Matching User Interfaces to Assess Simple Web
Applications

Marco Primo &
Faculty of Sciences, University of Porto, Portugal

José Paulo Leal' @&
Faculty of Sciences, University of Porto, Portugal
CRACS - INESC, Portugal

—— Abstract

This paper presents ongoing research aiming at the automatic assessment of simple web applications,
like those used in introductory web technologies courses. The distinctive feature of the proposed
approach is a web interface matching procedure. This matching procedure verifies if the web interface
being assessed corresponds to that of a reference application; otherwise, provides detailed feedback
on the detected differences. Since web interfaces are event-driven, this matching is instrumental
to assess the functionality. After mapping web interface elements from two applications, these can
be targeted with events and property changes can be compared. This paper details the proposed
matching algorithm and the current state of its implementation. It also discusses future work to
embed this approach in a web environment for solving web application exercises with automatic
assessment.

2012 ACM Subject Classification Information systems — Web interfaces; Applied computing —
Computer-managed instruction

Keywords and phrases automatic assessment, web interfaces, learning environments
Digital Object Identifier 10.4230/0ASIcs.ICPEC.2021.7
Category Short Paper

Funding José Paulo Leal: This work is financed by National Funds through the Portuguese funding
agency, FCT — Fundagdo para a Ciéncia e a Tecnologia, within project UIDB/50014,/2020.

1 Introduction

Automatic assessment of programming exercises is nowadays a standard practice in intro-
ductory programming courses [2]. It usually boils down to a black-box approach, where
the assessed program is fed with test data, and the resulting output is compared with the
output produced by a reference solution, for the same data. This approach is programming
language agnostic and can be easily adapted to a wide range of settings. However, one of
its shortcomings is the inability to deal with graphical user interfaces, in particular with
web interfaces.

Graphical user interfaces in general, and web interfaces in particular, rely on user
interaction for input rather than on data streams. On these applications, data is received as
events that are targeted to different elements, without a predefined order. Moreover, web
interfaces rely on the articulation of more than a single language — namely HTML, CSS,
and JavaScript. These two characteristics prevent the use of simple black-box techniques,
typically used for automatic assessment in algorithms and data structure courses.

To overcome this problem we propose a different approach to assess exercises in introduct-
ory web technologies courses. These exercises usually involve coding a simple web interface
with a small number of widgets, such as buttons, editing fields, and selectors. Although

b corresponding author

© Marco Primo and José Paulo Leal;
37 licensed under Creative Commons License CC-BY 4.0
Second International Computer Programming Education Conference (ICPEC 2021).
Editors: Pedro Rangel Henriques, Filipe Portela, Ricardo Queirés, and Alberto Simdes; Article No. 7; pp. 7:1-7:6

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:up201800388@edu.fc.up.pt
https://orcid.org/0000-0002-5736-0299
mailto:zp@dcc.fc.up.pt
http://www.dcc.fc.up.pt/~zp
https://orcid.org/0000-0002-8409-0300
https://doi.org/10.4230/OASIcs.ICPEC.2021.7
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

7:2

Matching User Interfaces to Assess Simple Web Applications

simple, these web interfaces can be implemented in different ways. For instance, a button
may be coded as either a <button> or <div> HTML element. To position these elements,
different CSS techniques can be used, such as floating elements or flexbox, to name a couple.
Last but not least, the exact position and dimension of these elements are immaterial, at
least from a pedagogical perspective, provided they preserve geometric relationships (e.g.
left-right, center-aligned).

The core of the proposed approach is the matching between two web interfaces: that of
the application being assessed and that of a reference solution. The matching procedure
is flexible enough to recognize equivalent elements that may have different types, slightly
different sizes, or be organized using different structures. On a successful matching, the result
is a mapping between the elements of the two web interfaces. On an unsuccessful matching,
the result is a set of differences between the two web interfaces that may be used to generate
feedback for the student. In the latter case, the assessment is complete and the student must
first fix the detected issues.

A mapping between the elements assessed and the reference web interfaces are the basis
for testing the web interface features. This stage is based on a sort of unit testing, where
data is injected into certain elements as events, and assertions are made on the changes
of properties in other elements. The tests that pass on the reference application are then
applied to the application under assessment, after replacing the elements using the mapping.
At this stage, failed assertions are also reported to the student as feedback, until the exercise
is completely solved.

The remainder of this paper is organized as follows. Section 2 presents a literature
survey on approaches to compare user interfaces. Section 3 details the proposed algorithm
for matching web interfaces based on simple examples, and provides a few implementation
details. Finally, Section 4 concludes with future work regarding the implementation of a
web environment for solving web application exercises, capable of automatic assessment
and feedback.

2 State of the art

The automatic evaluation of programming exercises has become a common practice in
introductory programming courses, due to the growing number of new students [9, 10], which
renders the manual assessment of programming exercises infeasible or demanding a large
number of resources [9].

The literature describes several automatic assessment environments [1], however, none of
these tackles efficiently the evaluation of graphical interfaces for educational purposes [1].
These environments help students by promoting feedback that steeps the learning curve [5].
Although the feedback provided by automatic assessment systems is not fully effective as an
isolated practice, it becomes an important tool when combined with the teacher’s feedback
and its use is nowadays a standard in programming courses [10]. Automatic assessments can
be divided into two broad categories: static or dynamic [2, 11]. The former analyses the code
itself while the latter executes it and analyses its side effects.

To compare the two web pages graphically, different approaches can be taken. One of
these approaches is structural comparison, as described in the article [15], this strategy
consists of comparing the trees resulting from the two HTML documents. Despite being
a possibility, this strategy may not be a solution when it comes to building an automatic
evaluation system for web interfaces, given the fact that trees can be the same graphically
and structurally different.

M. Primo and J.P. Leal

Computer vision is another approach that can be used to perform tests on graphical
interfaces [3], this approach is based on artificial intelligence models. A construction of
an algorithm capable of classifying images and composed by several steps, the main ones
being the definition of an adequate classification system, selection of training, pre-processing
of images, extraction of characteristics, selection of appropriate approach classifications,
post-processing classification and precision evaluation [6]. Due to the inherent complexity of
this class of algorithms, the usage of this algorithm can be prohibitive even for comparing
simple web interfaces.

To the best of the authors’ knowledge, no previous attempts were made to match web
interfaces to assess programming exercises. The systems described in the literature to visually
compare web pages have very different goals — such as detecting phishing sites [8, 4, 12] —,
and are more focused on spotting small differences than ignoring them.

3 Web interface matching

The proposed approach to web interface matching is independent of their internal structures.

This objective is achieved by making use of the element‘s properties of each page and the

spatial relationships between them. Moreover, it was designed to produce incremental

feedback that may help students overcoming their difficulties.

As in program assessment in general, web interface assessment compares a program
against a model. It is a dynamic assessment since it compares the side effects of both
programs’ executions; in this case, the web interfaces they produce. To access one against the
other, these web interfaces need to be related. This relation is created by using a comparison
algorithm between web interfaces.

The approach we used to create an algorithm to relate web interfaces consists of mapping
among leaf elements. Leaf elements, also known as widgets in user interface frameworks,
are the elements used as leaves in a web interface tree structure, namely the leaves DOM
(Document Object Model) [14] object structure. Non-leaf elements are less relevant since
different structures, used for controlling the position of leaf elements, may lead to graphically
similar web interfaces. Moreover, leaf elements of different types may have a similar look
and feel. For instance, a button may be implemented both as a <button> or <div> element.

The proposed algorithm for comparing web interfaces operates of sets of leaf elements in
4 consecutive phases:

Initial sets creation: Creates two sets of leaf elements from each web interface, including
their properties. This data is obtained using the JavaScript binding of the DOM interface.

Attribute refinement: In both sets, for each element, the properties that are not relevant to
the algorithm are removed. The resulting sets are lists of JSON [7] objects containing
properties, preserving some of the original properties, and computing new ones. Currently,
the preserved properties are name, id, tag, internal text, and src. Two of the original
properties — offSetTop and offSetLeft — are used to compute new properties to capture
the spatial relations among elements.

Element mapping: The result of this phase is a set of pairs, one from each leaf element
set. The rules that pair elements ensure that the most similar are created first. This
greedy approach is used to ensure that a good mapping between all elements is efficiently
created.

Feedback generation: The set of pairs is the basis for feedback generation. It should be
noted that this set can only be created if initial sets have the same cardinality. Otherwise,
feedback must identify the elements from the tested web interface that are missing, or

7:3

ICPEC 2021

7:4

Matching User Interfaces to Assess Simple Web Applications

that could not be mapped. Even with a complete set of pairs, some of them may be
partial matches. That is, some of their relevant properties may be different. Using this
data higher granularity feedback is generated.

The similarity between elements of a pair is computed as a score obtained by comparing
their properties. Due to some properties being more decisive than others, this score is a
weighted sum.

The comparison of properties governing the elements’ positions and sizes is the most
challenging part of the proposed approach. This is done by considering relative spatial
relationships between the elements of the same web interface. These relations dictate in
which geometric quadrant the element is concerning the other.

Quadrant 2 : Quadrant 1

Quadrant 3 Quadrant 4
'
Figure 1 Example of quadrant based spatial relationships.

Consider a web interface with 3 non-overlapping leaf elements, aligned horizontally, with
IDs 1, 2, and 3, as shown in Figure 1. Using the upper left corner as referential, following
the convention in windowing systems, one can define relative spatial relations with the other
elements. For element 1, elements 2 and 3 are in quadrant 4, as they are mostly to the right
and below the upper left corner of element 1.

The attribute refinement phase adds new properties to each element counting the number
of other elements (the element itself is not counted) lying in each of the 4 quadrants, using
its upper left corner and referential. In the example of Figure 1: element 1 has 2 elements
in the 4th quadrant; element 2 has 1 element in the 3rd quadrant and 1 in the 4th, and
element 3 has 2 elements in the 3rd quadrant. The unmentioned quadrants of each element
count 0 elements.

0
-] (] CA JC 5)

Figure 2 Example of incremental assessment and feedback.

M. Primo and J.P. Leal

Figure 2 illustrates successive steps in solving a web interface exercise made by the student
until having it accepted, guided by the algorithm’s feedback. The model application is a
simple counter, with a label that displays the current count and two buttons, one to increase
the count and another to decrease it. When the buttons are clicked, the displayed number is
changed accordingly.

After the 1st submission, the algorithm cannot map all the leaf elements. However, it can
identify a missing button and that information is reported as feedback to the student. Using
that feedback, the student adds a button to the web interface. After the 2st submission,
all elements of the student’s web interface are mapped to those on the model web interface.
However, they differ both on relative spatial relation and the buttons’ internal text. To avoid
overloading the student with excessive feedback [13] the information on non spatial errors is
omitted from the feedback.

Subsequently, on a 3rd submission, all elements continue to be identified. However, the
buttons’ internal text still differs and that information is given as feedback. In the final
submission, not shown in the figure, the student replaces “A” and “B”, by “4+” and “-”,
respectively, and the submission is accepted. There are still differences between the model
and the submitted program but they are considered close enough for the intended purpose.

It should be noted that the algorithm can be configured to consider more (or less)
properties as relevant. For instance, the size properties could have been considered relevant
and the last submission would not be accepted, since the button’s size is larger than those of
the model web interface.

4 Future work

In our ongoing work, we plan to use the algorithm presented in Section 3 as the cornerstone
of a web interface assessment environment. This environment will assess both the appearance
and the interactivity of the web interfaces developed as exercises. The mapping algorithm
maps elements in both web interfaces. Thus, functions that check invariants on the model
interface, as a sort of unit tests, can be applied to the student’s submission.

Consider again the model interface shown in Figure 2. A unit test can: 1) start by
obtaining the label’s initial value; 2) then send a click event to the increase button; 3) and,
finally, check that label’s value is incremented. The same unit test can be applied to a
similar web interface, provided that the element references are replaced by the corresponding
elements on the web interface being tested.

As the mapping between the web interfaces is done relatively, this means that measures
and absolute positions become irrelevant, a web interface can be assessed as correct if it
maintains the expected relative positions among the elements. With an evaluation that does
not force the tested web interface to follow the same structure of the model, we expect to
increase the fairness of the assessment environment.

—— References

1 Dr SM Afroz, N Elezabeth Rani, and N Indira Priyadarshini. Web application—a study on
comparing software testing tools. International Journal of Computer Science and Telecommu-
nications, 2(3):1-6, 2011.

2 Kirsti M Ala-Mutka. A survey of automated assessment approaches for programming assign-
ments. Computer Science Education, 15(2):83-102, 2005. doi:10.1080/08993400500150747.

3 Tsung-Hsiang Chang, Tom Yeh, and Robert C. Miller. Gui testing using computer vision.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI
’10, page 1535-1544, New York, NY, USA, 2010. Association for Computing Machinery.
do0i:10.1145/1753326.1753555.

7:5

ICPEC 2021

https://doi.org/10.1080/08993400500150747
https://doi.org/10.1145/1753326.1753555

7:6

Matching User Interfaces to Assess Simple Web Applications

10

11

12

13

14

15

Igino Corona, Battista Biggio, Matteo Contini, Luca Piras, Roberto Corda, Mauro Mereu,
Guido Mureddu, Davide Ariu, and Fabio Roli. Deltaphish: Detecting phishing webpages in
compromised websites. In Simon N. Foley, Dieter Gollmann, and Einar Snekkenes, editors,
Computer Security — ESORICS 2017, pages 370-388, Cham, 2017. Springer International
Publishing.

H. Fangohr, Neil S. O’Brien, A. Prabhakar, and Arti Kashyap. Teaching python programming
with automatic assessment and feedback provision. ArXiv, abs/1509.03556, 2015.

D. Lu and Q. Weng. A survey of image classification methods and techniques for improving
classification performance. International Journal of Remote Sensing, 28(5):823-870, 2007.
doi:10.1080/01431160600746456.

Felipe Pezoa, Juan L. Reutter, Fernando Suarez, Martin Ugarte, and Domagoj Vrgo¢. Found-
ations of json schema. In Proceedings of the 25th International Conference on World Wide
Web, WWW ’16, page 263—273, Republic and Canton of Geneva, CHE, 2016. International
World Wide Web Conferences Steering Committee. doi:10.1145/2872427.2883029.

S. Roopak and Tony Thomas. A novel phishing page detection mechanism using html source
code comparison and cosine similarity. In 201/ Fourth International Conference on Advances
in Computing and Communications, pages 167170, 2014. doi:10.1109/ICACC.2014.47.
Riku Saikkonen, Lauri Malmi, and Ari Korhonen. Fully automatic assessment of programming
exercises. SIGCSE Bull., 33(3):133-136, 2001. doi:10.1145/507758.377666.

Zahid Ullah, Adidah Lajis, Mona Jamjoom, Abdulrahman Altalhi, Abdullah Al-Ghamdi, and
Farrukh Saleem. The effect of automatic assessment on novice programming: Strengths and
limitations of existing systems. Computer Applications in Engineering Education, 26, February
2018. doi:10.1002/cae.21974.

M. Varga and M. Kvassay. Unit testing in data structures graphical learning environment.
In 2019 17th International Conference on Emerging eLearning Technologies and Applications
([CETA}, pages 797-804, 2019. doi:10.1109/ICETA48886.2019.9040071.

Gaurav Varshney, Manoj Misra, and Pradeep K Atrey. A survey and classification of web
phishing detection schemes. Security and Communication Networks, 9(18):6266-6284, 2016.
Eric M Wilcox, J William Atwood, Margaret M Burnett, Jonathan J Cadiz, and Curtis R
Cook. Does continuous visual feedback aid debugging in direct-manipulation programming
systems? In Proceedings of the ACM SIGCHI Conference on Human factors in computing
systems, pages 258265, 1997.

Lauren Wood, Arnaud Le Hors, Vidur Apparao, Steve Byrne, Mike Champion, Scott Isaacs,
Tan Jacobs, Gavin Nicol, Jonathan Robie, Robert Sutor, et al. Document object model (dom)
level 1 specification. W3C' recommendation, 1, 1998.

Ji¥i Stépanek and Monika Simkova. Comparing web pages in terms of inner structure. Procedia
- Social and Behavioral Sciences, 83:458-462, 2013. 2nd World Conference on Educational
Technology Research. doi:10.1016/j.sbspro.2013.06.090.

https://doi.org/10.1080/01431160600746456
https://doi.org/10.1145/2872427.2883029
https://doi.org/10.1109/ICACC.2014.47
https://doi.org/10.1145/507758.377666
https://doi.org/10.1002/cae.21974
https://doi.org/10.1109/ICETA48886.2019.9040071
https://doi.org/10.1016/j.sbspro.2013.06.090

	1 Introduction
	2 State of the art
	3 Web interface matching
	4 Future work

