
Enriching Word Embeddings with Food Knowledge
for Ingredient Retrieval
Álvaro Mendes Samagaio #Ñ

Faculty of Engineering, University of Porto, Portugal
Fraunhofer Portugal, Porto, Portugal

Henrique Lopes Cardoso #

Faculty of Engineering, University of Porto, Portugal
Artificial Intelligence and Computer Science Laboratory (LIACC), Porto, Portugal

David Ribeiro #

Fraunhofer Portugal, Porto, Portugal

Abstract
Smart assistants and recommender systems must deal with lots of information coming from different
sources and having different formats. This is more frequent in text data, which presents increased
variability and complexity, and is rather common for conversational assistants or chatbots. Moreover,
this issue is very evident in the food and nutrition lexicon, where the semantics present increased
variability, namely due to hypernyms and hyponyms. This work describes the creation of a set of
word embeddings based on the incorporation of information from a food thesaurus – LanguaL –
through retrofitting. The ingredients were classified according to three different facet label groups.
Retrofitted embeddings seem to properly encode food-specific knowledge, as shown by an increase
on accuracy as compared to generic embeddings (+23%, +10% and +31% per group). Moreover, a
weighing mechanism based on TF-IDF was applied to embedding creation before retrofitting, also
bringing an increase on accuracy (+5%, +9% and +5% per group). Finally, the approach has been
tested with human users in an ingredient retrieval exercise, showing very positive evaluation (77.3%
of the volunteer testers preferred this method over a string-based matching algorithm).

2012 ACM Subject Classification Computing methodologies → Artificial intelligence; Computing
methodologies → Knowledge representation and reasoning; Computing methodologies → Lexical
semantics

Keywords and phrases Word embeddings, Retrofitting, LanguaL, Food Embeddings, Knowledge
Graph

Digital Object Identifier 10.4230/OASIcs.LDK.2021.15

Funding Henrique Lopes Cardoso: This research is partially supported by
LIACC (FCT/UID/CEC/0027/2020), funded by Fundação para a Ciência e a Tecnologia (FCT).

1 Introduction

Conversational agents and smart assistants are an interesting opportunity for many application
areas [32]. Fostered by the latest advances in artificial intelligence and natural language
processing [12], these software allow interaction with computer systems through conversation
or chat interfaces [6]. From an interaction point of view, they enable intuitive interaction to
access different services. Conversational agents are also cost-effective and may, in may cases,
replace human labour [13] in providing access to services from simple access to information to
more complex services including infotainment, customer support [34], and recommendation
systems. Smart assistants may also positively impact user health by interfacing with health-
related services [4, 1].

In the context of food and nutrition, conversational agents may interface with systems
that help its users acquiring healthier eating habits, inform and support their decisions [8]
which may help preventing several chronic diseases [9]. One of the challenges in developing

© Álvaro Mendes Samagaio, Henrique Lopes Cardoso, and David Ribeiro;
licensed under Creative Commons License CC-BY 4.0

3rd Conference on Language, Data and Knowledge (LDK 2021).
Editors: Dagmar Gromann, Gilles Sérasset, Thierry Declerck, John P. McCrae, Jorge Gracia, Julia Bosque-Gil,
Fernando Bobillo, and Barbara Heinisch; Article No. 15; pp. 15:1–15:15

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:amsamagaio@gmail.com
https://www.linkedin.com/in/alvarosamagaio
https://orcid.org/0000-0003-1998-5498
mailto:hlc@fe.up.pt
https://orcid.org/0000-0003-1252-7515
mailto:david.ribeiro@fraunhofer.pt
https://orcid.org/0000-0003-0001-4456
https://doi.org/10.4230/OASIcs.LDK.2021.15
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


15:2 Enriching Food Embeddings

conversational agents for this domain is related to the complexity of the food taxonomy,
which is rich in synonyms, hypernyms and hyponyms [16, 30]. For example, when users refer
to cheese, they are mentioning a large group of different types of cheese and any of them
could be considered. This work could be very useful for tasks where the system must match
different sources of information. In this case the goal was to match a query in the form of a
named entity with all the entries in a database.

In this work, we describe an approach that exploits semantic knowledge from the food
domain in a food matching algorithm. More specifically, we explore the enrichment of
pre-trained word embeddings with food-domain-specific knowledge, which can then be used
in a number of tasks. To the best of our knowledge, this is the first set of word vectors
that truly incorporate semantic information from a knowledge graph focused in food-related
concepts.

2 Related Work

This section explores the work that has been done and is currently applied regarding word
representations and semantic knowledge.

There are several works that study word representations in high dimensional spaces, mainly
focusing on capturing context from large corpora. The underlying premise is that contextual
information constitutes a proper representation of linguistic items. Word representations
have gained increased attention in NLP tasks with the work of Mikolov et al. [17] (Word2Vec).
Other sets of pre-trained embeddings use slightly different techniques to capture and encode
the semantic and contextual information in texts. GloVe [19] is trained on global word-word
co-ocurrence statistics aggregated from a corpus. It uses a log-bilinear regression model
to create the word vectors, hence combining the features that come from global matrix
factorization and also from local context windows.

It is possible to find pre-trained lexicons created through the application of Word2Vec or
GloVe-like algorithms to huge corpora (such as the Google News Dataset). These lexicons
are generic enough to capture the meanings of the words. However, this can be seen as one
of their greatest disadvantages, which is the fact that they were not trained specifically for a
given domain, and thus may not represent well enough the semantics of that domain. More
recently, the development of Language Models that make use of transformer architectures [31],
such as BERT [7] or ELMo [20], shifted the state-of-the-art on word representations for NLP,
from the pre-trained and static embeddings to contextualized embeddings. These models use
self-attention layers that change the embeddings of each word according to its context. In
this case, the same word in different contexts will be represented by different vectors.

Besides word vector representations, there are other resources that can be used to portray
concepts and their relations. Examples include knowledge graphs or ontologies that encode
semantic relations in a graph which connects concepts that are linked in some way. There is a
wide range of knowledge graphs available and they can also be used by conversational agents
to retrieve information according to a given query [5, 3, 4]. It is known that commercially
available smart assistants such as Google Assistant and Siri use knowledge graphs to process
the information inputted by the user in order to retrieve the correct answers [15]. One of
the most well-known knowledge graphs is WordNet [18], a lexical database for the English
language, that also includes synonyms and definitions for words. It is widely used to
improve the performance on NLP tasks and applications. Another general-purpose knowledge
graph that is publicly available is the ConceptNet [28], created as part of the Open Mind
Common Sense project [11]. This knowledge graph has multilingual properties, where the



Á. M. Samagaio, H. Lopes Cardoso, and D. Ribeiro 15:3

same concept in two different languages share a common semantic space, which is informed
by all other languages. Knowledge graphs have the disadvantage of not being as easy to
use as word embeddings; however, it is possible to incorporate this information into word
embeddings [26, 35, 27], in order to improve the semantic relations between connected
concepts. Speer et al. [28] make use of a set of pre-trained word embeddings, ConceptNet
Numberbatch, that have been fine-tuned to encompass the relations present in ConceptNet,
benefiting from the fact that they include semi-structured common sense knowledge. It
was built on a combination of data from ConceptNet, Word2Vec vectors, GloVe vectors
and OpenSubtitles, through a technique called retrofitting, to inject the knowledge into the
vectors. Another interesting aspect of ConceptNet Numberbatch is that the multilingual
properties from ConceptNet are kept in the embeddings, making it a very interesting resource
for multilingual applications.

Retrofitting is a technique firstly introduced by Faruqui el al. [10] and, as previously
mentioned, aims at incorporating the data present in semantic lexicons such as WordNet or
ConceptNet into a previously defined word vector space, such as Word2Vec or GloVe. Hence,
this refines the vector space to account for relational information, meaning that words which
are lexically linked together should have similar vector representations. Retrofitting works
by applying a linear vector transformation to the vectors that closes the gap between related
words and increases the distance between lexically unrelated words. The transformation leads
to a loss function Ψ that should be minimized, represented in Equation 1, where q̂i is the
initial vector, qi the retrofitted vector and qj its neighbors in the ontology. The parameters α

and β are hyperparameters that control the relative strength of each parcel in the equation.

Ψ =
n∑

i=1

αi ∥qi − q̂i∥2 +
∑

(i,j)∈E

βij ∥qi − qj∥2

 (1)

In order to minimize the loss represented in Equation 1, it must be differentiated, resulting
in Equation 2, which corresponds to the linear transformation applied to the vectors.

qi =
∑

j:(i,j)∈E βijqj + αiq̂i∑
j:(i,j)∈E βij + αi

(2)

By carefully analyzing the equation, one can conclude that it corresponds to the weighted
average of the initial vector embedding and the vectors representing the concepts that are
linked to it, controlled by parameters α and β, where the former attributes increased relevance
to the initial vector and the latter controls the importance of the linked concepts.

Regarding food specific embeddings, Food2Vec1 is a set of pre-trained embeddings that
were generated using a corpus of recipe instructions. The goal was to create a recipe
recommendation system that joined ingredients in order to create new recipes based on the
embeddings of those ingredients. Although the embeddings are specialized for food, they do
not capture the semantic relationships between hypernyms and hyponyms among ingredients.
Instead, these embeddings encoded the relations that several ingredients have when used
together. As an example, according to this methodology, parmesan is closer to pasta than to
cheddar, even though parmesan and cheddar are two types of cheese. This is due to the fact
that parmesan and pasta are used together many times in recipes, whereas it is rather rare
to mix parmesan and cheddar in the same recipe. This approach would not be appropriate

1 https://jaan.io/food2vec-augmented-cooking-machine-intelligence/

LDK 2021

https://jaan.io/food2vec-augmented-cooking-machine-intelligence/


15:4 Enriching Food Embeddings

for ingredient classification, although it is an interesting approach to new recipes. A similar
approach is followed by Tansey et al. [29], which encodes complete diets into a vector space
using a combination of Word2Vec embeddings and nutritional information. Moreover, the
work of Sauer et al. [24] tries to emulate different ingredient flavors in a vector space. Also,
the work of Popovski [21] tries to generate a set of embeddings for a food ontology; however,
the authors were not able to really grasp and capture the semantic relations between the
concepts, since they only used information from the knowledge graph itself. That being said,
there is a lack of NLP tools for food-related applications that are actually able to incorporate
and represent the semantic relations between the different concepts and items.

3 Methodology

This work is part of the implementation of a conversational agent into a nutritional recom-
mender system [22, 23], part of the LiFANA project [2]: a smart meal planner that takes
into account personal information and preferences to create meal plans that are tailored to
the user’s nutritional needs. The recommendation engine relies on a recipe database that
was created by nutritionists based on the McCance and Widdowson’s The Composition
of Foods2 integrated dataset [25]. This database contains the nutritional composition of
different food and its corresponding classification using LanguaL [14]3 descriptors. LanguaL
is a multilingual thesaurus that allows describing food from different facts. Each food is
described by a set of descriptors from different facets pertaining to different perspectives
to classify food, including for instance its classification, source and presentation method. A
numeric coding is used which allows translating each concept in different languages [14]. The
recipes used by the system were built on top of this information by mixing ingredients and
quantities. Every ingredient present in the database has at least one LanguaL descriptor as
a classifier. In this work only facets A (food groups), B (origin) and C (part of animal or
plant where the ingredient comes from) are considered, since they are regarded as the ones
that effectively describe the ingredient when considering food preferences:

Facet A – The ingredients are classified according to a food group to which they belong.
Facet A gathers several international standards for food grouping. For the purpose of
this work, the classification from the European Food Groups will be considered, since it
was regarded as the one with the most granularity.
Facet B – Addresses the food source and has several hierarchical levels. For this work,
only the last and more specific level is considered. As examples, milk’s food source is cow
and raisin’s food source is grape. This facet is particularly important to aggregate foods
that correspond to their food source, such as fruits and vegetables or types of fish.
Facet C – Categorizes the part of the animal or plant from which the ingredient is
extracted. To illustrate, the descriptor for cheese under this classification is milk. This
facet presents the least connection to current language terms, although it can be important
to discern from similar ingredients semantically.

An example ingredient classification is illustrated below:
Chicken curry, chilled/frozen, reheated
LanguaL Descriptors:

A0715 25 Poultry and Poultry Products (EFG)
B1457 Chicken
C0268 Skeletal Meat Part, Without Bone, Without Skin

2 https://www.gov.uk/government/publications/composition-of-foods-integrated-dataset-
cofid

3 https://www.langual.org/Default.asp

https://www.gov.uk/government/publications/composition-of-foods-integrated-dataset-cofid
https://www.gov.uk/government/publications/composition-of-foods-integrated-dataset-cofid
https://www.langual.org/Default.asp


Á. M. Samagaio, H. Lopes Cardoso, and D. Ribeiro 15:5

Figure 1 Class distribution histograms for the three facets.

Table 1 Number of class labels per facet and median number of ingredients per label.

Facet Number of labels Median of ingredients per label

A 32 14.5
B 207 2
C 77 4

The database of the nutritional recommender system contains 4970 ingredients, from
which 902 are labelled according to all three considered facets. Ingredients distribution
according to the three facets is depicted in Figure 1. This figure evinces an imbalance in
class distribution. Facet A is the one with a less unbalanced number of ingredients, while
Facet B presents a large number of labels with less than 10 ingredients, similar to what
happens in Facet C. Facets B and C have a few major classes that engulf a lot of ingredients.
Furthermore, the total number of labels per facet and the median of the number of ingredients
for the labels of each facet is shown in Table 1.

In order to create proper embeddings, two paths could be taken: provide annotated data
to the model, such as tuples of a query entity and its database matches; or learn unsupervised
embeddings from the relationships between the entities. Still and all, given the available
data, which is scarce and not well structured, none of the aforementioned paths is an ideal
option for good performance. As a matter of fact, some of the groups of labels have only one
ingredient. This will not generalize well for new data, requiring an alternative method. As
mentioned in Section 1, retrofitting was used to create a set of pre-trained embeddings.

People often use hypernyms to express their preferences towards broad groups of in-
gredients, instead of referring to individual ones. The combination of synsets and lexicon
databases, such as WordNet or ConceptNet [28], with the information provided by LanguaL
facets on each ingredient creates an interesting set of features to classify ingredients. Fol-
lowing the work of Wu et al. [33], the approach designed for this task is based on using or
creating embeddings for ingredient classification. The logic behind this method is that any
entity can be embedded by a neural embedding model by learning feature representations for
relationships among collections of those entities. The vector space is the same for all entities,
which enables the model to rank entities, documents, or objects according to the similarity
measure to a given query entity.

Bearing this in mind, each group of LanguaL facets can be regarded as a set of labels
to classify each ingredient. The hypothesis we seek to explore in this work is that a correct
classification of the ingredient in each of these three groups may enhance the retrieval of
possible candidates from the ingredient database.

LDK 2021



15:6 Enriching Food Embeddings

4 Pre-trained Embeddings

On a first stage, general pre-trained embeddings, such as Word2Vec and GloVe, were used to
map every ingredient and LanguaL facets into a common vector space and hence, enabling
us to classify each ingredient in the database as one of the LanguaL facets, for each one of
the groups. This means that each ingredient was classified under three different groups of
labels, one for each facet group.

Each one of the ingredient embedding, as well as each facet name embedding, was created
by averaging the embeddings of each word that compose them, excluding stop-words. For
that, several steps of pre-processing are required:

1. Tokenization – In order to obtain each individual token, spaCy tokenizer was used
2. Stop-words removal – Each extracted token is compared with a dictionary of stop-words

so that they are removed to prevent retrofitting with them
3. Word normalization – Words are normalized in order to remove plural inflections which

is particularly common in this dataset
4. Dictionary matching – The last step concerns matching the tokens with the words in the

embeddings lexicon to extract the embeddings. However, there are some words that are
not present in the lexicon or are not in the correct format. To solve this, the following
steps are performed:
a. Try to match bigrams with the lexicon; for hyphenated tokens, try matching their

transformation into bigrams or unigrams (either by concatenating both tokens or by
matching them individually).

b. Perform fuzzy matching using the FuzzyWuzzy Python library, which calculates the
Levenshtein distance to all possible words in the lexicon and retrieves the most probable
candidate that has a distance of 1, if there is any.

c. If not, create a zero-valued vector to emulate the embedding.

These steps were designed after exploring the database and finding some patterns in its
data. For example, regarding the group Fish and Seafood (one of the labels for LanguaL’s
Facet A group), the resulting embedding would be the average of the vectors for Fish and
Seafood. This process is similar for ingredients, that usually have more than one token per
name (see the examples in Section 6). Each ingredient and each class label is represented by
only one vector, regardless of the number of tokens that compose its name. Class prediction
is based on the Cosine Similarity between the embedding of a given ingredient and the
embedding of each LanguaL class label, for each one of the three facets considered, following
the work of Wu et al. [33]. The most similar class, for each facet, is the prediction made by
the model. At the end of the classification process, each ingredient has 3 labels: one for each
facet. Classification accuracy was used to evaluate the results obtained.

Word2Vec or GloVe are generic embeddings trained on large text corpora, and do not
encode information extracted from knowledge graphs. We hypothesize that using embeddings
that do, such as ConceptNet Numberbatch [28], is a sensible approach to understand whether
the semantic information present in knowledge graphs can be leveraged to better enrich the
embeddings in this particular context of food terms.

Table 2 summarizes the results obtained for two sets of pre-trained embeddings: GloVe
(which incorporates no knowledge graph information) and ConceptNet Numberbatch (retro-
fitted with knowledge graph information).

As it is possible to note, the results obtained by using Numberbatch embeddings are
higher than the ones obtained using GloVe. This shows that retrofitting does incorporate
some semantic information into the embeddings, that leads to better semantic relationships
between the different ingredients’ embeddings.



Á. M. Samagaio, H. Lopes Cardoso, and D. Ribeiro 15:7

5 Embeddings Refinement with Retrofitting

Being LanguaL an ontology which incorporates lexical information about food in a knowledge
graph style, these established relations may be used to retrofit the pre-trained Numberbatch’s
embeddings so that they become more aware of food semantics. Thus, as a second step, the
Numberbatch embeddings were retrofitted with the information that is available in LanguaL.

There are three possible ways to perform retrofitting with the available data:

A. Retrofitting class embeddings with the vectors retrieved for each of the ingredients that
have that class as a descriptor in the database.

B. Retrofitting ingredient embeddings using the vectors of the classes that they have as
descriptors in the database.

C. Combining the two previous approaches and retrofit both the ingredients and the classes.

Each procedure presents advantages and disadvantages. Procedure A will not change
the embeddings associated with each ingredient. Instead, it encodes each LanguaL class
according to the ingredients that it contains. This may pose as an advantage for real world
applications when dealing with ingredients that are not part of the database. In these cases,
provided that there are similar ingredients in the database, the model would still be able
to classify the query. On the other hand, procedure B changes the vectors that represent
the ingredients in order to match the LanguaL class label embedding. It is expected that
this method will converge easily since each ingredient will only be retrofitted using, at the
most, 3 concepts, which does not happen in the former method. Finally, procedure C tries to
change both elements towards a converging representation. This will adapt both data types
to each other which may be harmful when handling new information. This simultaneous
change may cause the model to not generalise well for new ingredients as well as for new class
labels, in case they are added to the database. Also, convergence may not be achieved since
some of the concepts (ingredients and labels) are related in different ways. From iteration
to iteration, the embeddings are being changed according to different embeddings (since
both the ingredients and the class labels embeddings change). The selected approach should
consider the performance obtained, after retrofitting, for all three facet groups at the same
time, since there will only be one embedding representation per ingredient. Retrofitting each
facet group individually and sequentially may harm the scores of the previously retrofitted
facet groups. Even though one method may provide better results than another for an
individual facet, the joint performance in the three facets should be considered. The results
were obtained using k-fold cross validation with 6 randomly selected folds, (see Table 3).
The folds could not be stratified since there are three simultaneous classification problems
being addressed. Also, this means that some folds might not have data for every class in
each of the three facets. The retrofitting session lasted for 20 iterations, after each of which
the results were validated using the cosine similarity criterion, to consider updating the β

Table 2 Accuracy results for ingredient classification according to LanguaL facets, using different
pre-trained embeddings models.

Model Accuracy per facet
A B C

GloVe 400k vocabulary 0.277 0.324 0.087
ConceptNet Numberbatch 0.417 0.401 0.089

LDK 2021



15:8 Enriching Food Embeddings

Table 3 Accuracy results for ingredient classification according to LanguaL facets, using three
different retrofitting procedures.

Procedure Accuracy
Facet A Facet B Facet C

Baseline results (no retrofitting) 0.412 ± 0.044 0.447 ± 0.027 0.108 ± 0.023
Approach A 0.648 ± 0.029 0.505 ± 0.050 0.402 ± 0.046
Approach B 0.412 ± 0.044 0.447 ± 0.027 0.108 ± 0.023
Approach C 0.504 ± 0.054 0.417 ± 0.050 0.242 ± 0.035

parameter (see Equation 2). If the results increased overall (throughout the 3 facets), β is
maintained for the next iteration; otherwise, its value is increased by a factor of 20%. The
initial β value is set to 1, the same as α; however, the latter is fixed for the whole session.
At the starting point, both the vector to be retrofitted and the definitions have the same
weight, which allows not to lose intrinsic information about the words, since the concept to
be retrofitted should still retain some semantic meaning in order to prevent overfitting and
generalize better to new data.

The results were obtained by evaluating the accuracy using 6-fold cross validation, since
it was the maximum number that allowed to have all classes represented in each fold. By
looking at Table 3 it is clear that the procedure that produces the best overall results
is procedure A, where the classes were retrofitted incorporating information about the
ingredients. This proved the hypothesis that procedure A deals better with unseen data than
the other procedures, by not altering the values of the ingredient embeddings. During the
training of procedure B it was not possible to make the model converge as the global accuracy
was not stabilizing in a value, instead it was increasing and decreasing around the base value.
This makes sense when thinking about the testing process. The ingredient embeddings of
the training set are being altered according to the LanguaL information; however, the ones
in the validation set have not suffered this alteration. This means that the classification
score will be mostly the same in this case. Regarding procedure C, it is possible to see an
improvement in both facets A and C, although the accuracy in facet B decreases. Bearing in
mind these results and the perceived good handling of new data, procedure A was selected
as the method to create the new set of embeddings that will be used in ingredient retrieval.

6 Token TF-IDF Weighting

Despite the fact that there is a clear improvement in classification accuracy, due to the
naming format of the ingredients, the embeddings may be considering information that is not
relevant for classification. The following list illustrates some examples of ingredient names
present in the ingredients database:

Pineapple, canned in juice
Eggs, chicken, whole, raw
Onions, raw
Tuna, canned in brine, drained
Peppers, capsicum, green, boiled in salted water

In most cases, ingredient names include extra information that may not be relevant for
classification, such as the cooking method or the way of preservation. Moreover, the order
of the words in the ingredients´ names does not always follow the same logic because the



Á. M. Samagaio, H. Lopes Cardoso, and D. Ribeiro 15:9

ingredients derive from several sources. As a consequence, it was not possible to create rules
for name processing before retrofitting. An example of such a rule would be to remove every
word after the first comma; however, as is noticeable in the examples above, some important
characteristics regarding ingredients are present after the first or even second comma. This
pre-processing would have to be hand-made, which would be impractical. As a way to deal
with this problem, a weighting mechanism based on the Term Frequency - Inverse Document
Frequency (TF-IDF) weighting was applied to the tokens during ingredient and class label
embedding creation. This way, words that are not important to distinguish classes will have
reduced importance in the embeddings for retrofitting. TF-IDF weights were calculated in
three different ways, depending on what was considered a document:

1. Concatenating ingredient names for a given class label
In order to illustrate this case, when retrofitting the class label Fish and Seafood a
document would comprise all ingredient names that belong to that class. This would
boost the Term-Frequency part since there are usually several ingredients with similar
names, varying only the cooking method, for example. Also, this would punish words
that appear in different concepts, such as the cooking or preservation methods that are
common to different types.

2. Considering each individual ingredient/class name
In this case, Term-Frequency will not benefit, although Inverse Document Frequency will
punish even more the tokens that appear in many ingredient or class names

3. Hybrid approach: the Term Frequency is calculated through procedure 1 while the Inverse
Document Frequency is calculated using procedure 2
With this hybrid approach the goal is to further punish words that appear in many classes
while boosting words that belong to only one class.

Embeddings were retrofitted once again using method A with each of the TD-IDF
approaches. We present and analyze the results obtained for the retrofitting procedure A,
which gave the best results for the ingredient classification task under the three facet groups,
as shown in Table 3, with an extra step of token weighting before constructing the ingredient
or class label embedding. The results are presented in Table 4. Once again, they were
taken using 6-fold cross validation. We can observe that TF-IDF weighting improves the
results. Every experimented method increased performance when comparing to retrofitting
without weighting. However, it is clear that TF-IDF 3, the hybrid method, presents the
best overall results, showing the largest improvements in all three groups of labels. The
differences between TF-IDF 2 and 3 have for all three facets have statistical significance.
However, between TF-IDF 1 and 3 there is no statistical significance. TF-IDF 1 presented
very similar results for facet B and facet C, although the error values are higher and the
accuracy for facet A is lower. TF-IDF 2 presented the worst results of the three. Even
though the differences between TF-IDF 1 and TF-IDF 3 have not statistical significance,
the hybrid weighting method was slightly better at dealing with this kind of data due to
selectively punishing the terms according to their frequency in different groups.

The evident improvement to using generic pre-trained embeddings shows that we were
successful in incorporating food semantic information available in LanguaL into word vectors.
The next section explores the algorithm designed to classify and retrieve ingredients based
on a query entity, which takes advantage of a set of pre-trained ConceptNet Numberbatch
embeddings retrofitted with LanguaL semantic information, through approach A and using
the hybrid TF-IDF weighting (TF-IDF 3).

LDK 2021



15:10 Enriching Food Embeddings

Table 4 Accuracy results for ingredient classification according to LanguaL facets, using approach
A for retrofitting with different methods of TF-IDF weighting.

TF-IDF approach Accuracy
Facet A Facet B Facet C

Baseline results (no TF-IDF weighting) 0.6475 ± 0.029 0.505 ± 0.050 0.402 ± 0.046
TF-IDF 1 0.690 ± 0.031 0.595 ± 0.064 0.451 ± 0.031
TF-IDF 2 0.682 ± 0.041 0.563 ± 0.061 0.411 ± 0.047

TF-IDF 3 (hybrid) 0.692 ± 0.026 0.595 ± 0.048 0.451 ± 0.021

Algorithm 1 Matching and Extracting Algorithm.

1 Input: Sentence, th1, th2, th3, th4
Result: List of database ingredients that match the query entity

2 Ingred = getNamedEntity(Sentence)
3 IngredEmbedding = getEmbedding(Ingred)
4 [classA, classB, classC] = classifyIngred(IngredEmbedding)
5 EmbSimList, FuzMatchList = extractPossibleMatches([classA, classB, classC], th1,

th2)
6 CandidateList = EmbSimList

⋂
FuzMatchList

7 if length(CandidateList) > 1 then
8 probableGroupMatch = calculateGroupMatchEmb(IngredEmb, classA, classB,

classC, th3)
9 groupMatch = calculateGroupMatchLev(Ingred, probableGroupMatch, th4)

10 if length(groupMatch) > 0 then
11 Return extractFromDB(groupMatch)
12 else
13 Return CandidateList
14 else if length(CandidateList) == 1 then
15 Return CandidateList
16 else
17 Return []

7 Food Matching

The purpose of creating word embeddings that capture the semantic relations present in
the LanguaL ontology was to retrieve, from the recommender system’s ingredient database,
the relevant ingredients, given a query entity extracted from user input. A perfect retrieval
process would gather all ingredients that correspond to the Named Entity query based on
the classification of the words (ingredients) that compose it. The entity may point to a
group of ingredients, to a specific ingredient, or even to a group of ingredients that do not
match LanguaL labels exactly. Bearing this in mind, a matching and extraction algorithm
was developed. This algorithm leverages the food information that was incorporated in the
embeddings and is detailed as Algorithm 1.

The first step is the Named Entity Recognition (line 2), in order to identify the ingredient
that is present in the user’s query. This entity, which represents a name of an ingredient,
is then preprocessed, as described in Section 4, and encoded into an embedding (line 3).
The next step is the classification of the query according to the three facets (line 4). Using



Á. M. Samagaio, H. Lopes Cardoso, and D. Ribeiro 15:11

the predicted class labels, the algorithm extracts all ingredients that match at least 2 of
the 3 classes from the database, resulting in a first list of possible candidates. Moreover,
this list is then filtered using two criteria: embeddings cosine similarity and fuzzy matching
to create two lists of ingredients that are strong candidates (line 5). Both these filters
require predefined thresholds, th1 and th2, respectively. These previously mentioned lists are
intersected in order to remove options from the fuzzy match search since it produces a large
list with some unrelated ingredients. The result is the final list of candidates that will be the
input to a series of conditions that will define the final result (line 6).

In case the Candidates List has only one ingredient, this ingredient is regarded as the
match to the query and is returned by the system (lines 14 and 15). If the Candidates List
has no elements, an empty array is returned, which means that there are no matches in the
database for the ingredient query (lines 16 and 17). On the other hand, if the Candidates
List has several elements, there is a strong possibility that the query is referring to a group of
ingredients, rather than to a single ingredient. The query is then compared to the predicted
class labels in a sequential process that uses cosine similarity and Levenshtein distance,
requiring two threshold values: th3 and th4 respectively). The result of this last process
(lines 8 and 9) is a list of LanguaL labels that may match the query. If this list is not empty,
then the algorithm extracts all ingredients that are labeled accordingly (giving priority to
facet A, then B and lastly C) (line 11). Otherwise, the Candidates List is returned. This
means that the query matches a group of ingredients that is not a specific LanguaL group.

The thresholds referred in the algorithm were defined through observation, in order to
maximize accuracy. An increase in the value of the threshold would represent an increase in
precision with a consequent decrease in recall, since it causes a decrease in the number of
ingredients retrieved. It makes the model more certain about the ingredients its extracting
with the drawback of maybe missing some correct ones. This method was validated by user
testing, as explained in Section 7.1, since there is a lack of an annotated dataset that could
serve as validation.

7.1 User Validation
Due to the lack of a proper dataset, the matching algorithm was qualitatively evaluated
by volunteers. Each volunteer must suggest one ingredient that has not yet been selected
by others. Both the results obtained through the ingredient retrieval algorithm (based on
embeddings) and the ones obtained by using a fuzzy word matching algorithm are shown to
the volunteer, who has to answer three questions. This last search method is regarded as
baseline method and was the only implemented in the recommender system. It compares the
strings of the ingredients character by character.
1. Whether or not the ingredients retrieved by the embeddings-based algorithm are correct,

on a 4-valued scale, from “totally incorrect” to “totally correct”.
2. Whether or not there is any ingredient obtained from word matching search that should

also be in the embeddings results list, on a 4-valued scale, from “none” to “all”. It is
worth noticing that the word matching search results usually contain ingredients whose
name is similar to the one in the query, even though they do not match (e.g., cheesecake
is a result of searching for cheese).

3. What is the preferred option for ingredient retrieval.

This way it is possible to evaluate the developed algorithm from a user standpoint, using
some approximate recall and precision metrics. The test was performed by 22 volunteers (one
ingredient each). Figure 2a shows the answer distribution for the question that addressed the

LDK 2021



15:12 Enriching Food Embeddings

(a) Response frequency for food matching precision
assessment.

(b) Response frequency for food matching recall
assessment.

Figure 2 Qualitative results from the user ingredient retrieval evaluation.

correctness of the shown results by the embeddings-based search algorithm. These results can
be mapped to the precision of the system, which measures how many of the positive answers
are in fact true. Results show that the developed algorithm has a high level of precision.
The large majority of the query outputs are totally correct, meaning that the ingredients the
system shows are in fact related to the query term.

Recall is also another important metric that should be taken into account. Figure 2b
shows the answers regarding the comparison made between the word-based search and the
developed algorithm. The goal was to identify items that were correctly present in the
former and missing in the latter. This does not calculate the true recall of the model, which
would require a list of all correct items per query. Nonetheless, it is a useful comparison to
detect missing items. The results show that the large majority of the answers were positive,
meaning that the possible recall is also high. However, it is possible to affirm that the model
shows increased precision when compared to recall. According to the answers that judged the
preferred algorithm, the embeddings based algorithm explained in this paper was preferred
by 77.3% of the users. Even though the recall is lower than precision and the algorithm
does not always gather all ingredient samples from the dataset, users prefer to have access to
correct ingredients.

8 Conclusions

This work described the incorporation of semantic information from a food-related ontology
into word embeddings, hence creating a set of embeddings that really capture the relations
between food terms. Pre-trained embeddings were shown to poorly encode the different
linkages that exist between food terms, creating the necessity of more semantic-aware
embeddings. These relations are hard to capture with text data. Retrofitting has shown
to be a valuable technique that enabled the enrichment of general knowledge embeddings
in terms of food relations, largely increasing class similarity between the descriptor labels
from LanguaL and the ingredients names. Also, from the three methods that were tried for
retrofitting, regarding what embeddings to change (the class labels or the ingredients), the
one that provided the best results was to alter the embeddings from the labels, based on
the embeddings from the ingredients. This means that even if new ingredients are to be
classified, this method should still be able to classify it correctly, leading to better results
in the cross-validation testing. Moreover, TF-IDF weighting in the embedding creation
proved to improve the results by giving different importance to the tokens that compose each
ingredient and class name. This way, only words that are really specific and distinctive from
each name are used to perform the retrofitting of the embeddings. TF-IDF was calculated in



Á. M. Samagaio, H. Lopes Cardoso, and D. Ribeiro 15:13

three different ways, from which the one that gave the best results was a hybrid approach
where the TF and IDF parts were calculated using different concepts of “Document”. The
implementation of this weighting mechanism allowed for an uptick in the class prediction
accuracy. Further validation of this method and the resulting embeddings may be made to
properly fine tune the embeddings. A validation data set may be created to analyze the
methods and establish benchmark scores for several parameters such as measuring ingredient
similarity through embeddings and comparing it to real life similarity. Even though the
evaluation presented above showed very promising results, an exact and quantitative method
should also be applied in order to further validate and reinforce these conclusions.

This work resulted in a set of pre-trained embeddings that already incorporate food
knowledge and can be used for several applications besides database extraction and ingredient
classification. These embeddings may pose as a useful tool for nutrition recommender systems
or health companions in functionalities such as ingredient substitution or recipe creation by
leveraging the ingredient relations and similarities. Another example of a possible application
is the classification of recipes based on the ingredients that compose them, which then can be
used to generate meal suggestions fostered by the similarity between user preferred meals and
new ones. The applications that can be powered by these embeddings should also be properly
validated by the creation of benchmark tests and scores. Moreover, this work evinces that
the application of retrofitting as a way of enriching embeddings can be applied to virtually
any context that requires grasping semantic relations, as long as there is a knowledge graph
or similar structure that encodes these relations to support it.

References
1 Alaa A. Abd-alrazaq, Mohannad Alajlani, Ali Abdallah Alalwan, Bridgette M. Bewick, Peter

Gardner, and Mowafa Househ. An overview of the features of chatbots in mental health: A
scoping review, December 2019.

2 Andreas Arens-Volland, Benjamin Gateau, and Yannick Naudet. Semantic Modeling for
Personalized Dietary Recommendation. Proceedings - 13th International Workshop on Semantic
and Social Media Adaptation and Personalization, SMAP 2018, pages 93–98, 2018. doi:
10.1109/SMAP.2018.8501864.

3 Ram G. Athreya, Axel Cyrille Ngonga Ngomo, and Ricardo Usbeck. Enhancing Community
Interactions with Data-Driven Chatbots - The DBpedia Chatbot. In The Web Conference
2018 - Companion of the World Wide Web Conference, WWW 2018, pages 143–146, New
York, New York, USA, April 2018. Association for Computing Machinery, Inc. doi:10.1145/
3184558.3186964.

4 Timothy W. Bickmore, Daniel Schulman, and Candace L. Sidner. A reusable framework
for health counseling dialogue systems based on a behavioral medicine ontology. Journal of
Biomedical Informatics, 44(2):183–197, April 2011. doi:10.1016/j.jbi.2010.12.006.

5 Kyungyong Chung and Roy C. Park. Chatbot-based heathcare service with a knowledge
base for cloud computing. Cluster Computing, 22(1):1925–1937, January 2019. doi:10.1007/
s10586-018-2334-5.

6 Leigh Clark, Nadia Pantidi, Orla Cooney, Philip Doyle, Diego Garaialde, Justin Edwards,
Brendan Spillane, Emer Gilmartin, Christine Murad, Cosmin Munteanu, Vincent Wade,
and Benjamin R. Cowan. What makes a good conversation? Challenges in designing truly
conversational agents. In Conference on Human Factors in Computing Systems - Proceedings,
pages 1–12, New York, New York, USA, May 2019. Association for Computing Machinery.
doi:10.1145/3290605.3300705.

7 Jacob Devlin, Ming Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training
of deep bidirectional transformers for language understanding. In NAACL HLT 2019 - 2019
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies - Proceedings of the Conference, volume 1, pages 4171–4186,
2019. URL: https://github.com/tensorflow/tensor2tensor.

LDK 2021

https://doi.org/10.1109/SMAP.2018.8501864
https://doi.org/10.1109/SMAP.2018.8501864
https://doi.org/10.1145/3184558.3186964
https://doi.org/10.1145/3184558.3186964
https://doi.org/10.1016/j.jbi.2010.12.006
https://doi.org/10.1007/s10586-018-2334-5
https://doi.org/10.1007/s10586-018-2334-5
https://doi.org/10.1145/3290605.3300705
https://github.com/tensorflow/tensor2tensor


15:14 Enriching Food Embeddings

8 Vanesa Espín, María V. Hurtado, and Manuel Noguera. Nutrition for Elder Care: A nutritional
semantic recommender system for the elderly. Expert Systems, 33(2):201–210, 2016. doi:
10.1111/exsy.12143.

9 William J. Evans and Deanna Cyr-Campbell. Nutrition, exercise, and healthy aging. Journal
of the American Dietetic Association, 97(6):632–638, 1997. doi:10.1016/S0002-8223(97)
00160-0.

10 Manaal Faruqui, Jesse Dodge, Sujay K Jauhar, Chris Dyer, Eduard Hovy, and Noah A Smith.
Retrofitting word vectors to semantic lexicons. In NAACL HLT 2015 - 2015 Conference
of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Proceedings of the Conference, pages 1606–1615, 2015. doi:10.3115/
v1/n15-1184.

11 Catherine Havasi, Robert Speer, Kenneth Arnold, Henry Lieberman, Jason Alonso, and Jesse
Moeller. Open mind common sense: Crowd-sourcing for common sense. In AAAI Workshop -
Technical Report, volume WS-10-02, page 51, 2010. URL: www.aaai.org.

12 Shafquat Hussain, Omid Ameri Sianaki, and Nedal Ababneh. A Survey on Conversa-
tional Agents/Chatbots Classification and Design Techniques. In Advances in Intelli-
gent Systems and Computing, volume 927, pages 946–956. Springer Verlag, 2019. doi:
10.1007/978-3-030-15035-8{_}93.

13 H. N. Io and C. B. Lee. Chatbots and conversational agents: A bibliometric analysis. In IEEE
International Conference on Industrial Engineering and Engineering Management, volume
2017-December, pages 215–219. IEEE Computer Society, February 2018. doi:10.1109/IEEM.
2017.8289883.

14 J. D. Ireland and A. Møller. Langual food description: A learning process. European Journal
of Clinical Nutrition, 64:S44–S48, 2010. doi:10.1038/ejcn.2010.209.

15 Veton Kepuska and Gamal Bohouta. Next-generation of virtual personal assistants (Microsoft
Cortana, Apple Siri, Amazon Alexa and Google Home). In 2018 IEEE 8th Annual Computing
and Communication Workshop and Conference, CCWC 2018, volume 2018-January, pages
99–103. Institute of Electrical and Electronics Engineers Inc., February 2018. doi:10.1109/
CCWC.2018.8301638.

16 Stefanie Mika. Challenges for nutrition recommender systems. CEUR Workshop Proceedings,
786:25–33, 2011.

17 Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word repres-
entations in vector space. In 1st International Conference on Learning Representations, ICLR
2013 - Workshop Track Proceedings. International Conference on Learning Representations,
ICLR, 2013.

18 George. Miller and Princeton University. Cognitive Science Laboratory. WordNet. MIT Press,
1998.

19 Jeffrey Pennington, Richard Socher, and Christopher D Manning. GloVe: Global vectors
for word representation. In EMNLP 2014 - 2014 Conference on Empirical Methods in
Natural Language Processing, Proceedings of the Conference, pages 1532–1543, 2014. doi:
10.3115/v1/d14-1162.

20 Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton
Lee, and Luke Zettlemoyer. Deep contextualized word representations. In NAACL HLT
2018 - 2018 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies - Proceedings of the Conference, volume 1, pages
2227–2237. Association for Computational Linguistics (ACL), February 2018. doi:10.18653/
v1/n18-1202.

21 Gorjan Popovski, Bibek Paudel, Tome Eftimov, and Barbara Korousic Seljak. Exploring a
standardized language for describing foods using embedding techniques. In Proceedings - 2019
IEEE International Conference on Big Data, Big Data 2019, pages 5172–5176. Institute of
Electrical and Electronics Engineers Inc., December 2019. doi:10.1109/BigData47090.2019.
9005970.

https://doi.org/10.1111/exsy.12143
https://doi.org/10.1111/exsy.12143
https://doi.org/10.1016/S0002-8223(97)00160-0
https://doi.org/10.1016/S0002-8223(97)00160-0
https://doi.org/10.3115/v1/n15-1184
https://doi.org/10.3115/v1/n15-1184
www.aaai.org
https://doi.org/10.1007/978-3-030-15035-8{_}93
https://doi.org/10.1007/978-3-030-15035-8{_}93
https://doi.org/10.1109/IEEM.2017.8289883
https://doi.org/10.1109/IEEM.2017.8289883
https://doi.org/10.1038/ejcn.2010.209
https://doi.org/10.1109/CCWC.2018.8301638
https://doi.org/10.1109/CCWC.2018.8301638
https://doi.org/10.3115/v1/d14-1162
https://doi.org/10.3115/v1/d14-1162
https://doi.org/10.18653/v1/n18-1202
https://doi.org/10.18653/v1/n18-1202
https://doi.org/10.1109/BigData47090.2019.9005970
https://doi.org/10.1109/BigData47090.2019.9005970


Á. M. Samagaio, H. Lopes Cardoso, and D. Ribeiro 15:15

22 David Ribeiro, João Machado, Jorge Ribeiro, Maria João M. Vasconcelos, Elsa F. Vieira,
and Ana Correia De Barros. SousChef: Mobile meal recommender system for older adults.
In ICT4AWE 2017 - Proceedings of the 3rd International Conference on Information and
Communication Technologies for Ageing Well and e-Health, pages 36–45. SciTePress, 2017.
doi:10.5220/0006281900360045.

23 David Ribeiro, Jorge Ribeiro, Maria João M. Vasconcelos, Elsa F. Vieira, and Ana Correia
de Barros. SousChef: Improved meal recommender system for Portuguese older adults.
Communications in Computer and Information Science, 869:107–126, 2018.

24 Christopher R Sauer and Alex Haigh. Cooking up Food Embeddings Understanding Flavors
in the Recipe-Ingredient Graph, 2017.

25 Nuno Silva, David Ribeiro, and Liliana Ferreira. Information extraction from unstructured
recipe data. ACM International Conference Proceeding Series, Part F1482:165–168, 2019.
doi:10.1145/3323933.3324084.

26 Vivian S Silva, Andre Freitas, and Siegfried Handschuh. Building a knowledge graph from
natural language definitions for interpretable text entailment recognition, 2018. URL: http:
//brat.nlplab.org/.

27 Vivian S Silva, Siegfried Handschuh, and Andre Freitas. Categorization of semantic roles for
dictionary definitions, 2018. URL: https://www.aclweb.org/anthology/W16-5323.

28 Robyn Speer, Joshua Chin, and Catherine Havasi. ConceptNet 5.5: An Open Multilingual
Graph of General Knowledge. In Proceedings of the Thirty-First AAAI Conference on Artificial
Intelligence, AAAI’17, page 4444–4451. AAAI Press, 2017.

29 Wesley Tansey, Edward W. Lowe, and James G. Scott. Diet2Vec: Multi-scale analysis of
massive dietary data. arXiv, December 2016. arXiv:1612.00388.

30 Christoph Trattner and David Elsweiler. Food Recommender Systems Important Contributions,
Challenges and Future Research Directions, November 2017. arXiv:1711.02760.

31 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is All you Need. In I Guyon, U V Luxburg,
S Bengio, H Wallach, R Fergus, S Vishwanathan, and R Garnett, editors, Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

32 Anu Venkatesh, Chandra Khatri, Ashwin Ram, Fenfei Guo, Raefer Gabriel, Ashish Nagar,
Rohit Prasad, Ming Cheng, Behnam Hedayatnia, Angeliki Metallinou, Rahul Goel, Shaohua
Yang, and Anirudh Raju. On Evaluating and Comparing Conversational Agents. In Conversa-
tional AI Workshop at the 31st Conference on Neural Information Processing Systems, pages
1–10, 2017. URL: http://alborz-geramifard.com/workshops/nips17-Conversational-AI/
Papers/17nipsw-cai-evaluating_conversational.pdf.

33 Ledell Wu, Adam Fisch, Sumit Chopra, Keith Adams, Antoine Bordes, and Jason Weston.
StarSpace: Embed all the things! In 32nd AAAI Conference on Artificial Intelligence, AAAI
2018, pages 5569–5577. AAAI press, September 2018.

34 Anbang Xu, Zhe Liu, Yufan Guo, Vibha Sinha, and Rama Akkiraju. A new chatbot for
customer service on social media. In Conference on Human Factors in Computing Systems -
Proceedings, volume 2017-May, pages 3506–3510. Association for Computing Machinery, May
2017. doi:10.1145/3025453.3025496.

35 Wen Zhou, Haoshen Hong, Zihao Zhou, and Stanford Scpd. Derive Word Embeddings From
Knowledge Graph, 2019.

LDK 2021

https://doi.org/10.5220/0006281900360045
https://doi.org/10.1145/3323933.3324084
http://brat.nlplab.org/
http://brat.nlplab.org/
https://www.aclweb.org/anthology/W16-5323
http://arxiv.org/abs/1612.00388
http://arxiv.org/abs/1711.02760
http://alborz-geramifard.com/workshops/nips17-Conversational-AI/Papers/17nipsw-cai-evaluating_conversational.pdf
http://alborz-geramifard.com/workshops/nips17-Conversational-AI/Papers/17nipsw-cai-evaluating_conversational.pdf
https://doi.org/10.1145/3025453.3025496

	1 Introduction
	2 Related Work
	3 Methodology
	4 Pre-trained Embeddings
	5 Embeddings Refinement with Retrofitting
	6 Token TF-IDF Weighting
	7 Food Matching
	7.1 User Validation

	8 Conclusions

