
Using Machine Learning for Vulnerability Detection
and Classification
Tiago Baptista #

Centro Algoritmi, Departamento de Informática, University of Minho, Braga, Portugal

Nuno Oliveira #

Checkmarx, Braga, Portugal

Pedro Rangel Henriques #

Centro Algoritmi, Departamento de Informática, University of Minho, Braga, Portugal

Abstract
The work described in this paper aims at developing a machine learning based tool for automatic
identification of vulnerabilities on programs (source, high level code), that uses an abstract syntax
tree representation. It is based on FastScan, using code2seq approach. Fastscan is a recently
developed system aimed capable of detecting vulnerabilities in source code using machine learning
techniques. Nevertheless, FastScan is not able of identifying the vulnerability type. In the presented
work the main goal is to go further and develop a method to identify specific types of vulnerabilities.
As will be shown, the goal will be achieved by optimizing the model’s hyperparameters, changing
the method of preprocessing the input data and developing an architecture that brings together
multiple models to predict different specific vulnerabilities. The preliminary results obtained from
the training stage, are very promising. The best f1 metric obtained is 93% resulting in a precision
of 90% and accuracy of 85%, according to the performed tests and regarding a trained model to
predict vulnerabilities of the injection type.

2012 ACM Subject Classification Security and privacy → Vulnerability scanners; Computing
methodologies → Machine learning

Keywords and phrases Vulnerability Detection, Source Code Analysis, Machine Learning

Digital Object Identifier 10.4230/OASIcs.SLATE.2021.14

Funding This work has been supported by FCT – Fundação para a Ciência e Tecnologia within the
R&D Units Project Scope: UIDB/00319/2020.

Acknowledgements Special thanks to Search-ON2: Revitalization of HPC infrastructure of UMinho,
(NORTE-07-0162-FEDER-000086), co-funded by the North Portugal Regional Operational Pro-
gramme (ON.2-O Novo Norte), under the National Strategic Reference Framework (NSRF), through
the European Regional Development Fund (ERDF).

1 Introduction

Nowadays, information systems are a part of almost every aspect in life and furthermore,
almost every company is dependent on the liability, safety and security of a software
application. So, it is essential to have the capability to identify and correct pieces of code
that contain known vulnerabilities in order to prevent the software from being compromised.

Cybernetic attacks are a constant and present a real threat to companies and people in
general, since nowadays almost every device has an Internet connection. As a consequence,
devices are exposed to external threats that try to exploit vulnerabilities.

A vulnerability is a flaw or weakness in a system design or implementation (the way
the algorithms are coded in the chosen programming languages) that could be exploited to
violate the system security policy [13]. There are many types of vulnerabilities and many
approaches to detect such flaws and perform security tests. All the known approaches present

© Tiago Baptista, Nuno Oliveira, and Pedro Rangel Henriques;
licensed under Creative Commons License CC-BY 4.0

10th Symposium on Languages, Applications and Technologies (SLATE 2021).
Editors: Ricardo Queirós, Mário Pinto, Alberto Simões, Filipe Portela, and Maria João Pereira; Article No. 14;
pp. 14:1–14:14

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:a75328@alunos.uminho.pt
https://orcid.org/0000-0003-4675-701X
mailto:nuno.oliveira@checkmarx.com
mailto:prh@di.uminho.pt
https://orcid.org/0000-0002-3208-0207
https://doi.org/10.4230/OASIcs.SLATE.2021.14
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

14:2 Using Machine Learning for Vulnerability Detection and Classification

pros and cons but none of them stands as a perfect solution. Static analysis is one of the
approaches and it can be defined as the analysis of a software without its execution. Static
Application Security Testing (SAST) is an application security testing methodology that
allows detecting vulnerabilities at the early stages of software development. It is adopted by
many companies, such as Checkmarx1. These methodologies have many strengths such as
the ability to find vulnerabilities without the need to compile or run code, offering support
for different programming languages and being able to easily identify common vulnerabilities
and errors like Structured Query Language (SQL) injections and buffer overflows. Despite
this, there are still problems with the referred approach, mainly in the production of a great
number of false positives, in the lack of identification of the vulnerability type and even
performance issues.

There are many tools that implement the concept of static analysis and apply it to
vulnerabilities detection. Some tools rely on only lexical analysis like FlawFinder2 [10] but
have the tendency to output many false positives because they do not take into account the
semantic [4]. Other tools like CxSAST, Checkmarx SAST tool3, overcome this lack by using
the Abstract Syntax Tree (AST) of the program being evaluated. In this context, another
challenge is to create and apply the same tool to different languages, so that one can clearly
identify vulnerabilities with high accuracy and have good performance with big inputs.

To overcome the flaws identified in the SAST approach, decreasing the number of false
positives and the processing time, a new approach came to the researchers mind: to integrate
machine learning techniques. The idea can be realized by altering and tuning open source
projects, namely code2vec and code2seq in order to try to identify accurately and efficiently
than other tools like CxSAST [9]. code2vec main idea is to represent a code snippet as
a single fixed-length code vector, in order to predict semantic properties of the snippet.
On the other hand code2seq represents a code snippet as a set of compositional paths and
uses attention mechanisms to select the relevant paths while decoding [1, 2]. The resultant
approaches relying on code2seq and code2vec are called FastScan and were not one hundred
percent success but opened the path to further investigation [9].

It is clear that a good analysis tool can help spot and eradicate vulnerabilities, furthermore,
it is becoming a part of the development process. But, there is still room for improvement
and all the research work done in this area can be of uttermost relevance for the industry.

With all of the previous in consideration the main contributions expected from the
research project that will be discussed along the paper are:

The improvement of the FastScan approach:
Find the best hyperparameters for each case study;
Use these hyperparameters to improve evaluation metrics for the models (precision,
recall and f1);

The development a specific model for each type of vulnerability, that is capable
of identifying if a code snippet has a vulnerability or not (Boolean model) of a given type;
The design of a proper architecture to develop a general model capable of
identifying the occurrence of vulnerabilities and their type, given a code snippet;

Since it has different objectives and it is an evolution of FastScan, from now on, when
referring the work, it will be called new FastScan.

1 https://www.checkmarx.com/
2 https://dwheeler.com/flawfinder/
3 https://www.checkmarx.com/

https://www.checkmarx.com/
https://dwheeler.com/flawfinder/
https://www.checkmarx.com/

T. Baptista, N. Oliveira, and P. R. Henriques 14:3

This paper is divided in seven sections, in the first section will be presented the context
and motivation, in the second section the current state of the art in vulnerability detection,
the third section will detail the proposed approach, including architecture, the fourth section
with more details about the developed work, the fifth section refers to the specification for
the first phase (that will be presented in Section 3), then section six will approach the results
and the last section with conclusions and future work.

2 Vulnerability Detection

The main spark that ignited the work described in this paper, and the work from specialists
around the world, is software vulnerability. It is necessary to understand the concept
of vulnerability and other main concepts related to them in order to understand all the
methodologies presented next. A vulnerability is defined as a flaw or weakness in a system
design, implementation, or operation and management that could be exploited to violate the
system’s security policy [12]. These flaws might be system design, development, or operation
errors and its exploit can lead to harmful outcomes. This perspective of harm or loss of
information is normally called risk. Nowadays, these concepts have become common in any
software development process because with the presence of electronic devices running software
in almost every area of our society, there is the need to eliminate, or at least minimize, the
occurrence of situations that can risk the security of data or operations.

There are different types and classifications of vulnerabilities, provided by different
contributors. They expose discovered vulnerabilities, exploits, and solutions in online
databases4. Even though there are many sources and knowledge about vulnerabilities,
exploits still occur.

Open Web Application Security Project (OWASP)5 foundation, that works towards a
more secure software development process and applicationss, has a list of the top ten security
risks on applications. Since one of the objectives of this paper work is to correctly identify
types of vulnerabilities using machine learning models, first it is necessary to know them and
understand how they use security breaches to harm systems.

Since this top ten is intended to identify the most serious security risks on web applications,
and it is important to know them in-depth in order to know how to identify them, manually
or automatically, and even more realise what consequences can they bring to the system.
Since the results presented are related to a specific vulnerability it is important to know it
more deeply.

2.1 Injection attack
An injection attack refers to an attack where untrusted data is supplied as input to a program.
This input is then processed and changes the application’s expected behaviour. Normally,
this vulnerability is related to insufficient user input validation. Since this is a well known
and one of the oldest exploits, that has some automatic tools in order to exploit without
having much knowledge, makes this one of the most common and dangerous vulnerability.
There are many types of injections, namely Code injection, Email Header Injection, Host
Header Injection, Lightweight Directory Access Protocol (LDAP) Injection, SQL injection
among others.

4 https://cve.mitre.org/
5 https://owasp.org/www-project-top-ten/

SLATE 2021

https://cve.mitre.org/
https://owasp.org/www-project-top-ten/

14:4 Using Machine Learning for Vulnerability Detection and Classification

Next is shown an example for SQL injection, where an attacker sends OR 1=1-- instead
of a valid id, as shown in Figure 1. Without an input validation, this query will return all
data contained in the table in this case the table accounts.

Figure 1 Schema explaining injection.

In many of these affected software development projects, there is no application of formal
and systematic methods to execute source code auditing and testing. Auditing can be
defined as the process of analyzing application code (in source or binary form) to uncover
vulnerabilities that attackers might exploit [7]. This process is important because allows
scanning the source code covering all the paths that normal testing might not cover in order
to try to detect possible vulnerabilities.

2.2 Detection techniques
Having in mind the big issue in software development presented before, there are many
solutions that try to eliminate it by making an in-depth code auditing. Starting with the
concept of defensive programming, that refers to the practice of coding having in mind
possible security problems that can occur [5]. This is clearly a good practice but one that
does not solve the vulnerability related problems. Even good and experienced programmer
cannot know how to prevent all the exploits created for certain Application Programming
Interface (API), library or other. Also, languages by construction were not build thinking on
the way an attacker would take advantage of certain nuances. Taking as an example, the
buffer overflow exploits, one the most common problem reported in vulnerabilities databases.
This can occur due to mishandling of inputs but in its core is allowed by the construction
of the language. Has it is easily confirmed by C or C++ that do not provide any built-in
protection against accessing or overwriting data in memory [6]. Since good intentions and
practices are not enough to solve this problem, there was the need to apply and develop
other techniques that will be briefly presented next:

Static analysis for security testing (SAST): Static analysis methods are a resource
for identifying logical, safety and also security vulnerabilities in software systems. They
are normally automatic analysis tools and intend to avoid manual code inspections in
order to save time and avoid the investment of resources in manual tasks that could be
fruitless [11].
Dynamic analysis for security testing (DAST): In order to find vulnerabilities,
testing seems to be the easiest path to follow, and that is what DAST stands for. In
DAST, a program is executed in real-time in order to test and evaluate it. In DAST the
tested software is seen as a black box, and the tools or person performing the tests only
interact with the application or software as users that have no knowledge of its internal
operations.
Interactive analysis for security testing (IAST): Contrarily to DAST, IAST aims
to find vulnerabilities by analysing software from within such as SAST. But contrarily
to SAST and similarly to DAST, IAST executes the analysis with the software running.

T. Baptista, N. Oliveira, and P. R. Henriques 14:5

IAST uses different instruments to monitor a running application in order to gather
information about the internal processes. These tools try to mitigate SAST’s and DAST’s
limitations, namely, identify the specific place where a bug/vulnerability is located. By
running from the software’s inside has leverage over DAST and allows testers to define
what paths or functionalities to cover, this can lead to miss-handled bugs/vulnerabilities
but if well thought can lead to gains in time and work efficiency contrarily to SAST that
has full coverage over the software.
Machine Learning in vulnerability identification: Artificial intelligence and more
specifically machine learning and deep learning systems are being used to automate many
different tasks and in different areas, with success. For example in image recognition,
disease behaviour prediction, traffic prediction, virtual assistant, among others. The area
of software security is not an exception, as referred on the previous sections, current
vulnerability identification tools and in general, all security tools have flaws and many
rely on a great amount of manpower and are very time-consuming. In order to try to
tackle such limitations and with the rise of many machine learning applications, there
were many investigation focused on applying such techniques in the software security
area. There are many examples of such applications, but for this paper purposes, the next
sections focus on the application of machine learning and deep learning for vulnerability
identification [3].

3 Proposed approach

In this section, it is detailed the proposed approach in order to fulfil the objectives detailed
in Section 1. It will be presented the system architecture and a high-level representation of
the system flow of data in order to better perceive all the involved processes.

3.1 System Architecture

In order to understand why code2seq was chosen in Fastscan and remained in new FastScan
it is first necessary to understand code2seq structure and applications. code2seq creates
a representation of source code using AST and then uses it to infer properties. An AST
represents a source code snippet in a given language and grammar. The leaves of the
tree are called terminals and the non-leafs are called non-terminals. It represents all the
variables declarations, operator, conditions and assignments. In order to represent code in
this structures it is necessary to create sequences of terminal and non terminal nodes and
consider all possible paths between nodes.

This representation has some significant advantages over the use of simple code tokenisa-
tion, when compared in terms of code comparison. Namely when trying to find two methods
that have the same functionality but different implementations. Having the AST enables a
better comparison, since both functions paths will be similar, as represented in Figure 2 .
So functions will have different token representations but similar path representation only
differing in the Block statement.

In a simplified overview code2seq uses encoder-decoder architecture that reads the AST
paths instead of the tokens. In the encoding end, there is the creation of vectors for each
path using a bi-directional Long short-term memory (LSTM) and the extraction of tokens,
where the AST terminal nodes are transformed into tokens and these tokens are split into
subtokens (for example, an ArrayList is transformed into the tokens Array and List). In the
end a decoder uses attention models to select relevant paths.

SLATE 2021

14:6 Using Machine Learning for Vulnerability Detection and Classification

Figure 2 Clarification code2seq AST representation.

To accomplish the development of a specific model for each type of vulnerability, that is
capable to identify if code snippet has a vulnerability or not (Boolean model), it is proposed
to follow the architecture and flow presented in Figure 3. This approach is a refinement of
Ferreira’s work with code2seq named FastScan [9].

In the first phase, it is essential to use CxSAST in order to obtain the input for the
preprocessing – since it converts several languages into a generic internal representation,
allowing to create a tool language independent. Since the focus is on creating a model capable
of identifying certain vulnerabilities then it is necessary to filter CxSAST output in order to
correctly train the model. Then use code2seq normal pipeline in order to obtain a model able
to identify a specific vulnerability. The goal is to have at least a model for each of OWASP
top 10 vulnerabilities.

Having completed the first phase, it is necessary to develop a general model capable
of identifying if there are vulnerabilities and it’s type, given a code snippet. In order to
complete this objective it is proposed to follow the architecture and flow presented in Figure 4.
In order to take advantage of the work done in the first approach it is proposed to use
the previously trained models and combine them. This combination might be done using
ensemble technique or only by running code2seq testing phase in parallel.

In order to obtain the best performance wise results, it is expected to test the developed
pipeline using the most powerful hardware resources available at the University of Minho’s
cluster6.

6 http://www4.di.uminho.pt/search/pt/equipamento.htm

http://www4.di.uminho.pt/search/pt/equipamento.htm

T. Baptista, N. Oliveira, and P. R. Henriques 14:7

Figure 3 First phase architecture.

4 Development

The work that led to this paper, FastScan, had promising results and showed the potential
on using machine learning for detecting vulnerabilities in source code having as a base the
open source project code2seq. Nevertheless, it left open for investigation some issues, namely
the ones that are a part of this paper objectives. To tune code2seq parameters and to develop
a way to identify specific types of vulnerabilities in source code.

To address this issues, the first phase began with the the FastScan code as the base. On
which it was build a solution that it is able to produce a model capable of identifying if there
are vulnerabilities of a specific type given a source code input. The conceptual approach
is the same as in FastScan but with the modifications to direct the prediction to a specific
type of vulnerability and it was done the hyperparameters optimization, applied to the input
dataset, in order to improve the model accuracy.

SLATE 2021

14:8 Using Machine Learning for Vulnerability Detection and Classification

Figure 4 Second phase architecture.

With all this in mind, this section will describe the different phases that were explored
during the presented work. The first section will describe the datasets, then the hardware
and technical details on which the experiments were made and the following sections will
detail the work done in the first phase. Explaining the steps in each one, the challenges,
experiments and the obtained results for further analysis in the next section.

4.1 Datasets

The datasets take a major part in this project, because all the developed work has no utility
unless there is enough good data to train the models.

The first dataset which, from now on, will be referenced as dt01. dt01 is composed by 43
different projects, there is the original source code and for each project there is an XML file
with detected vulnerabilities. This XML file was provided by Checkmarx and it is the output
of their static analysis tool CxSAST. With one important detail, the output was validated
by humans which means that there are no false positives.

4.2 Hardware and technical details

Since in FastScan, the low computational power was identified has a major barrier and
setback to the developed work, since preprocessing and training tasks were slow and implied
much waiting time, it became clear that the use of a regular personal computer was not
enough to achieve the desired results in the experiments of this paper [9].

T. Baptista, N. Oliveira, and P. R. Henriques 14:9

This barrier was overcame with the use of the University of Minho cluster7. More
specifically using a node with the following specifications:

CPU as seen in Figure 5:
Intel® Xeon® Processor E5-2695 v28;
twelve cores ;
twenty four threads.

RAM: Sixty four GB as seen in Figure 6 ;
GPU: Two NVIDIA® TESLA® K20M9.

Figure 5 CPU details.

Figure 6 Memory details.

There were problems installing all the needed dependencies to run new FastScan natively,
because of the security constraints in the cluster system. Namely, there were no root
permissions, so the installation of dependencies such as Java, python and its libraries were a
great technical obstacle. In order to overcome this, it was used docker and all its potentialities,
since docker presented a good solution because it is consistent and makes all this installation
process easy by using a base image with Java and adding all the dependencies needed without
further concerns.

It is important to notice that this solution was followed after the confirmation that there
was no significant overhead or performance loss introduced by the use of docker and that it
was a better solution than a virtual machine [8].

5 First Phase

In this section is explained the first phase referred previously in Section 3.1. This phase
intends to receive as input a certain dataset containing Java projects and an Extended
Markup Language (XML) file from CxSAST containing identified vulnerabilities to output a
trained model for a specific and predetermined vulnerability .

5.1 Data filtering
This step was of great importance and it was not present in FastScan. Since the objective of
new Fastscan’s the first phase is to create a model capable of detecting a specific vulnerability,
it is firstly needed to filter the original dataset input data by vulnerability type. So that it is
possible to train a model to predict only a specific type of vulnerability.

7 http://search6.di.uminho.pt
8 https://ark.intel.com/content/www/us/en/ark/products/75281/intel-xeon-processor-e5-

2695-v2-30m-cache-2-40-ghz.html
9 https://www.techpowerup.com/gpu-specs/tesla-k20m.c2029

SLATE 2021

http://search6.di.uminho.pt
https://ark.intel.com/content/www/us/en/ark/products/75281/intel-xeon-processor-e5-2695-v2-30m-cache-2-40-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/75281/intel-xeon-processor-e5-2695-v2-30m-cache-2-40-ghz.html
https://www.techpowerup.com/gpu-specs/tesla-k20m.c2029

14:10 Using Machine Learning for Vulnerability Detection and Classification

Before knowing how it was achieved, it is important to understand the two different
components from the dataset:

Source code files: This are the original files from several different projects;
XML files: This are the files generated by the CxSAST from Checkmarx. There is one
file for each project, on which are registered the vulnerabilities detected by the tool.

This filtering process was developed using python and aims to filter the XML files of each
project, in order to keep only the ones that refer to the vulnerability that is desired to train a
model. In order to achieve this, it was developed a python program that is able to read and
parse the XML (provided by CxSAST – and it is built to be applied to its specific structure)
and filter the vulnerabilities entries by the vulnerability name. It is not a literal search, it
can be send arguments to the program with the range of words/strings to be searched in the
vulnerability name field of the XML entries. In the end, the output is a set of XML files
only with the entries for a specific vulnerability and ready to be ingested in the next step –
Preprocessing.

5.2 Preprocessing
This step was not changed from the FastScan, but it is different from the original code2seq.
The preprocessing (which is performed on the train and test data) returns a file with the
dataset labeled and the AST that represents the input dataset. The source code files and
XML files are parsed , in the preprocessing, which is built in Java. There is the creation of
the AST from the input of the source code files and this was not modified from the original
code2seq. But there is another step required to obtain the label for each method, the parsing
of the XML files.

There is also performed the parsing from the XML file (a new step added in New FastScan).
In this second it is relevant to refer that it is stored the vulnerabilities registered in the file,
namely the name of the vulnerability, the start and end line and column in the file and also
the filename and path within the project.

After the parsing stage, for each method (that resulted from the source code parsing)
there the verification if it occurs in the register of vulnerabilities obtained by the XML
parsing, the search is achieved by comparing the filename and path within the project which
is stored in the result of the XML and also the source code parsing. Then it is registered the
presence or not of vulnerabilities, with a boolean.

This combination of the parsing of the XML (with the results of the CxSAST) and the
original source code leads to the output of the preprocessing, that is constituted by a text
file that has a line for each method, on which the first element is the label indicating the
presence of vulnerabilities followed by the ast paths.

On the original code2seq preprocessing, in the output file the first entry was the function’s
name – the first entry is the label that will be used in the training phase. But New Fastscan
preprocessing was modified in order to make the first entry of each line a boolean that
indicates the presence or not of a vulnerability in the method. This change was enough to
modify the prediction of the model obtained in the next training phase, since the training is
now gonna be done with the boolean has the prediction label instead of the previous string
that was the method name.

5.3 Hyperparameter optimization
This step was important to tackle a problem detected in FastScan, without the optimization
of the hyperparameters the final model performance might not be the best possible [9].

T. Baptista, N. Oliveira, and P. R. Henriques 14:11

In order to understand the following section, firstly it is important to know the notions
of accuracy, precision, recall and f1.

Accuracy is the most known performance measure and it is the result of a ratio between
correctly predicted observation to the total observations. But it can be misleading if
there are not the same number of false positives and false negatives, so it is important to
explore other metrics;

Precision refers to the ratio between correctly predicted positive observations and the total
predicted positive observations. This metric answers the question of from the methods
labeled as having a vulnerability, how much of them actually had one? A high precision
means a low occurrence of false positives;

Recall is often called sensitivity, it answers the question of, from the methods that really
had a vulnerability how many of them were labeled?;

The f1 metric is the weighted average between precision and recall, this is the most
balanced meausure of all the preseted since takes false positives and false negatives into
account. This metric is usefull when there is uneven distribution in the dataset, in the
case, where there is not the a close number between vulnerable and not vulnerable entries.

To do so, it was used wandb10 – It is a python library, used to monitor, compare, optimize
and visualize machine learning experiments. It can be integrated with many frameworks
including tensorflow (the python library used in the training) and it was of great importance
in the development of this work. It implements different search methods in order to obtain
the best parameters to increase a specific evaluation metric. This library allowed to solve
the hyperparameter tuning which is a very complicated problem that normally requires
experience in the field and complicated algorithms [14].

This library allowed the optimization of the models hyperparameters for a specific dataset
by using sweeps that allow to find a set of hyperparameters with optimal performance and
apply different methods to do so, such as grid, random and Bayesian11. It also allows to
visualize performance and time metrics from the experiments, that can be consulted in
Section 6.

The chosen method was the Bayesian method because it guaranteed the best possible
combination without compromising time and performance. There were other methods such
as random search where the parameters are being chosen randomly from a specific range –
this method could be even faster but it would not guarantee the best hyperparameters since
it does not cover all the combinations and it does not have a method to improve its results.
Other method could be the grid search, in this method all the possible hyperparameter
combinations are tested, in this case it would be of great time and processing cost given the
number of hyperparameters.

The library applies the Bayesian method by building a probabilistic model that maps
the value of each hyperparameters with the values to optimize – that could be accuracy, f1
and precision. Each hyperparameter value used in the algorithm iteration and the obtained
results are taken into account into the next iterations. This way the search for the best
hyperparameters is faster because it is being guided by the previous experiences.

10 https://wandb.ai/site
11 https://docs.wandb.ai/guides/sweeps

SLATE 2021

https://wandb.ai/site
https://docs.wandb.ai/guides/sweeps

14:12 Using Machine Learning for Vulnerability Detection and Classification

5.4 Train

This step referees to the effective training and production of the models. This is performed the
same way has in the origial code2seq, relying on the developed approach that uses tensorflow
in order to perform all the process.

6 Testing and Results

In this section will be presented the results obtained so far. The presented results were
obtained using the dataset previously referred. The dataset was split in the following way:

75% to train = 32 projects;
15% to test = 7 projects;
10% to validate = 4 projects.

Regarding the data filtering step, it was applied the filter of injection, in order to filter
the results for this specific vulnerability so that it is possible to train the model only to
identify injection vulnerabilities.

Then the preprocessing was applied to the the source code and the filtered XML file
obtaining the preprocessed input to train and test the final model. The total number of
examples (paths) obtained from the preprocessing from the dataset was 191813.

The next phase was the hyperparameter optimization, firstly it was attempted to run the
script to obtain the best parameters that maximize precision. After analysing the results in
Table 1 it was observed that it was possible to obtain a really high precision but at the cost
of very low recall. A model with high precision but low recall returns a low count of results,
but most of the predicted labels are correct when compared to the training labels on the
other hand a model with high recall but low precision returns a high count of results, but
most of the predicted labels are incorrect when compared to the training labels. After this
consideration it was clear that a vulnerability prediction system must have a balance between
both because it is important to correctly identify a vulnerability but it is also important not
to overlook one.

This balance can be obtained by using the f1 metric, this metric is a weighted mean
of the precision and recall and being so if in the optimization is focused in optimize the f1
value then it is guaranteed the balance it is searched between precision and recall as seen in
Equation 1.

f1 = 2 ∗ precision ∗ recall/precision + recall (1)

So the optimization was done trying to maximize the f1 metric. This was applied through
the use of wandb sweeps, where it was defined that the value to optimize was the f1 as
referred in Section 5.3.

After having the sweep results, a model was trained using the best hyperparameters that
can be consulted in Table 1.

The final model for injection using the dt01 dataset had 85% of accuracy, 90% of precision,
97% of recall leading to an f1 of 93% and it was achieved in the first epoch as seen in Figure 7.
This was the chosen, according to the criteria explained before, because it had the best score
regarding the f1 metric. After this the model training leads to the increase of precision, as
expected in a training process, but with the lowering of recall values and therefore a lower f1
value.

T. Baptista, N. Oliveira, and P. R. Henriques 14:13

Table 1 Best Hyperparameter for dt01.

BATCH_SIZE BEAM_WIDTH BIRNN CSV_BUFFER_SIZE
127 0 true 104857600
DATA_NUM_CONTEXTS DECODER_SIZE EMBEDDINGS_DROPOUT_KEEP_PROB EMBEDDINGS_SIZE
0 302 0.4162172547338106 193
MAX_CONTEXTS MAX_NAME_PARTS MAX_PATH_LENGTH MAX_TARGET_PARTS
234 8 10 6
NUM_DECODER_LAYERS NUM_EPOCHS PATIENCE RANDOM_CONTEXTS
1 3000 4 true
READER_NUM_PARALLEL_BATCHES RELEASE RNN_DROPOUT_KEEP_PROB RNN_SIZE
1 false 0.7488847205115016 256
SAVE_EVERY_EPOCHS SHUFFLE_BUFFER_SIZE SUBTOKENS_VOCAB_MAX_SIZE TEST_BATCH_SIZE
1 10000 151701 256
TARGET_VOCAB_MAX_SIZE
27000

Figure 7 Model evaluation.

7 Conclusion and Future Work

This section is intended to close the paper, summarising the outcomes reached so far. The
first section contains the context on vulnerability detection, the motivation and objectives
of the project. The second section is a literature review on vulnerability detection. The
outcomes of the reported stage provided the foundations for the proposed approach. The
third section presents and discusses the our working proposal. The fourth section explains
the development and includes the presentation of the dataset used for training as well as
describes the hardware details. The fifth section discusses the implementation. Finally the
sixth section analyzes the training results obtained when testing models.

Taking into account the results from this first experiment, it becomes clear that the
hyperparameter optimization has improved the results in the increase the precision and the
other metrics. Also the train only for a specific vulnerability might as well have an influence
since the train for a more strict purpose is more effective, namely in this case. While Fastscan
attempts to predict the presence of many types of vulnerabilities, new Fastscan aims at
creating models to predict a single type of vulnerability, gathering the parts into a global
analyzer in a final system.

SLATE 2021

14:14 Using Machine Learning for Vulnerability Detection and Classification

Applying this model as a scanner that verifies projects before it goes through a SAST,
other tool or manual verification could represent a great improve in terms of spent time,
processing and manual work since it could eliminate the projects without vulnerabilities
from further scanning. Comparing to the traditional tools this approach requires less results
verification and promises better accuracy.

Summing up, the concept of vulnerability was presented and explained, the different
methods to identify them were discussed. Moreover, the improved approach and its first
promising results were described and analyzed. Also, it is important to highlight the effort
that done in the adaptation and installation of algorithms and programs to run the system
in parallel platform offered by the SEARCH cluster available in the Informatic Department
of University of Minho to be possible to train the models in acceptable time.

The next step planned to carry on the project is the training of models for other
vulnerability types in order to accomplish the second objective, as listed in the Section 1.
After that, it will be necessary to implement the architecture presented in Section 3.1, in
order to obtain a system capable of predicting the presence of vulnerabilities of different
types.

It also is important to investigate if there is the possibility to reduce the computational
cost with the mix of traditional and machine learning techniques.

References
1 Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. code2seq: Generating sequences from

structured representations of code. arXiv preprint, 2018. arXiv:1808.01400.
2 Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. code2vec: Learning distributed

representations of code. Proceedings of the ACM on Programming Languages, 3(POPL):1–29,
2019.

3 Philip K Chan and Richard P Lippmann. Machine learning for computer security. Journal of
Machine Learning Research, 7(Dec):2669–2672, 2006.

4 Brian Chess and Gary McGraw. Static analysis for security. IEEE security & privacy,
2(6):76–79, 2004.

5 Brian Chess and Jacob West. Secure programming with static analysis. Pearson Education,
2007.

6 Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke, Steve Beattie,
Aaron Grier, Perry Wagle, Qian Zhang, and Heather Hinton. Stackguard: Automatic adaptive
detection and prevention of buffer-overflow attacks. In USENIX security symposium, volume 98,
pages 63–78. San Antonio, TX, 1998.

7 Mark Dowd, John McDonald, and Justin Schuh. The art of software security assessment:
Identifying and preventing software vulnerabilities. Pearson Education, 2006.

8 Wes Felter, Alexandre Ferreira, Ram Rajamony, and Juan Rubio. An updated performance
comparison of virtual machines and linux containers. In 2015 IEEE international symposium
on performance analysis of systems and software (ISPASS), pages 171–172. IEEE, 2015.

9 Samuel Gonçalves Ferreira. Vulnerabilities fast scan - tackling sast performance issues with
machine learning. Master’s thesis, University of Minho, 2019.

10 Rahma Mahmood and Qusay H Mahmoud. Evaluation of static analysis tools for finding
vulnerabilities in Java and C/C++ source code. arXiv preprint, 2018. arXiv:1805.09040.

11 Marco Pistoia, Satish Chandra, Stephen J Fink, and Eran Yahav. A survey of static analysis
methods for identifying security vulnerabilities in software systems. IBM Systems Journal,
46(2):265–288, 2007.

12 R. W. Shirey. Internet security glossary, version 2. RFC, 4949:1–365, 2007.
13 Robert W. Shirey. Internet security glossary, version 2. RFC, 4949:1–365, 2007. doi:

10.17487/RFC4949.
14 Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of

machine learning algorithms. arXiv preprint, 2012. arXiv:1206.2944.

http://arxiv.org/abs/1808.01400
http://arxiv.org/abs/1805.09040
https://doi.org/10.17487/RFC4949
https://doi.org/10.17487/RFC4949
http://arxiv.org/abs/1206.2944

	1 Introduction
	2 Vulnerability Detection
	2.1 Injection attack
	2.2 Detection techniques

	3 Proposed approach
	3.1 System Architecture

	4 Development
	4.1 Datasets
	4.2 Hardware and technical details

	5 First Phase
	5.1 Data filtering
	5.2 Preprocessing
	5.3 Hyperparameter optimization
	5.4 Train

	6 Testing and Results
	7 Conclusion and Future Work

