User Experience Evaluation in a Code Playground

Ricardo Queirés 24
CRACS - INESC-Porto LA, Portugal
uniMAD - ESMAD, Polytechnic of Porto, Portugal

Mario Pinto =
uniMAD - ESMAD, Polytechnic of Porto, Portugal

Teresa Terroso &
uniMAD - ESMAD, Polytechnic of Porto, Portugal

—— Abstract

Learning computer programming is a complex activity and requires a lot of practice. The viral

pandemic that we are facing has intensified these difficulties. In this context, programming learning
platforms play a crucial role. Most of them are characterized by providing a wide range of
exercises with progressive complexity, multi-language support, sophisticated interfaces and automatic
evaluation and gamification services. Nevertheless, despite the various features provided, others
features, which influence user experience, are not emphasized, such as performance and usability.
This article presents an user experience evaluation of the LearnJS playground, a JavaScript learning
platform which aims to foster the practice of coding. The evaluation highlights two facets of the
code playground: performance and a usability. In the former, lab and field data were collected based
on Google Lighthouse and PageSpeed Insights reports. In the later, an inquiry was distributed
among students from a Web Technologies course with a set of questions based on flexibility, usability
and consistency heuristics. Both evaluation studies have a twofold goal: to improve the learning
environment in order to be officially used in the next school year and to foster the awareness of user
experience in all phases of the software development life-cycle as a key facet in Web applications
engagement and loyalty.

2012 ACM Subject Classification Applied computing — Computer-managed instruction; Applied
computing — Interactive learning environments; Applied computing — E-learning

Keywords and phrases programming learning, code playground, programming exercises, user experi-
ence

Digital Object Identifier 10.4230/OASIcs.ICPEC.2021.17
Category Short Paper

Funding This paper is based on the work done within the Framework for Gamified Programming
Education project supported by the European Union’s Erasmus Plus programme (agreement no.
2018-1-PL01-KA203-050803).

1 Introduction

The JavaScript language is no more confined to the browser. Nowadays the language
gravitates on almost all platforms, assuming a crucial role in distributed and embedded
systems. This success came to underpin its use not only by IT companies but also in the
first years in computer science related courses.

In this context, LearnJS emerged as a playground for practicing JavaScript coding. There
are several playgrounds worldwide. Many of them adopting the paradigm one-size-fits-
all paradigm with sophisticated interfaces and offering a large number of exercises with
progressive complexity and covering all the typical topics within the curricula of a computer
programming course with multi-language support. In order to engage users and accelerate

© Ricardo Queirés, Mério Pinto, and Teresa Terroso;
oy

licensed under Creative Commons License CC-BY 4.0
Second International Computer Programming Education Conference (ICPEC 2021).
Editors: Pedro Rangel Henriques, Filipe Portela, Ricardo Queirds, and Alberto Simdes; Article No. 17; pp. 17:1-17:9

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


mailto:ricardoqueiros@esmad.ipp.pt
http://www.ricardoqueiros.com
https://orcid.org/0000-0002-1985-6285
mailto:mariopinto@esmad.ipp.pt
https://orcid.org/0000-0002-6734-5797
mailto:teresaterroso@esmad.ipp.pt
https://orcid.org/0000-0003-0224-8301
https://doi.org/10.4230/OASIcs.ICPEC.2021.17
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

17:2

User Experience Evaluation in a Code Playground

their extrinsic motivation, some of these platforms include evaluation services with automatic
feedback and gamification elements such as leaderboards, achievements, badges and points.

Despite all these features, there are others that aren’t enhanced or, sometimes, even
neglected such as those that influence more directly the user experience. Therefore, the
main requirement in the design of LearnJS was to foster the user experience (UX) in the
perspective that having happy users benefit their involvement and, consequently, their loyalty.
In order to achieve this requirement, at the platform design phase, two facets of the user
experience were addressed: performance and usability. The former was enhanced with the
creation of the playground as a Singe Page Application with a small number of round trips
to the server. The later, was considered by adopting a UI (User Interface) framework in
order to build rich and engaging user experiences composed by crafted components from the
Material Design specification.

Despite all these precautions, it is necessary to assess whether they have had a positive
effect on the user experience. This article presents a performance and an usability study in
the LearnJS playground. The performance study was based on lab and field data obtained
from Google Lighthouse and PageSpeed Insights tools. The second is based the perception
that users had on the use of the playground. In order to collect these perceptions a usability
inquiry was delivered to first- and second-years students of the Degree in Technologies and
Information Systems at ESMAD (Superior School of Media Arts and Design) from the
Polytechnic Institute of Porto (P.PORTO). The inquiry’s questions were based on Nielsen’s
heuristics such as flexibility, usability and consistency.

These studies aim to achieve two objectives: to improve the user experience on LearnJS,
and to raise the awareness of all the workflow agents in the software life-cycle development
about the importance of UX in the development of enjoyable virtual learning platforms.

The rest of the article is structured as follows: in section 2 a brief state of the art on code
playgrounds and heuristics evaluation models are presented. Section 3 presents LearnJS,
more precisely, its architecture, main components, and the playground GUI. In section 4, two
types of evaluation in the LearnJS playground were made: a performance evaluation based
on Google performance tools reports and an usability evaluation based on the analysis of a
survey filled by students of a Web Technology course. Finally, the main contributions of this
work are presented and the next steps regarding the evolution of the playground are shared.

2 Code Playgrounds

A variety of code playgrounds have appeared over the years. These type of tools help students
to practice a programming language without the need to install any specialized editor or
IDE in their computers. The next subsections present a brief survey on code playgrounds
and highlight the heuristic evaluation as the main method for evaluating the usability of
interactive system such as these types of playgrounds.

2.1 State of the Art

Nowadays, there are several Web applications aiming to foster coding skills. These applications
are often coined with several names such as interactive online courses, massive open online
course, coding bootcamp tools, code playgrounds, code interview prep platforms, and many
others.

Regardless of the names, all of these platforms have something in common — they all
encourage the practice of coding. Since solving exercises and receiving feedback on their
resolution is considered to be one of the most efficient way to learn programming, these



R. Queirds, M. Pinto, and T. Terroso

types of tools are important strategies for students to autonomously consolidate all the
programming topics in an informal, enjoyable and interactive way.

Within this scope there are several tools that stand out such as freeCodeCamp, Coursera,
codeacademy, edX, Udemy, Udacity, W3schools, SoloLearn, Hackr.io, coderbyte, codewars,
hackerrank, codingame, khan academy, qvault, treehouse, lynda, futurelearn, codeasy, zenva
academy, and others.

There are several comparative studies [4, 5, 6] analyzing the differences between these
tools using several predefined criteria. One of such studies [6], authors compare these code
playgrounds based on set of predefined criteria such as edition, evaluation, gamification and
interoperability.

In addition to the common objective, many of these platforms share a similar graphic
structure that can be grouped into the following components:

collection of exercises - list of exercises organized by modules and with increasing com-
plexity. In some environments the availability of modules and/or exercises depends on
the success in solving the previous exercises;
statement - description of the challenge in several formats and languages. Beyond the
challenge, the text often includes a set of example input/output tests that the student
can use for self-evaluation purposes;
editor - specialize editor embedded in the Web page and properly configured for the
supported languages. The main features are syntax highlighting, auto-completion, snippets
injection and presentation of syntactical errors;
console - enumeration of errors, warnings, hints in order to notify students on their
actions;
tests - static and dynamic tests. The former is the base for analyzing the code without
running it and detecting many issues from keyword detection to applied code style. The
later is based on input/output tests where the student’s code is executed with the given
input and the output generated upon execution is, then, compared with the given output;
related resources - dependence resources that are suggested to the students to consolidate
the current topic (e.g. similarly exercises, video tutorials);

social - this component gathers several features that allow the interaction with the

community such as forums, code sharing facilities, pair programming, and many others;

gamification - game elements aiming to motivate students on their progress in the course.

They can be materialized as several widgets such as a ranking, a set of badges, or even

experience points earned by the students that can unblock levels, permissions or be used

later for internal trading.

2.2 Heuristic Evaluation

Heuristic Evaluation (HE) is one of the most widely used methods for evaluating the usability
of an interactive system.

Since the time that Schneiderman [8] presented his well-known “Eight Golden Rules of
Interface Design”, and passing for the popular Nielsen’s Ten general principles for interaction
design [3] or Tognazzini’s First Principles of Interaction Design [9], there were several studies
presenting new sets to help Ul designers, developers and other experts in their goal of
enhancing usability. Despite the number, most of these studies boil down to modifying
Nielsen’s list and/or adding new principles to evaluate specific aspects not covered. A
complete review of several sets of usability heuristics created for specific domains (not only
programming) by different authors can be found in [7].

17:3

ICPEC 2021



17:4

User Experience Evaluation in a Code Playground

Nowadays, almost everybody refers to evaluate usability or UX based on the Nielsen’s
heuristics list. Recent studies use Nielsen’s or Tognazinni’s lists as the most accurate models
[1]. Other studies present hybrid solutions joining both models with the premise that Nielsen’s
list needed something more specific to be useful [1].

In our case, we decided to take Nielsen’s list to do this present work. According to Nielsen
the practical acceptability of a system includes factors such as usefulness, cost, reliability and
interoperability with existing systems. The usefulness factor relates the utility and usability
offered by the system. Utility is the capacity of the system to achieve a desired goal. As
the system perform more tasks, more utility he has. Usability is defined by Nielsen as a
qualitative attribute that estimates how easy is to use an UI. He mentions five characteristics
involved in the concept of usability:

ease of learning - the system should be easy to learn so that the user can start doing

some work with the system;

efficiency - the system should be efficient to use, so after the user learns the system, a

high level of productivity is possible;

memorability - the system should be easy to remember so that the casual user is able to

return to the system after a period without using it, without requiring to learn it all over

again;

errors - the system should prevent the user from committing errors as should deal with

them gracefully and minimizing the chance of occurring catastrophic errors;

satisfaction - the system should be pleasant to use so that users become subjectively
satisfied when using.

3 Learnl)S

Learn]JS is a Web playground which enables anyone to practice the JavaScript language [6].
The LearnJS Playground is a Web-based component which will be used by learners to browse
learning activities and interact with the compound resources. Here students can see videos or
PDF’s of specific topics and solve exercises related with those topics with automatic feedback
on their resolutions.

Currently, the playground has two main components:
1. Editor: allows students to code their solutions in an interactive environment;
2. Evaluator: assess the student’s code based on static and dynamic analyzers.

For the Editor component, the playground uses Ace (maintained as the primary editor for
Cloud9 IDE) which can be easily embedded in any web page and JavaScript application. The
editor is properly configured for the JavaScript language and supports the Emmet toolkit for
the inclusion of dynamic JavaScript snippets. Ace editor can display errors on the editor itself
but does not handle language dependencies. A parser needs to be used to detect errors and
determine their positions on the source file. There are several tools that can improve code
quality. One of such cases is code linters. Linters (e.g JSLint, JSHint) can detect potential
bugs, as well as code that is difficult to maintain. These static code analysis tools come into
play and help developers spot several issues such as a syntax error, an unused variable, a
bug due to an implicit type conversion, or even (if properly configured) coding style issues.
LearnJS uses JSHint to accomplish this behavior. While static code analysis tools can spot
many different kinds of mistakes, they can not detect if your program is correct, fast or
has memory leaks. For that particularly reason, LearnJS combines JSHint with functional
tests (based on test cases). For this kind of tests, and since the code is written in JS and
the context is the browser, we use a simple approach by iterating all the case tests and



R. Queirds, M. Pinto, and T. Terroso

applying the eval function for tests injection. Both analyzers (linter and Test Case runner)
are subcomponents of the LearnJS evaluator component that runs exclusively on the client
side. This approach avoids successive round-trips to the server which affects negatively the
user experience.

At this moment, a simple running prototype (version 0.7.7) is available at https://
rqueiros.github.io/learnjs/. Figure 1 shows the front-end GUI of the playground.

@ learnJSv0.7.7

T [ s fncementas M2. JavaScript Fundamentals TESTS
I§ 1. Variables 7. Work on Conditionals Run the ts and creat !
Buy a cake
[ 2. work on Variables S
John has 20 cents in is pocket. Mary has the double. Define variables jonntioney and
I3 3.Data Types marytioney. for both budgets. Calculate the total money of the two friends and store itin a
variable called totaltoney . Then, log in the console 'YES' if they have sufficient money Input Output Expected
[2) 4. Work on Data Types based on the value of cake_cosT , and 'NO), otherwise.
&5 general tests:
B 5. Operators const CAKE_COST
let johnMoney CAKE_COST @ 65
let maryMoney hnMoney * 2;
[2) 6. Work on Operators let totalMone; ohnMoney + maryMoney;
if(totalMoney AKE_COST maryMoney == johnMoney * 2 @ true
I3 6. Conditionals ES');
typeofohnMoney) @ number
[ 7. Work on Conditionals
— o
I3 8. Loops
LOG console logs:
B 9. Work on Loops autosave each 10 seconds)
@ -
I3 10. Functions BACK TO SHEET () GET TEACHER'S CODE &%
#" metric (extra challenge)
[ 11. work on Functions
occurrences:40 o 0
I8 12. Debugging Errors (0) v bt

Figure 1 LearnJS playground GUI

4 User Experience Evaluation

This section presents the two types of evaluation that were performed in the LearnJS
playground: performance and usability.

4.1 Performance Evaluation

Nowadays, Web performance is not just a technical concern: it affects everything from
accessibility to usability. Even if you look to the software development workflow, design
decisions should be aware of their performance implications. There are a lot of examples that
a single second spared in the page load of a company site can increase search engine traffic,
sign-ups and even the average annual revenue. Thus, it is unanimous that performance
is an important factor to bear in mind and it should be measured, monitored and refined
continually.

However, the growing complexity of the web poses new challenges that make performance
relative. For instance, a site might be fast for one user (on a fast network with a powerful
device) but slow for another user (on a slow network with a low-end device) or even a a site
might appear to load quickly but respond slowly to user interaction.

So when talking about performance, it’s important to be precise and to refer to perform-
ance in terms of objective criteria that can be quantitatively measured. These criteria are
known as metrics. There are a lot of metrics from the first byte received by the browser to the
time when the page is ready to be interactive. Also there are a lot of tools to measure those
metrics. In order to overcome this dispersion, Google launched the Web Vitals initiative
to simplify the tools and metrics landscape, and help developers focus on the metrics that

17:5

ICPEC 2021


https://rqueiros.github.io/learnjs/
https://rqueiros.github.io/learnjs/

17:6 User Experience Evaluation in a Code Playground

matter most. In this realm, tools that assess Web Vitals compliance should consider a page
passing if it meets the targets at the 75th percentile for all of the following three metrics:
Largest Contentful Paint (LCP): measures the time from when the page starts loading to
when the largest element is rendered on screen;
First Input Delay (FID): measures the time from when a user first interacts with your
site (e.g. when they click a link, tap a button) to the time when the browser is actually
able to respond to that interaction;
Cumulative Layout Shift (CLS): measures the cumulative score of all unexpected layout
shifts that occur between when the page starts loading and when its life-cycle state
changes to hidden.

These metrics are generally measured in one of two ways: in the lab using tools to
simulate a page load in a controlled environment; in the field on real users actually loading
and interacting with the page.

In order to evaluate the LearnJS playground performance, a field analysis was performed
using the Google PageSpeed Insights (PSI). Table 1 presents the performance results for six
metrics (including the three Web Vitals metrics) organized in the two well known target
devices: mobile and desktop. Although the results are presented for both platforms, for the
LearnJS scope, desktops are the most important as they will be those used by students in
solving programming exercises.

Table 1 LearnJS performance report.

FCP* SI2 LCP TTI® TBT CLS

Mobile 7.3s 7.3s 123s 9.1s 450ms 0.011
Desktop 1.5s 1.5s  2.1s 1.7s 60ms  0.001

LFCP = First Contentful Paint
251 = Speed Index
3TTI = Time To Interactive

PSI incorporates data from the Chrome User Experience Report (CrUX) to display data
on the actual performance of a page. This data represents an aggregate view of all page
loads over the previous 28-day collection period. However, since LearnJS was put online very
recently, CrUX doesn’t have enough real speed data for this source. Therefore, data comes
from the Google LightHouse that gives performance insights from a controlled environment
using simulated throttling.

PSI classifies field metric values as good/needs improvement/poor by applying specific
thresholds. The overall score for LearnJS was 81 points (0 to 100). It falls in the “needs
improvement” category. Looking now at the mobile metric values and stressing the Web
Vitals metrics, one can conclude the following:

LCP (2.1s) - this value was expected since in the SPA paradigm most of the resources are
load in the first request. In order to mitigate this score, we will improve it by removing
resources that are blocking the main thread of the JS engine in the browser. Also, it is
crucial to remove unused JS and CSS files and perform lazy loading in images outside the
browser viewport. With these operations we estimate to reduce this value in 1.08s and,
thus, it is expected to reach the minimum threshold for the good category (<2000ms);

TBT (60ms) - it is a replacement for the field-only FID metric. The current value is in

the good category range (0 - 100ms). This value is obtained since in the implementation

phase of LearnJS we take into account several tasks such as reducing JS execution time



R. Queirds, M. Pinto, and T. Terroso

and, consequently, minimizing its main-thread work. Also the reducing of third-party
code by replacing large JavaScript libraries with smaller alternatives such as the JSHint
and the infinite loop detection have a big impact in the final score;

= CLS (0.001) - the visual stability of LearnJs is very good (between 0 - 0.1) since we adhere
to the good practices regarding this metric. One important factor was to flag the image
dimensions in HTML in order to the browser reserve space prior to make the respective

request. This way, later content is positioned in is final location affecting positively this
metric.

4.2 Usability Evaluation

This section evaluates the usability of the graphical user interface of LearnJS based on
the Nielsen’s model [2], considered the most used usability heuristics for user interface
design, analyzing factors such as usefulness and reliability. The usefulness factor relates
the utility and usability offered by the system. The reliability is the ability of a system or
component to perform its required functions under stated conditions for a specified period.
The questionnaire was organized in 13 groups of questions, 12 regarding usefulness (visibility,
compatibility, freedom, consistency, error prevention, recognition, flexibility, aesthetic, users
help, help and documentation, ease of use and speed) and 1 for the reliability factor, with
a total of 51 questions. Each group ended with a request for comments and the inquiry
ends by asking to globally classify the LearnJS code playground. The questionnaire was
distributed through an online survey, and disseminated to first- and second-year students
of a Web Technologies degree at ESMAD, P.PORTO, which represent the target users of
LearnJS. The respondents were informed that the questionnaire was anonymous, ensuring
confidentiality. A total of 27 responses were gathered.

n . ;
¢ H
g — = I
Py — )
= I ===
). Help [ T
P R |
S e——
[ ]
T ===
1 I
Flexdbility I -
0% 20% 40% 60% 30% 100% 0% 20% 40% 80% 30% 100%
BNever/ Almost never BRegular = Almost always/ Alvays ENever/ Almost never ERegular Almost always/ Always

Figure 2 Results of the usefulness (left) and reliability (right) heuristics.

The results showed that recognition, compatibility, and consistence are the aspects most
valued by students, as more than 90% of students recognize these characteristics present
always or almost always on the platform. Visibility, ease of use and documentation are
also aspects highly valued by students. On the other hand, error prevention, speed and
flexibility are the aspects, addressed in the questionnaire, less well evaluated by the students.
The reliability section intended to check on what tasks students had difficulties, being the
most reported ones the visualization of questions posed to the professor by other users, and
overall and single exercise performance visualisations. Asked how they would classify the
LearnJS playground, given all the parameters previously discussed, 96% of students rated

17:7

ICPEC 2021



17:8

User Experience Evaluation in a Code Playground

the platform as good or very good. Globally, some of the respondents’ comments indicated
the platform was very good, easy to use and learn, well structured and intuitive. On the
other hand, some comments suggested the possibility of the platform to provide both basic
and advanced solutions for the proposed problems.

5 Conclusion

This paper presents an user experience evaluation performed in the LearnJS code playground.
The evaluation was focused on two important facets: performance and usability. The former
was based on the lab and field data reported by the Google Lighthouse and PageSpeed
Insights tools. The later was based on the user target perception collected in an online survey
based on the Nielsen’s heuristics.

Since LearnJS was designed keeping in mind these facets, the results obtained ware
more or less expected and demonstrates the importance of the awareness of these facets in
the design phase of an interactive Web application. Nevertheless, the results pointed some
issues that should be solved in the next version of the playground such as flexibility. In this
topic students felt no liberty to customize the GUI (e,g, change panels location, alter the
background of the editor), to schedule frequent actions (e.g. configure notifications) or the
nonexistence of shortcut keys to perform the most used functions (e.g. run tests).

As future work, LearnJS will be capable to be integrated in an e-learning ecosystem based
on an Learning Management System (e.g. Moodle, Sakai, BlackBoard). This integration
will be based on the Learning Tools Interoperability (LTT) specification. This specification
provides several interfaces for the authentication and grading services from/to the LMS (the
tool consumer) and the LearnJS (the tool provider). Beyond integration, LearnJS will use in
a near future a gamification engine to gamify the learning activities with level unblocking,
rankings, experience points, badges and other gamification elements.

—— References

1 Toni Granollers. Usability evaluation with heuristics, beyond nielsen’s list. In ACHI 2018,
The Eleventh International Conference on Advances in Computer-Human Interactions, pages
60-65, 2018. URL: https://www.thinkmind.org/articles/achi_2018_4_10_20055.pdf.

2 J. Nielsen. Usability engineering. Academic Press, 1993. URL: https://books.google.pt/
books?id=£fnvJ9PnbzJEC.

3 Jacob Nielsen. 10 usability heuristics for user interface design, 1995. URL: https://www.
nngroup.com/articles/ten-usability-heuristics/.

4 José Carlos Paiva, José Paulo Leal, and Ricardo Queirés. Game-Based Coding Challenges to
Foster Programming Practice. In Ricardo Queirés, Filipe Portela, Mario Pinto, and Alberto
Simdes, editors, First International Computer Programming Education Conference (ICPEC
2020), volume 81 of OpenAccess Series in Informatics (OASIcs), pages 18:1-18:11, Dagstuhl,
Germany, 2020. Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik. doi:10.4230/0ASIcs.
ICPEC.2020.18.

5 José Carlos Paiva, José Paulo Leal, and Ricardo Queirds. Fostering programming practice
through games. Information, 11(11), 2020. doi:10.3390/info11110498.

6 Ricardo Queir6s. Learnjs - A javascript learning playground (short paper). In 7th Symposium
on Languages, Applications and Technologies, SLATE 2018, June 21-22, 2018, Guimaraes,
Portugal, pages 2:1-2:9, 2018. doi:10.4230/0ASIcs.SLATE.2018.2.

7 Daniela Quiniones and Cristian Rusu. How to develop usability heuristics: A systematic
literature review. Computer Standards & Interfaces, 53:89-122, 2017. doi:10.1016/j.csi.
2017.03.009.


https://www.thinkmind.org/articles/achi_2018_4_10_20055.pdf
https://books.google.pt/books?id=fnvJ9PnbzJEC
https://books.google.pt/books?id=fnvJ9PnbzJEC
https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.nngroup.com/articles/ten-usability-heuristics/
https://doi.org/10.4230/OASIcs.ICPEC.2020.18
https://doi.org/10.4230/OASIcs.ICPEC.2020.18
https://doi.org/10.3390/info11110498
https://doi.org/10.4230/OASIcs.SLATE.2018.2
https://doi.org/10.1016/j.csi.2017.03.009
https://doi.org/10.1016/j.csi.2017.03.009

R. Queirds, M. Pinto, and T. Terroso 17:9

8 Ben Shneiderman. Designing the User Interface: Strategies for Effective Human-Computer
Interaction. Addison-Wesley Longman Publishing Co., Inc., USA, 3rd edition, 1997.

9 B. Tognazzini. First principles, hci design, human computer interaction (hci), principles of hci
design, usability testing. http://www.asktog.com/basics/firstPrinciples.html. Accessed:
2021-03-28.

ICPEC 2021


http://www.asktog.com/basics/firstPrinciples.html

	1 Introduction
	2 Code Playgrounds
	2.1 State of the Art
	2.2 Heuristic Evaluation

	3 LearnJS
	4 User Experience Evaluation
	4.1 Performance Evaluation
	4.2 Usability Evaluation

	5 Conclusion

