Can | Code? User Experience of an Assessment
Platform for Programming Assignments

Anne Miinzner &2 &
Center for Human-Computer Interaction, University of Salzburg, Austria

Nadja Bruckmoser &
University of Salzburg, Austria

Alexander Meschtscherjakov &2 &

Center for Human-Computer Interaction, University of Salzburg, Austria

—— Abstract

Learning a programming language is a difficult matter with numerous obstacles for university

students — but also for their lecturers. Assessment tools for programming assignments can support
both groups in this process. They shall be adapted to the needs of beginners and inexperienced
students, but also be helpful in long-term use. We utilised an adapted version of the Artemis system
as an assessment platform for first-year computer science students in the introductory programming
course. To examine the students’ user experience (UX) over the semester, we conducted a three-stage
online questionnaire study (N=42). We found that UX evolves over the semester and that platform
requirements and problems in its usage change over time. Our results show that newcomers need to
be addressed with caution in the first weeks of the semester to overcome hurdles. Challenges shall
be added as the semester progresses.

2012 ACM Subject Classification Human-centered computing

Keywords and phrases Programming tool, user experience, student evaluation, programming assign-
ment

Digital Object Identifier 10.4230/0OASIcs.ICPEC.2021.18
Category Short Paper

Funding CodeAbility is funded by the Federal Ministry of Education, Science and Research as part

of the structural funds for higher education.

1 Introduction

Learning to program can be a difficult task. Especially in the university context, when
students are in the first semesters of their studies, they are not yet routinized and experienced
with academic learning and problem solving and a completely new stage of life has often
started with the study period [16, 7]. Students often have different levels of knowledge in
programming. Some have already been taught solid basics in school, others have already
experimented in the personal field, and still others have no previous experience at all.

But it is not easy for the lecturers either. They have to serve these different knowledge
bases and are primarily occupied with creating and correcting suitable tasks, often for a large
number of students. They have to create structures and incentives that make students do
what is most important for learning a programming language: repeated intensive practice [13].

To address this problem, we have launched the CodeAbility project at Austrian universities
which aims to standardize university programming education across Austria and create an
infrastructure with an online learning platform, didactic concepts, and an exchange platform
for teachers. The primary goal is to develop the online learning platform that integrates into
the existing classroom using blended learning and, in the future, uses programming learning
analytics to enable individual learning paths. We want to develop a platform that acts as a
helping tool on the difficult path of learning to program and is also perceived as such.

© Anne Miinzner, Nadja Bruckmoser, and Alexander Meschtscherjakov;
37 licensed under Creative Commons License CC-BY 4.0

Second International Computer Programming Education Conference (ICPEC 2021).

Editors: Pedro Rangel Henriques, Filipe Portela, Ricardo Queirds, and Alberto Simdes; Article No. 18;

pp. 18:1-18:12

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:anne.muenzner@sbg.ac.at
https://hci.sbg.ac.at/person/muenzner/
https://orcid.org/0000-0001-7314-4580
mailto:nadja.bruckmoser@stud.sbg.ac.at
mailto:alexander.meschtscherjakov@sbg.ac.at
https://hci.sbg.ac.at/person/meschtscherjakov/
https://orcid.org/0000-0001-8116-4522
https://doi.org/10.4230/OASIcs.ICPEC.2021.18
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

18:2

Can | Code?

Since frustration and fear are true learning killers [1], these must be avoided at all costs.
Especially students who have never had contact with programming or computer science in
general, have fears and doubts which create barriers that keep these people from learning.
Especially for this group, it is important to convey a sense of self-efficacy, competence,
security, and autonomy through the tool. This means not only avoiding frustration due to
poor usability but specifically promoting positive experiences because lack of motivation is
one of the main barriers to learning to program [1, 8].

At the moment, we are exploring what functionalities and content the platform should
offer. Since the experience with delivery systems in higher education has been very positive
[20] and support was needed most in this area, the functionality of the delivery platform was
the first one we implemented and tested. In the first pilot phase of the project, Artemis,
the automated assessment management system for interactive learning, was used in various
courses at Austrian universities to create and submit exercises. Artemis was developed
at the Technical University of Munich, Germany [10]. It is especially suited to supervise
large groups and has been successfully used in MOOCs [11]. We have used the system at
the University of Salzburg in the courses “Introduction to Programming with Java” and
“Introduction to Programming with Python”. Both courses are aimed at students in the first
bachelor’s semester of computer science and DIG (Digitization Innovation Society).

Figure 1 provides a screenshot of the Artemis platform as it was experienced by the
students. An assignment was given that had to be submitted by a certain date. The interface
includes a file browser (left), an area for the code that has to be developed (center), and the
description of the assignment (right).

Today, there are many different assessment tools for programming assignments that
save time and effort through automation [19] and have already been successfully used for
programming courses at universities [2]. The requirements of lecturers and students in this
context have also already been investigated [16].

As already stated, one of the problems concerns the motivation, i.e. also the emotional
level of the students. We aim to develop a platform that also addresses this problem.
Therefore, our main concern was to learn more about the students’ user experience (UX). It
is already known that the UX of programs evolves over time with increasing experience [9].
For us, it was important to find out to what extent this also applies to our learning platform.
As mentioned before, students are at a point in time where they are confronted with many
new challenges, so it is particularly relevant to identify entry problems. But also the needs of
students with growing experience should be recognised to optimally support different phases
of learning programming. This leads to the following research questions:

How does the user experience of the learning platform changes during the first semester?
How do requirements and reported problems change over the semester?
How should deployed learning platforms be evaluated to capture the needs of all students?

To answer these questions, we conducted a user study at the University of Salzburg with
students who used the platform in their first semester. For this purpose, we sent out online
questionnaires at three different times in the winter semester 20/21 (October 2020 - January
2021). Our study showed that the UX of the platform developed over the semester. We were
given insights into existing problems with the platform that especially novice programmers
found obstructive. Moreover, we were able to identify functions and aspects that students
found particularly supportive. In the following, we will reflect on related work. We will
describe the applied method in detail and report results. Lastly, we will discuss findings and
provide answers to our research questions.

A. Miinzner, N. Bruckmoser, and A. Meschtscherjakov

Artemis 4.4

Aufgabe 09 QO Kein gewertetes Ergebnis ® Absenden
& Datei Browser < B src/einfprog/Bsp09.java Aufgabenstellung >
N 1 // Vornane Nachname, Matrikelnunmer
+ B +m a 2 package einfprog; ? ?
3

4 public class Bsp09 {

v B srcfeinfprog Aufgabe 09
o
Bsp09java * Just for testing and debugging. Is not tested ® Teil 1 Keine Ergebnisse
* @param args
B PRNG java */ Wir implementieren ein einfaches Modell zur Simulation der

public static void main(String[] args) { Ausbreitung von Infektionskrankheiten. In einer Welt bewegt sich
World world = new World(10);
world.createPopulation(10);
world. setInfectionPri* * 71 % =t gewissen Wahrscheinlichkeit infizieren konnen.

eine Population von Menschen, die sich bei Kontakt mit einer

Systen.out.println(wm
Verwenden Sie fir die Zufallsereignisse die Klasse PRNG und
halten Sie sich genau an folgende Definitionen (bitte nicht
schrecken, die meisten Methoden sind Einzeiler). Jede Klasse ist

Systen.out.printLn(world); in einem separaten File abzugeben.
Systen.out.printLn(world. getInfectionRate())

i Die Klasse Wor ld reprasentiert eine quadratische Welt in Form
3 einer Matrix von Personen Person (][] world (z.B.world[0] [6]
= person; setzt eine Person an die Position (6,). Zur
Effizienz gibt es auch ein Array Person(] persons in dem alle
© Gespeichert. | @ Abgesendet Personen gespeichert sind. An einer Position kann sich immer

>_ Build Ergebnisse >

Keine Build Ergebnisse verfigbar.

5

6

7

8

9

10

11

12

13

14

15

16 for Cint i =0; i <:
17 world. doLifeStep:
18

19

20

21

22

23

24

Figure 1 This screenshot of the Artemis platform shows a file browser (on the left), a java code
(in the center), and a student assignment (on the right). At the bottom information and errors would
be reported. The green button at the top right allows the student to submit the code. An automated
analysis (e.g., syntax errors, compilability) is performed and the student would get instant feedback
at the bottom.

2 Related work

Solutions to the challenges of teaching programming are being explored in many countries
through higher education institutions. Queirds et al. [16], for example, conducted a study in
Portuguese universities to gain a deeper understanding of the programming teaching process
in such higher education institutions. Their results show the need for helping tools that
support teachers as well as students and automate parts of this process.

Cardoso et al. [2] conducted a study on the use of automated assessment tools for first
semester students and demonstrated that the tools support and motivate students to learn
programiming.

The automated assessment system we used was Artemis, developed at the Technical
University of Munich. In a quantitative study, its scalability, feedback under 10 seconds
and good usability were proven [10]. The latter resulted from the observation that novice
programmers are able to use the platform without problems. In addition, students gave
positive feedback on the usefulness of the platform.

This proves that the use of automated assessment tools at universities is useful for teachers
and students. For us, it was important to investigate not only the usability but also the UX
in more detail in order to optimize the use of this tool, gain further insights into the needs
of students over the semester, and thus gather knowledge for further development in the
CodeAbility project.

There have been numerous studies on the change of UX and usability over time [15, 9].
Kujala et al. [12] describe a change in the context of an application over time under what
they call long-term UX. It is the nature of learning to change learners through the growth of

18:3

ICPEC 2021

18:4

Can | Code?

knowledge and skills that build upon each other. It is a process with which the context, the
target group of students changes. Since the tool accompanies the students in this process
for months, the question of long-term UX is particularly relevant. When dealing with
user experience in the context of learning, eudaemonic well-being is also important, as the
enjoyment of the immediate activity is not always present or visible, but this activity can
lead to increased well-being in the long run [5].

3 Methodology

3.1 Objective of the study

With our study, we wanted to gain deeper insights into the student perspective on the
platform. Thus, the goal of the study was not simply to evaluate the existing platform,
but to find out, with respect to the CodeAbility project, how students perceived the use
of the platform, what is perceived as helpful, and where we need to change aspects. Since
the platform is intended to support students as they get started in programming and to
work for students who are less familiar with computer science, we evaluated the UX over the
course of the semester. We were interested in whether the programming learning platform is
rated differently over this time, for example, whether students rate it better with increasing
experience or not. Thus, the overall objective of the study was the following: Does the UX
change over the semester and do students have different needs and issues with the platform
at different points in time?

3.2 Procedure

To evaluate UX, we used questionnaires that were sent to the students via the course
instructors on three different dates during the semester. Typically, students had weekly
classes and weekly assignments during the semester (i.e. over a four-month period). In the
lectures, the students learned basic programming constructs such as data types, if-cases, and
loops. A weekly task on the topic of the last lecture was then published via the Artemis
platform. These assignments were divided into two subtasks that build on each other.
Students could score 0 points if neither task passed the tests, 5 points if the first task passed
the tests, and 10 points if both subtasks passed the tests. The students had to solve it in the
course of the week. This task then had to be submitted via the Artemis platform either using
the online editor or the version management system GIT. An instant check of the assignment
was performed automatically and the student would get feedback from the Artemis platform.
This feedback is based on the test cases created by the teachers. In addition to the compiler
output, the students also received output on other tests, such as input output tests, and
thus knew directly whether their solution passed all the tests. Students could resubmit
their assignments as often as they wanted until the deadline. Thereafter, the solutions and
the scores achieved were viewed by the lecturers and possibly assessed manually. On the
platform, students could view their submitted assignments and achieved points.

The first survey was sent out six weeks after the start of the semester so that any initial
difficulties were still fresh, but the students had already gained some experience with the
platform. After another month a second questionnaire was sent out to students. The last
questionnaire was sent out at the end of the semester after another six weeks.

We used the same questionnaire for all three dates. Demographic data from the parti-
cipating students were collected in the first part of the questionnaire. The main purpose
of this was to gain knowledge about the exact target group and find out whether it is a

A. Miinzner, N. Bruckmoser, and A. Meschtscherjakov

relatively heterogeneous group or if there were differences among participants that need to
be addressed. Here, we also asked questions about the students’ previous experience in order
to identify any correlations between this and the user experience of the platform.

The main part of the questionnaire was the User Fxperience Questionnaire UEQ+. The
original UEQ was developed by Laugwitz et al. [14] and targeted at the assessment of UX of
interactive systems in general. It measures the subjectively perceived impression of the users,
mapped in six different dimensions: Attractiveness, Efficiency, Transparency, Controllability,
Stimulation, and Originality [17]. The UEQ+ is a modular extension of the UEQ. It is

composed of 26 bipolar questions rated using a 7-point Likert scale (coded from -3 to +3).
The UEQ+ allows selecting various dimensions that are relevant for the respective product.

We have ultimately used the scales Attractiveness, Efficiency, Perspicuity, Dependability,
Usefulness and Clarity as UX dimensions.

The following part of the questionnaire included questions that further addressed the
context of the application. These were questions about the platform’s support for learning
the programming language, the submission of assignments, and related error messages. These
items were self-designed and had to be answered using a 10-level Likert scale from one (not
at all) to 10 (very good).

The third part of the questionnaire consisted of open-ended questions about obstacles
and difficulties as well as advantages, suggestions for improvement and wishes. They not
only aimed to measure the user experience but also to provide possible justifications for the
evaluation of this in the UEQ+ [18]. In addition, questions were intended to reveal further
problems and potentials in the interaction at different points in the semester and provide the
opportunity to obtain more qualitative answers [6].

3.3 Results
3.3.1 First Survey

A total of 61 students participated in the first survey. Of these, 42 students responded to the
questionnaire in full. Since the introductory courses are intended for the first semester, 54.34%
of the participants are in the first semester of their studies. The remaining participants are
distributed among the other semesters.

12.8 % of the participants had no computer science classes in school and the majority
with 31.9 % had 2 years of computer science classes in school. However, there are also some
students (8.5 % of the participants) who have had computer science lessons in school for as

long as eight years. This means that the previous school experiences were quite different.

Figure 2 shows the results of the first UEQ+ questionnaire. Overall all six dimensions were
rated positively (i.e. mean values above 0 on the scale between -3 and +3). Dependability
scored worst with a value of 0.18. Attractiveness with 0.56 and Efficiency with 0.71 did not
score very high either. Usefulness scored better with a value of 1.1. The best scores were
Perspicuity with 1.96 and Clarity with 2.6. So far, we have not found any differences in the
rating of the UEQ+ between students with different levels of prior knowledge.

The answers to the context-related questions were striking. They were answered very
diversely. To the question “Artemis supports me in working on the homework”, 14.3 %
answered with not at all (0 points on the Likert scale) and the same number answered with
very well (10 points on the Likert scale). The answer to the question “The error messages in
the homework helped me” was similarly varied. Here, the proportion of those who voted
neutral or worse (one to five points on the Likert scale) predominated.

18:5

ICPEC 2021

18:6

Can | Code?

1,96 2,06

11
0,71

0,18

-1

-2

3

Attractiveness
Efficiency
Perspicuity
Dependability
Usefulness
Clarity

Figure 2 Results of the UEQ+ of the fist phase of the study. Ratings were given on a scale
between -3 and +3. Mean values were all positive. Dependability scored worst. Attractiveness and
Efficiency did not score very high. Usefulness scored better. The best scores were Perspicuity and
Clarity.

However, the proportion of neutral to poor evaluations predominates in the question
“Artemis has supported me in learning the programming language”. As shown in figure 3,
32.4 % of the participants stated that Artemis did not support them at all in this respect.
Again, for all three questions, we have not yet found any differences in perceived support
between students with different levels of prior knowledge.

In order to interpret these numbers, we shall have a look into the open questions. When
asked what obstacles were encountered when working on and handing in the exercises, the
majority of the participants criticized the quality of the error messages for the programmed
exercises. These were described as inaccurate or incomprehensible. This problem is also
reflected in the students’ wishes for improved and more detailed error messages that are also
understandable for beginners.

Some students also found the submission via GIT difficult, especially for the first task, as
they had to deal with the version management system in addition to the new algorithmic
thinking. This problem is also reflected in the students’ requests for instruction for GIT.

But which aspects did the students rate positively? The immediate feedback of the
platform on the submitted task was often praised as positive, even if the quality of the error
messages was often criticized. A total of 24 of the 42 participants mentioned this as positive
in the open questions. The students liked the fact that they could immediately see where
their programs contained errors and correct them before the actual submission. In addition,
they immediately had the certainty that their program corresponded to the created tests. So
they did not have to wait for the lecturers to correct their solution.

A. Miinzner, N. Bruckmoser, and A. Meschtscherjakov

Figure 3 Results of the first study on the question: “Artemis has supported me in learning the
programming language”. From 1 (not at all) to 10 (very good).

3.3.2 Development over time

The comparison with the subsequent surveys showed that the UX of the platform increases
in all the scales of the UEQ+ we examined as the semester progressed. In the second survey,
the UEQ+ was still rated similarly to the first survey round. Either no or only minor
improvements could be demonstrated. In the third round of the survey, greater improvements
were detected. We saw a big increase in the dimensions Attractiveness, Efficiency, and
Usefulness. Figure 4 shows detailed results of the UEQ+ over time.

The ratings of contextual questions also improved. In the last survey, for example, 11.5%
did answer not at all to the question “Artemis supported me in learning the programming

language”. For comparison: at the beginning of the study, 32.4% of the participants did so.

The improvement can be seen in figure 5. The number of participants neglecting capability of
the platform to support learning programming decreased significantly. Also, the support of
the platform in the processing of the homework was rated better as the semester progressed
as shown in figure 6. In the first survey participants were evenly spread across the answer
possibilities (1 to 10). In the third survey, only a minority of participants stated that the
platform would not be supportive for the assignments.

So are the problems identified in the first survey only the entry barriers described by
Mendoza and Novick [15]7 The answers to the open questions at the end of the questionnaire
could give some clues. Now among the problems the lack of design freedom in the programming
tasks, which does not allow own approaches since the system only accepts solutions that

have been designed exactly according to the specifications, is mentioned much more often.
However, experienced students would like to implement their own or more creative solutions.

Even though the error outputs were still criticized, the complaints were more about the
inaccuracy of these outputs.

The immediate feedback was also repeatedly emphasized as positive in these survey
rounds. Furthermore, the students found it helpful to have all assignments in one place and
thus to have an overview also of homework already handed in.

18:7

ICPEC 2021

18:8 Can | Code?

W First Survey
¥ Second Survey
¥ Third Survey

Means

Perspicuity
Efficiency
Usefulness

g
o
(]
=]
f=
(1]
[=¥
73
[=]

Attractiveness

Figure 4 Results of the UEQ+ mean values over time. Mean values were taken from the three
points in time of the study when the UEQ+ was asked. Especially the dimensions attractiveness,
efficiency, usefulness, and dependability were rated higher at the end of the semester than at the

beginning or during the semester.

40,00%
B FirstSurvey B Last Survey

30,00%

20,00%

10,00%

0,00%
1 2 3 4 5 6 7 8 g 10

1 (notatall) to 10 {very well)

Figure 5 Detailed results on the statement “Artemis supported me in learning the programming
language”. Results show an increase in the capability of the platform as a support for programming
language learning between the first and third survey.

A. Miinzner, N. Bruckmoser, and A. Meschtscherjakov

25,00%
W FirstSurvey [LastSurvey
20,00%
15,00%

10,00%

5,00%

0,00%
1 2 3 4 5 6 7 8 g 10

1 (notatall}to 10 (very well).

Figure 6 Detailed results on the statement “Artemis supported me in working on the assignments”.

Results show an increase in the platform support for homework completion between the first and
the third survey.

4 Discussion

In our study, we found that the user experience of using the Artemis platform at the
beginning of the semester was lower compared to later points in the semester. In the
beginning, the platform was not perceived as a support for learning to program by the
majority of students. This was due to the fact that in addition to the new concepts of
programming and algorithmic thinking that the students had to deal with at this point,
they also had to learn and understand how to use and operate the Artemis platform. In
addition to recognizing the workflow, completely new concepts and tools such as the version
management system GIT and error output had to be understood.

On the one hand, this finding is gratifying, as it shows that the UX is perceived as
more positive in the longer term and that the platform functions as a support for learning
to program. Even though this development of the user experience has been proven over
time in several studies, this finding is still very critical for us and no reason to rest on it,
because as mentioned at the beginning, we are also concerned with simplifying the entry
into programming.

4.1 Recommendations

If you want to analyze the user experience of learning platforms in higher education, our clear
recommendation is to do this not only once and only at the end of the semester. Especially
initial difficulties, which may have already led to leaving the course, can no longer be recorded
here.

For many students, the online learning platform is their first point of contact with
programming. The resulting responsibility and the potential to arouse students’ interest in
programming and to create motivation for the rest of the semester should be used. Here the
chance exists to get negative expectations and prejudices about programming [3, 8] out of
the way.

18:9

ICPEC 2021

18:10

Can | Code?

Following the possibility-driven design approach [4], the potentials of an interactive
learning platform should be used to create truly positive experiences here. According to
our study, in addition to the clarity of the tasks and observation of one’s progress, one of
these potentials is the possibility of receiving immediate feedback. Isn’t that also the beauty
of programming and logic? Let’s remember the moment when (maybe after a long time of
debugging) the compiler no longer gives an error message and the algorithm does what it is
supposed to do. Programming can be fun and this should be conveyed right at the beginning.
Obstacles that stand in the way of this experience must be removed.

Of course, the platform must also be supportive for learning success in long-term use.
This includes, for example, the use of GIT since it is a reality in later practical work on
the job. In the same way, searching for errors and evaluating error messages that are often
inaccurate or incomprehensible is part of a programmer’s everyday work. These concepts
must be learned, but should not overwhelm students all at once in their first programming
assignment. They should be introduced gradually. For example, error messages could be
filtered initially. In any case, the question of how feedback should be designed to support
students at different levels of experience is worth exploring. In addition, as students become
more experienced, the platform should also provide the opportunity for their own more
creative approaches to solving the programming tasks, because the ability to find alternatives
and to work on programming problems with different approaches is also important.

So it is obvious that a programming learning platform for students should function as a
dynamic companion on the way of learning to program. With concepts like Programming
Learning Analytics and Gamification, we want to achieve this. Whatever concepts we
introduce in the future as part of the CodeAbility project, we will always pay special
attention to what impact they have on the entry of still inexperienced students who have
just started programming.

4.2 Limitations

In the pilot phase, the Artemis platform was used to create and submit weekly assignments
and provide feedback on their correctness. We conducted our study only in the two courses
that used the platform at the University of Salzburg (N=42). Thus, our results cannot
be generalized to online learning platforms. This would require a further increase in the
number of study participants. Furthermore, the platform used was limited to its function as
a submission system for students. It remains to be investigated whether a learning platform
with more extensive functionalities, such as teaching content, would be evaluated differently.
Not to be neglected here is also the fact that the platform was used to submit weekly
compulsory assignments, which influenced the grading of the students.

5 Conclusion

To support students and teachers at Austrian universities in learning and teaching program-
ming, we started the CodeAbility project. In the first pilot phase of the project, we used
the assessment tool Artemis to automate the creation and submission of assignments. In
our study, we examined the user experience over the semester. According to our research
questions, we found the following;:

At the end of the semester, the user experience of the platform is rated better than at
the beginning of the semester in all scales of the UEQ+, i.e. Attractiveness, Efficiency,
Perspicuity, Dependability, Usefulness and Clarity. However, real differences in the
evaluation could not yet be determined in the second, but only in the third survey at the
end of the semester.

A.

Miinzner, N. Bruckmoser, and A. Meschtscherjakov

At the beginning of the semester, in addition to the new computational thinking, students
still struggle with initial difficulties in using the platform. Later in the semester, the
problems with the platform and the students’ demands change. Students no longer feel
overwhelmed with new concepts and rather want more freedom in programming.

To represent the user experience for the entire students, it makes sense to investigate of
the user experience at least two different times, i.e. at the beginning and the end of the
semester. This procedure captures both the entry problems of programming beginners and
the needs of advanced students, which can differ considerably.

In a future study, it would be helpful to conduct this survey with a larger number of

students e.g. the other universities involved in the CodeAbility project.

On the one hand, our findings can be helpful for the evaluation of learning platforms, as

it shows the requirement for repeated user experience studies. On the other hand, they can
be useful for the design of learning platforms, as our findings show the need to address the
different needs at the beginning and later in the semester. At the beginning of the semester,

any obstacles that make it even more difficult to get started with programming should be

eliminated. Then, as the semester progresses, additional concepts that students will need
later should continue to be introduced. The platform should thus evolve along with the

students.
—— References
1 Christine Bruce, Lawrence Buckingham, John Hynd, Camille McMahon, Mike Roggenkamp,

10

and lan Stoodley. The fear factor: How it affects students learning to program in a tertiary
environment. Journal of Information Technology Education: Research, 9, January 2010.
doi:10.28945/1183.

Marilio Cardoso, Anténio Vieira de Castro, Alvaro Rocha, Emanuel Silva, and Jorge Mendonga.
Use of Automatic Code Assessment Tools in the Programming Teaching Process. In Ricardo
Queirds, Filipe Portela, Mario Pinto, and Alberto Simdes, editors, First International Computer
Programming Education Conference (ICPEC 2020), volume 81 of OpenAccess Series in
Informatics (OASIcs), pages 4:1-4:10, Dagstuhl, Germany, 2020. Schloss Dagstuhl-Leibniz-
Zentrum fir Informatik. doi:10.4230/0ASIcs.ICPEC.2020.4.

Sapna Cheryan, Allison Master, and Andrew Meltzoff. Cultural stereotypes as gatekeepers:
Increasing girls’ interest in computer science and engineering by diversifying stereotypes.
Frontiers in psychology, 6:49, February 2015. doi:10.3389/fpsyg.2015.00049.

Pieter Desmet and Marc Hassenzahl. Towards Happiness: Possibility-Driven Design, pages 3—
27. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. doi:10.1007/978-3-642-25691-2_1.
Sarah Diefenbach and Marc Hassenzahl. Psychologie in der nutzerzentrierten Produktgestaltung.
Springer-Verlag Berlin Heidelberg, January 2017. doi:10.1007/978-3-662-53026-9.

Susan Farrell. Open-Ended vs. Closed-Ended Questions in User Research, 2016. URL:
https://www.nngroup.com/articles/open-ended-questions/.

Anabela Gomes and Anténio José Nunes Mendes. Learning to program-difficulties and
solutions. International Conference on Engineering Education, 2007.

Tony Jenkins. ON THE DIFFICULTY OF LEARNING TO PROGRAM. In 8rd Annual
LTSN-ICS Conference, Loughborough University, 2002.

Evangelos Karapanos, Marc Hassenzahl, and Jean-Bernard Martens. User experience over
time. In Proceeding of the twenty-sizth annual CHI conference extended abstracts on Human
factors in computing systems - CHI ’08, page 3561, New York, New York, USA, 2008. ACM
Press. doi:10.1145/1358628.1358891.

Stephan Krusche and Andreas Seitz. ArTEMiS - An automatic assessment management
system for interactive learning. In SIGCSE 2018 - Proceedings of the 49th ACM Technical
Symposium on Computer Science Education, 2018. doi:10.1145/3159450.3159602.

18:11

ICPEC 2021

https://doi.org/10.28945/1183
https://doi.org/10.4230/OASIcs.ICPEC.2020.4
https://doi.org/10.3389/fpsyg.2015.00049
https://doi.org/10.1007/978-3-642-25691-2_1
https://doi.org/10.1007/978-3-662-53026-9
https://www.nngroup.com/articles/open-ended-questions/
https://doi.org/10.1145/1358628.1358891
https://doi.org/10.1145/3159450.3159602

18:12

Can | Code?

11

12

13

14

15

16

17

18

19

20

Stephan Krusche and Andreas Seitz. Increasing the Interactivity in Software Engineering
MOOCs - A Case Study. In Proceedings of the 52nd Hawaii International Conference on
System Sciences, 2019. doi:10.24251/hicss.2019.915.

Sari Kujala, Marlene Vogel, Anna E. Pohlmeyer, and Marianna Obrist. Lost in time: The
meaning of temporal aspects in user experience. In CHI ’18 Extended Abstracts on Human
Factors in Computing Systems, CHI EA ’13, page 559-564, New York, NY, USA, 2013.
Association for Computing Machinery. doi:10.1145/2468356.2468455.

Essi Lahtinen, Kirsti Ala-Mutka, and Hannu-Matti Jarvinen. A study of the difficulties of
novice programmers. In Proceedings of the 10th Annual SIGCSE Conference on Innovation
and Technology in Computer Science Education, ITICSE ’05, page 14-18, New York, NY, USA,
2005. Association for Computing Machinery. doi:10.1145/1067445.1067453.

Bettina Laugwitz, Martin Schrepp, and Theo Held. Konstruktion eines Fragebogens zur
Messung der User Experience von Softwareprodukten. In Mensch und Computer 2006,
pages 125-134. OLDENBOURG WISSENSCHAFTSVERLAG, Miinchen, 2006. doi:10.1524/
9783486841749.125.

Valerie Mendoza and David G. Novick. Usability over time. In Proceedings of the 23rd
annual international conference on Design of communication documenting & designing for
pervasive information - SIGDOC ’05, page 151, New York, New York, USA, 2005. ACM Press.
doi:10.1145/1085313.1085348.

Ricardo Queirds, Mario Pinto, and Teresa Terroso. Computer Programming Education in
Portuguese Universities. OpenAccess Series in Informatics, 81(21):1-11, 2020. doi:10.4230/
0ASIcs.ICPEC.2020.21.

Maria Rauschenberger, Martin Schrepp, and Jérg Thomaschewski. User experience mit
fragebogen messen - durchfithrung und auswertung am beispiel des ueq. In In Usability
Professionals Konferenz 2013, September 2013.

Heike Sandkiihler, Martin Schrepp, and Jorg Thomaschewski. Ux messung mithilfe des
ueq+ frameworks. In Christian Hansen, Andreas Niirnberger, and Bernhard Preim, editors,
Mensch und Computer 2020 - Workshopband, Bonn, 2020. Gesellschaft fiir Informatik e.V.
doi:10.18420/muc2020-ws105-244.

Draylson M. Souza, Katia R. Felizardo, and Ellen F. Barbosa. A Systematic Literature
Review of Assessment Tools for Programming Assignments. In 2016 IEEE 29th International
Conference on Software Engineering Education and Training (CSEET), pages 147-156. IEEE,
April 2016. doi:10.1109/CSEET.2016.48.

Anne Venables and Liz Haywood. Programming students need instant feedback! In Proceedings
of the Fifth Australasian Conference on Computing Education - Volume 20, ACE ’03, page
267272, AUS, 2003. Australian Computer Society, Inc.

https://doi.org/10.24251/hicss.2019.915
https://doi.org/10.1145/2468356.2468455
https://doi.org/10.1145/1067445.1067453
https://doi.org/10.1524/9783486841749.125
https://doi.org/10.1524/9783486841749.125
https://doi.org/10.1145/1085313.1085348
https://doi.org/10.4230/OASIcs.ICPEC.2020.21
https://doi.org/10.4230/OASIcs.ICPEC.2020.21
https://doi.org/10.18420/muc2020-ws105-244
https://doi.org/10.1109/CSEET.2016.48

	1 Introduction
	2 Related work
	3 Methodology
	3.1 Objective of the study
	3.2 Procedure
	3.3 Results
	3.3.1 First Survey
	3.3.2 Development over time

	4 Discussion
	4.1 Recommendations
	4.2 Limitations

	5 Conclusion

