Moopec: A Tool for Creating Programming
Problems

Rui C. Mendes 9a

Centro Algoritmi, Departamento de Informética, University of Minho, Braga, Portugal

—— Abstract

This paper presents a tool called Mooshak ProblEm Creator (Moopec) for facilitating the creation of
programming exercises for a web-based multi-site programming contest system called Mooshak [7].
Users only need to create a text file for specifying all the information concerning problems including
their description, tests and user feedback. This tool provides ways of automating most tasks involved
in creating problems in Mooshak and, consequently, increases teachers’ productivity. Moopec allows
instructors to quickly create problem sets by simply editing a text file. Moopec is implemented in
Python and is available at https://github.com/rcm/mooshak_problem_creator.

2012 ACM Subject Classification Applied computing — Computer-managed instruction
Keywords and phrases Automatic Program Assessment, Batch Generation, Testing
Digital Object Identifier 10.4230/0ASIcs.ICPEC.2021.9

Funding Rui C. Mendes: This research has been supported by FCT — Fundagdo para a Ciéncia e
Tecnologia within the R&D Units Project Scope: UIDB/00319,/2020.

Acknowledgements I want to thank Pedro Ribeiro for gently supplying the script used for providing
the feedback shown in Fig. 1.

1 Introduction

Teaching students how to program is difficult [6]. There are several tasks of equal importance:
(1) Supplying enough exercises for practice;

(2) Providing feedback;

(3) Summative assessment.

With the advent of the pandemic, there is an added difficulty: instructors and students
do not share the same space and thus it is harder to help them in the classroom. Thus,
the importance of using software tools that are capable of performing these tasks increased.
Even though there are many problems available online, instructors still need to create new
problems because most of the classical exercises have their solutions publicly available online.
While this is extremely useful for learning how to program, it creates many difficulties for
instructors when they are interested in summative assessment. Furthermore, when students
submit their solutions to an online tool, instructors are able to address other concerns like
code organization, cleanness, readability, efficiency or documentation.

When teaching programming, there are several kinds of exercises that can be given to
students [1] involving all the categories of the Bloom taxonomy [13]. Most of these tasks
detail several ways of evaluating students in written tests. However, in this work we are
interested in programming exercises that may be given to students in practical classes and be
evaluated by a programming assessment tool. The rationale behind this is to enable students
to work at their own leisure, in class or at home. In this way, students may try the exercises,
get automatic feedback and still be able to consult instructors either online or during class
time. Programming exercises may fit into several categories [11, 9]:
code from scratch where students implement a solution to a problem given a description

and a test suite that assesses their performance;

© Rui C. Mendes;
37 licensed under Creative Commons License CC-BY 4.0

Second International Computer Programming Education Conference (ICPEC 2021).
Editors: Pedro Rangel Henriques, Filipe Portela, Ricardo Queirés, and Alberto Simdes; Article No. 9; pp. 9:1-9:7

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:azuki@di.uminho.pt
https://orcid.org/0000-0002-5321-6863
https://github.com/rcm/mooshak_problem_creator
https://doi.org/10.4230/OASIcs.ICPEC.2021.9
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

9:2

Moopec: A Tool for Creating Programming Problems

implement an algorithm students are given an algorithm and are asked to implement it;

code skeleton students start with a skeleton that they have to fill, they may have to
implement a few functions or classes;

code baseline the instructor supplies some code and the students have to extend it for a
more general case or use it for solving a more complicated task;

jumbled code students are given all the lines of code but they are not in the correct order;

find the bug students are given buggy code and must find the bug, this is more useful when
using quizzes and forces students to look at a solution, read it and try to understand why
it doesn’t work;

buggy code this is a generalization of the previous approach and allows students to improve
their skills of code reading and understanding and can also help them become more
proficient with a debugger, understand compilation errors, logic errors and problems
handling edge cases ;

compiling errors this is also useful in quizzes as students are given a code snippet and the
compiler error and must understand what the problem is

keyword use students are forced to use a given function or code and solve a task according
to a strict specification (e.g., use foldl to find the maximum of a list of numbers).

There are many tools available for automatic assessment of programming exercises. Some
are freely available online like codeboard [2] that provides a flexible way of creating problems
and allows to implement many of the types of exercises given above. Furthermore, students
can use an IDE for programming and can test their code locally or submit it. The author
has used it in a course and the student’s reception was good. In languages that have unit
testing libraries, it provides ways of using unit tests to evaluate submissions. However, it is
necessary to implement a fair portion of code for evaluating solutions in some programming
languages (e.g., C). The instructor has to use a web based client and copy and paste code
into the appropriate windows and create the necessary files one by one by using the WEB
interface. While it is somewhat intuitive to use, its main drawback is that it does not have,
as far as the author knows, a way of creating and importing problems in a batch fashion.

2 Mooshak for automatic assessment

Because of the effort necessary for creating large numbers of problems efficiently in the tools
presented above, the author prefers using Mooshak [7] for automatic assessment. This is
mainly due to the fact that instructors install it on a machine they control and can use the file
system for creating contests, copying them, copying problems between contests and setting
them up by editing text files. Mooshak has its own internal format to describe problems
called Mooshak Exchange Format (MEF). MEF includes a XML manifest file referring several
types of resources such as problem statements (e.g. PDF, HTML), image files, input/output
test files, correctors (static and dynamic) and solution programs. The manifest also allows
the inclusion of feedback and points associated to each test [10, 8]. Mooshak has been used
on ICPC and IOI contests for many years as well as for education in several universities.
The administrator can create several kinds of contests like:
101 the format used in the International Olympiads in Informatics [5], where students are
given points for each test they pass
ICPC the format used in the International Collegiate Programming Contest [4]
short the format used in code golf

Since its inception, Mooshak has evolved and has provided some improvements that
facilitate its use in educational activities. It is possible to specify how much CPU time is
necessary to solve the problem, how many resources are used and assign a point value for

R. C. Mendes

each test or show a feedback message if the user fails a given test or even to show the test to
the user. Each test has:
an input, which is a text file that is fed to the program’s standard input;
an output, which is a text file that is compared using diff to the program’s standard
output;
arguments, that are passed to the program;
a point value, that is awarded if the submission gives the intended output for this test;
a feedback message and

a text file containing a context that can be used by Mooshak’s dynamic evaluator for the
given problem.

On the surface, it seems that Mooshak may only be used for exercise types like code from
scratch but it may actually be used for more categories with a little imagination. Mooshak
allows the administrator to configure more programming languages and to supply static or
dynamic correctors for problems.

When creating a programming language, the administrator provides among others:
(1) What is the extension of the file submitted by the user
(2) How to compile the program
(3) How to run the program

When compiling the program, the administrator can supply the compiler with information
about the team, the program environment, the extension and a solution to the problem. The
static corrector receives the source code, a solution and a possible program environment and
can classify the submission by simply looking at the source code. The dynamic corrector
is invoked by Mooshak after it has run the program and receives information about the
test like the input, expected and obtained output, the standard error contents, Mooshak’s
classification and the context given.

Thus, it is possible to implement some of the categories supplied above:
code from scratch this one is self-evident

implement an algorithm this category may be possible if the algorithm is the only one
capable of solving the problem within a given order of complexity by careful creation of
the tests and specification of the timeout in CPU seconds or the memory bound needed
to solve each test

code skeleton the compiler may incorporate the students’ solution in a larger program and
thus guarantee that they actually used the skeleton given; alternatively, a static corrector
could be used to check for the existence of the skeleton

code baseline same as the previous category

jumbled code the static corrector may be used for ensuring that the students didn’t modify
the program but simply supplied the lines in the correct order

find the bug the static corrector may be used for checking if the students are submitting
the code with the bugs corrected

buggy code this is similar to the previous category
compiling errors this one may also be handled like the previous alternatives

keyword use a static corrector may help, or a specific language that logs the use of the
function or keyword in the manner expected

9:3

ICPEC 2021

9:4

Moopec: A Tool for Creating Programming Problems

3 Creating problems in Mooshak using the WEB interface

The difficulty involved in creating a new programming problem involves:
(1) providing the problem’s name, letter and description

(2) deciding specific limits (e.g., CPU, memory)

(3) supplying the tests’ input and output

(4) decide how much points each test is worth

(5) indicate whether it should be shown to the user

The first and second steps usually involve using a system that either generates HTML or
PDF and then uploading the file containing the description to Mooshak through the web
interface along with filling the other required fields. The remaining tasks are performed for
each test using the web interface. In the current year, the author has used Mooshak in several
courses, one of them with around 250 students, and has created around fifty new problems
with varying degrees of complexity, some with 100 different test cases. In many of these
cases, tests address different problems and thus have to be organized in several categories,
with different feedback messages and points. When talking about these numbers, it is very
important to have a tool that is able to help create tests in an automatic or semi-automatic
manner.

4 Creating a new problem using the tool

The solution proposed here is to use a domain specific language (DSL) for creating problems
by using a text editor. In order to create a problem or set of problems, the user needs to
create a text file using a simple textual format. The user may specify the following fields:

NAME This is the first keyword given and supplies the name of the problem; the problem
ends with the corresponding END keyword

LETTER This is the name of the folder that stores the problem and what is stored in letter

TESTS One or more tests; it ends with an END keyword and may have the following fields:
INPUT One line of input
LONGINPUT One or more lines of input; it ends with an END keyword
INPUTGEN An optional integer n followed by a function (either a lambda function or

the name of a function in an imported module) that will be used to generate n inputs

FEEDBACK A feedback message for these tests
POINTS How many points to award to each of these tests
SHOW If given, these tests will be shown

IMPORT The name of a module to import

CODE One or more lines, ending with an END keyword. This creates a module and adds
the code into it

SOLVER This may be either a lambda function or the name of a function in an imported
module and will be used to create the outputs

DESCRIPTION One or more lines, using the markdown syntax, ended with the END
keyword

POINTS If given it evenly distributes this number of points to all tests

Listing 1 shows a contrived example of a problem. The first two tests have feedback and
are shown to the user. The following test is completely blind: it neither has any feedback nor
is shown to the user. The following 10 tests are generated automatically and have a feedback
and are shown. The last five tests are somewhat larger and also have a feedback but are not

R. C. Mendes

shown. The function that solves this problem was supplied by a Python lambda function.

The description uses the markdown format supplied by the markdown module [12]. All these
tests sum to 100 points that are evenly distributed among them. In this case, all the code is
contained in the file instead of importing a module. It is possible to import several modules,
one per IMPORT keyword and also supply several CODE keywords.

Listing 1 An example.

NAME Summing a bunch of numbers
LETTER A
CODE

def gen_list(size, min_val, max_val):
import random
return lambda: ’ ’.join(str(random.randint(min_val, max_val))
for i in range(size))
pequeno = gen_list (10, 1, 10)
medio = gen_list (100, 1, 100)
END
SOLVER 1lambda s: sum(int(x) ** 2 for x in s.split())
TESTS
INPUT 10 20 30

LONGINPUT

12

13

END
FEEDBACK Examples given in the problem description
SHOW

END

TESTS
INPUT 15 25 35

END

TESTS
INPUTGEN 10 pequeno
FEEDBACK small tests
SHOW

END

TESTS
INPUTGEN 5 medio
FEEDBACK larger tests

END

DESCRIPTION

Sum a list of numbers

Create a program that:

- 7reads several numbers and

- prints the sum of their squares
END

POINTS 100

END

A file may have more than one problem. Each problem starts with the NAME keyword
and ends with the corresponding END keyword. In order to use the system, one simply has
to execute the command moopec with the files as arguments:

moopec example.txt

which will create one folder with the corresponding letter for each problem. Then it
is just a matter of copying these folders into the Mooshak’s problem directory inside the
corresponding contest and adjust the permissions accordingly.

9:5

ICPEC 2021

9:6 Moopec: A Tool for Creating Programming Problems

. T - i St 2wl Feedback on submission $1320

Jia Ee = sl Feedback on submission $1320 e
Lab2021

Lab2oz1 Sontest ki) U yNongENSWeT: /oS equiatero

. 41 Accepted 2 yos equilatero

Team: rem Resultados detalhados em cada teste: a Team;|ron 42 \WiOHGAREWEI> yos equilatero

[feste #Resuttado _ [Pontos[Teste Publico?{informacao sobre o testa View: 4 Acoopled 2 yes equistero
1t Accepted yes Wrong Answer

fis 3 invalido ® Submissions 4

© Submissions
O Printouts
O Questions

2
2 3 yes invalido © Printouts 45 Accepted 2
3 3 yes invalido © Questions 46 2
s 4 Accepted 3 © Evolution 47 Accepted 2
© Evolution 5 Accepted 2 O Statistics 48 2
O Statisties 3 2 O Ranking
O Ranking 7 2
8

Problems: Teams: WIGHGARSWST 2 oo escaleno Pﬂ’""'e"“’m 7‘:“‘“ Gl e
Oa O arD Groued o |NOGARSWS2 ves escaleno Al Al Iceweg Teste #8 (0 seu resultado foi Wrong Answer)
10 Accepled 2 yes escaleno Fichot | ass197 ~
aceom Oinput
Fiad | s0g305
Fichot || analkde 2
asiva H

Ficha (208197 T a
08274
Ficha3 ||208305 2
Fichad | analde 13 Accepted 2
asiva 14 Accepted 2 yes retangulo i 4
fiipa 15 Accepted 2 yes retangulo fom ¥
fsm 16 Accepled 2 yes retangulo o A CETar
via 17 Accepted 2 yes retangulo = - ESCALENO 3 2.50
e I 18 Accepled 12 yos retangulo
2
2
2
2

Update:
every[5 | minutes
with 15~ lines

Update: Observacoes:

every |5 | minutes.
with 15 lines

ILogoul]

Figure 1 Example of feedback of a problem in Mooshak.

Figure 1 shows an example of the feedback of a problem generated using this system
inside Mooshak !. This problem has 48 tests and had 1775 submissions. The goal is to find
the type, perimeter and area of a triangle given the lengths of its sides.

5 Conclusions

Moopec aims to facilitate the batch creation of problems for the Mooshak system. Since this
system has been used to host several ICPC and IOI events for many years, it is robust and
can be used extensively for hosting programming assignments. Moopec facilitates the batch
creation of programming exercises. It not only allows instructors to handcraft tests but also
to use generators that are able to create tests for evaluating specific concerns. Given that
Mooshak can be used for many categories of programming assigments and Moopec helps
automate the creation of these exercises, it helps instructors be more productive and easily
create new assignments, adapt older ones or combine them.

It may seem that one of the vulnerabilities of the system is that the solution can only
be implemented in Python, However, since Python can easily call other programs using
os.system or subprocess, this is not a significant drawback. The main advantage of this
tool is to simplify the task of creating a problem set into that of creating a text file. While
this may not seem to be as intuitive as some of the usability design principles advocate, it
greatly speeds up the task of creating problem sets and thus greatly increases the instructor’s
productivity.

This tool has already been used in practice for creating several kinds of programming
assignments, ranging from simple programming exercises to evaluating full-fledged projects.
In the current year, the author of this work has used Moopec for creating 9 contests with
close to 50 different problems. Many of these problems had around 50 tests, with some having
100 tests and most of them had a message documenting what was the situation addressed by
the tests. While some of the tests were handcrafted for testing specific purposes, others used
generators for checking specific concerns. The contests in the second semester of 2021 are
being used by students with over 8000 submissions and will probably be closer to 9000 until
the end of the semester. One of these contests is a project where the users submit a zip file
containing C code that is then compiled and run.

1 The feedback code was gently provided by Pedro Ribeiro.

R. C. Mendes

Even though the feedback could be improved, the current version is already quite useful.
It allows partial evaluation, i.e., it uses an 101 grading philosophy and provides feedback that
helps users understand which tests failed. In the project assignment mentioned above, all
the tests were public and thus the students are able to understand which conditions caused
their program to fail and thus try to address the problem. The sheer amount of tests deters
students from trying to cheat the system by simply creating code that passes all the tests.
While this philosophy has its problems as have other similar ones [3], it is an invaluable
tool when trying to create tasks for continuous evaluation of students in an online context
without overburdening instructors with the gigantic task of evaluating all these submissions
and providing adequate feedback. Future work will add extensions to the DSL in order to
provide static and dynamic correctors.

—— References

1 Matt Bower. A taxonomy of task types in computing. In Proceedings of the 13th annual
conference on Innovation and technology in computer science education, pages 281-285, 2008.

2 Codeboard. https://codeboard.io/. Accessed: 2021-04-07.

3 Michal Forisek. On the suitability of programming tasks for automated evaluation. Informatics
in education, 5(1):63-76, 2006.

4 International collegiate programming contest. https://icpc.global/. Accessed: 2021-04-07.

5 International olympiads in informatics. https://ioinformatics.org/. Accessed: 2021-04-07.

6 Tony Jenkins. On the difficulty of learning to program. In Proceedings of the 3rd Annual
Conference of the LTSN Centre for Information and Computer Sciences, volume 4, pages
53-58. Citeseer, 2002.

7 José Paulo Leal and Fernando Silva. Mooshak: A web-based multi-site programming contest
system. Software: Practice and Ezperience, 33(6):567-581, 2003.

8 José Carlos Paiva, Ricardo Queirds, José Paulo Leal, and Jakub Swacha. Yet Another Pro-
gramming Exercises Interoperability Language (Short Paper). In Alberto Simdes, Pedro Ran-
gel Henriques, and Ricardo Queirds, editors, 9th Symposium on Languages, Applications
and Technologies (SLATE 2020), volume 83 of OpenAccess Series in Informatics (OASIcs),
pages 14:1-14:8, Dagstuhl, Germany, 2020. Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik.
doi:10.4230/0ASIcs.SLATE.2020.14.

9 Dale Parsons and Patricia Haden. Parson’s programming puzzles: a fun and effective learning
tool for first programming courses. In Proceedings of the 8th Australasian Conference on
Computing Education-Volume 52, pages 157-163, 2006.

10 Ricardo Queirés and José Paulo Leal. Babelo—an extensible converter of programming
exercises formats. IEEE Transactions on Learning Technologies, 6(1):38-45, 2012.

11 Alberto Simdes and Ricardo Queirés. On the Nature of Programming Exercises. In Ricardo
Queirds, Filipe Portela, Mério Pinto, and Alberto Simdes, editors, First International Computer
Programming Education Conference (ICPEC 2020), volume 81 of OpenAccess Series in
Informatics (OASIcs), pages 24:1-24:9, Dagstuhl, Germany, 2020. Schloss Dagstuhl-Leibniz-
Zentrum fiir Informatik. doi:10.4230/0ASIcs.ICPEC.2020.24.

12 Manfred Stienstra, Yuri takhteyev, Waylan limberg, and Waylan Limberg. Python-markdown.
https://pypi.org/project/Markdown/. Accessed: 2021-04-07.

13 Errol Thompson, Andrew Luxton-Reilly, Jacqueline I. Whalley, Minjie Hu, and Phil Robbins.
Bloom'’s taxonomy for cs assessment. In Proceedings of the tenth conference on Australasian
computing education-Volume 78, pages 155-161, 2008.

9:7

ICPEC 2021

https://codeboard.io/
https://icpc.global/
https://ioinformatics.org/
https://doi.org/10.4230/OASIcs.SLATE.2020.14
https://doi.org/10.4230/OASIcs.ICPEC.2020.24
https://pypi.org/project/Markdown/

	1 Introduction
	2 Mooshak for automatic assessment
	3 Creating problems in Mooshak using the WEB interface
	4 Creating a new problem using the tool
	5 Conclusions

