
Fast Map Matching with Vertex-Monotone
Fréchet Distance
Daniel Chen #

Apple, Cupertino, CA, USA

Christian Sommer #

Apple, Cupertino, CA, USA

Daniel Wolleb #

Apple, Cupertino, CA, USA

Abstract
We study a generalization for map matching algorithms that includes both geometric approaches
such as the Fréchet distance and global weight approaches such as those typically used by Hidden
Markov Models. Through this perspective, we discovered an efficient map matching algorithm with
respect to the vertex-monotone Fréchet distance while using a heuristic tie-breaker inspired by global
weight methods. While the classical Fréchet distance requires parameterizations to be monotone, the
vertex-monotone Fréchet distance allows backtracking within edges. Our analysis and experimental
evaluations show that relaxing the monotonicity constraint enables significantly faster algorithms
without significantly altering the resulting map matched paths.

2012 ACM Subject Classification Theory of computation → Shortest paths

Keywords and phrases Fréchet distance, map matching, minimum bottleneck path

Digital Object Identifier 10.4230/OASIcs.ATMOS.2021.10

1 Introduction

With the widespread availability of receivers for the Global Positioning System (GPS) in
modern cars and smartphones came the rise of large databases of GPS traces (also called
trajectories). These trajectory databases are valuable sources for various applications like
map construction [8, 2, 25], map refinement and correction [42, 26], traffic estimation [6, 9, 35],
travel time estimation [28, 47], dynamic routing [43, 14, 12, 13], ride sharing [18], mobility
studies [19, 36], location mining [53], and many more. As a first step, GPS traces often
get mapped to a road network via a non-trivial process called map matching. Beyond the
applications mentioned above, map matching can also help with indexing the trajectory
database to support fast retrieval of traces [30, 21].

Given a GPS trace as a sequence of (latitude, longitude) pairs, possibly equipped with
time stamps and auxiliary information, a map matching algorithm is expected to return a
connected sequence of road segments or edges (i.e., a path) in the road network that the
input trace originally traversed. In some situations, the match is rather obvious, e.g., for a
straight-line trace along an isolated stretch of road. The main challenge of map matching
lies in the interplay of noisy GPS observations and dense road networks, especially in urban
settings with complex intersections, highway crossings, and stacked roads, where skyscrapers
may further block or otherwise interfere with the satellite signal. In such scenarios there can
be many candidate paths for a given GPS trace, with several viable options for the path the
device was actually traveling on.

Beyond qualitative aspects, another important consideration is the performance of a
map matching algorithm. Contemporary trajectory databases are large, as is their growth,
and many of the applications mentioned above typically benefit from low-latency processing
of the most recent traces. Furthermore, road networks change over time, at least locally,

© Daniel Chen, Christian Sommer, and Daniel Wolleb;
licensed under Creative Commons License CC-BY 4.0

21st Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2021).
Editors: Matthias Müller-Hannemann and Federico Perea; Article No. 10; pp. 10:1–10:20

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dchen8@apple.com
mailto:csommer@apple.com
mailto:wolleb@apple.com
https://doi.org/10.4230/OASIcs.ATMOS.2021.10
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


10:2 Fast Map Matching with Vertex-Monotone Fréchet Distance

which in turn may require a decent amount of reprocessing of historical traces. Faster map
matching performance can then be leveraged to achieve better tradeoffs between the number
of cores required for map matching, the latency of the final result, and the amount of data
that can be processed.

1.1 Related Work
Within the field of trajectory mining, map matching has been studied in many different
models. For a general survey, we refer to Zheng [52]. For a survey on online map matching
(where we are given only a few recent GPS points), we refer to Quddus et al. [39].

In this paper, we are interested in offline map matching, where the input consists of a
typically longer GPS trace that should be matched to the map. Offline map matching allows
to match many traces to a map simultaneously [31]. However, most papers, including our
work, study the scenario where each trace is matched separately and independently.

A survey by Wei et al. [48, 49] distinguishes between incremental and global approaches.
While incremental algorithms were successful at the SIGSPATIAL Cup 2012 [3, 45], global
approaches are generally more accurate [7]. Weight-based, global approaches, like the Hidden
Markov Model by Newson and Krumm [32], are widely used [24, 34] and also work in the
online setting [23]. However, as Wei et al. [48, 49] argue, they require careful parameter
tuning and make strong independence assumptions on the distribution of the GPS errors.
Geometric approaches largely avoid parameter tuning by simply minimizing a distance
function between the trace and a matching path.

The Fréchet distance is frequently used in many different variations for map matching [50,
11, 44, 4, 10] and other applications [27] and is also the main ingredient in our algorithm.
Indeed, our algorithm borrows from much of the prior research into Fréchet distance based
map matching, but our focus is on map matching high sampling rate and relatively low error
GPS traces in a small number of microseconds per crumb, while quickly rejecting those with
high error. There are many large data sets consistent with these properties, including the
one in SIGSPATIAL Cup 2012, and they are often a more reliable source of information than
high error or sparsely sampled GPS traces. By focusing on these data conditions and by
relaxing the Fréchet distance, we are able to avoid more complex machinery in [50, 11, 44]
and optimize absolute runtimes for low error traces.

There is also prior work on map matching with respect to the Fréchet distance while
restricting candidates to shortest paths on the graph [10]. While our algorithm does not
enforce such a restriction, we do prefer shorter routes when breaking ties. Indeed, map
matching algorithms based purely on the Fréchet distance may sometimes choose an arbitrary
matched path out of the set of paths with the same Fréchet distance. Wei et al. [48, 49]
presented an algorithm that combines a Fréchet distance and a weight-based approach that
prefers shorter and closer routes, and we build on their result with the goal of improving the
running time without sacrificing accuracy.

1.2 Contributions
We present a novel map matching algorithm based on the vertex-monotone Fréchet dis-
tance [46, 27]. There are several ingredients that contribute substantially to performance
and quality. We discuss the following three in more detail:

Wenk et al. [50] compute the weak Fréchet distance by pruning the search space using the
road network geometry. Pursuing an analogous approach, we get a significant performance
boost.



D. Chen, C. Sommer, and D. Wolleb 10:3

We present a novel trace simplification technique to further improve the running time.
To distinguish between different paths of the same distance, we introduce a global weight
function, similar to the one used by Wei et al. [48, 49], to achieve a high matching
accuracy.

Finally, we propose a general framework that provides a unified view on both Hidden Markov
Models and Fréchet distance approaches. We argue that they both can be seen as path
searches in parametrization spaces, which motivates some of the tradeoffs we chose when
designing our algorithm. In our experimental evaluation, we observe that our algorithm is
significantly faster than previously published results, which makes it a viable and competitive
alternative to popular HMM-based methods.

2 Preliminaries

2.1 Fréchet distances between curves
In map matching, we want to find a matching path through the road network that is closest
to a given trace of a GPS device under some measure of similarity. To do this, we model
both paths on the network and GPS traces as curves in R2. One natural distance function
between curves in R2 is the Fréchet distance.

A illustrative mental picture for the Fréchet distance is the following: A dog and its owner
go for a walk. The dog strolls along the first curve while the owner walks along the second
curve going sometimes faster, sometimes slower, in an effort to keep the leash of the dog as
short as possible for the entire path. The shortest possible leash length that allows both of
them to traverse their paths while never walking backwards is precisely what is called the
Fréchet distance between the two curves.

In the following, we define the Fréchet distance as well as three known variants and their
relations (weak, discrete, and vertex-monotone Fréchet distance).

▶ Definition 1 (Fréchet distance [20, 5]). For two curves given as continuous maps π :
[1, n] → R2 and σ : [1, m] → R2, the Fréchet distance is defined as

dFD(π, σ) = inf
f :[0,1]→[1,n]
g:[0,1]→[1,m]

max
t∈[0,1]

∥π(f(t)) − σ(g(t))∥2 , (1)

where f and g are continuous and monotonically increasing functions with f(0) = 1, f(1) = n,
g(0) = 1, g(1) = m.

If we omit the monotonicity constraint, i.e. allow the owner and the dog to backtrack
along their curves, we get what is known as the weak Fréchet distance. While it can lead
to efficient algorithms, as proposed by Wenk et al. [50], the weak Fréchet distance can be
arbitrarily smaller than the Fréchet distance, as e.g. noted by Chen et al. [11]. In particular,
a matched trace might correspond to driving back and forth on a one-way street to better
match a loop in the trace trajectory, e.g. at a highway intersection.

Another way to relax the problem while still enforcing monotonicity is to look only at
the vertex positions, assuming that both curves are polygonal. This means that the dog
and the owner progress in discrete steps and in each step they each either jump to the next
vertex or stay put. The main issue with the discrete Fréchet distance is that it can be large
even for two curves that visually are very close if one of the two curves is sampled very
coarsely. In particular, if a long, straight section of a highway is modeled as a single segment,
even a trace that follows it very closely would have a large discrete Fréchet distance. One

ATMOS 2021



10:4 Fast Map Matching with Vertex-Monotone Fréchet Distance

way to handle this would be to supersample the geometry to a sufficiently high granularity,
but this would increase the complexity of the free space diagram. Indeed, as we will see
later on, reducing the complexity of the free space diagram through geometry simplification
significantly improves our runtimes.

Finally, we introduce yet another variant of the Fréchet distance, which we use in our
map matching algorithm. Consider the setting where the dog and the owner have to walk
continuously on two polygonal curves, but where the monotonicity constraint is relaxed to
allow for backtracking within each straight-line segment, but not past any vertex. This is
known as the vertex-monotone Fréchet distance, which was defined by van Leusden [46].
Below is a formal definition (adding the boundary constraints missing in [46]).

▶ Definition 2 (Vertex-monotone Fréchet distance [46]). For two polygonal curves given
as linearly-interpolated, continuous maps π : [1, n] → R2 and σ : [1, m] → R2, the vertex-
monotone Fréchet distance is defined as

dVMFD(π, σ) = inf
f :[0,1]→[1,n]
g:[0,1]→[1,m]

max
t∈[0,1]

∥π(f(t)) − σ(g(t))∥2 , (2)

where f and g are continuous with f(0) = 1, f(1) = n and if f(t) > i for any t ∈ [0, 1] and
i ∈ [[1, n]], then also f(t′) > i for any t′ > t, and likewise for g.

We can observe the following order between all these distance functions for any pair of
polygonal curves (here dWFD refers to the weak Fréchet distance, and dDFD refers to the
discrete Fréchet distance):

dWFD ≤ dVMFD ≤ dFD ≤ dDFD (3)

This follows from the fact that the mapping functions f and g get more and more constrained
from left to right. Moreover, we note that using the triangle inequality, we can also bound

dFD ≤ dVMFD + D, (4)

where D is the length of the longest line segment on π and σ.
Furthermore, note that we can bring dVMFD arbitrarily close to dFD by simply subdividing

long segments of π and σ. Also note that dFD can differ from dVMFD even on undirected
graphs because dFD allows the mapping to switch directions only at the vertices.

2.2 Map matching problem
The map matching problem has two inputs: The first one is a GPS trace T that describes
the trip of a driver as n points (also called crumbs), each specifying a position pi ∈ R2 and
monotonically increasing time stamps ti ∈ R. For simplicity, we assume that the times are
normalized to t1 = 1 and tn = n. We model the route of the driver as a 2D-curve consisting
of the polyline given by p1, . . . , pn and the time parametrization implied by t1, . . . , tn, where
for any time t with ti < t < ti+1, we have that T (t) is the linear interpolation between pi

and pi+1, see Figure 1.
The second input is a road network, given as a directed graph G = (V, A) with vertices V

and arcs A, where each vertex vi ∈ V has a location ℓi ∈ R2, and each arc a = (vi, vj) ∈ A

has the shape of the straight line ℓi, ℓj . Note that others often allow for arbitrary polylines as
the shape of an arc, which we can simply model as subdividing arcs with vertices of degree
two.



D. Chen, C. Sommer, and D. Wolleb 10:5

Figure 1 Visualization of three map matching situations. Crumbs shown in red were dropped
in the simplification step prior to map matching. Crumbs shown in blue got matched to the road
network. The dark blue path shows the matched path P , and the light blue lines show the matching
of crumbs onto the road network. Sometimes, GPS is very accurate and the trace lines up perfectly
with the geometry of the road network (middle). Oftentimes, the trace and the network do not
align perfectly due to the distance to the middle of the road on the map (left) or due to noisy GPS
measurements (right).

Let Π be the set of paths through G, where a path P is a sequence of m vertices v1, . . . , vm

that are connected by arcs, i.e., (vi, vi+1) ∈ A for 1 ≤ i < m. We also view P as the polygonal
2D-curve described by the sequence of arcs and parametrized such that P (i) = vi.

We are looking for a path P ∈ Π that best reflects the journey that the driver took through
the road network. To define what best means in this context, we look at two parametrizations:
f : [0, 1] 7→ [1, n] for the trace T and g : [0, 1] 7→ [1, m] for the map matched path P . We now
use the distance measures defined in Section 2.1 to restrict f and g, and to specify which
path P we desire.

▶ Definition 3 (Vertex-monotone Fréchet distance map matching). Given trace T and net-
work G, the vertex-monotone Fréchet distance map matching problem asks to find the path
P ∈ Π as well as parametrizations f and g such that dVMFD(T, P ) is minimized.

Note that for map matching, it is reasonable to relax the boundary condition of g in
dVMFD to g(0) ∈ [1, 2] and g(1) ∈ [m − 1, m] so as to allow for the beginning and end of the
trace to be each matched to the interior of an arc.

2.3 Free-space diagram

An important tool to compute the Fréchet distance between curves and also for map matching
is the so-called free-space diagram (also sometimes called free-space surface). It is defined as
the sublevel set of the Euclidean distance function with respect to the parameter space of the
trace and the graph. For a threshold ϵ > 0, the free space F≤ϵ is the set of pairs of points,
one on the trace T , one on the graph G, so that they are within distance ϵ of each other:

F≤ϵ(T, G) = {(p, q) | p ∈ T, q ∈ G, ∥p − q∥2 ≤ ϵ}. (5)

This notion is useful because searching for a map matching can now be seen as finding
a path with certain properties through this free-space diagram. Namely, we are looking
for a vertex-monotone path from (p1, u) to (pn, v) for some arcs u, v ∈ A. Let us call the
individual elements of this Cartesian product cells and its borders intervals of the free-space
diagram. We refer to Figure 2 for an illustration.

ATMOS 2021



10:6 Fast Map Matching with Vertex-Monotone Fréchet Distance

a

b

c
d

e

p1 p2 p3 p4 p5 p6

F✏(T,G)

G

T✏
a

b

c

d

e

p1

p2

p3

p4

p5

p6

T
G

P

Figure 2 (left) A trace T in grey through the arcs of a graph G. (right) The free-space diagram
with T stretched out horizontally and G in the vertical direction shows unreachable areas in dark
color. Any vertex-monotone path through the reachable free-space, like the path P in black, we
consider a valid map matching with distance at most ϵ. Note how the example is not monotone
between p4 and p5 along arc (c, e). Also note how for this distance ϵ, there is a path through the
reachable free-space that maps T to the path a → b → c → e, but there is none along a → b → d → e

as vertex d is too far away from the trace.

3 General Framework for Map Matching Algorithms

To motivate our algorithm, we introduce a general framework for map matching that includes
more than just Fréchet distance map matching.

For a discrete GPS trace T : [[1, n]] 7→ R2, a map matching can be formalized as a function
M : [[1, n]] 7→ G, where G is an embedded graph representing the road network. We observe
that if we take the Cartesian product of any continuous relaxation τ : [1, n] 7→ R2 and
µ : [1, n] 7→ G of T and M , we get π = τ × µ : [1, n] 7→ R2 × G. Moreover, any such
ρ = τ ×µ where τ(i) = T (i) where i ∈ Z yields a map matching M : [[1, n]] 7→ G by restricting
the domain of µ to integers. Therefore, it is natural to consider a class of map matching
algorithms that optimize a cost function γ(ρ) on functions ρ = τ × µ : [1, n] 7→ R2 × G

where τ(i) = T (i). We claim that both classical Hidden Markov Model (HMM for short)
and Fréchet map matching approaches fall into this class of algorithms.

3.1 Hidden Markov Model
The HMM algorithm by Newson and Krumm [32] is one of the most popular map matching
algorithms, and is the basis of map matching implementations in libraries such as Graph-
Hopper [24] and MapBox [34]. The general approach of this algorithm is to find matched
roads {ri}n

i=1 that maximize

Pr(T (n)|rn)
n−1∏
i=1

Pr(T (i)|ri) Pr(di). (6)

In the original paper, these probabilities are defined with model parameters σz, β as

Pr(T (i)|ri) = 1√
2πσz

e−0.5(∥T (i)−xi∥2/σz)2
(7)

where xi is the point on ri closest to T (i) and

Pr(di) = 1
β

e−di/β (8)



D. Chen, C. Sommer, and D. Wolleb 10:7

where

di = |∥T (i) − T (i + 1)∥2 − ∥xi − xi+1∥2| . (9)

Note that maximizing (6) is equivalent to minimizing the following cost function:

γ(ρ) = −
n∑

i=1
log Pr(T (i)|ri) −

n−1∑
i=1

log Pr(di). (10)

This cost function can be computed from ρ = τ × µ, as ri is simply the road that µ(i) lies
on, and

di =
∣∣∣∣∥τ(i) − τ(i + 1)∥2 −

∫ i+1

i

νi(t)dt

∣∣∣∣ (11)

where νi(t) = µ′(t) if µ traverses the shortest path on G from µ(i) to µ(i + 1), and νi(t) = ∞
otherwise.

Now, the problem can be viewed through the lens of finding the least costly path with
respect to γ through R2 × G. To make this efficient to optimize, the HMM algorithm
restricts µ(i) to projected points of road within a small neighborhood of each T (i). This
discretization of the problem naturally suggests defining vertices in (T (i), xi) ∈ R × G with
costs − log Pr(T (i)|ri) and shortcut edges of cost − log Pr(di) between them and then using
Dijkstra’s algorithm for shortest paths to find the least costly path with respect to γ. The
algorithm of Tang et al. [45], for example, behaves in a similar fashion, although it does not
explicitly model the problem as a HMM.

3.2 Fréchet distance
Map matching by the Fréchet distance [4] also naturally falls in this framework. To see this,
we simply plug in the definition of the Fréchet distance and note that minimizing the Fréchet
distance is the same as minimizing the cost function

γ(ρ) = max
i∈[1,n]

∥τ(i) − µ(i)∥2 (12)

if τ is a monotonic parameterization of the input trace, and µ monotone on its projected
path on the graph and γ(ρ) = ∞ otherwise. We note that it is this monotonicity condition
that precludes a simple implementation of this path optimization problem using Dijkstra’s
algorithm [16] in map matching. Instead, classical algorithms for Fréchet map matching find
optimal values for γ through binary or parametric search.

3.3 Motivation for our algorithm
With this framework in mind, our goal becomes finding a function γ that captures how “good”
a map matching is, and that, at the same time, is efficient to optimize. We observe that
if we use the vertex-monotone Fréchet distance instead of the regular Fréchet distance, we
are optimizing (12) without global monotonicity constraints, and such an optimization can
be implemented with a single Dijkstra’s search. One issue with raw Fréchet map matching
is that there may be many ties with the same γ. Wei et al. [48, 49] found that using a
HMM-like objective function on matchings with the same Fréchet distance gave good map
matching results, which inspired us to use a similar secondary optimization in our map
matching algorithm. This secondary optimization, like the HMM, can be implemented using
Dijkstra’s algorithm, notably on an even smaller portion of the parameter space. Details for
our algorithm are described in Section 4.

ATMOS 2021



10:8 Fast Map Matching with Vertex-Monotone Fréchet Distance

4 Algorithm

On a high level, our algorithm for vertex-monotone Fréchet distance map matching combines
three existing ideas in a new way:

We follow the general two-step approach of Wei et al. [48, 49] to first compute the
necessary Fréchet distance for a match to exist and then to optimize the path within that
distance threshold using a secondary objective function.
We build a representation of the reachable free-space on the fly. This was not done by
Wei et al. but by Wenk et al. [50] in the context of using the weak Fréchet distance.
Finally, we introduce the vertex-monotone Fréchet distance metric to map matching to
overcome the shortcomings of the weak Fréchet distance described in Section 2.1 and to
significantly improve the running time compared to the standard Fréchet distance.

4.1 Overview
Our algorithm works in two steps: First, we determine the vertex-monotone Fréchet distance
between T and G by running a minimum bottleneck path search through the free-space
diagram of T and G. The only parameter of this search is a maximum distance D, which we
use to decide whether there is a match for this trace or not.

Second, we search for the best path among all the ones with minimum distance. For
this tie-breaking step, we use a global weight-function to trade off minimizing the length of
the matching path P through the graph with minimizing the distances between each point
pi = τ(t) of T and its corresponding match xi = µ(t) on G.

As pointed out by Wei et al. [48, 49], such a second step is necessary to differentiate
among the often many paths P that have the same vertex-monotone Fréchet distance. Note
that a single point with high GPS error and possibly large distance from a nearest road
segment may significantly increase the number of possible segments for many other points.
For instance, such a weight function allows us to prefer the straight main street over a nearby
parallel parking road as it avoids a detour, even if the GPS signal of a car driving on the
main street is off and some individual crumbs appear to be closer to the parking road than
the main street (see Figure 3 for an example).

4.2 Distance computation
The first phase of our algorithm has two goals: Determining the vertex-monotone Fréchet
distance d∗

VMFD = minP ∈G dVMFD(P, G) as well as, if d∗
VMFD ≤ D, exploring the entire

reachable free-space of F≤d∗
VMFD

.

4.2.1 Auxiliary interval graph
To this end, we traverse the free-space surface in increasing order of the vertex-monotone
Fréchet distance. We look at this as a graph traversal problem, where the vertices are the
border intervals of the cells of the free-space diagram. In particular, we look at vertical
intervals (pi, (vj , vk)), determined by a crumb pi ∈ T and an arc (vj , vk) ∈ A, and at
horizontal intervals ((pi, pi+1), vj), determined by two consecutive crumbs pi, pi+1 ∈ T and
a vertex vj ∈ V . Each interval naturally defines a distance, namely the distance between
the point and the arc for vertical intervals and between the crumb line and the vertex for
horizontal ones, that we use as a vertex weight in the interval graph.

To define the connectivity of this auxiliary interval graph, we consider all the options of
a vertex-monotone parametrization. Vertical intervals (pi, (vj , vk)) only have two options
to continue: We can move from pi to pi+1 to the next vertical interval (pi+1, (vj , vk)),



D. Chen, C. Sommer, and D. Wolleb 10:9

Figure 3 (left) A trace proceeding along 10th Street in San Francisco from northwest to southeast
with its correctly map matched path computed with the vertex-monotone Fréchet distance map
matching algorithm (with simplificiation enabled). Note how the GPS points are consistently shifted
by about 45 meters to the northeast for the central part of the depicted trace. (right) The path
computed by the GraphHopper HMM implementation (without simplification). Observe how the
shifted points unsettle the algorithm and entice the path to enter into the parking lot and then to
even go once around the entire block to travel through Dore Street. Dore Street is significantly closer
to the observed GPS points and thus corresponds to a higher likelihood in the HMM. However, the
much longer matching path and the fact that one has to use it in the opposing direction (as Howard
Street and Folsom Street are one-way streets) make it clear that this is not the correct match. This
example illustrates why we believe that the independence assumption for GPS errors often does not
hold in practice and that, due to its geometric nature, our proposed algorithm is more robust to
such consistent offsets.

which corresponds to matching the crumb line (pi, pi+1) to within the arc (vj , vk), or
we can proceed to the end of the arc, so to the horizontal interval ((pi, pi+1), vk), which
corresponds to matching the end of (vj , vk) to within the interval (pi, pi+1). Horizontal
intervals ((pi, pi+1), vj) have two continuations for each outgoing arc of vj : For an arc (vj , vk),
we can go to another horizontal interval ((pi, pi+1), vk), saying that we match all of (vj , vk)
to within (pi, pi+1), or we can go to the vertical interval at the end of the crumb line, so to
(pi+1, (vj , vk)), saying that we match the end of (pi, pi+1) to within the arc (vj , vk).

Note how we do not add interval arcs for going to the previous crumb or to the beginning
of an arc. Those would be the arcs needed to allow for searching the weak Fréchet distance.
We refer to Figure 4 for an illustration of this interval graph on the free-space diagram and
the possible out-arcs of each interval vertex.

4.2.2 Correctness
We now argue that computing the vertex-monotone Fréchet distance corresponds to finding
a path with the smallest possible maximum vertex weight, the so-called minimum bottleneck
path, through this interval graph starting at any vertical interval involving p1 and ending at
any vertical interval involving pn. To prove this, we observe that for any two line segments in
R2 the maximum distance between the two always involves at least one of the four endpoints.
This means that for any cell of the free-space surface and any two points on neighboring or
opposite border intervals of the cell (which thus define two line segments), there is always
a monotone (but not necessarily increasing) parametrization within the cell, so that the
maximum distance is at one of the two points. Hence we only need to worry about the

ATMOS 2021



10:10 Fast Map Matching with Vertex-Monotone Fréchet Distance

a

b

c
d

e

p1 p2 p3 p4 p5 p6

F✏(T,G)

G

T

pi pi+1pi pi+1
vj

vk

vj

vk
vk0

Figure 4 (left) A vertical and a horizontal interval of a free-space graph (in bold) with their
vertex and their successors. We draw the vertex at the position within the interval that represents
the point on the arc closest to the crumb, or the point on the crumb line closest to the vertex,
respectively. Note how two of the arcs go backwards with respect to one of the parameters, so they
correspond to non-monotone parametrizations. (right) The partial interval graph of the free-space
diagram for a distance threshold ϵ. Note that there are multiple paths from (p1, (a, b)) to (p5, (c, e))
(differing around p3) that each correspond to a vertex-monotone Fréchet distance map matching.
Also note the five vertices circled in red that are in the free-space but are not reachable from the
only starting vertex (p1, (a, b)).

intersections of the parametrization with the grid lines of the free-space diagram. As vertex-
monotonicity allows us to pick any parametrization point on an interval irrespective of the
parametrization point on previous intervals, we can always pick the point that corresponds
to the projection of the crumb onto the arc (for vertical intervals) or of the vertex onto the
crumb line (for horizontal intervals), which is the interval weight we defined above.

4.2.3 Implementation
Let us now dive into the implementation of this bottleneck path search. We start by searching
for all roads that are within distance D of the starting crumb p1. Note that this is the
only spatial query in our algorithm (unlike HMM, which searches for nearby roads for every
crumb). For all these candidate roads, we build their vertical intervals and insert them into
a priority queue keyed by the interval weight. We now run a modified version of Dijkstra’s
single-source shortest path algorithm [16] to find the minimum bottleneck path to any vertical
interval containing pn. Once we find such a path, we keep exploring the graph for as long
as the bottleneck does not increase. If at any point the bottleneck reaches D, we abort the
search.

It is important to note that we build the interval graph on the fly, i.e., we do not enumerate
all interval vertices and arcs of the free-space diagram, but only traverse those reachable
within distance d∗

VMFD from the start. We store all index triples of the reachable intervals in
a hash set to be able to quickly constrain our later path optimization to this subgraph.

4.2.4 Running time
The running time of this distance computation depends on two things: the initial spatial
index lookup and the bottleneck path search. We use a Geohash-based [33] hash-table lookup
as the spatial index, which for a constant radius D looks up a constant number of hash-table
entries and thus runs in time linear to the number of roads returned. In particular, the
running time is independent of |A|, the size of the graph. The bottleneck path search runs
in time O(n∗ log n∗ + m∗), where n∗ and m∗ are the number of vertices and arcs of the
free-space diagram F≤d∗

VMFD
being explored.



D. Chen, C. Sommer, and D. Wolleb 10:11

Note that while there are faster algorithms in the worst case, i.e., ways of shaving the log,
for the minimum bottleneck path problem on undirected graphs (using linear-time median
pivoting and shrinking of connected components, see [37]) and on directed acyclic graphs
(processing the vertices in topological order voids the need for a priority queue), Djikstra’s
allows us easily to limit our search space on the graph, and give up if the bottleneck distance
becomes too large.

It is also worth comparing our running time with that of the regular Fréchet distance.
To observe the monotonicity constraint of the Fréchet distance, we can not always pick the
point with the smallest distance along the interval of the free-space. In fact, the range of
parametrization points that is feasible on an interval depends on the choice on the previous
interval as well as on the final Fréchet distance that we target. Hence, when computing the
Fréchet distance, one usually solves the decision problem, i.e., computes the earliest reachable
point on each interval for a given ϵ, and then performs a binary or parametric search to
find d∗

FD. For that decision problem no priority queue is needed, so the running time can
be bounded by O(log(D) · (n′ + m′)) where n′ and m′ are the number of vertices and arcs
of the free-space diagram of F≤D. To stress why computing the vertex-monotone Fréchet
distance is much faster than the Fréchet distance, it is important to note that the running
times for the two distance measures do not just replace the log of the binary search with the
log of the priority queue, but that computing d∗

VMFD only involves looking at F≤d∗
VMFD

while
computing d∗

FD involves looking at F≤2d∗
FD

or even F≤D depending on the implementation of
the parameter search. As the complexity of the reachable free-space grows roughly quadratic
with the search radius, overshooting the search radius when solving the decision problem can
heavily influence the running time.

4.3 Path optimization
After determining d∗

VMFD, the second step of our algorithm is to select the best path P ∗

among all those with dVMFD(T, P ) = d∗
VMFD.

For this tie-breaking step, we minimize a global weight function inspired by Wei et
al. [48, 49], namely

w(P ) =
n∑

i=1
(∆i + ∆i+1) ∥xi − pi∥2 + α

n−1∑
i=1

li, (13)

where α is a constant, ∆i = ∥pi−1 − pi∥2, xi is the point in the graph where pi gets matched
to and li is the length of the matched path between xi and xi+1. For the sentinel cases, we
use ∆1 = ∆n+1 = β, for some constant β.

The first sum in w(P ) measures the closeness of the matched path to the trace, trying
to encourage P to follow T not just at the extreme point (where d∗

VMFD is determined) but
also everywhere else. By weighing each crumb matching distance with the distance to the
previous and next crumb, we weigh those crumbs higher where the user was moving faster or
the sampling frequency is lower, which makes this formula independently of the sampling
rate (similar to the ti term by Wei et al.).

The second sum of w(P ) measures the length of the matching path P , discouraging P

from taking local detours in areas where the free-space allows multiple options. We found
that setting α = D and β = 8D works well, basically reducing the number of parameters of
our whole algorithm to a single one D, which can easily be set based on the maximum GPS
error one expects to see in T .

One intuition for why we like this weight formula is that in the simple case where T and
P are both straight horizontal lines with a constant vertical offset of a “typical” GPS error
of D

2 between them, both summands correspond to (roughly) twice the size of the area of

ATMOS 2021



10:12 Fast Map Matching with Vertex-Monotone Fréchet Distance

the rectangle spanned by T and P independent of the sampling rate or driving speed. While
the qualities of such a weight function are undeniably subjective, we argue that ours is a
slightly more natural way to trade off trace proximity and path length than the one by Wei
et al., especially since it involves the same units (meters squared) on both sides of the sum.

4.3.1 Shortest path interpretation
This weight w(P ) can be optimized using a shortest-path computation on the reachable
free-space of F≤d∗

VMFD
. The summands (∥pi−1 − pi∥2 + ∥pi+1 − pi∥2) ∥xi − pi∥2 correspond

one-to-one to vertex weights for all the n vertical intervals on every P . The summands for
α · li can be split up to arc weights on the interval graph, where each interval arc measures the
progress (forward or backward) along the graph arc involved. As an example, an interval arc
from one horizontal interval to another has to account for the entire length of the arc in the
graph. Using the hash set of reachable intervals from the first step, we can again use Dijkstra’s
single-source shortest path algorithm to find P ∗ as well as all the xi in time O(n∗ log n∗ +m∗).
Note that in our implementation, we do not use Fibonacci heaps for the priority queue, so
the asymptotic running time of our implementation is in fact O(n∗ + m∗ log n∗).

4.4 Trace simplification
In this section, we describe an additional, optional speed-up technique in our implementation:
if the temporal and spatial information in the trace T indicates that the user was travelling
at a constant speed and direction for several crumbs, we can reduce the complexity of the
free-space diagram by subsampling the trace before invoking the map-matching algorithm. If
we then interpolate the resulting map matching, we can expect the upsampled xi on P to
closely match the positions we would have gotten when map matching the original trace.

There are many well-known curve simplification algorithms and the addition of a time
component is straightforward for many of them. In particular, for a simplification threshold
of 1 meter, we experimented with the algorithm by Ramer [40], Douglas and Peucker [17],
the one by Reumann and Witkam [41] and a dynamic programming approach to optimally
select the minimum number of points. In the end, we found the following approach to give
a very good trade-off between the time spent simplifying the trace and the time saved in
map matching (which closely correlates to the number of crumbs dropped). Our algorithm
closely resembles the algorithm FrechetSimp by Agarwal et al. [1, Section 3.1], but instead
of preserving the Fréchet distance, we also preserve the speed of the trace, which can be
important in many applications. We found that simplification with a threshold of just one
meter at any provided timestamp resulted in a significant reduction in runtime.

4.4.1 Doubling-search simplification
This algorithm scans through the trace from beginning to end and incrementally decides
which crumbs to keep and which ones to skip. It does so with a slow-start binary search,
i.e., it first tries skipping 1, then 2, then 4, then 8, . . . , points until it fails (i.e., at least
one of the skipped crumbs would be interpolated more than 1 meter away from its original
position) and then uses regular binary search to find how many points can be skipped. Note
that the predicate “can x points be skipped?” is not monotone in x, meaning that it might
be possible to skip 6 points but not 5 points. In that sense, this algorithm is doing a best
effort but is not guaranteed to greedily skip as many points as possible. What is guaranteed
though is that if for some x we have that for all y ≤ x, “y points can be skipped” holds, then
the algorithm will skip at least x points (it might get lucky and skip even more points).



D. Chen, C. Sommer, and D. Wolleb 10:13

The running time of this algorithm is O(n log n): The cost for checking whether x points
can be skipped is O(x) and whenever we skip y points, the cost for doing so is bounded by
the slow-start in O(1) + O(2) + O(4) + · · · + O(y) + O(2y) = O(y) and the binary search in
O(y log y). Note that this worst case only occurs if a long stretch of points can be skipped
(in which case it is offset by time savings in the map matcher). However, the running time
drops to linear if for example at least every tenth point has to be taken. We refer to Figure 5
for illustrations of this trace simplification.

Figure 5 (left) This shows the spatial component of our trace simplification. On the straight
sections many crumbs get skipped, while in the curved parts of the loop most crumbs are kept
to ensure an accurate interpolation. (right) This shows the temporal component of our trace
simplification. While the entire trace shown is a straight line, the driver had to stop at the
intersection with Marshall Street. Therefore, many crumbs are retained there, whereas up to ten
crumbs are skipped in the area where the car was driving at a uniform speed.

5 Experiments

Table 1 Experimental results: map matching times normalized to microseconds per crumb (shown
as mean ± standard deviation). Lower is better. The algorithm leveraging vertex-monotone Fréchet
distance (VMFD) is roughly 4 times faster than the regular Fréchet distance (FD) implementation,
and one to two orders of magnitude faster than the GraphHopper HMM implementation. The
addition of our geometric trace simplification method (columns marked with +S) results in a roughly
two-fold speedup for the Fréchet distance-based methods, while only a small improvement can be
observed for the GraphHopper HMM.

Map matching time in µs per crumb
VMFD FD HMM

Data set +S +S +S
SF Bay Area 1.9 ± 3.5 4.4 ± 7.1 6.8 ± 11 19.2 ± 31 519 662
Hong Kong 1.2 ± 2.2 2.3 ± 5.4 4.0 ± 10 8.4 ± 18 51 60

The main focus of our experimental evaluation is on performance. While processing times
for a single trace matter, for most of our applications throughput matters most. In the
following, we are reporting processing times normalized by crumb for two data sets, each
with thousands of traces and millions of crumbs.

ATMOS 2021



10:14 Fast Map Matching with Vertex-Monotone Fréchet Distance

Table 2 Experimental results for the Bay Area data set for different maximum (vertex-monotone)
Fréchet distances D: (left) Map matching times normalized to microseconds per crumb (shown as
mean ± standard deviation). Lower is better. (right) Number of matching traces (out of 7736). The
vertex-monotone Fréchet distance (VMFD) consistently outperforms the regular Fréchet distance
(FD) by roughly a factor of 4, both with (+S) and without simplification.

Map matching time in µs per crumb Number of matching traces
VMFD FD VMFD FD

D +S +S +S +S
4m 0.5 ± 0.5 0.4 ± 0.5 0.9 ± 1.3 1.0 ± 1.2 74 68 72 66
8m 0.6 ± 5.3 0.5 ± 0.6 1.3 ± 2.1 1.5 ± 1.9 407 408 403 402
16m 0.8 ± 5.8 0.9 ± 1.3 2.2 ± 4.0 3.3 ± 4.9 2297 2298 2287 2288
32m 1.2 ± 5.6 1.9 ± 1.3 4.0 ± 6.5 7.9 ± 11 4072 4067 4057 4051
64m 1.9 ± 3.5 4.4 ± 7.1 6.8 ± 11 19.2 ± 31 5467 5463 5456 5454
128m 3.6 ± 5.7 11.5 ± 24 13.1 ± 26 48.8 ± 102 6218 6216 6217 6215
256m 10.3 ± 23 38.3 ± 86 39.2 ± 104 166 ± 405 6875 6873 6875 6873

Table 3 Experimental results for the Hong Kong data set: (left) Map matching times normalized
to microseconds per crumb (shown as mean ± standard deviation). Lower is better. (right) Number
of matching traces (out of 3889). The vertex-monotone Fréchet distance (VMFD) consistently
outperforms the regular Fréchet distance (FD) by roughly a factor of 4, both with (+S) and without
simplification.

Map matching time in µs per crumb Number of matching traces
VMFD FD VMFD FD

D +S +S +S +S
4m 0.4 ± 0.4 0.3 ± 0.4 0.7 ± 0.9 0.8 ± 0.9 10 8 10 8
8m 0.4 ± 0.4 0.3 ± 0.4 0.9 ± 1.3 1.2 ± 1.7 80 81 79 80
16m 0.5 ± 0.6 0.5 ± 0.7 1.3 ± 2.3 1.8 ± 3.0 377 376 377 376
32m 0.7 ± 1.0 1.0 ± 1.8 2.2 ± 4.8 3.6 ± 7.2 760 759 759 758
64m 1.2 ± 2.2 2.3 ± 5.4 4.0 ± 10 8.4 ± 18 1139 1137 1135 1133
128m 2.7 ± 5.6 6.2 ± 11 10.4 ± 29 27.3 ± 59 1611 1606 1610 1605
256m 7.5 ± 15 22.9 ± 49 30.0 ± 78 108 ± 256 2186 2178 2183 2175

5.1 Data sets

We used two sets of traces for our performance experiments. Both sets consist of Open-
StreetMap traces that we downloaded using JOSM [29]. We preprocessed both trace sets
by splitting traces at any gap of more than 15 seconds to ensure a high sampling rate and
by only keeping traces with at least 60 crumbs so that they provide reasonable context for
disambiguation. The first set consists of 7736 traces in the San Francisco Bay Area with
a total of 3.62M crumbs. The second set consists of 3889 traces in Hong Kong, totaling
at 1.63M crumbs. For the maps in our experiment, we extracted the street network out of
OpenStreetMap osm.pbf files [22, 38] using RoutingKit [14, 15]. Note that this extraction
step eliminates non-drivable segments such as hiking paths. The map of Northern California
contains 11.7M vertices and 23.6M arcs, and the map of Hong Kong contains 280k vertices
and 470k arcs.



D. Chen, C. Sommer, and D. Wolleb 10:15

5.2 Algorithms
We compare three algorithms, all implemented in Java:
1. vertex-monotone Fréchet distance map matching algorithm as described in Section 4 with

D = 64 meters (and varying D later)
2. Fréchet distance map matching algorithm with the same maximum distance D = 64

meters
3. HMM algorithm [32] in the open-source library GraphHopper [24] (default settings)
We ran all experiments on a MacBook Pro from 2019 with a 2.3 GHz 8-core Intel Core i9
CPU and 32 GB RAM. Our implementation is single threaded, however, so only one core
is being used. We ran all algorithms 3 times in a row and used the measurements of the
last run.

5.3 Quality
We tested our algorithm on the ACM GIS Cup 2012 [3] data set, with corrections from
Wei et al. [48, 49]. We disabled preprocessors and simplification, as the data set required a
matched road for each crumb. Our algorithm resulted in a 97.75% match rate, which is in
line with match rates reported in [3, 48, 49]. We visually inspected the differences from the
provided ground truth, and they appeared to be ambiguous from a geometric standpoint.
If certain modeling assumptions are desired, the optimization function can be modified to
include them, and we leave that open for future work. The relaxation to vertex monotonicity
can sometimes alter map matching results at the end points of segments, for example when
the GPS signals fluctuate back and forth for a few meters for cars waiting at traffic lights,
but the sequence of road segments matched does not change.

We also noticed that in some scenarios, such as shifted GPS locations in urban canyons,
using a Fréchet distance type distance as our primary objective function has significant
advantages over relying on distributional assumptions such as those in a HMM. Error
distributions may not be independent, and modeling assumptions that rely on independence
can result in unexpected map matching results, as for example in Figure 3.

5.4 Performance results
For an overview of experimental results, see Table 1.

Without trace simplification, we measured 4.4µs per crumb for our algorithm and 662µs

per crumb for the GraphHopper HMM on the Bay Area traces. On the OSM Hong Kong traces,
we measured 2.3µs per crumb for our algorithm and 60µs per crumb for the GraphHopper
HMM. Therefore, our implementation is one to two orders of magnitude faster than the
GraphHopper HMM.

For the regular Fréchet distance, we implemented a search procedure using a slow-start
binary search up to at most 64 meters and down to a precision of 1 meter. We found the
vertex-monotone Fréchet distance implementation to be roughly 4 times faster than the
regular Fréchet distance implementation.

We also measured the impact of the trace simplification described in Section 4.4 and
report a roughly two-fold speedup for an accuracy of 1 meter which results in about 2 out of
3 crumbs being dropped. Note that both vertex-monotone Fréchet distance and the regular
Fréchet distance benefit from simplification. For completeness, we also ran the GraphHopper
HMM on the simplified traces. As the simplification is a geometric simplification, both
Fréchet distance map matching variants are fairly stable, whereas there is less reason to

ATMOS 2021



10:16 Fast Map Matching with Vertex-Monotone Fréchet Distance

(0,8] (8,16] (16,24] (24,32] (32,40] (40,48] (48,56] (56,64] [unm.]

0.
2

1.
0

5.
0

20
.0

10
0.

0
50

0.
0

VMFD simplified
VMFD non−simpl.
FD simplified
FD non−simpl.

Fréchet distance [m]

tim
e 

pe
r c

ru
m

b 
[µ

s]

Figure 6 Box plots of the running times per crumb for the traces in the Bay Area dataset grouped
by their (vertex-monotone) Fréchet distance. The last column [unm.] contains the traces that did
not match under the maximum distance of D = 64 meters. We observe that the running time per
crumb grows relatively slowly with increasing Fréchet distance. Furthermore, the traces that do not
match are faster to process than the ones that do.

believe that the HMM model would be stable under this simplification. As can be seen
in Table 1, it also turned out that the GraphHopper HMM does not benefit much from
simplification, most likely because the overall lengths of paths being computed does not get
reduced by much.

Finally, we also studied the effect of decreasing and increasing the maximum Fréchet
distance parameter D from our default value of 64 meters. As Tables 2 and 3 show, the
map matching time grows superlinear with D while the number of additional matched traces
does not. Especially in the Bay Area data set, where most traces already match with 32
or 64 meters, increasing to larger D is not worth the extra computational effort in many
applications. Manual inspection of the additionally matched traces with D > 64 meters
showed that these are almost exclusively traces of hiking, biking, ferry, cablecar or train trips
which therefore justifiably do not match against the street network at D = 64 meters. We
also provide insight into the distribution of processing times by Fréchet distance in Figures 6
and 7.

5.5 Literature comparison
While run on different graphs, traces and computers, and possibly implemented with dif-
ferent programming languages, some previous papers report throughput numbers in their
experimental sections, which we list here.

For a sampling interval of 1 second, Wei et al. [48, 49] report a map matching time of
around 400 000µs per crumb for their Fréchet distance implementation and of about
1000µs per crumb for the HMM by Newson and Krumm [32] (numbers from [48, page 7,
logarithmic plot]).



D. Chen, C. Sommer, and D. Wolleb 10:17

(0,8] (8,16] (16,24] (24,32] (32,40] (40,48] (48,56] (56,64] [unm.]

0.
2

1.
0

5.
0

20
.0

10
0.

0
50

0.
0

VMFD simplified
VMFD non−simpl.
FD simplified
FD non−simpl.

Fréchet distance [m]

tim
e 

pe
r c

ru
m

b 
[µ

s]

Figure 7 Box plots of the running times per crumb for the traces in the Hong Kong dataset
grouped by their (vertex-monotone) Fréchet distance. The last column [unm.] contains the traces
that did not match under the maximum distance of D = 64 meters. Same observation as for Figure 6.

Tang et al. [45], the winners of the SIGSPATIAL cup 2012 on map matching, report a
time of about 67µs per crumb [45, page 4, Figure 2].
Finally, Yang and Gidofalvi [51] measured their optimized HMM at 22 to 40µs per crumb.

Many of these algorithms are implemented in C++, which allows for significantly more
optimization when compared with our Java implementation. Even so, our algorithm exceeds
previously reported throughputs by an order of magnitude and with its geometric guarantees
is a strong alternative to HMM-based algorithms.

6 Conclusion

We propose the metric of vertex-monotone Fréchet distance as an effective alternative for
efficient map matching. We show that Fréchet distance-based map matching can be fast
even while combining the power of geometric optimization with global weight methods. Our
algorithm requires very little parameter tuning and does not make strong assumptions on
the distribution of GPS errors.

References
1 Pankaj K Agarwal, Sariel Har-Peled, Nabil H Mustafa, and Yusu Wang. Near-linear time

approximation algorithms for curve simplification. Algorithmica, 42(3-4):203–219, 2005.
2 Mahmuda Ahmed, Sophia Karagiorgou, Dieter Pfoser, and Carola Wenk. A comparison

and evaluation of map construction algorithms using vehicle tracking data. GeoInformatica,
19(3):601–632, 2015.

3 Mohamed Ali, John Krumm, Travis Rautman, and Ankur Teredesai. ACM SIGSPATIAL GIS
cup 2012. In 20th International Conference on Advances in Geographic Information Systems,
SIGSPATIAL’12, pages 597–600, 2012.

ATMOS 2021



10:18 Fast Map Matching with Vertex-Monotone Fréchet Distance

4 Helmut Alt, Alon Efrat, Günter Rote, and Carola Wenk. Matching planar maps. J. Algorithms,
49(2):262–283, 2003. Announced at SODA’03.

5 Helmut Alt and Michael Godau. Computing the Fréchet distance between two polygonal
curves. International Journal of Computational Geometry & Applications, 5:75–91, 1995.

6 Javed A. Aslam, Sejoon Lim, Xinghao Pan, and Daniela Rus. City-scale traffic estimation
from a roving sensor network. In 10th ACM Conference on Embedded Network Sensor Systems,
SenSys’12, pages 141–154. ACM, 2012.

7 Sotiris Brakatsoulas, Dieter Pfoser, Randall Salas, and Carola Wenk. On map-matching vehicle
tracking data. In 31st International Conference on Very Large Data Bases, VLDB’05, pages
853–864. ACM, 2005.

8 Lili Cao and John Krumm. From GPS traces to a routable road map. In 17th International
Symposium on Advances in Geographic Information Systems, SIGSPATIAL’09, pages 3–12.
ACM, 2009.

9 Pablo Samuel Castro, Daqing Zhang, and Shijian Li. Urban traffic modelling and prediction
using large scale taxi GPS traces. In 10th International Conference on Pervasive Computing,
Pervasive’12, volume 7319 of Lecture Notes in Computer Science, pages 57–72. Springer, 2012.

10 Erin W. Chambers, Brittany Terese Fasy, Yusu Wang, and Carola Wenk. Map-matching using
shortest paths. ACM Transactions on Spatial Algorithms and Systems, 6(1):6:1–6:17, 2020.

11 Daniel Chen, Anne Driemel, Leonidas J. Guibas, Andy Nguyen, and Carola Wenk. Approximate
map matching with respect to the Fréchet distance. In 14th Workshop on Algorithm Engineering
and Experiments, ALENEX’11, pages 75–83, 2011.

12 Daniel Delling, Andrew V. Goldberg, Thomas Pajor, and Renato F. Werneck. Customizable
route planning in road networks. Transportation Science, 51(2):566–591, 2017.

13 Daniel Delling, Dennis Schieferdecker, and Christian Sommer. Traffic-aware routing in road
networks. In 34th IEEE International Conference on Data Engineering, ICDE’18, pages
1543–1548, 2018.

14 Julian Dibbelt, Ben Strasser, and Dorothea Wagner. Customizable contraction hierarchies.
ACM J. Exp. Algorithmics, 21(1):1.5:1–1.5:49, 2016.

15 Julian Dibbelt, Ben Strasser, and Dorothea Wagner. RoutingKit. https://github.com/
RoutingKit/RoutingKit, 2020.

16 Edsger W Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik,
1(1):269–271, 1959.

17 David H Douglas and Thomas K Peucker. Algorithms for the reduction of the number of
points required to represent a digitized line or its caricature. Cartographica: the international
journal for geographic information and geovisualization, 10(2):112–122, 1973.

18 Gregory D. Erhardt, Sneha Roy, Drew Cooper, Bhargava Sana, Mei Chen, and Joe Castiglione.
Do transportation network companies decrease or increase congestion? Science Advances,
5(5), 2019.

19 Nivan Ferreira, Jorge Poco, Huy T. Vo, Juliana Freire, and Cláudio T. Silva. Visual exploration
of big spatio-temporal urban data: A study of new york city taxi trips. IEEE Transactions on
Visualization and Computer Graphics, 19(12):2149–2158, 2013.

20 M Maurice Fréchet. Sur quelques points du calcul fonctionnel. Rendiconti del Circolo
Matematico di Palermo (1884-1940), 22(1):1–72, 1906.

21 Stefan Funke, Tobias Rupp, André Nusser, and Sabine Storandt. PATHFINDER: storage and
indexing of massive trajectory sets. In 16th International Symposium on Spatial and Temporal
Databases, SSTD’19, pages 90–99. ACM, 2019.

22 Geofabrik GmbH. Geofabrik OSM NorCal map. https://download.geofabrik.de/
north-america/us/california/norcal.html, 2020.

23 Chong Yang Goh, Justin Dauwels, Nikola Mitrovic, Muhammad Tayyab Asif, Ali Oran, and
Patrick Jaillet. Online map-matching based on hidden Markov model for real-time traffic
sensing applications. In 15th International IEEE Conference on Intelligent Transportation
Systems, ITSC’12, pages 776–781, 2012.

https://github.com/RoutingKit/RoutingKit
https://github.com/RoutingKit/RoutingKit
https://download.geofabrik.de/north-america/us/california/norcal.html
https://download.geofabrik.de/north-america/us/california/norcal.html


D. Chen, C. Sommer, and D. Wolleb 10:19

24 GraphHopper. Map matching based on graphhopper. https://github.com/graphhopper/
map-matching, 2020.

25 Songtao He, Favyen Bastani, Sofiane Abbar, Mohammad Alizadeh, Hari Balakrishnan, Sanjay
Chawla, and Sam Madden. Roadrunner: improving the precision of road network inference from
GPS trajectories. In 26th International Conference on Advances in Geographic Information
Systems, SIGSPATIAL’18, pages 3–12. ACM, 2018.

26 Abdeltawab M. Hendawi, Sree Sindhu Sabbineni, Jianwei Shen, Yaxiao Song, Peiwei Cao,
Zhihong Zhang, John Krumm, and Mohamed H. Ali. Which one is correct, the map or the
GPS trace. In 27th International Conference on Advances in Geographic Information Systems,
SIGSPATIAL’19, pages 472–475. ACM, 2019.

27 Roel Jacobs. Constructing maps by clustering trajectories. Master’s thesis, TU Eindhoven,
2016.

28 Erik Jenelius and Haris N. Koutsopoulos. Travel time estimation for urban road networks
using low frequency probe vehicle data. Transportation Research Part B: Methodological,
53:64–81, 2013.

29 JOSM. An extensible editor for openstreetmap. https://josm.openstreetmap.de, 2020.
30 Benjamin B. Krogh, Christian S. Jensen, and Kristian Torp. Efficient in-memory indexing

of network-constrained trajectories. In 24th ACM International Conference on Advances in
Geographic Information Systems SIGSPATIAL’16, pages 17:1–17:10. ACM, 2016.

31 Yang Li, Qixing Huang, Michael Kerber, Lin Zhang, and Leonidas J. Guibas. Large-scale joint
map matching of GPS traces. In 21st International Conference on Advances in Geographic
Information Systems, SIGSPATIAL’13, pages 214–223. ACM, 2013.

32 Paul Newson and John Krumm. Hidden Markov map matching through noise and sparseness.
In 17th ACM International Symposium on Advances in Geographic Information Systems,
SIGSPATIAL’09, pages 336–343. ACM, 2009.

33 Gustavo Niemeyer. geohash.org is public! https://web.archive.org/web/20080305223755/
http://blog.labix.org/#post-85, 2008.

34 Patrick Niklaus. Matching GPS traces to a map. https://blog.mapbox.com/
matching-gps-traces-to-a-map-73730197d0e2, 2015.

35 Bei Pan, Yu Zheng, David Wilkie, and Cyrus Shahabi. Crowd sensing of traffic anomalies
based on human mobility and social media. In 21st International Conference on Advances in
Geographic Information Systems, SIGSPATIAL’13, pages 334–343. ACM, 2013.

36 Gang Pan, Guande Qi, Wangsheng Zhang, Shijian Li, Zhaohui Wu, and Laurence Tianruo
Yang. Trace analysis and mining for smart cities: issues, methods, and applications. IEEE
Communications Magazine, 51(6), 2013.

37 Matthias Peinhardt and Volker Kaibel. On the bottleneck shortest path problem. Technical
report, Technical Report ZIB-Report 06-22, Konrad-Zuse-Zentrum für Informationstechnik
Berlin, 2006.

38 OpenStreetMap project. OSM extract Hong Kong. http://download.openstreetmap.fr/
extracts/asia/china/, 2020.

39 Mohammed A. Quddus, Washington Y. Ochieng, and Robert B. Noland. Current map-
matching algorithms for transport applications: State-of-the art and future research directions.
Transportation Research Part C: Emerging Technologies, 15(5):312–328, 2007.

40 Urs Ramer. An iterative procedure for the polygonal approximation of plane curves. Computer
graphics and image processing, 1(3):244–256, 1972.

41 K Reumann and APM Witkam. Optimizing curve segmantation in computer graphics. In
International Computing Symposium 1973, pages 467–472, 1974.

42 Stefan Schrödl, Kiri Wagstaff, Seth Rogers, Pat Langley, and Christopher Wilson. Mining
GPS traces for map refinement. Data Mining and Knowledge Discovery, 9(1):59–87, 2004.

43 Dominik Schultes and Peter Sanders. Dynamic highway-node routing. In 6th International
Workshop on Experimental Algorithms, WEA’07, volume 4525 of Lecture Notes in Computer
Science, pages 66–79. Springer, 2007.

ATMOS 2021

https://github.com/graphhopper/map-matching
https://github.com/graphhopper/map-matching
https://josm.openstreetmap.de
https://web.archive.org/web/20080305223755/http://blog.labix.org/#post-85
https://web.archive.org/web/20080305223755/http://blog.labix.org/#post-85
https://blog.mapbox.com/matching-gps-traces-to-a-map-73730197d0e2
https://blog.mapbox.com/matching-gps-traces-to-a-map-73730197d0e2
http://download.openstreetmap.fr/extracts/asia/china/
http://download.openstreetmap.fr/extracts/asia/china/


10:20 Fast Map Matching with Vertex-Monotone Fréchet Distance

44 Junichi Shigezumi, Tatsuya Asai, Hiroaki Morikawa, and Hiroya Inakoshi. A fast algorithm for
matching planar maps with minimum Fréchet distances. In 4th International ACM Workshop
on Analytics for Big Geospatial Data, BigSpatial@SIGSPATIAL’15, pages 25–34, 2015.

45 Youze Tang, Andy Diwen Zhu, and Xiaokui Xiao. An efficient algorithm for mapping vehicle
trajectories onto road networks. In International Conference on Advances in Geographic
Information Systems, SIGSPATIAL’12, pages 601–604. ACM, 2012.

46 Rolf van Leusden. A novel algorithm for computing the Fréchet distance. Master’s thesis, TU
Eindhoven, 2013.

47 Yilun Wang, Yu Zheng, and Yexiang Xue. Travel time estimation of a path using sparse
trajectories. In 20th ACM International Conference on Knowledge Discovery and Data Mining,
KDD’14, pages 25–34. ACM, 2014.

48 Hong Wei, Yin Wang, George Forman, and Yanmin Zhu. Map matching by Fréchet distance
and global weight optimization. Technical Paper, page 19, 2013.

49 Hong Wei, Yin Wang, George Forman, and Yanmin Zhu. Map matching: comparison of
approaches using sparse and noisy data. In 21st International Conference on Advances in
Geographic Information Systems, SIGSPATIAL’13, pages 434–437. ACM, 2013.

50 Carola Wenk, Randall Salas, and Dieter Pfoser. Addressing the need for map-matching speed:
Localizing global curve-matching algorithms. In 18th International Conference on Scientific
and Statistical Database Management, SSDBM’06, pages 379–388, 2006.

51 Can Yang and Gyozo Gidofalvi. Fast map matching, an algorithm integrating hidden Markov
model with precomputation. International Journal of Geographical Information Science,
32(3):547–570, 2018.

52 Yu Zheng. Trajectory data mining: An overview. ACM Transactions on Intelligent Systems
and Technology, 6(3):29:1–29:41, 2015.

53 Yu Zheng, Lizhu Zhang, Xing Xie, and Wei-Ying Ma. Mining interesting locations and travel
sequences from GPS trajectories. In 18th International Conference on World Wide Web,
WWW’09, pages 791–800. ACM, 2009.


	1 Introduction
	1.1 Related Work
	1.2 Contributions

	2 Preliminaries
	2.1 Fréchet distances between curves
	2.2 Map matching problem
	2.3 Free-space diagram

	3 General Framework for Map Matching Algorithms
	3.1 Hidden Markov Model
	3.2 Fréchet distance
	3.3 Motivation for our algorithm

	4 Algorithm
	4.1 Overview
	4.2 Distance computation
	4.2.1 Auxiliary interval graph
	4.2.2 Correctness
	4.2.3 Implementation
	4.2.4 Running time

	4.3 Path optimization
	4.3.1 Shortest path interpretation

	4.4 Trace simplification
	4.4.1 Doubling-search simplification


	5 Experiments
	5.1 Data sets
	5.2 Algorithms
	5.3 Quality
	5.4 Performance results
	5.5 Literature comparison

	6 Conclusion

