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—— Abstract

Problem-solving is considered one of the most important skills to retain in the coming decades for
building a modern and proactive society. In this realm, computer programming learning is vital to
enrich those skills. Practicing in this area boils down to solve programming exercises. In order to
foster this practice, it is necessary to provide students with the best of the breed automated tools
and a good set of exercises in a fair quantity covering the curricula of a typical programming course.
Despite the increasing appearance of automated tools such as program evaluators, gamification
engines and sophisticated web environments, access to exercises remains problematic. In fact,
although the existence of several code repositories (most for feed computer programming contests),
the majority of them store the exercises in proprietary formats and without any access facilities
hindering their use. This leaves no other option to teachers but to manually create programming
exercises which is time-consuming and error prone, or simply, reuse the same exercises, from previous
years, which is considered as a detrimental and limiting approach to enhance multi-faceted and
creative programmers.

The article surveys the current interoperability efforts on programming exercises, more precisely,
in terms of serialization formats and communication protocols. This study will sustain the selection
of an API to feed a code playground called LearnJS with random programming exercises.
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1 Introduction

The need for educational resources repositories has been growing in the last years since more
instructors are eager to create and use digital content and more of it is available. This growth
led many to neglect interoperability issues which are crucial to share resources and to reuse
them on different domains [11].
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One of these domains is computer programming. In this realm, the increasing popularity
of programming contests worldwide resulted in the creation of several contest management
systems fed by code exercise repositories. At the same time, Computer Science courses use
programming exercises to encourage the practice of programming. Thus, the interoperability
between these types of systems is becoming, in the last decade, a topic of interest in
the scientific community [12]. In order to address these interoperability issues, several
programming exercise formats and API were developed to expose these resources in a
standard fashion.

This article explores the current state of programming exercise interoperability by sur-
veying the most popular programming exercise serialization formats and API for exercise
consumption. This study will sustain the selection of an API based on its simplicity and
flexibility, to be consumed by a code playground called LearnJS.

The remainder of this paper is organized as follows. Section 2 surveys syntactic interoper-
ability on programming exercises based on how data is serialized and how it is communicated
between systems. In Section 3, one of the APIs previously studied is used to fed a code
playground called LearnJS. Finally, Section 4 summarizes the main contributions of this
research and presents some plans for future work.

2 Programming Exercises

Computer programming is a complex field [2]. One of the most efficient ways to learn to
program is through solving exercises. For the practice to be effective, there must be some
mechanism that provides feedback on the quality of the learner’s resolution. Nowadays, most
programming courses typically have large classes and, thus, it is difficult for the teacher to
provide timely and consistent feedback [1].

In this context, a set of automated tools has emerged that promote the edition, test, and
execution of programs and delivers fast and expressive feedback based on program evaluators.
Moreover, several systems combine gamification elements to promote extrinsic and intrinsic
motivation to foster students’ engagement and loyalty [3]. Despite these advances, the scarcity
of programming exercises is still a problem. Although there are several code repositories [11],
they do not provide any kind of API hindering its automatic consumption. In addition, those
who provide these API return exercises in disparate formats, which leads to the need to use
converters to harmonize formats. With this scarcity of exercises and given the difficulty of
creating promptly good exercises, teachers often reuse exercises from previous years, which
limits creativity.

In the next subsections two surveys on programming exercises interoperability are presen-
ted based on data and communication facets.

2.1 Formats

Nowadays, there is a plethora of exercise formats [9]. Most of them were created to formally
represent exercises for computer programming contests and are often stored in contest
management systems or code repositories.

CATS ! is a format for programming assignments. The format encoded in XML describes
the exercise metadata and a set of additional resources such as statement, tests, test programs,
etc. All these files are wrapped up in a ZIP file to facilitate deployment.

! nttp://imcs.dvgu.ru/cats/docs/format.html
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Freeproblemset (FPS) 2 is a transport file format for the storage of all information
about a programming exercise. It aims to provide free exercises sets for managers of
ACM/ICPC Online Judges by transporting data from one judge to another. The format uses
XML to formalize the description of a programming exercise. It includes information on the
exercise itself, test data, special judge data (optional) and solutions (optional).

Mooshak Exchange Format (MEF) is the internal format of Mooshak 3 defined as a
system for managing programming contests on the Web [5]. Mooshak is being used in several
Universities worldwide to support learning activity. In the competitive context, it was used
as the official evaluation system for the IEEE programming contests for some years. MEF
includes a XML manifest file referring several types of resources such as problem statements
(e.g. PDF, HTML), image files, input/output test files, correctors (static and dynamic) and
solution programs. The manifest also allows the inclusion of feedback and points associated
to each test.

Peach Exchange Format (PEF) is a specific format for programming task packages
used in Peach 4, a system for the presentation, collection, storage, management and evaluation
(automated and/or manual) of assignments [14].

YAPEXIL [7] is a language for describing programming exercise packages, which builds
on top of the XML dialect PEXIL [10]. Comparatively, YAPEXIL (1) is formalized through a
JSON Schema rather than an XML Schema, (2) replaces the logic for automatic test generation
with a script provided by the author, and (3) adds several assets that underpin different
types of programming exercises. Its JSON Schema can be divided into four separate facets:
metadata, containing simple values providing information about the exercise; presentation,
including components that are presented to either the student or the teacher (e.g., problem
statement and instructions); assessment, involving what enters in the evaluation phase (e.g.,
tests, solutions, and correctors); and tools, containing any additional tools that complement
the exercise (e.g., test generators).

In the last years, several approaches appeared to evaluate the expressiveness of program-
ming exercises formats [4]. One of the most notable approaches is the model proposed by
Verhoeff where he describes conceptually the notion of a task package as an unit for collecting,
storing, archiving, and exchanging all information concerning with a programming task. The
choice of the Verhoeff model over the alternatives is due to its more comprehensive coverage
of the required features. This model organizes the programming exercise data in five facets:
(1) Textual information — programming task human-readable, (2) Data files — source files
and test data, (3) Configuration and recommendation parameters — resource limits, (4) Tools
— generic and task-specific tools, and (5) Metadata — data to foster the exercises discovery
among systems. Table 1 presents a comparative study of all the referred formats based on
the Verhoeff model.

This study confirms the diversity of programming exercises formats highlighting both
their differences and their similar features. This heterogeneity hinders the interoperability
among the typical systems found on the automatic evaluation of exercises. Rather than
attempting to harmonize the various specifications, or working on specific data ingestion
approaches, a pragmatic solution could be, for instance, to provide a service for exercises
formats conversion [9] based on a pivotal format in which the conversion is based.

2 http://code.google.com/p/freeproblemset/

3 https://mooshak2.dcc.fc.up.pt/
4 http://peach3.nl
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Table 1 Comparison of programming exercise formats.

Category Feature CATS FPS MEF PEF PExIL YAPExIL

Multilingual X X X X
HTML format X X X X X X

LaTeX format X
Image X X X X X X

Textual

Attach files X X X
Description X X X X X X
Grading X
Samples X X
Solution X X X X X X
Skeleton X
Multi-language X X X X X
Data files Tests X X X X X X
Test-groups X X X X
Sample tests X X X
Grading X X X X
Feedback X X X
Compiler X
Executor X
Configuration Memory limit X X X X
Recommendation  Size limit X
Time limit X X X
Code lines X
Compiler X X X
Test generator X X X
Feedback generator X X X
Tools Skeleton generator X X
Checker X X X X
Corrector X X X
Library X X X X
Exercise X X X X X X
Author X X X X
Event X X X X
Metadata Keywords X X X X
License X X
Platform X X
Management X X

2.2 API

There are several code repositories [11]. Despite its existence, few offer interoperability
features such as standard formats for their exercises and APIs to foster its reuse in an
automated fashion. The most notable APIs for computer programming exercises consumption
are CodeHarbor®, CrimsonHex, FGPE AuthorKit®, ICPC”, and Sphere Engine-3

https://codeharbor.openhpi.de/
https://python.usz.edu.pl/authorkit/ui
https://clics.ecs.baylor.edu/index.php/Contest/API
https://docs.sphere-engine.com/problems/api/quickstart
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FGPE Authorkit [6] is a Web programming exercises management tool that was created
as part of the Erasmus+ Project entitled Framework for Gamified Programming Education
(FGPE). The Authorkit aims to foster the creation of gamified programming exercises. The
Web application allow users to prepare gamified programming exercises divided into two
facets: to create the content of exercises and to assign a gamification layer. The former
allows to specify all the components of a programming exercise (e.g. problem statement or
input/output test files). The latter allows the definition of game-based data such as rewards,
rules, leaderboards and challenges. Both data types are stored in two dedicated formats —
Yet Another Programming Exercises Interoperability Language (YAPEXIL) and Gamified
Education Interoperability Language (GEAIL) [13]. The Authorkit expose its functions,
with a dedicated API, allowing users to import content from popular non-gamified exercise
formats, and export it or share it with other peers, internally or via a GitHub repository
where all exercise data is synchronized.

Sphere Engine is a set of API that enable creating coding assessment solutions and
online code execution environments. It is composed by two API: compilers ® and problems 1°.
The former allows users to execute computer programs in a secure run-time environment
and receive feedback on the resolution. The latter allows users to create, edit, and manage
programming problems. In order to use the API one should have an API token. After
authenticating into the Sphere Engine client panel, it is possible to get a token in the API
Tokens section. The main features of the API are create, edit, and manage programming
exercises, define test cases, and import/export exercises. Using the export endpoint, clients
have access to all information about an exercise including a manifest file called config.xml
with references for all the assets wrapped in a ZIP file.

ICPC API is a well-known API for accessing information provided by a Contest Control
System or Contest Data Server. This API is meant to be useful, not only at the ICPC World
Finals, but more generally in any ICPC-style contest setup such as an external scoreboard or
a contest analysis software. The API makes available several objects as JSON elements such
as exercises, teams and members, submissions, runs, awards, contest state and scoreboards.

CodeHarbor is a repository system which allows to share, rate, and discuss auto-
gradeable programming exercises. The system enables instructors to exchange exercises
through the proFormA XML format across diverse code assessment systems. Despite all these
features, most of them are made through an user interface, and the API is only available for
grading scenarios.

crimsonHex [11] repository aims to store programming exercises as learning objects.
It provides a set of operations based in the IMS DRI specification and exposed through
a REST API. The main functions are (1) the Register/Reserve function to book a new
resource identifier from the repository, (2) the Submit/Store function push an exercise to the
repository, (3) the Search/Expose function enables external systems to query the repository
using the XQuery language, (4) the Report/Store function associates a usage report with an
existing exercise, and (5) the Alert/Expose function notifies users of changes in the state of
the repository using an RSS feed.

The comparison of API can be made through several approaches. Despite the plethora
of options the most popular are: architectural styles, domain coverage, and analytics. The
former explores architectural key aspects of the API such as design patterns, communication
protocols and encoding types. The second focuses on the coverage rate of the API in relation

9 https://docs.sphere-engine.com/compilers/overview
Oyhttps://docs. sphere-engine. com/problems/overview
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to the features of the system. The latter focuses on engineering metrics such as performance
and uptime, but also customer and product metrics such as engagement, retention, and
developer conversion. In this study, the first two approaches will be used.

The three key aspects to be aware in the architectural styles facet are the (1) design
philosophy /pattern (e.g., RESTful vs GraphQL), (2) communication protocol (e.g., HT'TP vs
WebSockets), and (3) encoding (e.g., human-readable text such as JSON vs Binary formats
like ProtoBuf). Often, these three different aspects can be mixed together. For instance, one
can use RESTful API over WebSockets but using a Binary Protocol (e.g. MessagePack).

Regarding the domain coverage of the API in the programming exercises domain, the
most important features are the management of exercises such as create, read, update, delete,
import/export exercises; the submission/grading features; the gamification features such as
challenges and scoreboards and, finally, the user management features such as assigning user
to teams.

Table 2 presents the comparison of the previous API based on two criteria: architectural
styles and domain functions.

Table 2 Comparison of API from code repositories.

Category Facet CodeHarbor  crimsonHex FGPE ICPC  Sphere
Design SOAP REST
Architectural pattern REST REST GRAPHQL REST REST
Style Communication HTTP HTTP HTTP ~ HTTP HTTP
protocol
Encoding XML XML JSON JSON  JSON
CRUD NO YES YES YES YES
Import/Export NO YES YES YES YES
Functions Submit/Grade NO NO NO NO YES
Game elements NO NO YES YES NO
Groups & Users NO NO YES YES YES

Based on this study, one can conclude that, currently, the most popular approach to
create web API is through RESTful API using the JSON format on the HTTP protocol. The
coverage of the API is done essentially in the exercises management CRUD and import /export
features.

3 Use case: LearnJS

This section presents the basic steps for the use of the FGPE Authorkit API by a code
playground called LearnJS [8] defined as Web playground which enables anyone to practice
the JavaScript language. More specifically, the playground allow users to solve programming
exercises of several types (e.g. blank sheet, skeleton, find the bug, and quizzes) and to
receive prompt feedback on their resolutions. In LearnJS, students can see videos or PDF
of specific topics and solve exercises related with those topics with automatic feedback on
their resolutions. Currently, the playground has two main components: (1) an Editor which
allows students to code their solutions in an interactive environment and (2) an evaluator
which evaluates the student’s code based on static and dynamic analyzers. At this moment,
a simple running prototype ' (version 0.7.7) is available.

Unttps://rqueiros.github.io/learnjs
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The use of the AuthorKit API by LearnJS will allow the support of a new type of exercise
called random that, after selection, will make the playground use the API to fetch a random
exercise from the Authorkit repository. The first step towards the integration is to register
in the AuthorKit with the name, email, and password data in the request body. If the
registration is successful, the next step is to log in using the registration data. This action
will return a token that should be used in any subsequent requests.

In the AuthorKit, exercises are assigned to projects that act as containers. For that
reason, the next step is to get a list of projects. Each project has a set of metadata such
as an identifier, a title, a status, the number of contributors, and exercises. With a project
identifier, it is possible to get all its exercises. An exercise is composed of several properties
such as an identifier, a title, a type, keywords, a difficulty level, and a status. To obtain
assigned assets such as the statement or tests it is necessary to explicitly append in the
correspondent endpoint the type of assets to obtain.

Table 3 presents the endpoints used for this integration (base URL: http://fgpe.dcc.
fc.up.pt/api.

Table 3 Endpoints of FGPE AuthorKit API used in the integration.

Functions Method REST API

Register POST /auth/register

Login POST /auth/login

GetProjects GET /projects

GetExercises GET /exercises?page=1&limit=6

GetExercise GET /exercises/:id

GetExerciseAssets GET /exercises/:id?join=statements&join=tests
ExportExercise GET /exercises/:id /export

Note that in order to effectively get the assets you should always use the suffix /contents
in the endpoints. For instance, for each test, the contents of input and output are in
/tests/:id /input /contents and /tests/:id/output/contents. The same logic can be used to
fetch the statement of the exercise as shown in Listing 1.

Listing 1 Inject an exercise statement in the LearnJS GUI.

// Get statement ID

const resp = await fetch(‘${baseUrll}/exercises/${id}?join=statements ‘)
const result = await resp.json();
const sId = result.statements [0].id

// Get statement (base64 string)
const statement = await fetch(‘${baseUrl}/statements/${sId}/contents ‘)
const statementBase64 = await statement.text ();

// Document fragment creation
let fragment = document.createDocumentFragment ();

fragment .appendChild (window.atob(statementBase64))

// Injection of the statement in the playground UI through DOM
document . querySelector (’#sDiv’).innerHTML = fragment.body.innerHTML

The final result is shown in Figure 1 where the statement of the exercise appears in the
top panel of the screen of the LearnJS GUI.

SLATE 2021
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® learnJSv0.7.7

I3 1. Variables 7. Work on Conditionals
Buy a cake

[ 2. Work on Variables RUN TESTS NEW TEST

John has 20 cents in is pocket. Mary has the double. Define variables johntoney and

Run the teacl

~ [@w M2. JavaScript Fundamentals M2 JavaSCI’Ipt Fundamenta|3 TESTS

log NO

I3 10. Functions BACK TO SHEET () GET TEACHER'S CODE @

[@ 11. Work on Functions

#" metric (extra challenge):

occurrences:40

IS5 3. Data Types maryMoney for both budgets. Calculate the total money of the two friends and store it in a
variable called totaltioney . Then, log in the console ‘YES' if they have sufficient money Input Output Expected
[3) 4. work on Data Types based on the value of cake_cosT , and 'NO', otherwise.
&5 general tests:
I3 5. Operators const CAKE_COS
let johnMoney B CAKE_COST @ 65
let maryMoney = johnMoney * 2;
[ 6. Work on Operators let totalMoney = johnMoney + maryMoney;
if(totalMoney >= CAKE_COST maryMoney == johnMoney * 2 @ true
I3 6. Conditionals console.log('YE
else typeofjohnMoney) @ number
@ 7. work on Conditionals conSole ot
typeof(maryMoney) @ number
I3 8. Loops
LOG console logs:
[ 9. Work on Loops (autosave eac! h 10 secon: ds) @

I3 12. Debugging Errors (0) v

Figure 1 LearnJS playground GUI.

4 Conclusion

This article surveys the current state of programming exercises interoperability at two
levels: data and communication. In the former, several exercise formats were identified and
compared using the Verhoeff model. In the latter, several API have been studied based on
their architectural styles and covered functions.

The ultimate goal of the survey is to support the best decisions to do in the process
of integrating a new exercise type in the LearnJS playground. This integration consists of
fetching exercises from the FGPE AuthorKit API and transforming them from their original
format — YAPEXIL — to the LearnJS internal format. As future work, the goal is to benefit
from the gamified layer of the FGPE AuthorKit to gamify the LearnJS playground using the
same API.
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