBar [26] is a serious game to support the learning of basic computer
programming. It is a blocks-based environment including also resources that allow the
teacher to follow the student’s progress and customize in-game tasks.
Wu’s Castle [7] aims to teach basic programming concepts such as loops and arrays
by presenting the learner with multiple-choice questions or fill-in blanks. The feedback
consists of displaying an avatar executing the code.
Robocode [2, 10] challenges the student to develop a complete software agent capable of
defeating all the opponents in the arena in order to practice object-oriented programming
and structured programming.

3 Gamification Methodology

As described previously, the experiment was performed on a Master Degree course, with 15
students. The topic of the course is game engine development, and the main goals are to
understand the different components of a game engine, including but not limited to managing
the input from the player, perform the rendering tasks (sprites, cameras, models), simulate
physics (namely collision) and play sound.

In order to allow students to understand these components and how they interact together,
one of the objectives is to have students developing modules, that can be put together, and
implement a simple game. Given the students background, the used technologies were the
C# programming language, and the MonoGame20 framework.

As to students motivation, badges or achievements, by themselves, is not enough for
engagement. While most studies defend that these kind of rewards motivate students, there
is the lack of analysis of long-term effect of gamification. Accordingly with some authors
[24, 15], studies are performed during short periods of time, and there is no real analysis of
the benefit of virtual rewards on situations when “players” have little time and no direct real
reward for they effort.

20 https://www.monogame.net/

ICPEC 2021

https://www.monogame.net/


16:6 Experiments on PR-Based Gamification

Most of the students are employed, as the master degree runs in a after-work basis. Their
time for studies is quite limited, and therefore, their main goal is to complete the degree, and
if possible, with an interesting grade. With this in mind, the defined methodology award
grade points to the students, in a way students can accumulate them. At the end, the amount
of points the students are able to gather is their final grade21 (of course, with a possible
truncation on the maximum grade). This scenario was described to the students in the first
class, allowing them to understand the mechanics.

This gamification approach has direct impact in their grade, as not just the collection
of badges or achievements. Of course we can award a grade for each obtained badge or
achievement, but that would be a similar experience to the one being described.

The methodology to assign the grade points to the students was aligned to the completion
of tasks, hidden as the creation of pull requests. Thus, during classes, specific tasks were
open in an issue tracker, and classified with the grade that would be awarded to the student
resolving the issue. In this specific situation, a private repository from GitLab22 was used.

During the classes concepts were discussed and a basic structure of the code needed to
handle the discussed functionalities were added to the repository. At the end (or after the
class), the teacher opens a set of issues in the GitLab interface. Each issue is a functionality
needed for the common class project, and an amount of grade points is defined as the reward
for that task.

Different tasks might have different reward amounts. Simpler tasks were ranging from
1 to 3 points, while some more complex tasks could award up to 6 points. To guarantee
students do not choose all the simple tasks for themselves, after a task being assigned the
student is unable to get another task until his current assignment is complete.

To complete an assignment the student needs to develop the code and prepare a pull
request (named merge request in GitLab). The teacher validates the code, suggesting
corrections or just accepting the solution. Every time a pull request is merged, the amount
of points defined in the task are credited to the student. A possibility would be awarding
only partially, if the solution is not the best. Nevertheless, during the experiment we are
describing, that was not the case.

After one task is done, the teacher can create new issues to complete the code from a
previous student with new features, or merging two different modules developed previously
into a single functionality. This means that, as the classes evolve, the complexity of the
implementation increases.

4 Discussion and Evaluation

While in the previous section the gamification methodology was presented, in this section we
will discuss the pros and cons found during the experiment, following a SWOT methodology.

4.1 Weaknesses
Unfortunately there are some drawbacks on adopting this methodology. We present some of
them now:

As expected, this approach requires more work from the teacher. While teachers already
need to tutor their students when performing any other project, this kind of task requires

21 In Portugal, student grades are in the interval 0–20.
22 https://gitlab.com

https://gitlab.com


A. Simões and R. Queirós 16:7

more effort, not just because that each student will be working on a different problem,
but also because from time to time a new set of issues needs to be published, allowing
students to continue their work.
At the same time, if the class is too big, it might be not feasible to have some many
parallel tasks at once, forcing some students to be idle, waiting for others to submit their
pull requests, in order to be able to get their own assignments.
The way students solve a specific task might not be the best one for other features that
will be coded on top of that. While the teacher might do code validation, and request
some changes, to force a specific approach for solving a problem might not be desired – it
is useful to let the students understand what path to go, and deal with the problems that
might arise from there. Thus, sometimes, creating new issues that require to deal with
code developed by a previous student might require some extra work. In this situations,
our approach was to create intermediate tasks to transform the code in a way it gets
suitable for the next task.

4.2 Strengths

During the experiment we noticed some advantages on this methodology:
Students are able to work as much as they like, and at each step, they know exactly their
current grade. While some students might be comfortable with a low but positive grade,
other students will keep fighting to get a higher grade. As the effort to raise their score is
manageable, and known a priori, they can decide which tasks they want to perform, and
choose their own path.
Students with low coding skill usually struggle to develop a complex project. If the
teacher is able to propose issues of different complexity levels, with a low point reward,
good students will not opt for those tasks, as they would need to do many more simple
tasks to get to a high final grade. But, for students with low coding skills, these are an
opportunity to gather some points. They might need to solve a larger number of issues,
but their hard work will be rewarded with a positive grade. This is also an approach to
make these students work more time, and therefore, learning better coding skills.
Making students to develop tasks on already existing code forces them to read other
people code. This is an important part of the learning process of coding. If the first tasks
are easier to implement, as they are to be developed on top of the code written during a
class, and therefore, explained, as new tasks are proposed students are required to look
to code from their colleagues.
While the first detected weakness is regrading bad code practice or not so versatile
implementations, when a new issue for code refactoring is opened, most of the times the
students that performed the original code are willing to take it, and refactor their own
code, as they see that as an interesting challenge.

4.3 Opportunities

There are different opportunities for this approach, namely:
The possibility to develop a system to track automatically the pull request scores, allowing
the students to follow their grade evolution.
This kind of approach, with some adaptations, might be used in other situations. While
in this experiment all students were working on the same code-base, the use of generic

ICPEC 2021



16:8 Experiments on PR-Based Gamification

open-source projects for which students can contribute would also work. For instance, a
class clone of the Hacktoberfest23 could be very interesting.

4.4 Threats
We foresee some problems of this approach:

Students can work for a minimum grade. This is not an interesting situation for the
teacher, as students might just drop their attention for the remaining classes if they feel
they goal was already achieved.
Not all type of classes, even for computer science courses, can benefit of such approach,
as creating different tasks for every student is not easy.
Related to the previous threat, this methodology would not work for a high number of
students, as it will not be possible, for the teacher, to create as much tasks as required to
allow every student to have their opportunity.

5 Conclusions

When this experiment was conducted, the main idea was not to report about it, but to
give a boost on the teaching methodology for this specific course. Therefore, unfortunately
there was no evaluation on the approach by the students, and given we could not reproduce
this methodology last year, given the global pandemic, currently we do not have a proper
evaluation by the students.

Nevertheless, during the experiment there was two main types of students: some of the
students struggled to get a positive evaluation, and stopped working; but some other found
the approach interesting and got interesting grades. From this last group, not all students
were experienced programmers. Some of them achieved a good grade very quickly, performing
more complex tasks. Some others, with more difficulties, were able to achieve their grades by
preparing simpler pull requests, but with a higher number of solved issues.

One of the drawbacks of this approach was the lack of a system to keep track of the
students score. At that time, the class used a plain public GitLab server (although with a
private repository). Nevertheless, as GitLab is freely available, one could install it locally,
and it would be possible to develop a plugin to allow this gamification to be performed
automatically, without the need for the teacher to keep track of which pull requests were
solved, and their rewards.

References
1 Samir E. Ashoo, Troy Boudreau, and Douglas A. Lane. CSUS Programming Contest Control

System (PC2), 2018. URL: http://pc2.ecs.csus.edu/ [cited September 2020].
2 Esmail Bonakdarian and Laurie White. Robocode throughout the curriculum. J. Comput.

Sci. Coll., 19(3):311–313, January 2004.
3 Juan C. Burguillo. Using game theory and competition-based learning to stimulate student

motivation and performance. Computers & Education, 55(2):566–575, 2010. doi:10.1016/j.
compedu.2010.02.018.

4 D. Coon and J.O. Mitterer. Introduction to Psychology: Gateways to Mind and Behavior
with Concept Maps and Reviews. MindTap Course List Series. Cengage Learning, 2012. URL:
https://books.google.sm/books?id=EYwjCQAAQBAJ.

23 See https://hacktoberfest.digitalocean.com/.

http://pc2.ecs.csus.edu/
https://doi.org/10.1016/j.compedu.2010.02.018
https://doi.org/10.1016/j.compedu.2010.02.018
https://books.google.sm/books?id=EYwjCQAAQBAJ
https://hacktoberfest.digitalocean.com/


A. Simões and R. Queirós 16:9

5 Sebastian Deterding, Dan Dixon, Rilla Khaled, and Lennart Nacke. From game design elements
to gamefulness: Defining "gamification". In Proceedings of the 15th International Academic
MindTrek Conference: Envisioning Future Media Environments, MindTrek ’11, page 9–15, New
York, NY, USA, 2011. Association for Computing Machinery. doi:10.1145/2181037.2181040.

6 Damien Djaouti, Julian Alvarez, and Jean-Pierre Jessel. Classifying serious games: the
g/p/s model. Handbook of Research on Improving Learning and Motivation through Educa-
tional Games: Multidisciplinary Approaches, January 2011. doi:10.4018/978-1-60960-495-0.
ch006.

7 Michael Eagle and Tiffany Barnes. Wu’s castle: teaching arrays and loops in a game. In
Proceedings of the 13th annual conference on Innovation and technology in computer science
education, ITiCSE ’08, pages 245–249. ACM, 2008. doi:10.1145/1384271.1384337.

8 Jaap Eldering, Thijs Kinkhorst, and Peter van de Warken. DOMjudge-programming contest
jury system, 2011. URL: https://www.domjudge.org/ [cited September 2020].

9 Pedro Guerreiro and Katerina Georgouli. Enhancing elementary programming courses using e-
learning with a competitive attitude. International Journal of Internet Education, 10, January
2008.

10 Ken Hartness. Robocode: Using games to teach artificial intelligence. J. Comput. Sci. Coll.,
19(4):287–291, 2004.

11 Tony Jenkins. On the difficulty of learning to program. In Proceedings of the 3rd Annual
Conference of the LTSN Centre for Information and Computer Sciences, volume 4, pages
53–58, 2002.

12 Alfie Kohn. No contest: The case against competition. Houghton Mifflin Harcourt, 1992.
13 José Paulo Leal and Fernando Silva. Mooshak: A Web-based multi-site programming contest

system. Software: Practice and Experience, 33(6):567–581, 2003. doi:10.1002/spe.522.
14 José Paulo Leal and Fernando Silva. Using Mooshak as a Competitive Learning Tool. In The

2008 Competitive Learning Symposium, 2008.
15 Elisa D. Mekler, Florian Brühlmann, Klaus Opwis, and Alexandre N. Tuch. Do points, levels

and leaderboards harm intrinsic motivation? an empirical analysis of common gamification
elements. In Proceedings of the First International Conference on Gameful Design, Research,
and Applications, Gamification ’13, page 66–73, New York, NY, USA, 2013. Association for
Computing Machinery. doi:10.1145/2583008.2583017.

16 Michael A. Miljanovic and Jeremy S. Bradbury. A review of serious games for programming. In
Stefan Göbel, Augusto Garcia-Agundez, Thomas Tregel, Minhua Ma, Jannicke Baalsrud Hauge,
Manuel Oliveira, Tim Marsh, and Polona Caserman, editors, Serious Games, pages 204–216,
Cham, 2018. Springer International Publishing.

17 José Carlos Paiva, José Paulo Leal, and Ricardo Alexandre Queirós. Enki: A pedagogical
services aggregator for learning programming languages. In Proceedings of the 2016 ACM
Conference on Innovation and Technology in Computer Science Education, pages 332–337.
ACM, 2016. doi:10.1145/2899415.2899441.

18 Xu Pengcheng, Ying Fuchen, and Xie Di. PKU JudgeOnline, 2013. URL: http://poj.org/
[cited September 2020].

19 Kalliopi Rapti. Increasing motivation through gamification in e-learning. The Journal for Open
and Distance Education and Educational Technology, 7, June 2016. doi:10.12681/icodl.640.

20 Miguel A. Revilla, Shahriar Manzoor, and Rujia Liu. Competitive learning in informatics:
The UVa online judge experience. Olympiads in Informatics, 2:131–148, 2008.

21 Anthony Robins, Janet Rountree, and Nathan Rountree. Learning and teaching programming:
A review and discussion. Computer science education, 13(2):137–172, 2003. doi:10.1076/
csed.13.2.137.14200.

22 Richard M. Ryan and Edward L. Deci. Intrinsic and extrinsic motivations: Classic definitions
and new directions. Contemporary Educational Psychology, 25(1):54–67, 2000. doi:10.1006/
ceps.1999.1020.

ICPEC 2021

https://doi.org/10.1145/2181037.2181040
https://doi.org/10.4018/978-1-60960-495-0.ch006
https://doi.org/10.4018/978-1-60960-495-0.ch006
https://doi.org/10.1145/1384271.1384337
https://www.domjudge.org/
https://doi.org/10.1002/spe.522
https://doi.org/10.1145/2583008.2583017
https://doi.org/10.1145/2899415.2899441
http://poj.org/
https://doi.org/10.12681/icodl.640
https://doi.org/10.1076/csed.13.2.137.14200
https://doi.org/10.1076/csed.13.2.137.14200
https://doi.org/10.1006/ceps.1999.1020
https://doi.org/10.1006/ceps.1999.1020


16:10 Experiments on PR-Based Gamification

23 M. Shahid, A. Wajid, K. U. Haq, I. Saleem, and A. H. Shujja. A review of gamification
for learning programming fundamental. In 2019 International Conference on Innovative
Computing (ICIC), pages 1–8, 2019. doi:10.1109/ICIC48496.2019.8966685.

24 Stefan Stepanovic and Tobias Mettler. Gamification applied for health promotion: does it
really foster long-term engagement? A scoping review. In Peter M. Bednar, Ulrich Frank,
and Karlheinz Kautz, editors, 26th European Conference on Information Systems: Beyond
Digitization - Facets of Socio-Technical Change, ECIS 2018, Portsmouth, UK, June 23-28,
2018, page 50, 2018. URL: https://aisel.aisnet.org/ecis2018_rp/50.

25 Andrew Trotman and Chris Handley. Programming contest strategy. Computers & Education,
50(3):821–837, 2008. doi:10.1016/j.compedu.2006.08.008.

26 Adilson Vahldick, Paulo Roberto Farah, Maria José Marcelino, and António José Mendes. A
blocks-based serious game to support introductory computer programming in undergraduate
education. Computers in Human Behavior Reports, 2:100037, 2020. doi:10.1016/j.chbr.
2020.100037.

https://doi.org/10.1109/ICIC48496.2019.8966685
https://aisel.aisnet.org/ecis2018_rp/50
https://doi.org/10.1016/j.compedu.2006.08.008
https://doi.org/10.1016/j.chbr.2020.100037
https://doi.org/10.1016/j.chbr.2020.100037

	1 Introduction
	2 Related Work
	2.1 Motivation
	2.2 Gamification in the Computer Programming domain
	2.2.1 Massive Open Online Courses
	2.2.2 Competition Systems
	2.2.3 Serious games


	3 Gamification Methodology
	4 Discussion and Evaluation
	4.1 Weaknesses
	4.2 Strengths
	4.3 Opportunities
	4.4 Threats

	5 Conclusions

