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Abstract
The Traveling Tournament Problem(TTP) is a combinatorial optimization problem where we have
to give a scheduling algorithm which minimizes the total distance traveled by all the participating
teams of a double round-robin tournament maintaining given constraints. Most of the instances of
this problem with more than ten teams are still unsolved. By definition of the problem the number
of teams participating has to be even. There are different variants of this problem depending on the
constraints. In this problem, we consider the case where number of teams is a multiple of four and a
team can not play more than two consecutive home or away matches. Our scheduling algorithm
gives better result than the existing best result for number of teams less or equal to 32.

2012 ACM Subject Classification Applied computing

Keywords and phrases Traveling Tournament Problem, Double Round-robin, Scheduling, Approx-
imation

Digital Object Identifier 10.4230/OASIcs.ATMOS.2021.16

1 Introduction

Double Round-robin tournament is one of the most unbiased way of evaluating teams
participating in a competition. In this kind of tournament each of the participating team
plays with every other team twice, i.e. one game in its home and another game in the
home of the other team. This nullifies the effect of home ground and support. So, in this
kind of tournament each team is tested in all the venues and in all the conditions. If there
are n teams participating, then each team will play 2(n − 1) games and total number of
games played will be n(n − 1). After all the matches are played, the team with highest point
wins the tournament. Traveling Tournament Problem is inspired by Major League Baseball.
The general form of constrained Traveling Tournament Problem, i.e. TTP − k for some
natural number k, given participating teams and all the mutual distances between their
home grounds is defined as follows.

▶ Definition 1. TTP-k is scheduling of a double round-robin tournament where total travel
distance by all the participating teams is minimized given the following constraints:
1. Each pair of participating team play exactly two matches with each other once in each of

their home venues.
2. No pair of teams play consecutive matches with each other.
3. In an away tour a visiting team travels directly from the home of one opponent to home

of the next opponent without returning to its own home.
4. The lengths of the home stands and away tours for any participating team is not more

than k.
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16:2 An Improved Scheduling Algorithm for TTP-2

For odd number of teams scheduling of a Traveling Tournament Problem is not possible
as in a match day every team should participate.

Like its benefits, Traveling Tournament Problem has some drawbacks also. The main
drawbacks are huge number of matches and scheduling complexity. We can not decrease
the number of matches, but we can lower the complexity of the scheduling. But with
imposed constraints on scheduling the complexity increases. For a small number of teams
the scheduling is simpler and the complexity increases with number of teams and imposed
constraints. TTP-∞ and and TTP-3 has been proven to be NP-hard in [2] and [18] respectively.
TTP-1 is impossible to schedule [5]. So, the only possible case where complete solution may
be possible is TTP-2. The complexity of TTP-2 is still not settled. The existing best result
on approximating TTP-2 is given by Xiao and Kou [23]. They gave an approximation factor
of (1 + 2

n + 2
n−2 ) for TTP-2 with n divisible by 4, where n is the number of participating

teams. We work on a similar setup, where we schedule a TTP-2 on n teams with n divisible
by 4 and our schedule improves the result for n ≤ 32.

Formal definition of the problem, some useful definitions, notations and some well known
results related to Traveling Tournament Problem are given here.

1.1 Problem Definition
TTP-2. Traveling Tournament Problem-2 is scheduling of a double round-robin tournament
where total travel distance by all the participating teams is minimized maintaining the
following constraints:
Constraint 1: Each pair of participating team play exactly two matches with each other

once in each of their home venues.
Constraint 2: No pair of teams play consecutive matches with each other.
Constraint 3: In an away tour a visiting team travels directly from the home of one opponent

to home of the next opponent without returning to its own home.
Constraint 4: The lengths of the home stands and away tours for any participating team is

not more than 2.

1.2 Previous Work
Traveling Tournament Problem(TTP) is a special variant of the Traveling Salesman Problem.
The Traveling Tournament Problem was first introduced by Easton, Nemhauser, and Trick [7].
In a TTP, when there is no constraint on home stands or away trip length, it becomes a
problem of scheduling n Traveling Salesman Problem synchronously. It has been shown
that, TTP-k i.e. Traveling Tournament Problem with not more than k home stands or
away matches is NP-Hard when K = ∞ [2] or k = 3 [18]. Relationship of some variants of
round-robin tournaments with the planar three-index assignment problem has been analyzed
and complexity of scheduling a minimum cost round-robin tournament has been established
using the same [3]. They also showed the applicability of some techniques for planar three-
index assignment problem to solve a sub-problem of scheduling a minimum cost round-robin
tournament . A large amount of work has been done towards the approximation algorithms
[23, 13, 12, 16, 22, 24]. A large amount of work on heuristic algorithms also has been done
[1, 6, 8, 10, 15]. Many offline and online set of benchmark data set can be found for TTP-3
[7, 20]. For many benchmark result on improvements and complete solutions, work of high
performance computers for more than a week is required [21]. But with that also most of
the instances of TTP-k on more 10 teams are not completely solvable [20]. They worked on
a basketball tournament with ten teams where the away trip for any team consists of one or
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two matches. It is also ben shown that TTP-1 is impossible to schedule [5]. A survey on
round-robin tournament scheduling has been done by Rasmessen and Trick [17]. Work has
also been done on complexity of TTP-k [9, 11, 14].

Our main focus is on TTP-2 which was first introduced by Campbell and Chen [4].Thielen
and Westphal [19] has contributed towards approximation factor for TTP-2 and later gave
an approximation factor of (1 + 16

n ) for all n ≥ 12 and n divisible by 4. Their result has been
improved by Xiao and Kou [23]. They gave an approximation factor of (1 + 2

n−2 + 2
n ) where

n is divisible by 4. Our scheduling algorithm give better result than this for n ≤ 32.

1.3 Our Result
We propose a scheduling algorithm for TTP-2 which yields an approximation factor of(

1 + ⌈log2
n
4 ⌉+4

2(n−2)

)
. For number of participating teams less or equal to 32, this gives a better

result than existing best result, with approximation factor of (1 + 2
n−2 + 2

n ) in [23].

2 Preliminaries

2.1 Definitions and Notations
In this paper, for getting better approximation factor for TTP-2, graph theoretic approach
has been followed. Due to this, teams are invariably referred as vertices and distances between
home locations of teams are referred as weights of edges of the graph.

▶ Definition 2. Matching Graph: A matching graph G(V, E) is a graph where no two
edges have a common vertex. So, for a matching graph, |V | = n ⇒ |E| ≤ n

2 . The pair of
vertices connected through an edge in a matching graph is called matched vertices of the
matching graph.

▶ Definition 3. Maximal Matching of a Graph: Maximal matching of a graph G(V, E)
is a matching of G, which is not subset of any other matching of G. It may not be unique
for a given graph.

▶ Definition 4. Minimum Maximal Matching of an Undirected Weighted Graph:
Minimum Maximal Matching of an Undirected Weighted Graph G(V, E) is a maximal matching
of G with sum of all the weights of its edges is the smallest among that of all the maximal
matching subgraphs of G. For a minimum maximal matching of an undirected weighted
complete graph with n vertices, the number of edges of the matching will be n

2 .

In this work, an edge between two vertices is represented as a match between the teams
corresponding to the vertices. Now a super-match is defined as follows:

▶ Definition 5. Super-match: A super-match between two pairs of matched vertices Mi

and Mj is a set of edges {(u, w), (u, x), (v, w), (v, x)} where Mi = {u, v} and Mj = {w, x}.

2.2 A Simple Lower Bound for TTP-2
Let, there are n teams participating in TTP-2. Distances between the home locations of
each pair of teams are given. Let, dij be the distance between home locations of ith and
jth team. Now we construct an undirected weighted complete graph with all the n home
locations as vertices with weights of the edges as the physical distances between the home
locations of teams corresponding to the vertices connected through it and call it G(V, E).

ATMOS 2021



16:4 An Improved Scheduling Algorithm for TTP-2

As G is a complete graph and |V | = n = even, we get a minimum maximal matching in G

and call it Gm. Let, sum of the weights of all the edges of Gm be Wm, sum of the weights of
all the edges in G be Wt and sum of the weights of all the edges from a vertex i in G be Wi.

So,for an optimized schedule with the given constraints it is natural for a team to travel
to two matched teams in Gm in an away trip. But for the vertex matched with itself in Gm,
it will make a to and fro journey. In that case, the total travel by ith team is Wi + Wm. This
gives a minimum travel by ith team given the constraints.

Now, if it is possible to synchronously fit this above mentioned minimum travel by each
participating team in the schedule then the total traveled distance by all the teams in the
tournament will be,∑

i∈V

(Wi + Wm) = 2Wt + nWm

This gives a lower bound to TTP-2. But due to the imposed constraints on scheduling
and number of teams, it is not always possible to synchronously fit the minimum travel
schedule of each participating teams in the schedule and here comes the optimization and
hardness of the problem and makes this problem interesting.

3 Design of Schedule

Suppose there are n teams participating in a Double Round-robin Tournament where n is
divisible by 4. We construct the undirected weighted graph G(V, E) as described in Section
2 and also find the minimum maximal matching Gm in G. Now we number the vertices and
the matched pairs such that matched pair Mi consist of vertices 2i−1 and 2i, ∀i ∈ {1, . . . , n

2 }.
Now, we design the schedule in ⌈log2

n
2 ⌉ rounds and (n

2 − 1) levels such that ith round is
consist of ⌈ 1

2 ( n
2i − 1)⌉ levels and each level consists of n

4 super-matches. A super-match is
played between two different matched pairs where both the teams in a matched pair plays
home and away matches with both the teams in the other matched pair. In every level each
matched pair plays a super-match. We have designed three types of super-matches which are
used in our schedule. Suppose, there are two pairs of matched vertices A1, A2 and B1, B2 in
Gm described in the previous section. We give three types of super-match namely Type-1,
Type-2, Type-3 which are the building blocks of our schedule.

Type-1. This consists of four match days namely T1, T2, T3 and T4 and the matches on this
match days are given below:

T1 : A1 → B1, A2 → B2.

T2 : A1 → B2, A2 → B1.

T3 : B1 → A1, B2 → A2.

T4 : B1 → A2, B2 → A1.

where u → v means u is playing an away match with v in the home of v.
The home-away match sequence of the participating teams become the following:
A1 : aahh : A2 : aahh : B1 : hhaa : B2 : hhaa. where a means away match and h means
home match.
Type-1 super-match does not violate minimum travel of any of its participating teams.
This way we can simultaneously schedule n

4 Type-1 super-matches in a level but then we
can not schedule matches between the teams with same home away match sequences due
to constraint:4 of the problem definition. So we need a different kind of super-match like
Type-1 and hence comes the need of Type-2 super-match.
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Type-2. This consists of four match days namely T1, T2, T3 and T4 and the matches on this
match days are given below:

T1 : A1 → B1, A2 → B2.

T2 : B2 → A1, B1 → A2.

T3 : B1 → A1, B2 → A2.

T4 : A1 → B2, A2 → B1.

The home-away match sequence of the participating teams become the following:
A1 : ahha : A2 : ahha : B1 : haah : B2 : haah. Where a means away match and h means
home match.
Type-2 super-match violates minimum travel of all of its participating teams but helps to
schedule matches of all the teams according to their minimum travel schedule in the next
level. We may refer the Type-2 super-match as flip in future. But after this modification
also it is not possible to schedule home and away matches between two matched teams in
Gm maintaining their minimum travel schedule. So there comes the need of Type-3 schedule
block.

Type-3. This consists of six match days namely T1, T2, T3, T4, T5 and T6 and the matches
on this match days are given below:

T1 : A1 → B1, A2 → B2.

T2 : A1 → A2, B2 → B1.

T3 : B2 → A1, B1 → A2.

T4 : A2 → A1, B1 → B2.

T5 : A1 → B2, A2 → B1.

T6 : B1 → A1, B2 → A2.

The home-away match sequence of the participating teams become the following:
A1 : aahhah : A2 : ahhaah : B1 : hhaaha : B2 : haahha.
where a means away match and h means home match.

Although Type-1 super-match does not violate the minimum travel schedule for the teams,
we can not schedule a double round robin tournament only with Type-1 super-matches.
We need Type-2 and Type-3 super-matches. Now, n

4 number of Type-3 super-matches are
unavoidable for any TTP-2 scheduling as each Type-3 super-match involves home and away
matches between matched vertices for two pairs of matched vertices of Gm described in the
previous section. So, for n participating teams at least n

4 number of Type-3 super-matches
are required and our algorithm uses exactly n

4 numbers of Type-3 schedule blocks. Now, the
only scope of improvement is reduction in numbers of Type-2 super-matches. So our main
aim to keep the the number of Type-2 super-matches or flips as low as possible.

4 Our Algorithm

Following algorithm gives a improved schedule in terms of total distance traveled by all
the teams than the existing best result [23] for TTP-2 when, n ≤ 32 where the number of
Type-2 super matches are bounded by

(
n
8 ∗

⌈
log2

n
4

⌉)
for all n ∈ N. In next section, few

schedules are given as examples using our algorithm.
In the above pseudo code for TTP-2 of n teams using our technique, first we find the

Minimum Maximal Matching in the complete graph on all the vertices or teams. Let the
set of matched pair of vertices be {M1, . . . , Mn/2}. Then we consider each Mi’s as a team
situated at the mid point of the locations of its constituent vertices. Then for a complete
graph on these Mi’s as vertices, we again find the minimum maximal matching and let the
set of matched vertices be {N1, . . . , Nn/4}.

ATMOS 2021
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Algorithm 1 Schedule TTP-2.

1: INPUT: G(V, E) with |V | = n, |E| =
(

n
2
)
, W = {we|e ∈ E}.

2: Identify the minimum maximal matching, Gm(V, Em), of G.
3: ∀i ∈ {1, . . . , n

2 }, define Mi = {(u, v)|u, v ∈ V & Edge(u, v) ∈ Em}.
4: ∀v ∈ V, allot a number to v such that (u, v) ∈ Mi =⇒ #u = (2i − 1) & #v = 2i ∀i ∈

{1, . . . , n
2 }.

5: Define X = {xi|location of xi is in the midpoint of u & v where (u, v) ∈ Mi ∀i ∈
{1, . . . , n

2 }}.
6: Define a complete graph H(X, E′)|∀e ∈ E′, weight of the edge e, We =dist(xm, xn) where

e is the edge between xm & xn.
7: Identify the minimum maximal matching, Hm(X, E′

m), of H.
8: ∀i ∈ {1, . . . , n

4 }, defineNi = {(Mm, Mn)|xm, xn ∈ X & Edge(xm, xn) ∈ E′
m}.

9: for i = 1 : 1 : ⌈log2
n
2 ⌉ do

10: while 2i+1 < n do
11: if 2i+2|n then
12: Schedule first

⌈ 1
2 × ( n

2i − 1)
⌉

− 1 levels of ith round each with n
4 Type-1 super-

matches and last level with n
8 Type-1 and n

8 Type-2 super-matches.
13: else
14: Schedule the

⌊
n
2

∑i
1 2−k − 1

⌋th

match days with
⌊

n
8

⌋
Type-2 super-matches for

i ∈ {1, 2, . . . , log2 n} and rest of the super-matches as Type-1. For all other match
days except the last one schedule all super-matches as Type-1.

15: end if
16: Schedule this last level of the tournament with n

4 Type-3 super-matches where
∀i ∈ {1, . . . , n

4 }, Mp plays with Mq|Mp, Mq ∈ Ni.
17: end while
18: end for

Now, we schedule the Type-2 super-matches in the different levels of different rounds
according to the rule described in line 12 or line 14 of the algorithm depending on the value
of n. We schedule all the Type-3 super-matches in the last level of the last round of the
tournament between matched pairs of Mi’s, i.e. between the elements of Ni’s to minimize
the total travel distance.

5 Examples of Scheduling with Our Algorithm

For better understanding of our scheduling algorithm we give two examples of schedule
for n = 12, 16 here and n = 20, 24, 28 in the Appendix-A. An improved schedule of Indian
Premier League, where n=8, is presented in Appendix-B. Let,

Fn = n

8 ∗
⌈
log2

n

4

⌉
for n ∈ N. (1)

5.1 Schedule for n = 12
For designing a Traveling Tournament Problem of 12 teams using our technique, first we
number the teams or the vertices with natural numbers as follows.

Vertex Set={1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}.
Then we find the Minimum Maximal Matching in the complete graph containing the

vertices in the above mentioned vertex set. Let the set of matched pair of vertices be
{M1, M2, M3, M4, M5, M6} and without loss of generality we can say that
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M1={1,2}, M2={3,4}, M3={5,6}, M4={7,8}, M5={9,10}, M6={11,12}
Then we consider each Mi’s as a team situated at the mid point of the locations of its

constituent vertices for i ∈ {1, 2, 3, 4, 5, 6}. Then for a complete graph on these Mi’s as
vertices, we find the minimum maximal matching and let the set of matched vertices be

{N1, N2, N3} such that N1={M1, M5}, N2={M2, M3}, N3={M4, M6}.
Now, we describe the fixture of super-matches in Table 1 to be scheduled in all the levels

of all the rounds according to our scheduling technique in a tabular form. We can observe
that the super-matches scheduled in the last level of the last round of the tournament are
between matched pairs of Mi’s, i.e. between the elements of Ni’s.

Table 1 Fixture of Super-Matches for n = 12

Round:1, Level:1 Round:1, Level:2 Round:1, Level:3
M1

T ype−1−−−−−→ M2

M3
T ype−1−−−−−→ M4

M5
T ype−1−−−−−→ M6

M1
T ype−1−−−−−→ M4

M3
T ype−2−−−−−→ M6

M5
T ype−1−−−−−→ M2

M1
T ype−1−−−−−→ M3

M6
T ype−2−−−−−→ M2

M5
T ype−1−−−−−→ M4

Round:2, Level:1 Round:3, Level:1
M1

T ype−2−−−−−→ M6

M2
T ype−1−−−−−→ M4

M5
T ype−1−−−−−→ M3

M6
T ype−3−−−−−→ M4

M2
T ype−3−−−−−→ M3

M5
T ype−3−−−−−→ M1

Number of Flips= 3 = F12.

5.2 Schedule for n = 16

Now for designing a Traveling Tournament Problem of 16 teams using our technique, first
we number the teams or the vertices with natural numbers in a similar fashion as follows.

Vertex Set={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}.
Then we find the Minimum Maximal Matching in the complete graph containing the

vertices in the above mentioned vertex set. Let the set of matched pair of vertices be
{M1, M2, M3, M4, M5, M6, M7, M8} and without loss of generality we can say that

M1={1,2}, M2={3,4}, M3={5,6}, M4={7,8}, M5={9,10}, M6={11,12}, M7={13,14},
M8={15,16}

Then we consider each Mi’s as a team situated at the mid point of the locations of its
constituent vertices for i ∈ {1, 2, 3, 4, 5, 6, 7, 8}. Then for a complete graph on these Mi’s
as vertices, we find the minimum maximal matching and let the set of matched vertices be
{N1, N2, N3, N4} where

N1={M1, M5}, N2={M2, M6}, N3={M3, M7}, N4={M4, M8}.
Now, we describe the fixture of super-matches in Table 2 to be scheduled in all the levels

of all the rounds according to our scheduling technique in a tabular form. We can observe
that the super-matches scheduled in the last level of the last round of the tournament are
between matched pairs of Mi’s, i.e. between the elements of Ni’s. Also as 8 is a power of 2,
we exactly know the super-matches which are flips in the different levels of all the rounds of
the tournament according to our scheduling technique.

Correctness of this algorithm is assured by the structures of Type-1, Type-2 and Type-3
super-matches. As all three of these structures do not violate any of the constraints in the
problem definition, so our schedule also does not violate any of the constraints. Which proves
the correctness of our algorithm.

ATMOS 2021



16:8 An Improved Scheduling Algorithm for TTP-2

Table 2 Fixture of Super-Matches for n = 16

Round:1, Level:1 Round:1, Level:2 Round:1, Level:3 Round:1, Level:4
M1

T ype−1−−−−−→ M2

M3
T ype−1−−−−−→ M4

M5
T ype−1−−−−−→ M6

M7
T ype−1−−−−−→ M8

M1
T ype−1−−−−−→ M4

M3
T ype−1−−−−−→ M6

M5
T ype−1−−−−−→ M8

M7
T ype−1−−−−−→ M2

M1
T ype−1−−−−−→ M6

M3
T ype−1−−−−−→ M8

M5
T ype−1−−−−−→ M2

M7
T ype−1−−−−−→ M4

M1
T ype−1−−−−−→ M8

M3
T ype−2−−−−−→ M2

M5
T ype−1−−−−−→ M4

M7
T ype−2−−−−−→ M6

Round:2, Level:1 Round:2, Level:2 Round:3, Level:1
M1

T ype−1−−−−−→ M3

M5
T ype−1−−−−−→ M7

M2
T ype−1−−−−−→ M8

M6
T ype−1−−−−−→ M4

M1
T ype−1−−−−−→ M7

M5
T ype−2−−−−−→ M3

M2
T ype−1−−−−−→ M4

M6
T ype−2−−−−−→ M8

M1
T ype−3−−−−−→ M5

M3
T ype−3−−−−−→ M7

M2
T ype−3−−−−−→ M6

M8
T ype−3−−−−−→ M4

Number of Flips= 4 = F16.

6 Proof of Results

Theorems related to the analysis of the proposed algorithm along with their proofs are
presented in this section.

▶ Theorem 6. All the Type-3 schedule blocks together introduce a relative error at most 2
n−2

times of the Lower Bound of TTP-2.

Proof. Suppose for some i ∈ {1, . . . , n
4 }, Ni includes 4 vertices of G i.e. A1, A2, B1, B2 where

A1 and A2 are matched pairs in Gm and so are B1 and B2. For a Type-3 schedule in between
them, travel for each team are given below:

A1 : A1 → B1 → A2 → A1 → B2 → A1.

A2 : A2 → B2 → A2 → A1 → B1 → A2.

B1 : B1 → A2 → B2 → B1 → A1 → B1.

B2 : B2 → B1 → A1 → B2 → A2 → B2.

So the total distance traveled is,

5∗dist(A1, B1)+3∗dist(A2, B1)+2∗dist(A1, A2)+3∗dist(A1, B2)+5∗dist(A2, B2)+2∗dist(B1, B2)

For the minimum travel schedule the value is,

2∗dist(A1, B1)+2∗dist(A2, B1)+6∗dist(A1, A2)+2∗dist(A1, B2)+2∗dist(A2, B2)+6∗dist(B1, B2)

So the extra amount of travel is,

3∗dist(A1, B1)+1∗dist(A2, B1)−4∗dist(A1, A2)+1∗dist(A1, B2)+3∗dist(A2, B2)−4∗dist(B1, B2)

Using triangle inequality,the above expression is upper bounded by,

2 ∗ dist(A1, B1) + 2 ∗ dist(A2, B2) + 2 ∗ dist(A1, B2) + 2 ∗ dist(A2, B1)

Let us denote, super-edge Dij between pairs A1, A2 and B1, B2 as,

dist(A1, B1) + dist(A2, B2) + dist(A1, B2) + dist(A2, B1)

where

A1, A2 ∈ Mi and B1, B2 ∈ Mj for some i, j ∈ {1, . . . , n
2 }
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Now, there are n
2 numbers of pair of vertices like A1, A2. If we consider all pairwise

distances between all these n
2 pairs, then we get all the edges of the complete graph G but the

edges of the matching Gm. But among all these
(

n/2
2

)
pairwise distances, we are interested

in n
4 matched pairwise distances as described in line 16 of algorithm 1, while calculating the

error due to all Type-3 schedule blocks. So, the total error due to Type-3 schedule blocks is
bounded by

2 ∗ n/4(
n/2

2
) ∗ (Wt − Wm) <

2
n − 2 ∗ (Lower Bound of TTP-2). ◀

▶ Theorem 7. All the Type-2 and Type-3 schedule blocks together introduces relative error

at most
⌈
log2

n
4

⌉
+ 4

2(n − 2) times of the Lower Bound of TTP-2.

Proof. Suppose a Type-2 schedule block is designed among 4 vertices of G i.e. A1, A2, B1, B2
where A1 and A2 are matched pairs in Gm and so are B1 and B2. For a Type-2 schedule in
between them, travel for each team are given below:

A1 : A1 → B1 → A1 → B2 → A1.

A2 : A2 → B2 → A2 → B1 → A2.

B1 : B1 → A2 → A1 → B1.

B2 : B2 → A1 → A2 → B2.

So the total distance traveled is,

3 ∗ dist(A1, B1) + 3 ∗ dist(A2, B1) + 2 ∗ dist(A1, A2) + 3 ∗ dist(A1, B2) + 3 ∗ dist(A2, B2)

For the minimum travel schedule the value is,

2∗dist(A1, B1)+2∗dist(A2, B1)+2∗dist(A1, A2)+2∗dist(A1, B2)+2∗dist(A2, B2)+2∗dist(B1, B2)

So the extra amount of travel is,

dist(A1, B1) + dist(A2, B1) + dist(A1, B2) + dist(A2, B2) − 2 ∗ dist(B1, B2)

Which is upper bounded by,

dist(A1, B1) + dist(A2, B2) + dist(A1, B2) + dist(A2, B1)

Let us denote the pairwise distance DP (A, B) between pairs A1, A2 and B1, B2 as,

dist(A1, B1) + dist(A2, B2) + dist(A1, B2) + dist(A2, B1)

Now, there are n
2 numbers of pair of vertices like A1, A2. If we consider all pairwise distances

between all these n
2 pairs, then we get all the edges of the complete graph G but the edges

of the matching Gm. But among all these
(

n/2
2

)
pairwise distances, we have already selected

n
4 pairwise distances as described in the proof of Theorem 6 and now we are interested in at
most Fn, given in equation 1, pairwise distances as per line 12 or 14 of algorithm 1, while
calculating the error due to all Type-2 schedule blocks. So, the total error due to Type-2
and Type-3 schedule blocks is bounded by,

n
8 ∗ ⌈log2

n
4 ⌉ + n

2(
n/2

2
) ∗ (Wt − Wm) <

⌈log2
n
4 ⌉ + 4

2(n − 2) ∗ (Lower Bound of TTP-2). ◀

▶ Theorem 8. Our algorithm gives better approximation than existing best result for number
of participating teams less than or equal to 32.
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Proof. From the last two theorems we can see that the approximation factor in our algorithm
is 1 + ⌈log2

n
4 ⌉+4

2(n−2) and in the existing best result the approximation factor is 1 + 2
n−2 + 2

n [23].
So for n ≤ 32,

8
n ≤

⌊
log2

64
n

⌋
⇐⇒ 8

n ≤ 4 −
⌈
log2

n
4

⌉
⇐⇒

⌈
log2

n
4

⌉
≤ 4 − 8

n ⇐⇒
⌈
log2

n
4

⌉
≤ 4

n (n − 2)

⇐⇒ ⌈log2
n
4 ⌉

(n−2) ≤ 4
n ⇐⇒ ⌈log2

n
4 ⌉

2(n−2) ≤ 2
n ⇐⇒ 4+⌈log2

n
4 ⌉

2(n−2) ≤ 2
n−2 + 2

n

This proves the theorem. ◀

7 Conclusion

In this work, a better approximation factor than the existing best result has been achieved for
Traveling Tournament Problem with maximum trip length two with our scheduling algorithm
when the number of participating team is less or equal to 32. Due to time constraints
and other factors, most of the tournaments involving number of teams more than 32 are
not Round-Robin tournaments. For example a round-robin tournament with 40 teams will
require 78 match days, 1560 matches and 40 grounds which demand lots of time, human
support and a very long season. That is why most of the Round-Robin tournaments are
conducted with less than 32 teams. Therefore, it can be said that for almost all practical
cases the proposed scheduling algorithm would produce better result than the existing best
result. One of the popular double round-robin tournament in India is Indian Premier
League(IPL) and the number of teams involved in this tournament is 8. This tournament
is not in TTP-2 structure now. But, if it is scheduled in TTP-2 structure, the proposed
algorithm will significantly lower the total travel distance. An improved schedule of IPL
using the proposed scheduling algorithm is presented in Appendix-B. It shows a 15% decrease
in total travel distance in comparison with the actual IPL-2019 schedule.

8 Scope of Future Work

As described in our algorithm, we know the specific match days of the schedule where the
Type-2 super matches or Flips are to be incorporated. But as we have specified the pairs
of teams between whom the Type-3 super matches are to be played to minimize the total
travel distance due to the Type-3 super matches, nothing of this kind is done for the Flips.
So, a revisit in this topic can give some idea about the specific pairs of teams for minimizing
the distance due to the Flips.
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A More Examples of Schedule

Schedules for n = 20, 24, 28 are given below for a better insight of our algorithm.

A.1 Schedule for n = 20

Vertex Set = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}.
Set of Pair of vertices = {M1, M2, M3, M4, M5, M6, M7, M8, M9, M10};
where M1 = {1, 2}, M2 = {3, 4}, M3 = {5, 6}, M4 = {7, 8}, M5 = {9, 10}, M6 = {11, 12},

M7 = {13, 14}, M8 = {15, 16}, M9 = {17, 18}, M10 = {19, 20};
Then we consider each Mi’s as a team situated at the mid point of the locations of its

constituent vertices for i ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. Then for a complete graph on these
Mi’s as vertices, we find the minimum maximal matching and let the set of matched vertices
be {N1, N2, N3, N4, N5} where

N1 = {M1, M5}, N2 = {M2, M10}, N3 = {M3, M9}, N4 = {M4, M7}, N5 = {M6, M8}.
The fixture of super-matches for n = 20 is described in Table 3.

Table 3 Fixture of Super-Matches for n = 20

Round:1, Level:1 Round:1, Level:2 Round:1, Level:3
M1

T ype−1−−−−−→ M2

M3
T ype−1−−−−−→ M4

M5
T ype−1−−−−−→ M6

M7
T ype−1−−−−−→ M8

M9
T ype−1−−−−−→ M10

M1
T ype−1−−−−−→ M4

M3
T ype−1−−−−−→ M6

M5
T ype−1−−−−−→ M8

M7
T ype−1−−−−−→ M10

M9
T ype−1−−−−−→ M2

M1
T ype−1−−−−−→ M6

M3
T ype−2−−−−−→ M8

M5
T ype−1−−−−−→ M10

M7
T ype−2−−−−−→ M2

M9
T ype−1−−−−−→ M4

Round:1, Level:4 Round:1, Level:5 Round:2, Level:1
M1

T ype−1−−−−−→ M3

M8
T ype−2−−−−−→ M10

M5
T ype−1−−−−−→ M7

M2
T ype−1−−−−−→ M4

M9
T ype−1−−−−−→ M6

M1
T ype−1−−−−−→ M8

M10
T ype−1−−−−−→ M4

M5
T ype−1−−−−−→ M3

M2
T ype−1−−−−−→ M6

M9
T ype−1−−−−−→ M7

M1
T ype−2−−−−−→ M7

M10
T ype−1−−−−−→ M6

M5
T ype−2−−−−−→ M4

M2
T ype−1−−−−−→ M3

M9
T ype−1−−−−−→ M8

Round:2, Level:2 Round:3, Level:1 Round:4, Level:1
M7

T ype−1−−−−−→ M3

M10
T ype−1−−−−−→ M1

M4
T ype−1−−−−−→ M6

M2
T ype−1−−−−−→ M8

M9
T ype−1−−−−−→ M5

M7
T ype−1−−−−−→ M6

M10
T ype−1−−−−−→ M3

M4
T ype−2−−−−−→ M8

M2
T ype−2−−−−−→ M5

M9
T ype−1−−−−−→ M1

M7
T ype−3−−−−−→ M4

M10
T ype−3−−−−−→ M2

M8
T ype−3−−−−−→ M6

M5
T ype−3−−−−−→ M1

M9
T ype−3−−−−−→ M3

Number of Flips= 7 = ⌊F20⌋.

A.2 Schedule for n = 24

Vertex Set ={1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24}.
Set of Pair of vertices = {M1, M2, M3, M4, M5, M6, M7, M8, M9, M10, M11, M12};
where M1={1,2}, M2={3,4}, M3={5,6}, M4={7,8}, M5={9,10}, M6={11,12}, M7={13,14},
M8={15,16}, M9={17,18}, M10={19,20}, M11={21,22}, M12={23,24};
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Then we consider each Mi’s as a team situated at the mid point of the locations of its
constituent vertices for i ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. Then for a complete graph on
these Mi’s as vertices, we find the minimum maximal matching and let the set of matched
vertices be {N1, N2, N3, N4, N5, N6} where

N1={M9, M5}, N2={M1, M7}, N3={M11, M3}, N4={M10, M6}, N5={M2, M4},
N6={M8, M12}.

The fixture of super-matches for n = 24 is given in Table 4.

Table 4 Fixture of Super-Matches for n = 24

Round:1, Level:1 Round:1, Level:2 Round:1, Level:3 Round:1, Level:4
M1

T ype−1−−−−−→ M2

M3
T ype−1−−−−−→ M4

M5
T ype−1−−−−−→ M6

M7
T ype−1−−−−−→ M8

M9
T ype−1−−−−−→ M10

M11
T ype−1−−−−−→ M12

M1
T ype−1−−−−−→ M4

M3
T ype−1−−−−−→ M6

M5
T ype−1−−−−−→ M8

M7
T ype−1−−−−−→ M10

M9
T ype−1−−−−−→ M12

M11
T ype−1−−−−−→ M2

M1
T ype−1−−−−−→ M6

M3
T ype−1−−−−−→ M8

M5
T ype−1−−−−−→ M10

M7
T ype−1−−−−−→ M12

M9
T ype−1−−−−−→ M2

M11
T ype−1−−−−−→ M4

M1
T ype−1−−−−−→ M8

M3
T ype−1−−−−−→ M10

M5
T ype−1−−−−−→ M12

M7
T ype−1−−−−−→ M2

M9
T ype−1−−−−−→ M4

M11
T ype−1−−−−−→ M6

Round:1, Level:5 Round:1, Level:6 Round:2, Level:1 Round:2, Level:2
M1

T ype−1−−−−−→ M10

M3
T ype−1−−−−−→ M12

M5
T ype−1−−−−−→ M2

M7
T ype−1−−−−−→ M4

M9
T ype−1−−−−−→ M6

M11
T ype−1−−−−−→ M8

M1
T ype−2−−−−−→ M12

M3
T ype−1−−−−−→ M2

M5
T ype−2−−−−−→ M4

M7
T ype−1−−−−−→ M6

M9
T ype−2−−−−−→ M8

M11
T ype−1−−−−−→ M10

M12
T ype−1−−−−−→ M2

M3
T ype−1−−−−−→ M1

M4
T ype−1−−−−−→ M6

M7
T ype−1−−−−−→ M5

M8
T ype−1−−−−−→ M10

M11
T ype−1−−−−−→ M9

M12
T ype−1−−−−−→ M6

M3
T ype−1−−−−−→ M5

M4
T ype−2−−−−−→ M10

M7
T ype−2−−−−−→ M9

M8
T ype−1−−−−−→ M2

M11
T ype−1−−−−−→ M1

Round:2, Level:3 Round:3, Level:1 Round:4, Level:1
M12

T ype−1−−−−−→ M4

M3
T ype−1−−−−−→ M7

M10
T ype−2−−−−−→ M2

M9
T ype−2−−−−−→ M1

M8
T ype−1−−−−−→ M6

M11
T ype−1−−−−−→ M5

M12
T ype−2−−−−−→ M10

M3
T ype−2−−−−−→ M9

M2
T ype−1−−−−−→ M6

M1
T ype−1−−−−−→ M5

M8
T ype−1−−−−−→ M4

M11
T ype−1−−−−−→ M7

M9
T ype−3−−−−−→ M5

M1
T ype−3−−−−−→ M7

M11
T ype−3−−−−−→ M3

M10
T ype−3−−−−−→ M6

M2
T ype−3−−−−−→ M4

M8
T ype−3−−−−−→ M12

Number of Flips= 9 = F24.

A.3 Schedule for n = 28

Vertex Set ={1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 26, 27, 28}.
Set of Pair of vertices = {M1, M2, M3, M4, M5, M6, M7, M8, M9, M10, M11, M12, M13, M14};
where M1={1,2}, M2={3,4}, M3={5,6}, M4={7,8}, M5={9,10}, M6={11,12}, M7={13,14},
M8={15,16}, M9={17,18}, M10={19,20}, M11={21,22}, M12={23,24}, M13={25,26},
M14={27,28};

Then we consider each Mi’s as a team situated at the mid point of the locations of its
constituent vertices for i ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}. Then for a complete graph
on these Mi’s as vertices, we find the minimum maximal matching and let the set of matched
vertices be {N1, N2, N3, N4, N5, N6, N7} where

N1={M14, M4}, N2={M12, M6}, N3={M3, M2}, N4={M8, M10}, N5={M9, M5},
N6={M7, M11}, N7={M1, M13}.
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The fixture of super-matches for n = 28 is presented in Table 5.

Table 5 Fixture of Super-Matches for n = 28

Round:1, Level:1 Round:1, Level:2 Round:1, Level:3 Round:1, Level:4
M1

T ype−1−−−−−→ M2

M3
T ype−1−−−−−→ M4

M5
T ype−1−−−−−→ M6

M7
T ype−1−−−−−→ M8

M9
T ype−1−−−−−→ M10

M11
T ype−1−−−−−→ M12

M13
T ype−1−−−−−→ M14

M1
T ype−1−−−−−→ M4

M3
T ype−1−−−−−→ M6

M5
T ype−1−−−−−→ M8

M7
T ype−1−−−−−→ M10

M9
T ype−1−−−−−→ M12

M11
T ype−1−−−−−→ M14

M13
T ype−1−−−−−→ M2

M1
T ype−1−−−−−→ M6

M3
T ype−1−−−−−→ M8

M5
T ype−1−−−−−→ M10

M7
T ype−1−−−−−→ M12

M9
T ype−1−−−−−→ M14

M11
T ype−1−−−−−→ M2

M13
T ype−1−−−−−→ M4

M1
T ype−1−−−−−→ M8

M3
T ype−1−−−−−→ M10

M5
T ype−1−−−−−→ M12

M7
T ype−1−−−−−→ M14

M9
T ype−1−−−−−→ M2

M11
T ype−1−−−−−→ M4

M13
T ype−1−−−−−→ M6

Round:1, Level:5 Round:1, Level:6 Round:1, Level:7
M1

T ype−1−−−−−→ M12

M3
T ype−1−−−−−→ M14

M5
T ype−1−−−−−→ M2

M7
T ype−1−−−−−→ M4

M9
T ype−1−−−−−→ M6

M11
T ype−1−−−−−→ M8

M13
T ype−1−−−−−→ M10

M1
T ype−1−−−−−→ M10

M3
T ype−2−−−−−→ M12

M5
T ype−1−−−−−→ M14

M7
T ype−2−−−−−→ M2

M9
T ype−1−−−−−→ M4

M11
T ype−2−−−−−→ M6

M13
T ype−1−−−−−→ M8

M1
T ype−1−−−−−→ M14

M12
T ype−1−−−−−→ M10

M5
T ype−1−−−−−→ M7

M2
T ype−1−−−−−→ M4

M9
T ype−1−−−−−→ M11

M6
T ype−1−−−−−→ M8

M13
T ype−1−−−−−→ M3

Round:2, Level:1 Round:2, Level:2 Round:2, Level:3
M1

T ype−1−−−−−→ M7

M12
T ype−1−−−−−→ M8

M5
T ype−1−−−−−→ M4

M2
T ype−1−−−−−→ M10

M9
T ype−1−−−−−→ M3

M6
T ype−1−−−−−→ M14

M13
T ype−1−−−−−→ M11

M1
T ype−2−−−−−→ M11

M12
T ype−1−−−−−→ M4

M5
T ype−2−−−−−→ M3

M2
T ype−1−−−−−→ M14

M9
T ype−1−−−−−→ M8

M6
T ype−1−−−−−→ M10

M13
T ype−1−−−−−→ M7

M11
T ype−2−−−−−→ M10

M12
T ype−1−−−−−→ M14

M3
T ype−1−−−−−→ M1

M2
T ype−2−−−−−→ M8

M9
T ype−1−−−−−→ M7

M6
T ype−1−−−−−→ M4

M13
T ype−2−−−−−→ M5

Round:3, Level:1 Round:3, Level:2 Round:4, Level:1
M10

T ype−1−−−−−→ M4

M12
T ype−1−−−−−→ M13

M3
T ype−1−−−−−→ M7

M8
T ype−1−−−−−→ M14

M9
T ype−1−−−−−→ M1

M6
T ype−1−−−−−→ M2

M5
T ype−1−−−−−→ M1

M10
T ype−2−−−−−→ M14

M12
T ype−1−−−−−→ M2

M3
T ype−1−−−−−→ M11

M8
T ype−1−−−−−→ M4

M9
T ype−1−−−−−→ M13

M6
T ype−2−−−−−→ M7

M5
T ype−2−−−−−→ M1

M14
T ype−3−−−−−→ M4

M12
T ype−3−−−−−→ M6

M3
T ype−3−−−−−→ M2

M8
T ype−3−−−−−→ M10

M9
T ype−3−−−−−→ M5

M7
T ype−3−−−−−→ M11

M1
T ype−3−−−−−→ M13

Number of Flips= 11 = ⌈F28⌉.

B Tabular IPL Schedule

In this section, we present a schedule of Indian Premier League(IPL) using our algorithm1.
IPL is a Double Round-robin Tournament of eight teams. The proposed schedule is presented
in Table-1 where the teams are represented as the following:
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KOL → Kolkata Knight Riders MUM → Mumbai Indians
CHE → Chennai Super Kings BANG → Royal Challengers Bangalore
RAJ → Rajasthan Royals DEL → Delhi Capitals
HYD → Sunrisers Hyderabad PUN → Kings XI Punjab

Table 6 Proposed Indian Premier League Schedule.

Match Day 1
Away Home
MUM KOL
HYD RAJ
CHE DEL

BANG PUN

Match Day 4
Away Home
RAJ MUM
KOL HYD
DEL BANG
PUN CHE

Match Day 7
Away Home
PUN HYD
DEL MUM
RAJ BANG
KOL CHE

Match Day 10
Away Home
MUM HYD
KOL RAJ
BAG CHE
PUN DEL

Match Day 13
Away Home
MUM BANG
HYD CHE
KOL PUN
RAJ DEL

Match Day 2
Away Home
MUM RAJ
HYD KOL
CHE PUN

BANG DEL

Match Day 5
Away Home
MUM DEL
HYD PUN
CHE KOL

BANG RAJ

Match Day 8
Away Home
DEL HYD
PUN MUM
CHE RAJ

BANG KOL

Match Day 11
Away Home

BANG MUM
CHE HYD
PUN KOL
DEL RAJ

Match Day 14
Away Home
CHE MUM

BANG HYD
DEL KOL
PUN RAJ

Match Day 3
Away Home
RAJ HYD
KOL MUM
DEL CHE
PUN BANG

Match Day 6
Away Home
MUM PUN
HYD DEL
RAJ CHE
KOL BANG

Match Day 9
Away Home
MUM CHE
HYD BANG
KOL DEL
RAJ PUN

Match Day 12
Away Home
HYD MUM
RAJ KOL
CHE BANG
DEL PUN

This schedule gives 15% better result than actual IPL-2019 schedule in terms of total
distance traveled by all the teams.
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