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Abstract
Programmatic interaction with a blockchain is often clumsy. Many interfaces handle only loosely
structured data, often in JSON format, that is inconvenient to handle and offers few guarantees.

Contract modules provide a statically checked interface to interact with contracts on the Tezos
blockchain. A module specification provides all types as well as information about potential failure
conditions of the contract. The specification is checked against the contract implementation using
symbolic execution. An OCaml module is generated that contains a function for each entry point of
the contract. The types of these functions fully describe the interface including the failure conditions
and guarantee type-safe and sometimes fail-safe invocation of the contract on the blockchain.
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1 Introduction
Contracts on the blockchain rarely run in isolation. To be useful beyond shuffling tokens
between user accounts, they need to interact with the outside world. On the other hand,
the outside world also needs to interact by initiating transactions and starting contracts
that feed information into the blockchain. One direction is addressed by oracles that watch
certain events on the blockchain, create a response by calculation or gathering data, and
then invoke a callback contract to inject this response into the chain. Trust is an essential
aspect for an oracle.

The other direction is about automatizing certain processes in connection with the
blockchain. For example, opening or closing an auction according to a schedule, programming
a strategy for an auction, or creating an NFT. To this end, an interface is needed to invoke
contracts safely. Existing interfaces are lacking because they are essentially untyped (string-
based or JSON-based) and often low level because they require dealing directly with RPC
interfaces. Trust is not needed because the process runs on behalf of a certain user.

We propose contract modules that provide a clean, language-integrated way to interact
with a blockchain from a host language (OCaml in our case). They abstract over underlying
string-based interfaces and details like fee handling. They provide a high-level typed interface
which reduces a contract invocation to a function call in the host language.

The contract modules approach does not provide a fixed API, but rather generates a
specific interface for each contract with one function for each entry point of the contract.
This interface is statically checked against the contract implementation to ensure type safety
and exception safety. That is, values passed to an interface function do not lead to type
mismatches when invoking the underlying contract. Morever, every failure condition arising
during contract execution is handled by proper error reporting according to the interface.
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5:2 Towards Contract Modules for the Tezos Blockchain

Listing 1 Simple auction contract (auction.tz).

parameter (or (unit %close) (unit %bid));
storage (pair (bool %bidding)

(pair (address %owner)
(address %hi_bidder )));

Our work is situated in the context of the Tezos blockchain, which supports Michelson
as its low-level contract language, and the host language OCaml, which comes with an
expressive polymorphic type system as well as a powerful module system that we enhance
with contract modules.

2 Context

Tezos is a third generation, account-based, self amendable blockchain [8]. It employs a
proof-of-stake consensus protocol, which includes ways to evolve the protocol itself. The
consensus protocol is executed by so-called bakers and their proposed blocks are checked by
validators. They receive some compensation in the form of tokens (Tezzies) for their work.
According to proof-of-stake, bakers and validators are nodes elected by the Tezos network
according to their token balance.

Each Tezos contract is associated with an account as well as some storage. Contracts
are pure functions of type parameter × storage → operation list × storage, where the types
parameter and storage are depend on the specific contract while the type operation is fixed by
the Tezos system. When a contract is invoked with a parameter, the blockchain provides the
current storage and updates it with the second, storage component of its return value. The
first component of the return value is a list of blockchain operations (contract deployments,
token transfers, contract invocations, and delegation of baking rights) that are executed
transactionally after the first invocation terminates. Each invocation may be accompanied
with an amount of tokens that are added to the current account balance of the callee contract.

Contracts are implemented in the language Michelson, a statically typed stack-based
language. Each contract has fixed types for its parameter and for its storage. The storage
is initialized when the contract is deployed. Besides primitive types like unit, int, bool,
address, and string, there are pairs, sums, functions, lists, and maps along with a range of
domain-specific types (operation, key, signature, timestamp, key_hash, contract, mutez – for
tokens, and so on) most of which can serve as types for storage and parameters.

A Michelson contract has a single default entry point. However, the parameter type is
typically a sum type and each component of the sum can serve as a subsidiary entry point.

3 An auction contract

As a concrete example, we consider a simple auction contract with the header shown in
Listing 1. This contract has two entry points, close and bid, expressed by giving the single
parameter a sum type. To call the entry point close we invoke the contract with parameter
Left () otherwise we use Right (), where () is the sole value of type unit. The contract’s
storage is a nested pair which contains a boolean flag and two addresses.

The contract works as follows. It is deployed with storage (true,(owner,owner)) which
indicates that bidding is allowed and the contract owner is currently the highest bidder. On
deployment the owner deposits an initial balance to indicate the minimum bid. Closing the
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Listing 2 Example contract module.

contract type Auction = sig
paid entrypoint bid ()
raises "closed" (** auction closed *)

| "too␣low" (** bid too low *)

entrypoint close ()
raises "closed" (** auction closed *)

| "not␣owner" (** caller cannot close *)
end

contract transfers the balance to the owner. Closing is restricted to the owner. Closing as
well as bidding fails if the auction is closed. If bidding is open and the amount of tokens
accompanying the bid exceeds the current highest bid, the current bidder replaces the previous
highest bidder and the previous highest bidder is reimbursed. Otherwise, bidding fails.

To invoke this contract from an OCaml program, we generate an OCaml module, say
Auction, from a specification of the contract. This module contains two functions close
and bid corresponding to the entry points. The type of these entry points reflects further
properties of these entry points as well as the ways in which an entry point might fail.

Besides the obvious, technology induced ways that a contract invocation might fail
(insufficient gas price offered, insufficient gas to complete, timeout due to lack of connectivity,
etc) a Michelson contract can fail due to a programmer induced condition caused by the
instruction FAILWITH. It terminates contract execution with an error message which is
reported back to the caller. This error message includes the top value on the stack.

We consider the technological failures like Java’s unchecked exceptions, but we wish to
deal with the explicit failures like checked exceptions [2]. Our generated code handles failures
in a suitable error monad that makes the failures explicit in a custom datatype.1

Listing 2 shows a contract module for the auction contract. It declares the entry point
bid as paid, i.e., it should be invoked with a non-zero amount of tokens, it states the pattern
() for the input value of type unit, and it specifies two failure messages that we wish to deal
with programmatically. The close entry point is similar, but it is not pair. This contract
reflects the understanding of the programmer with the intention that the raises clauses
cover all failures that can arise during execution of the respective entry point.

Listing 3 contains an OCaml module signature as it would be generated from the contract
module. The module Tezos supposedly contains types and other low-level Tezos-specific
definitions. The type pukh for public key hashes identifies contracts, the type mutez stands
for Tezos tokens, the type status reflects the internal return status, and monad is an internal
monad type. The signature declares a function and an error type for each entry point.

The error types mirror the raises clauses. The first argument of each function is the
address of the contract, then an optional argument for the transaction fee, an argument for
passing an amount of tokens (only for a paid entry point), the next argument would be for
the parameter; it is omitted here because its type is unit. The return type refers to the
specific error type.

1 Alternatively, errors could be modeled using OCaml exceptions, but we choose to stay within the
monadic framework that is used by existing Tezos APIs.
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5:4 Towards Contract Modules for the Tezos Blockchain

Listing 3 Generated signature.

type bid_errors =
| bid_closed (** auction closed *)
| bid_too_low (** bid received is too low *)

val bid
: Tezos.pukh -> ?fee:Tezos.mutez -> amount:Tezos.mutez
-> (Tezos.status , bid_errors) Tezos.monad

type close_errors =
| close_closed (** auction closed *)
| close_not_owner (** caller cannot close the auction *)

val close
: Tezos.pukh -> ?fee:Tezos.mutez
-> (Tezos.status , close_errors) Tezos.monad

4 Simple Checking

We check the contract by symbolic execution against its specification in the contract module.
Symbolic execution proceeds by calculating a symbolic stack at each transition from one
Michelson instruction to the next. The symbolic interpreter is fully typed and rejects ill-typed
Michelson programs, if the ill-typed part is reachable from the default entry point. The
initial stack is calculated from the storage type, the parameter type, and the entry point. As
we aim to keep symbolic values as concrete as possible, some instructions may turn out to be
unreachable or only reachable under certain conditions. This way, we obtain, for each entry
point, a set of final symbolic stacks along with a path condition indicating when this final
state is reachable. Moreover, for each FAILWITH instruction we obtain a symbolic value for
the reported message and a path condition indicating reachability of this instruction. We
employ the SMT solver Z3 [7, 4] to check the feasibility of a path condition.

Here are some simple examples of checkable properties.
For each entry point, we collect the set of reachable instructions. For example, the AMOUNT

instruction obtains the amount of tokens sent with a contract invocation. It should not be
possible to reach that instruction from an unpaid entry point like close. This property is
straightforward to check from the path condition generated for the AMOUNT instruction.

For each entry point, we collect the set of reachable FAILWITH instructions along with
their path condition and their arguments. In most cases the symbolic interpreter finds a
concrete argument for each FAILWITH instruction because the typical usage pattern is to
push a concrete (string) value on the stack immediately preceding the FAILWITH. It remains
to check that each argument to FAILWITH should be accounted for by one raises clause.

Checking the simple auction contract in this way already flags an omission in the contract
module (Listing 2). The problem is that bidding returns the previous highest bid as part
of the transaction where the highest bidder is stored as a value of type address. However,
to receive a token transfer, this address must by cast (by the Michelson implementation
of the contract) to an implicit contract of Michelson type (contract unit). This cast is
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Listing 4 Enhanced contract module.
1 contract type SaferAuction = sig
2 storage (Pair (bidding : bool)
3 (Pair (owner : address) (hi_bidder : address )))
4
5 entrypoint close ()
6 requires bidding raises "closed" (** auction closed *)
7 requires (SOURCE = owner) raises "not␣owner"
8 ensures not bidding
9 ensures (post.BALANCE = 0)

10 ensures (TRANSFER_TOKENS unit BALANCE hi_bidder)
11
12 paid entrypoint bid ()
13 requires bidding raises "closed" (** auction closed *)
14 requires (AMOUNT > pre.BALANCE) raises "too␣low" (** low bid *)
15 ensures bidding
16 ensures (post.BALANCE = AMOUNT)
17 ensures (post.hi_bidder = SOURCE)
18 ensures (TRANSFER_TOKENS unit pre.BALANCE hi_bidder)
19
20 invariant (post.owner = owner)
21 invariant (post.bidding => bidding)
22 invariant (post.hi_bidder = hi_bidder or post.hi_bidder = SOURCE)
23 end

unavoidable as a value of contract type cannot be stored. However, the cast may fail and its
failure leads to an error condition that is reported with a FAILWITH instruction that is not
covered by the contract module.2 The entry point for closing has the same issue with the
address of the owner, who is scheduled to receive the balance of the contract.

The best way to address this issue would be to assert that the addresses stored for the
owner and the highest bidder always cast successly into the (contract unit) type so that
the stated module type can be retained. Unfortunately, doing so requires control over the
initialization of the storage, which is part of the deployment of the contract. At present,
our design for contract modules does not include support for the deployment of a contract.
Moreover, it is not clear whether it makes sense to support it as there is no guarantee that a
contract will be deployed using the API generated from a contract module.

The quick fix is to add raises clauses for the No entrypoing ... message. With this
fix, we successfully check the module description against the Michelson implementation of its
contract. Another fix would be to rewrite the contract to enable the dynamic creation of
auctions.

5 Advanced Checking

As it is expensive to invoke a contract just to find out that it fails, we propose to extend
entry point specifications with preconditions along with some global invariants as shown in
Listing 4. The idea is that the generated OCaml module tries to check the preconditions

2 We generated the Michelson code for this example using the Liquidity compiler (https://www.
liquidity-lang.org/). While the failures for closed and too low are explicit in the source pro-
gram, the compiler inserts the casts into the contract type automatically using the error message No
entrypoint default with parameter type unit.
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5:6 Towards Contract Modules for the Tezos Blockchain

off-chain before invoking the contract. To this end, the off-chain code needs to obtain
properties like balance, storage etc of the contract, but this information is available from a
Tezos node without a fee! Of course, such an off-chain check is prone to race conditions as
concurrent contract invocations from other parties may interfere and change the data before
our module gets a chance to invoke the contract.

Generally, a specification can refer to the values available to the contract. For example,
the instructions SOURCE3, BALANCE, and AMOUNT refer to the respective values. As the current
BALANCE includes the AMOUNT sent with the transaction, we write pre.BALANCE (= BALANCE
− AMOUNT) for the balance before the transaction starts and post.BALANCE for the balance
after the transaction finishes. The latter is calculated by subtracting the amounts transferred
from the current BALANCE. The existence of a token transfer in the returned operation list is
indicated by the respective TRANSFER_TOKENS instruction. The components of the storage
are referred to by name. We distinguish the outgoing storage by prepending post. as in
post.owner.

For each clause requires Φ raises s, we take the path condition Θ for a FAILWITH
instruction with argument matching the string s and check that Φ ∧ Θ is not satisfiable in
the context given by the initial stack for the entry point.

From all requires Φi and ensures Ψj clauses, we check that ¬(
∧

Φi →
∧

Ψj) is
unsatisfiable in the context given by the initial stack for the entry point and its corresponding
final stack and path condition.

We discuss two of the preconditions to highlight the properties that need to be analyzed
and where race conditions may interfere.

The precondition SOURCE = owner of close can be checked off-chain because the owner’s
address is part of the storage. However, it is in general unsound to perform such a test
off-chain because the owner’s address could change if an entry point changes that component
of the storage. To safely check this precondition, all other entry points must preserve the
owner’s address, which is indeed the case by the postcondition in line 17. This postcondition
is verified as outlined above.

The situation is slightly more complex at the bid entry point. The failure "closed" is
guarded by bidding. As the bidding component of the state can change, a precise prediction
is not possible. A closer look reveals some subtlety. If bidding is true, then the flag may
have changed by some interleaved call to close. However, if bidding is false, then there is
no point in invoking the contract because bidding will never be reset to true. We address
this situation by verifying the global invariant post.bidding => bidding.

For the failure "to␣low", the analysis is very similar: we need to know that there
is no successful execution of bid after an execution of close. Moreover, each invoca-
tion of bid raises the balance of the contract monotonically. Thus, if the off-chain check
AMOUNT > pre.BALANCE fails, we can be sure that the contract invocation will also fail; either
because someone closed the auction or because the balance is at least as high as in the
off-chain sample. Checking pre.BALANCE off-chain is particularly simple, because it is the
current balance of the account.

3 The execution of a Michelson contract is part of a transaction, which can encompass several contract
executions. The SOURCE of a Michelson contract is the originator of the entire transaction.
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6 Symbolic interpretation of Michelson

Michelsym, our symbolic interpreter for Michelson, works in two stages. In the first stage,
it calculates symbolic stacks between each pair of reachable instructions. The underlying
symbolic domain comprises all concrete values, supports the type system, and generates a
term representation for symbolic values. Michelsym collects a path predicate that is extended
at each conditional, but which remains uninterpreted. If symbolic execution reaches certain
instructions (most notably FAILWITH), Michelsym records the argument value and the path
condition.

Presently, Michelsym works on Michelson files which result from compiling the examples
provided with the Liquidity compiler. It generates human-readable output as well as output
in the SMTlib format suitable for SMT-solvers like Z3. This output needs to be weaved
together manually with the formulas generated from a contract module.

We plan to revise Michelsym so that it directly communicates with Z3 to directly check for
unsatisfiable path conditions and to be better integrated with the contract module frontend.

7 Related work

Smart contract-based applications often require interaction between a smart contract on
the blockchain and the outside world. However, smart contracts cannot connect to external
sources on their own. This is where oracles [13, 5] come into play. Oracles act as a bridge
between smart contracts and external sources. Namely, they collect and verify external
information and make it available to smart contracts on the blockchain. Several research
works have been conducted to provide oracle solutions for the Blockchain. Adler et al.[12]
proposed a framework to provide developers with a guide for incorporating oracles into
blockchain-based applications. Oracles may need to observe the state of the chain to determine
what information to send. In addition, oracles transmit data from external sources to the
blockchain. Therefore, they would need to have a programmatic interface to interact with
the blockchain.

The basic idea of our advanced checking, namely precondition checking, is inspired by
JML, the Java modeling language [11, 6], in which the behavior of program components
is described as a contract between Java program and its clients. This contract specifies
preconditions that must be satisfied by clients and postconditions that are guaranteed by the
program. A precondition supplied with a client call must be verified before a function defined
by the program is called, and the program guarantees that the postconditions are satisfied
in return after the call. The original idea of using preconditions and postconditions dates
back to Hoare’s paper [10]. Software contracts have also been proposed for blockchain [3]. In
our approach, the safe contract module in the OCaml language comes close to contracts in
this sense. Several applications are based on JML [14]. Ahrendt et al. [1] propose the KeY
framework for deductive software verification.

Our contract module specifies preconditions and then off-chain checks whether a user call
satisfies those preconditions. Symbolic execution plays an important role in the preconditions
checking in our method. A smart contract is verified against its specification in the contract
module by symbolic execution. In a paper on symbolic execution [9], Hentschel et al. proposed
the symbolic execution debugger (SED) platform, which is based on the KeY framework.
The platform SED has a static symbolic execution engine for sequential programs.
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5:8 Towards Contract Modules for the Tezos Blockchain

8 Conclusion

Current blockchains often provide low-level interfaces to interact with smart contracts. These
interfaces work with loosely structured without static guarantees. This paper presents ongoing
research on the programmatic interaction with smart contracts on the Tezos blockchain that
could benefit developers of mixed applications and oracles comprised of on-chain and off-chain
parts. The approach does not provide a general API, but targets each individual smart
contract by generating a specialized contract module that provides a typed high-level interface
from a contract specification. In doing so, errors from contract calls are explicitly specified in
a user-defined data type. A contract call is wrapped in a fully typed and integrated OCaml
function. In addition, the wrapper can check preconditions before the actual call to reduce
the waste of gas of a failed call.

While our conceptual approch is applicable and would be beneficial for other blockchains,
the actual implementation is very much tied to the Tezos blockchain. The key asset here is
the symbolic interpreter which is hardcoded for Michelson and adapted to the peculiarities
of the Tezos blockchain. By targeting Michelson, our work is applicable to all languages
running on Tezos, but a similar tool would have to be developed from scratch for another
blockchain.
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