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Abstract
Using the DeepSEA system for smart contract proofs, this paper investigates how to use the Coq
theorem prover to enforce that smart contracts follow the Checks-Effects-Interactions Pattern. This
pattern is widely understood to mitigate the risks associated with reentrancy. The infamous “The
DAO” exploit is an example of the risks of not following the Checks-Effects-Interactions Pattern. It
resulted in the loss of over 50 million USD and involved reentrancy – the exploit used would not
have been possible if the Checks-Effects-Interactions Pattern had been followed.

Remix IDE, for example, already has a tool to check that the Checks-Effects-Interactions Pattern
has been followed as part of the Solidity Static Analysis module which is available as a plugin.
However, aside from simply replicating the Remix IDE feature, implementing a Checks-Effects-
Interactions Pattern checker in the proof assistant Coq also allows us to use the proofs, which are
generated in the process, in other proofs related to the smart contract.

As an example of this, we will demonstrate an idea for how the modelling of Ether transfer
can be simplified by using automatically generated proofs of the property that each smart contract
function will call the Ether transfer method at most once (excluding any calls related to invoking
other smart contracts). This property is a consequence of following a strict version of the Checks-
Effects-Interactions Pattern as given in this paper.
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1 Introduction

The importance of smart contracts being correct has been voiced many times, most obviously
because of the high financial risk associated with a smart contract being incorrect and
exploited (such as “The DAO” [8] and others [1, 7, 9]) which all involved the use of what we
will refer to as malicious reentrancy.

Reentrancy involves a smart contract C that triggers the execution of code of another
smart contract D which then calls a function in the original smart contract C before the
original execution of C has completed. However, when not handled properly, reentrancy can
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3:2 Enforcing Checks-Effects-Interactions in DeepSEA

cause a smart contract to behave incorrectly and be exploited. This happens with malicious
reentrancy, which maliciously exploits the situation that the original execution of C has not
completed.

This issue can be mitigated by following the Checks-Effects-Interactions Pattern which
suggests that a smart contract should first do the relevant Checks, then make the relevant
internal changes to its state (Effects), and only then interact with other smart contracts
which may well be malicious. When following the Checks-Effects-Interactions Pattern a
reentrant call is essentially no different to a call that is initiated after the first call is finished
so no additional risk from malicious reentrant calls is possible.

On the Ethereum blockchain, interacting with a malicious smart contract is even possible
when transferring Ether. This is because if the recipient is a smart contract then it has the
opportunity to run some code on receiving funds.

The problem with all this is that the modelling of smart contract execution when there is
the possibility of reentrancy is difficult and the related correctness proofs would be complex
as well. Even modelling the humble Ether transfer needs to take the possibility of reentrancy
into account.

Using the DeepSEA [2] system for proofs about smart contract correctness, a method
of enforcing the Checks-Effects-Interactions Pattern has been developed. Enforcing the
Checks-Effects-Interactions Pattern greatly simplifies the modelling of any action that might
involve external calls (including Ether transfers).

Tangibly, enforcing the Checks-Effects-Interactions Pattern means that the DeepSEA
code for a smart contract function shown on the left (Listing 1) should not be permitted and
the code shown on the right (Listing 2) should be allowed.

Listing 1 “Unsafe” function.

let unsafeExample() =
transferEth(msg_sender, 0u42);
transferSuccessful := true

Listing 2 “Safe” function.

let safeExample() =
transferSuccessful := true;
transferEth(msg_sender, 0u42)

The end result of the work in this paper is a system which automatically proves that
the Checks-Effects-Interactions Pattern has been followed for most cases when it indeed has
been, although there are some cases where the Checks-Effects-Interactions Pattern has been
followed but this system cannot prove it, as a compromise for automation. A related result
is then used to demonstrate an idea for simplifying the modelling of Ether transfers.

The main contributions of this paper are as follows:

A Coq [3] proposition formalising the notion of a smart contract function following the
Checks-Effects-Interactions Pattern. This is discussed in Subsection 2.4.

Automated proofs related to the previous contribution as well as related automated
proofs that the lists of transfers (that are directly generated by the smart contract) after
function calls are of length at most one. See Section 3 and Section 4 respectively.

A demonstration of an idea for simplifying the modelling of what states are reachable by
a smart contract by making use of some of these automated proofs (Section 4).
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2 Representing the absence of reentrancy situations as a proof goal

2.1 The DeepSEA system
All the modelling and proofs in the paper make use of the DeepSEA system for smart contract
proofs. DeepSEA [2] is an up and coming framework and smart contract language that
promises to provably link high-level specifications in Coq [3] to Ethereum Virtual Machine
(EVM) bytecode. This will give a high degree of certainty that results proven about the
high-level specifications also hold for the bytecode. The DeepSEA compiler is based upon
the CompCert verified compiler [5].

2.2 The Checks-Effects-Interactions Pattern
The Checks-Effects-Interactions Pattern suggests that a smart contract should follow a
pattern in which calls to external contracts are always the last step [12].

When following the CEIP, nested calls are equivalent to calls invoked one after another as
nested calls cannot influence the outcome of the original call (excluding considering gas). This
enables a simpler model than completely modelling reentrancy with co-recursive functions.
The simpler model is considered to be equivalent to a complete model in terms of modelling
what states are reachable and we rely on an informal knowledge for this. Ideally, we would
like to model reentrancy foundationally making use of the EVM semantics and then prove
that the simple model is equivalent to the more complex model in the case where the CEIP
is followed.

In this paper, a stricter version of the Checks-Effects-Interactions Pattern is used where
only one Interaction is permitted. This eliminates modelling complications in the situations
where two external calls are done but the first one turns out to throw an error. It is virtually
impossible to know, when modelling, whether an arbitrary external call will throw an error,
particularly due to the possibility of gas being exhausted.

This strict version of the Checks-Effects-Interactions Pattern will now simply be referred
to as the CEIP.

2.3 Relevant aspects of the DeepSEA system
Listing 3 shows the same DeepSEA smart contract function in different representations.

The intermediate level and high level representation are both generated automatically from
the DeepSEA source. First, the intermediate level abstract syntax tree in Coq is generated
from the source. The denotational semantics of the AST gives the high level representation
(by the synth_stmt_spec_opt Coq function as a part of the DeepSEA system). The AST for
each function contains the relevant information required to formulate the notion of whether
the function adheres to the CEIP. The inductive proposition described in the next section
makes use of the intermediate level AST representation.

2.4 Coq Inductive Proposition: cmd_constr_CEI_pattern_prf

The typing rule (Figure 1) corresponds to the definition of cmd_constr_CEI_pattern_prf
which is an inductive proposition in Coq capturing the notion of a function following the
CEIP. The typing rule is based upon the syntax of the smart contract as represented in the
DeepSEA intermediate level language. It uses the assumption that reentrancy is only possible
when certain syntax, such as CCtransfer is encountered. CCtransfer is the intermediate
level language construct corresponding to a transferEth call. The ○ icon indicates that the
contract cannot in any way have triggered reentrancy yet and the ○ icon indicates that
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3:4 Enforcing Checks-Effects-Interactions in DeepSEA

Listing 3 “Safe” function in different representations with similarities highlighted.

DeepSEA smart contract source code (not Coq):
let safeExample() =

transferSuccessful := true ;
transferEth (msg_ sender , 0u 42 )

DeepSEA intermediate level language in Coq:
(CC sequence
(CCstore

(LCvar Contract_ transferSuccessful := true _var)
(ECconst_int256 tint_bool true Int256.one))

(CC transfer
(@ECbuiltin0 _ _ _ builtin0_ caller _impl)
(ECconst_int256 tint_U (Int256.repr 42 _var))
(Int256.repr 42 ))))

DeepSEA high level language in Coq:
(get;;
MonadState.modify (update_Contract_ transferSuccessful true )) ;;
d <- get;;
(let (success, d') :=
me_ transfer me (me_ caller me) (Int256.repr 42 ) d in
if Int256.eq success Int256.one then put d' else mzero)

reentrancy may have been triggered by that point (and so no unsafe commands such as
writing to storage should be allowed after that point). The ○ icon would indicate a contract
that is vulnerable to malicious reentrancy but does not occur in the typing rule as the rule
defines what is safe.

The transfer related rule in Coq is shown in Listing 4. The notion that at most one external
call is allowed is captured by the fact that the proof requires the state Safe_no_reentrancy
(○) beforehand. Due to the transfer the contract is then in a state where reentrancy may
have occurred and this is captured by the state Safe_with_potential_reentrancy (○).

In Listing 5 we define that if the body of a for loop stays at state ρ (either ○ or ○) then
the for loop as a whole is also defined to stay at state ρ.

The remaining definitions are available in the GitHub repository1. This defines what
it means for a DeepSEA smart contract function to follow the CEIP. To be precise, if
cmd_constr_CEI_pattern_prf can be proven for a given function then that function follows
the CEIP.

A drawback of this formulation is that interrelated if statements are not able to be
reasoned about. If the logical content of interrelated if statements made it possible to know
the CEIP was indeed followed, this formulation would not allow those functions to be proved
to be safe. This does however simplify proof automation. An alternative approach which
made use of the high level representation of the smart contract was also explored. This
“instrumented semantics” approach added reentrancy state tracking to the semantics of
DeepSEA, and as a result is able to reason about interrelated if statements. This alternative
approach still assumes specific syntactic elements correspond to the possibility of causing
reentrancy.

1 https://github.com/Coda-Coda/deepsea-1/tree/fmbc-2021 – See README for the specific files
relevant to this paper.

https://github.com/Coda-Coda/deepsea-1/tree/fmbc-2021
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Figure 1 Typing rule for a command that adheres to the CEIP, corresponding to the Coq
inductive proposition cmd_constr_CEI_pattern_prf. (Some rarely used rules have been omitted).
ρx ∈ {○, ○}.

{ρ} skip {ρ}
{ρ1} c1{ρ2} {ρ2} c2 {ρ3}
{ρ1} let x = c1 in c2 {ρ3} {○} load {○} {○} e1 := e2 {○}

{ρ1} c1{ρ2} {ρ2} c2{ρ3}
{ρ1} c1 ; c2 {ρ3}

{○} ctrue{○} {○} cfalse{○}
{○} if e1 then ctrue else cfalse {○}

{○} ctrue{○} {○} cfalse{○}
{○} if e1 then ctrue else cfalse {○}

{○} ctrue{○} {○} cfalse{○}
{○} if e1 then ctrue else cfalse {○}

{○} ctrue{○} {○} cfalse{○}
{○} if e1 then ctrue else cfalse {○}

{○} ctrue{○} {○} cfalse{○}
{○} if e1 then ctrue else cfalse {○}

{ρ} c {ρ}
{ρ} for e1 to e2 do c {ρ}

{ρ1} function {ρ2}
{ρ1} function call {ρ2}

{○} transferEth(e1, e2) {○}
{ρ} c {ρ}

{ρ} assert c {ρ}
{ρ} c {ρ}

{ρ} deny c {ρ}

Listing 4 Defining CEIP adherence for CCTransfer.

| CCCEIPtransfer :
forall e1 e2,
cmd_constr_CEI_pattern_prf
_ (* Infer the return type *)
Safe_no_reentrancy (* ○ *)
(CCtransfer e1 e2) (* Typically related to a 'transferEth' call. *)
Safe_with_potential_reentrancy (* ○ *)

(* After, the possibility of reentrancy is noted. *)

Listing 5 Defining CEIP adherence for CCFor.

| CCCEIPfor :
forall {ρ} id_it id_end e1 e2 c,
cmd_constr_CEI_pattern_prf _ ρ c ρ

(* Given a command that stays at state ρ *)
-> cmd_constr_CEI_pattern_prf _ ρ (CCfor id_it id_end e1 e2 c) ρ

(* Then the for loop as a whole stays at state ρ *)

FMBC 2021



3:6 Enforcing Checks-Effects-Interactions in DeepSEA

Listing 6 Coq tactic to prove adherence to the CEIP.

Ltac CEI_auto :=
repeat (

reflexivity
+ typeclasses eauto
+ eapply CCCEIPskip + eapply CCCEIPlet + eapply CCCEIPload
+ eapply CCCEIPfor + eapply CCCEIPtransfer + ... ).

Another drawback (with both approaches) is that other techniques to manage reentrancy
issues such as locks are not considered to be safe by these methods, even when they may
have been used in a way which is safe. On the other hand, this does simplify modelling by
only needing to consider cases equivalent to when no reentrancy occurs.

3 Automatically proving the absence of reentrancy situations

Now that we have defined the notion of a smart contract following the CEIP the goal is to
automatically prove this for every function that does indeed follow the CEIP (or at least,
most). The automation will be carried out by Coq tactics.

The tactic, partially shown in Listing 6, will repeatedly apply the constructors from
the cmd_constr_CEI_pattern_prf definition along with resolving certain typeclass goals auto-
matically. The + used to combine the tactics is critical to ensure the tactic backtracks as
necessary because sometimes it is not the first matching constructor that is relevant.

See GitHub2 for the full definitions of all the tactics involved. The proofs are done
automatically and provide the user with an error if they fail (which would likely indicate the
CEIP was not followed).

4 Simplifying the modelling of Ether transfer

The fact that we are following the CEIP simplifies the modelling of Ether transfer due to
the fact that nested calls can be considered to be called one after another as no nested calls
can influence the outcome of the original call (excluding gas considerations), as discussed in
Section 2.2. This means that when considering what states are reachable it is sound to treat
the transfer as only affecting Ether balances and ignore any other potential state changes.
Also, since we are following the strict version of the CEIP we know that there is at most one
call to transferEth which further simplifies the modelling.

When modelling Ether transfer in DeepSEA, at the end of a smart contract function
call a list of transfers is produced and the modelled overall balances need to be updated
based upon that list. If the list contains more than one element, how the balances should
be updated is unclear due to the possibility of reentrancy having occurred. This is where
a proof that only one transfer at most was directly generated is particularly useful. Coq
allows us to pass this proof as an argument to our definition and use it to discharge the case
where the list is longer than one element, as shown in Listing 7. This is greatly useful for
simplifying the modelling by allowing us to demonstrate to Coq that we do not need to model
reentrancy related to multiple transfers. If we did not have the proof we would be stuck

2 https://github.com/Coda-Coda/deepsea-1/tree/fmbc-2021 – See README for the specific files
relevant to this paper.

https://github.com/Coda-Coda/deepsea-1/tree/fmbc-2021
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Listing 7 Updating balances for a list of length at most one.

Program Definition update_balances_from_transfer_list transfers
( length_evidence : length transfers <= 1 ) previous_balances a :=

match transfers with
| [] => previous_balances a
| [t] => update_balances_from_single_transfer contract_address

(recipient t) (amount t) previous_balances a
| (h :: i :: t) as l => _ (* Coq allows us to discharge this case. *)

end.
Next Obligation. (* This is the case where transfers = h :: i :: t *)
intros.
exfalso. (* There is an impossible situation. *)
rewrite <- Heq_transfers in length_evidence. simpl in length_evidence. lia.

Defined.

with either truncating the list (which would be inaccurate) or assuming all the transfers took
place with no reentrancy (which would also be inaccurate and leave the supposedly proven
correct contract open to potential malicious reentrancy).

The relevant proofs that each smart contract function directly generates at most one
transfer are similar to the proofs about the CEIP being followed in the sense that the
DeepSEA inv_runStateT_branching tactic considers all branches of code execution like done
by the CEI_auto tactic (Listing 6).

This technique simplifies the modelling of Ether transfer without leaving the door open
for malicious reentrancy. The proofs are automated, only requiring the DeepSEA smart
contract programmer to follow the strict version of the CEIP.

5 Related Work

A number of other tools aim to tackle the problem of reentrancy, such as [4, 6, 10] and [11].
This work is unique in that it explicitly makes use of proofs related to the CEIP in simplifying
modelling smart contracts. It also is a step towards a smart contract proof system that
uniquely targets the EVM as well as allowing proofs to be done on a high-level representation
of the smart contract with strong guarantees that the properties proven about the high-level
representation will also apply to the EVM bytecode.

6 Conclusion

This paper discusses an approach for representing and automatically proving that DeepSEA
smart contracts follow the CEIP (code available on GitHub3). This is demonstrated by
defining an inductive proposition in Coq that states that a particular smart contract function
follows the CEIP. A proof that each smart contract function calls the Ether transfer function
at most once is also discussed. An application of these proofs to simplify the modelling of
Ether transfer is then discussed.

3 https://github.com/Coda-Coda/deepsea-1/tree/fmbc-2021 – See README for the specific files
relevant to this paper.
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Revision Notice

This is a revised version of the eponymous paper appeared in the proceedings of FMBC 2021
(OASIcs, volume 204, https://www.dagstuhl.de/dagpub/978-3-95977-209-9, published
in November, 2021). A reference to the INRIA CompCert research project [5] has been added to
clearly recognise their work, which the DeepSEA compiler is based upon, and to comply with
source code licensing conditions.
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