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Abstract
The Home Service Assignment, Routing, and Appointment scheduling (H-SARA) problem integrates
the strategic fleet-sizing, tactical assignment, operational vehicle routing and scheduling problems at
different decision levels, with a single period planning horizon and uncertainty (stochasticity) from
the service duration, travel time, and customer cancellation rate. We propose a stochastic mixed-
integer linear programming model for the H-SARA problem. Additionally, a reduced deterministic
version is introduced which allows to solve small-scale instances to optimality with two acceleration
approaches. For larger instances, we develop a tailored two-stage decision support system that
provides high-quality and in-time solutions based on information revealed at different stages. Our
solution method aims to reduce various costs under stochasticity, to create reasonable routes with
balanced workload and team-based customer service zones, and to increase customer satisfaction by
introducing a two-stage appointment notification system updated at different time stages before
the actual service. Our two-stage heuristic is competitive to CPLEX’s exact solution methods in
providing time and cost-effective decisions and can update previously-made decisions based on an
increased level of information. Results show that our two-stage heuristic is able to tackle reasonable-
size instances and provides good-quality solutions using less time compared to the deterministic and
stochastic models on the same set of simulated instances.
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1 Background

Model Introduction. The home service industry constitutes businesses whose primary
purpose is to provide services to people in their homes. Home services cover various sectors,
including home healthcare, banking service, home beauty care, appliance repairs, home
maintenance, and more. The typical requirements for the business providers are to decide
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4:2 H-SARA Problem with Uncertainties

on the number of professional service teams to deliver services to geographically distributed
customers, the assignment of the service teams to customers, the sequences of customer
visits, and the scheduling of appointment time-slots to all customers with service demand.
These specific decisions form the Home Service Assignment, Routing, and Appointment
scheduling (H-SARA) problem, which is related to a set of widely studied problems in
both academia and industry and was presented for the 13th AIMMS-MOPTA Optimization
Modeling Competition [34]. The first is the Vehicle Routing Problem (VRP) which is a
generalisation of the well-known Travelling Salesman Problem (TSP). For a typical VRP, the
main aim is to determine a set of minimum-distanced tours visiting all the locations starting
and ending at a depot, meanwhile satisfying a list of general limitations including space
and time capacity, time windows, maximum vehicle travel time, or traversal distance. With
numerous applications in logistics, transportation and general distribution management, the
VRP has been studied widely in the past few decades and has been extended with several
variants and applications [4, 23, 24]. Whereas a VRP minimises the total routing costs using
a predetermined number of vehicles or service teams (typically of homogeneous type), a
fleet-sizing problem (FSP) minimises both the total routing costs and the economical fleet
size [13], addressing a trade-off between fixed vehicle costs and variable routing costs.

Scheduling usually refers to the chronological allocation of tasks to workers such that the
list of tasks (components) are accomplished within the shortest amount of time and with
the minimal time clashes. In the H-SARA problem, an appointment time slot is assigned
to all customers with service demand. Equivalently, from a service provider’s perspective,
each customer visit is scheduled as part of a service team’s timetable in sequential order.
The Vehicle Routing Problem with Time Windows (VRP-TW) is a VRP-variant stressing
that the vehicle arrival and/or departure times must satisfy additional customer availability
requirements. We identify the difference of scheduling from the VRP-TW as the pro-activeness
from the decision-makers: the visiting sequence is the result of initial routing criteria instead
of the customer-imposed time requirements. Some related problems are the Appointment
Scheduling Problem (ASP) in the context of healthcare [14] and the Home Health Care
Routing and Scheduling Problem (HHC-RSP) [6, 11].

Model Uncertainties. In reality, one or multiple elements of the classical VRP is often
expected to be uncertain due to the limited availability of information. Common uncertainties
include customer presence, traversal times, and service duration. These can be modelled as
stochastic random variables, giving rise to the Stochastic Vehicle Routing Problem (SVRP) and
its variants [27]. The SVRP is usually solved by applying (two-stage) stochastic programming
techniques [21, 32]. A priori optimisation [3] works on real-world applications in which
randomness is a major concern. It applies the two-stage strategy: an initial solution is first
created before the parameters are revealed in the second stage. It means that first-stage
decisions should possess sufficient flexibility for the second-stage recourse actions.

The idea of a priori optimisation can be easily found in reality. Many international
shippers (e.g., DPD [9], Royal Mail [8]) have now adapted to similar concepts in their last-mile
deliveries: they first assign an estimated time slot to all customers based on the pre-collected
information, then re-assign a narrower time slot on the actual day of service when more
information is known (e.g., customer delivery sequence, cancellations). This multi-stage
approach also suits the real-life circumstances in the home healthcare service industry, where
last-minute service cancellations, i.e. customers cancelling their requests after being given an
appointment time, are allowed. Home service statistics show that the average daily visits
per service team in the U.S is around 6 [12], and that the driving time typically accounts



S.-N. Johnn, Y. Zhu, A. Miniguano-Trujillo, and A. Gupte 4:3

for 18% to 26% of the total working time [20], which indicate how a single cancellation can
considerably change the timescale for the following visits and the necessity of a robust service
planning system. Several works on home service-related research implement this multi-stage
approach [10, 26, 29, 30, 35].

There are existing works in the literature that deal with uncertainties in travel times,
service times, or customer presence in the context of Home Health Care (HHC). Readers are
referred to [15] for reviews of relevant models and methods in HHC. An excessive studies in
VRP with stochastic travel times can be found in [27]. Particularly, [22, 37, 38, 39] consider
randomness in service times. [25, 35] consider travel and service times uncertainties. [5]
considers customers who request service cancellation, and [17] considers random customer
behaviours in attended home delivery. Yet, to our best knowledge, there is no research that
integrates all three types of uncertainties with the four decisions in the context of HHC.

Our Contributions. The main contribution of this work is the treatment of an H-SARA
problem integrating the four decisions levels: strategic fleet-sizing, tactical assignment, oper-
ational routing, and operational scheduling. Travel times, service duration, and cancellation
rates are considered jointly as uncertain quantities, which to our best knowledge, has not
been investigated in the literature before. We developed a two-stage heuristic approach
that takes the evolution of information into account, thus allowing decision-making based
on imperfect information before the actual customer demands are revealed, and updating
existing solutions with an increased level of information. This paper is based on the authors’
submission to the AIMMS-MOPTA Modeling Competition [34] at which they were awarded
the First Prize.

2 Problem Statement

Let a service area be represented by a directed graph G := (V, A). Here the node set
V encloses the customer set J1, nK := {1, . . . , n}, a single depot {0}, and its duplicate
{n + 1}. The arc set consists of all the arcs linking each pair of customers, as well as a
single link from the depot to each customer and another from each customer back to the
duplicated depot, all with the shortest distance computed using the Euclidean metric; namely
A := {(i, j) : i ̸= j,∀i, j ∈ J1, nK} ∪ {(0, j) : ∀j ∈ J1, nK} ∪ {(i, n + 1) : ∀i ∈ J1, nK}. The
service for all n customers of known geographical location is provided by a group of no more
than m homogeneous service teams, each of which makes a single trip starting from and
returning to the depot. We aim to partition the set of customers into the minimum number
of groups, each visited exactly once by an individual service team in an explicit visiting
sequence, and to determine customer appointment time-slots prior to the actual visits. The
solution should satisfy time and capacity constraints given by the customers and the service
teams. Customers must be informed of their appointment times (or time slots) on the service
day before the cut off time (8 am) or the departure of the assigned service teams from the
depot, whichever is earlier. Lastly, the probability distributions associated with travel and
service times are known and assumed to be independent.

3 Mixed Integer Programming Model

3.1 Uncertainties inside the model
We apply a priori optimisation, where a set of a priori vehicle routes is first planned in the
presence of estimated expected travel and service times. The precise duration of each tour
becomes available only after the actual travel and service times are revealed in the second
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4:4 H-SARA Problem with Uncertainties

stage. Consequently, there is always an inevitable chance of a solution “failing” under the
stochasticity setting, forcing the decision-makers to develop relevant recourse policies to
repair a failed (infeasible) solution.

A extension beyond the consideration of stochastic travel and service times is the stochastic
customer behaviour (customer presence). An option provided by Sörensen and Sevaux [36] is
to first include all customers in the routes, then remove customer set I ∈ I who cancel their
service requirements on short notice. This gives a conservative or risk-averse approach for
the decision-makers since the routes are feasible for any customer set realisations, provided
that the traversal and service times are feasible. Base on this assumption, if the customer in
position i is removed, the service team will travel directly from customer i− 1 to customer
i + 1.

3.2 Stochastic MIP model

Parameters. We introduce the MIP formulation for the H-SARA and derive a set Ξ of
different scenarios ξ, each associated with a different realisation of the travel and service
durations with a certain probability qξ. We impose a stochastic traversal duration matrix
T = τ ξ

i,j under scenario ξ for any arc (i, j) ∈ A, and a stochastic service duration vector
S = sξ

i for customer i under scenario ξ. The Euclidean distance from i to j is labelled di,j .
In this formulation, symmetry of τ and d is not required, capturing possible discrepancies in
the underlying road network; i.e., city topography and street layout. Let p : J1, nK→ R≥0 be
a probability mass function defined over the set of customers, such that for each customer
i ∈ J1, nK the probability of last-minute service cancellation of i is given by pi. The cost of
hiring a homogeneous team i ∈ J1, mK is taken as a constant fm. The maximum allowed
working time is given by L ≥ 0. Working times are expected to be allocated in the interval
[0, L], yet we anticipate possible overtime occurring in the interval (L, L + θ] with θ > 0. Any
additional time beyond the maximum working time L and within L + θ results in overtime
cost. Finally, let cwait, cidle, and cover be fixed non-negative unit waiting, idling, and overtime
costs, respectively.

Decision Variables. For the decision variables, we let xi,j be a binary variable which takes
the value of one if the arc (i, j) ∈ A is traversed by a service team, otherwise it takes the
value of zero. We use a continuous variable 0 ≤ ai ≤ L for the team’s arrival time at customer
i ∈ J1, nK. Likewise, wi and hi are non-negative real-valued variables for the customer’s
waiting time, and service team’s idling time at customer i ∈ J1, nK, respectively. gi is a
real-valued variable measuring the overtime of a service team, registered at their arrival at
the depot when returning from customer i ∈ J1, nK. Finally, since an actual arrival time
under the stochastic setting could be different from a customer’s initial appointment time,
we have differentiated an appointment time (scheduled service start time) variable ti for each
customer i ∈ J1, nK. We assume the appointment time window is [ti −W, ti + W ] with a
fixed width 2W . The arrival of a service team before the appointment time window leads to
team idling, whereas an arrival after the time window leads to the customer waiting.

We have the traversal variables xi,j (also fleetsize, if we treat the total number of edges
linking customers with the depot as twice the fleet) and the appointment time variables ti

as our first-stage decisions. In contrast, the team idling time hi, overtime gi, and customer
waiting time wi are our second-stage decisions dependent on the different scenarios. The
first and second stage formulations for the stochastic H-SARA model are as follows:
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(1st Stage)

min
x

fm

∑
i∈J1,nK

xi,n+1 +
∑

(i,j)∈A

di,jxi,j + E [Q(x, ξ)] (1a)

subject to ∑
i∈J1,nK

x0,i ≤ m̂, (1b)

∑
i∈J0,nK

xi,j = 1 ∀j ∈ J1, nK (1c)

∑
i∈J0,nK

xi,j =
∑

i∈J1,n+1K

xj,i ∀j ∈ J1, nK (1d)

∑
i∈J1,nK

x0,i =
∑

i∈J1,nK

xi,n+1, (1e)

xi,j ∈ {0, 1} ∀(i, j) ∈ A. (1f)

where E [Q(x, ξ)] =
∑

ξ∈Ξ qξ ·Q(x, ξ) for any x satisfying the above equations, and any ξ ∈ Ξ
associated with probability qξ. The objective function (1a) minimises the total traversal
costs, team hiring costs, and expected idling, waiting, overtime costs under all scenarios.
Constraint (1b) states that there are no more than m̂ homogeneous service teams departing
from the depot {0}. (1c) require that each customer must be visited once and only once
by a service team. The flow conservation constraints (1d) require that a team travelling to
any customer node must leave the node afterwards. This is complemented with (1e), which
stresses that the number of teams leaving the depot must equal the number that returns.
(1f) are the domain constraints.

(2nd Stage)

Q(x, ξ) = min
w,h,g

cwait

∑
i∈J1,nK

wξ
i + cidle

∑
i∈J1,nK

hξ
i + cover

∑
i∈J1,nK

gξ
i

(1g)

subject to

aξ
i + hξ

i + sξ
i + τ ξ

i,j ≤ aξ
j + M(1− xi,j) ∀(i, j) ∈ A, (1h)

aξ
i + hξ

i + sξ
i + τ ξ

i,j ≥ aξ
j −M(1− xi,j) ∀(i, j) ∈ A, (1i)

aξ
i + sξ

i + τ ξ
i,n+1 − L ≤ gξ

i + θ(1− xi,n+1) ∀i ∈ J1, nK, (1j)

hξ
i ≥ (ti −W )− aξ

i ∀i ∈ J1, nK, (1k)

wξ
i ≥ aξ

i − (ti + W ) ∀i ∈ J1, nK, (1l)

ti ≤ L, gξ
i ≤ θ ∀i ∈ J1, nK, (1m)

aξ
i , hξ

i , wξ
i , gξ

i ≥ 0 ∀i ∈ J1, nK. (1n)

Scenario-based objective function (1g) minimises the idling, waiting and overtime costs. The
functionality of (1h) is two-fold. First they join (1i) to link together the arrival time to the
first customer, its service time, and the traversal time to the next customer given that the
two customer visits are consecutive. Second it forbids the formation of subtours, which are
circles formed only by a group of customers without the depot. (1j) determine the incurred
overtime when returning to the depot from the last customer. Constraints (1k) and (1l)
specify the idling and waiting times, respectively. Constraints (1m) give the upper bounds,
and (1n) provide lower bounds for the relevant variables.
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4:6 H-SARA Problem with Uncertainties

4 Exact Solution Method

4.1 Bounding the number of service teams
This section presents the upper and lower bounds of a feasible number of service teams to
hire. For notation simplicity, the travel and service times involved in the following models
are the expected values for each arc and customer node, namely τ̂ and ŝ. Following the steps
given in [16], we can find an upper bound on the number of teams required to visit all clients
by solving the following linear problem:

min ℓu (2a)

subject to∑
i∈J1,nK

ŝi +
∑
i∈V

(
max{τ̂i,j : (i, j) ∈ A}+ max{τ̂j,i : (j, i) ∈ A}

)
≤ ℓu(L + θ), (2b)

1 ≤ ℓu ≤ m̂, and ℓu ∈ Z, (2c)

where ℓu is a decision variable representing the maximum number of needed teams to satisfy,
in a mean-worst-case scenario, all the transportation and services requirements. Here, m̂ is
an upper limit on the number of teams, which can be as large as the number of customers
n, and an optimal solution of (2) determines a choice over m. Observe that if we divide
constraint (2b) by ℓu, the resulting expression distributes the routing task in two parts:
There is a term averaging service time, and another term averaging the time required, taking
time-consuming paths, to travel between customers. Notice that the optimal solution can be
obtained using exhaustive enumeration in O(m̂) time.

Likewise, service times can provide a lower bound on the amount of time that all service
teams spend on the road. To do so, we define ℓl as the minimum number of teams required
to distribute the aggregated service time and minimum transportation time. Thus we need
to solve the following nonlinear program

max
ℓl

F (ℓl) =
∑

i∈J1,nK

ŝi

ℓl
+

∑
i∈V

[
min{τ̂i,j : (i, j) ∈ A ∧ i ̸= j}

ℓl
+ min{τ̂j,i : (j, i) ∈ A ∧ i ̸= j}

ℓl

]
(3a)

subject to

F (ℓl) ≤ L + θ, 1 ≤ ℓl ≤ m̂, and ℓl ∈ Z. (3b)

Notice that if this problem is infeasible, then there are not enough teams to solve the H-SARA
with mean values for service and transportation times. As a result, we have an infeasibility
certificate. Again, this problem can be solved in O(m̂) time.

4.2 Deterministic Exact Solution Method
The deterministic model can be considered as a single-scenario stochastic model, where
appointment time ti is the same as the arrival time ai with zero service team idling time
hi = ti− ai = 0 at customer i ∈ J1, nK. Besides, the model has a pre-specified set of customer
nodes with known coordinates, since we assume all cancelled customers are already removed.
The instances are generated using a scenario-based approach specified in Section 6.1. We
first attempted to solve the deterministic H-SARA model to optimality. The model was
inputted with a pre-specified number of customer nodes. The first deterministic model (first
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Table 1 Results for deterministic version of the model with acceleration approaches.

Type Number of customers n

10 15 20 25 30

Deterministic CPU-time 0.54 1.14 4.97 18.81 1800*
Gap 0% 0% 0% 0% 0.05%

Deterministic1 CPU-time 0.65 1.34 4.41 16.65 1438.16
(fixed m) Gap 0% 0% 0% 0% 0%

Deterministic2 CPU-time 0.63 1.31 2.07 3.62 6.33
(fixed m+ gap) Gap 0.1% 1.7% 1.6% 0.9% 1.3%

two rows) in Table 1 shows the average CPU times and the average gap solved using CPLEX
20.1.0 for 10 iterations with time limit 1800 seconds. The gap indicates the solution’s quality
and is defined as the difference in percentage between the upper and the lower bounds.

Although solving a smaller-scaled deterministic problem is computationally manageable,
the solver fails to find feasible solutions for large or even moderate-sized instances within 30
minutes on average, as shown in Table 1. As a result, we have proposed two acceleration
approaches to reduce the computing time for the deterministic H-SARA model. The
approaches are implemented inside our solution framework and are described below.

First, we apply a root node solution method to address a trade-off between fixed vehicle
costs and variable routing costs, aiming for an “economical fleet size” [13]. We pre-define the
number of service teams m in constraint (1b) and change its sense to strict equality so that
the solver is no longer required to optimise the fleet size but treats it as an input parameter.
For each fixed fleet size m in {ℓl, ℓl + 1, . . . , ℓu} computed in Section 4.1, we used CPLEX to
callback the first feasible (integer) solution we receive at the root node. After all associated
root node values are computed, we instruct CPLEX to identify the smallest root node value
and return its associated fleetsize m, which will be used as the final fleet size to optimise the
routing and scheduling decisions. Using this method, we observe a considerable improvement
in computation speed without a significant loss of solution quality, as shown in the third and
fourth rows of Table 1.

50 Customers (pre-fixed fleet)
50 Customers 

Computing time (seconds)

Up
pe

r a
nd

 lo
w

er
 b

ou
nd

 g
ap 1.0

0.8

0.6

0.4

0.2

0.0
0 20 40 60 80 100 120

80 Customers (pre-fixed fleet)
80 Customers 

Figure 1 Deterministic model gap versus computing time.

Secondly, we observe from experimental testings that CPLEX’s default heuristic solution
method can reach an integer solution at the root node with reasonably good quality and
within a concise computing time (less than 1 minute). Nevertheless, reaching a global
optimum is difficult due to the time-consuming nature of the branch-and-bound process
encoded in the solver. This trend is shown in Figure 1 and can be observed visually during
the solution process that the solver spends an awfully long time improving the visiting
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4:8 H-SARA Problem with Uncertainties

sequence of customers. For an 80-customer instance, the optimal root node solution has
the hiring costs outweigh routing and scheduling costs, allowing the algorithm to terminate
when the idling, waiting and overtime penalties are small. Based on experimental results, we
fixed a 2% gap for the total staffing, routing and scheduling costs, assessing the terminating
speed (how fast to reach 2%) and solution quality (routing and scheduling decision quality).
The solution time and relative MIP gap reported by CPLEX for different customer sizes are
presented in the last two rows of Table 1.

4.3 Stochastic Exact Solution Method
The multi-scenario stochastic model is noticeably more challenging to tackle than its determ-
inistic counterpart, which can be considered as a single-scenario stochastic model.

We realise the natural partitioning of our stochastic model, where the first stage is a
mixed-integer linear programming problem and the second-stage recourse model is linear.
Furthermore, the second-stage problem is scenario-dependent, and therefore its structure
suggests the application of Benders’ Decomposition [2], taking the first stage as the master
problem that decides which set of paths to take, and treating each scenario inside the
second-stage recourse model as a subproblem. Each subproblem provides a scenario of the
travel and service times for the arc traversal decisions made during the first stage.

We use CPLEX built-in Benders algorithm to solve a full model. The first and second
rows in Table 2 list the numerical results of solving the complete stochastic model as a
whole, incorporating the fleet size pre-solving procedure described in the deterministic model,
and limiting the gap to 2%. The third and fourth rows are with Benders’ algorithm. The
empirical results show that Benders Decomposition is not suitable for our models as it
consumes much longer computing time to provide worse results. Moreover, we notice that
due to specific parameter scale settings, we have the fleetsize cost dominating the other
costs. For a 15-customer instance, we notice that only two teams were hired, which results
in seriously high idling, waiting, and overtime penalty costs. This is the reason behind the
long solution process before termination, since an additional team hire brings up the total
costs but is the only way to bring down the penalty costs.

Table 2 Results for stochastic model with 10 scenarios.

Type Number of customers n

5 10 15 20 30

Stochastic CPU-time 0.19 2.05 1421.18 25.38 183.31
Gap 1.99% 1.97% 2.12% 1.99% 1.91%

Stochastic CPU-time 0.52 11.28 1800* 1800* 1800*
(Benders) Gap 1.99% 2.00% 2.93% 2.12% 3.66%

We have observed from Table 1 and 2 that even with efficient accelerating approaches,
solving a large-scale H-SARA problem jointly to optimality is still not practical due to the
time-consuming nature of exact methods. On top of that, the problem involves a range of
uncertainties in real-life traversal times, service duration, and customer presence rates, all
of which require a flexible solution method that focuses more on adapting to fast-changing
information and a large number of scenarios, meanwhile achieving in-time solution with good
quality. These results drove us to explore and develop a simple and flexible heuristic as an
alternative.
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5 Two-Stage Solution Strategy

5.1 Solution Framework
For our tailored two-stage heuristic, we have first decomposed the problem into different
stages with an embedded chronological structure, allowing us to make dynamical decisions
at each stage with an increased level of information. At each stage, we have also partitioned
the decision set into its fleet-sizing, districting, routing, and scheduling components and
introduced an “inter-feedback process” among different decisions, which avoids the deficiency
of a hierarchical decision process that may lead to sub-optimal solutions.

Our two-stage heuristic resembles a typical home service rundown: previous-day initial
plannings (Section 5.2), service day tour refinements (Section 5.3), and post-service perform-
ance evaluation (Section 5.4). The heuristic showcases the “inter-feedback process” that the
previously-made decisions can be re-optimised and updated at a later stage with an increased
level of information. Figure 2 shows an example for our two-stage heuristic timeline, and
Figure 3 displays an example for the two-stage heuristic outputs.

Day 0
Afternoon

Stage 1 - Initial planning Stage 2 - Tour refinement Stage 3 - Evaluation

Day 1
(7 AM)

Day 1
(8 AM)

Day 1
(9 AM - 4 PM)

Day 1
(4 PM)

Day 1
(6 PM)

• Fleet-sizing
• Team-customer
  assignment
• Plan initial set of
  routes based on 
  estimated data

• Receive customer
  cancellation list
  before cut-off time
• Remove cancelled
  customers from
  routes

Notify initial 
customer 

appointment 
time window

Notify updated
customer 

appointment 
time window

• Perfom actual
  service
• Receive realisation
  of traversal and
  service times

Evaluation of
whole day’s
performance

Recourse for
overtime team

(Optional)

Figure 2 Heuristic rundown with chronological timeline.

During the initial planning stage, the decision-makers need to make pre-arrangements
with limited information to guarantee a smooth rundown on the actual service day. The tour
refinement stage resembles the actual service day, with the visiting sequences re-optimised
based on last-minute cancellation outcomes. For the post-service evaluation stage, complete
information about travel and service durations are revealed after the actual service, allowing
decision-makers to evaluate the service teams’ performance. One crucial requirement for
the first-stage decisions is robustness, which allows the second-stage decisions to refine the
previous ones without much modification.

5.2 Initial Planning Stage
Before we formally introduce the two-stage heuristic, we first provide an estimation on
the activity measure, which is the expected amount of time required to include a specific
customer in a tour. This helps us to determine the size of a customer cluster serveable by an
individual team. In our application, the customer cancellation rate is known probabilistically,
which means that the actual sequencing of customers or the computation of route lengths
is pointless without knowing the actual cancellation list. Yet, we can estimate the travel
and service times without explicit routing as in [1]. The estimated total time required for a
group of customers can be divided into (i) stem time: estimated travel time from the depot
to the nearest customer inside the group; (ii) intermediate transit: estimated travel time
between customers of the same group; (iii) service time: estimated stopping time at each
customer. Parts (i) and (iii) are self-explanatory and can be estimated by the relevant travel
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Figure 3 Heuristic framework: initial planning, tour refinement, and post-service performance
evaluation stages.

and service times distributions. For (ii), we can estimate ei, which is the expected travel
time from customer i to any same-group customer j with probabilistic customer presence
rate, using the formula given in [1]:

ei =
bi∑

j=1
p

(∗)
i,j ·

di,j

vi,j
=

bi∑
j=1

(1− pj)(bi −Ri,j + 1)∑bi

l=1(1− pl)(bi −Ri,l + 1)
· di,j

vi,j
(4)

where pj is customer j’s probabilistic cancellation rate, bi is the number of closest customers
to customer i, Ri,j is the rank of the jth closest customer to i, with j ∈ J1, biK, and p

(∗)
i,j can

be interpreted as the likelihood of customer j following i on a route. di,j is the Euclidean
metric and vi,j is the travel velocity from node i to j.

As a result, the activity measure ωi for customer i can be estimated by the expected
service time ŝi plus the estimated travel time from i to the district centre j using (4). Here
we use the expected travel velocity v̂. We estimate the number of nearest customers to be
the average number of customers inside a district bi = ⌈ n

m⌉. This way we have for a specific
customer i:

ωi = ŝi + ei = ŝi +
bi∑

i=1
p

(∗)
i,j ·

di,j

ˆvi,j
(5)

At the beginning of the initial planning stage, we apply a cluster-first-route-second
construction heuristic to come up with an initial set of routes. A feasible fleet size m can
be pre-determined using the root-node solution method we described in Section 4.2. We
adapt the districting formulation proposed by Hess et al. [19] and solve the MIP model
to optimality to receive our initial customer-team assignment decisions. The specific MIP
formulation can be found in Appendix A.1. Mathematically, we first aggregate customers into
m compact and balanced districts that are each manageable by an individual service team.
After clustering the customers, we form a single cycle inside each district containing all its
customers and the depot. This is equivalent to solving the TSP for m times. We adapt the
DFJ formulation for TSP [7] to receive our initial routing decisions. A comprehensive review
on the TSP heuristics methodologies and implementations can be found in [28]. However,
considering the size of our problem, an exact solution can be obtained using existing solvers.



S.-N. Johnn, Y. Zhu, A. Miniguano-Trujillo, and A. Gupte 4:11

To improve upon these routes, we employ the adaptive large neighbourhood search (ALNS)
meta-heuristic. ALNS was first introduced by Ropke and Pisinger [31] as an extension of
the large neighbourhood search (LNS) proposed by Shaw [33] with the general principle of
“destroy and repair”, which is to search for a better solution by destructing a part of the
solution and reconstructing the damaged part in a different way. Our ALNS pseudocode is
presented in Algorithm 1. A detailed ALNS framework can be found in Appendix A.2.

Algorithm 1 Basic steps of ALNS.

1: s← InitialSolution, InitialScore(w∗) and sbest = s
2: for stopping criteria not met do
3: N− ← Choose(AllDestroyOperators, w∗

d)
4: N+ ← Choose(AllRepairOperators, w∗

r )
5: s′ ← DestroyRepairApply(s, N−, N+)
6: if s′ < QualityThreshold then
7: s′ ← LocalSearch(s′)
8: obj(s′) = sum cost (team, travel, overtime) and workload balance penalties
9: if s′ satisfies acceptance criterion then

10: s← s′

11: if s′ < sbest then
12: sbest ← s′
13: update RouletteWheel operators performance scores

The upper set of graphs in Figure 4 shows an example for the first-stage (initial planning)
heuristic outputs. In Stage 1.3 of the first-stage heuristic, we further balance the workload
among all operators by including a workload imbalance penalty in the ALNS objective
function to penalise the extra units of workload above or below a certain threshold for any
service team. The last step of the first-stage heuristic is to notify all customers of their
initial appointment slots. Based on the set of routes improved by ALNS, we compute each
individual’s appointment time from the associated team departure time. To cope with
potential last-minute customer cancellations, we expand each individual appointment time
into an appointment time window with fixed length and communicate this individual-tailored
appointment time window to every registered customer. For example, assuming T1 = 4 hours
and a customer’s estimated appointment time is at 11:30 am, the first-stage appointment
time window for them will be [9:30, 13:30].

5.3 Tour Refinements Stage
At the beginning of the second stage, the list of cancelled customers I becomes known. So
we re-optimise the initial tours to fit the updated-to-date customer information. The lower
set of graphs in Figure 4 shows the decision process for our second-stage tour refinement:
we remove the cancelled customers from the first-stage tours, compute the estimated arrival
times for all non-cancelled customers, improve the service teams workload balance, and notify
all the non-cancelled customers of a narrower appointment time window.

The service teams’ arrival times to customers and depot are random variables since they
depend on travel and service times which are by definition random variables. This lead to
our decision of quoting an appointment time window, rather than a specific time point, to
every non-cancelled customer during the first and second stages. We re-apply the ALNS
improvement heuristic in Stage 2.3, where we not only minimise the total travelling costs,
overtime costs, and team workload imbalance but maximise the chance of scheduling the
updated appointment times to nest within the first-stage appointment time windows. In this
way, we avoid abrupt appointment time modifications, which is essential to service quality
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Figure 4 Initial planning and route refinement stages of the heuristic framework – an example.

and customer satisfaction, even though at the cost of longer service team waiting times.
Specifically, we assume a first-stage time window [T start

1 , T end
1 ] and a second-stage estimated

arrival time ai at a non-cancelled customer i.
Similar to the first-stage appointment scheduling, we create a narrowed second-stage time

window with length T2 = 30min. The time windows are not necessarily centred at their arrival
times. This is determined by a linear adjustment [ai−T start

i ] ∗ cidle = [T end
i − ai] ∗ cwait that

forces the center forward in time to cope with more expensive waiting costs, or backward with
more expensive idling costs. The ALNS objective term P

′ ×max{T start
1 − ai, ai − T end

1 , 0}
penalises any arrival time not nested within the first-stage time window. Besides, we manually
adjust the second time window to be [T start

1 , T start
1 + T2] in the occurrence of any infeasible

second time window begins earlier than the first. Likewise, [T end
1 − T2, T end

1 ] applies to any
second time window that finishes after the first time window.

5.4 Post-Service Performance Evaluation

The quality of our second-stage refined routes will be evaluated in the post-service evaluation
stage. The issue of data over-fitting might occur for our two-stage heuristic, since we only
rely on in-sample objective values computed using a discretised set of scenarios ne clustered
from random samples. Therefore, we also evaluate the out-of-sample performance of our
solutions using a new and much larger set of benchmark scenarios generated after the model
has been solved. This gives a fairer indication of how good our service levels are with an
unobserved set of data. The evaluation stage is not counted as a valid solution stage, since
no decision-making process is involved.
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6 Experiments and Insights

6.1 Experiment Settings
The parameter settings were given in the AIMMS-MOPTA competition guidelines [34].
Specifically, we assume n customers are uniformly located over a 50× 50 km geometric grid
with the depot located at the origin (0, 0). We set the fixed individual team hiring cost
fm = 100, hourly team idling time cost cidle = 2.5, hourly overtime cost cover = 5, hourly
customer waiting cost cwait = 4. We also define the standard daily workload L = 8 hours
for each team, the first-stage time window length T1 = 2 hours, and the second-stage time
window length T2 = 30 minutes. We assume the travel times between any two nodes are
identically distributed with a log-normal distribution. For the customer service time, we select
the gamma distribution that is not strictly symmetric in order to avoid generating a negative
service time. We assume the expected service time ŝ = µs = 45 min with its standard
deviation set to µs/2, the expected travel speed v̂ = 1 km/min (equivalently, expected travel
time τ̂i,j = 1 min/km). Moreover, we assume individual customers all share the cancellation
probability defined at a fixed rate 5%.

For a unified measurement, we use CPLEX 20.1.0 as the optimisation solver for both the
heuristic framework and exact methods. The whole two-stage heuristic solution computation
is performed on a machine with Intel i5-10400F CPU and 16GB RAM installed.

A Sampling-Based Objective Function. Since the customer cancellation list is random, and
so are the travel and service durations, we come up with a sampling-based objective function
computed from a number of ne randomly generated scenarios to guide the second-stage
solution process, inspired by the work of [36]:

f∗(x) = 1
ne

ne∑
i=1

f
(
x, Si(τ, s)

)
(6)

where f∗(x) is the expected total costs computed from a number of ne randomly generated
scenarios, x is the set of second-stage routes with the cancelled customers removed, S is the
sampling function, and Si(τ, s) represents the ith scenario with stochastic travel and service
times realisation. f

(
x, Si(τ, s)

)
represents the total costs of the ith scenario applied to x,

and finally ne is the total size of scenarios.

Scenario Generation. We introduce a scenario generating procedure to ensure a more
diverse set of scenarios is included. First we apply the Monte-Carlo simulation that randomly
generates ns samples, each with an identical pair of travel and service times realisations. We
then cluster a fixed number of ne scenarios from these samples using a k-mean clustering
algorithm given that ns ≫ ne. The probability qξ of each scenario ξ is estimated using the
number of samples clustered together divided by the total number of generated samples. In
this way, we are able to capture extreme values using a moderate number of scenarios.

6.2 Observations
The experiment results are given in Table 3, from which we have observed the following
points: To begin with, our two-stage heuristic can tackle a larger customer size within a
reasonable time. The two-stage heuristic takes no more than 2 minutes on our computer to
compute a solution for a 40-customer instance, whereas the deterministic model requires 19
minutes on average, and the stochastic model cannot even terminate within 30 minutes. If
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we further increase the model’s size to 100 customers, none of the exact MIP approaches can
terminate within hours, but our two-stage heuristic can still obtain results within 5 minutes,
and within 10 minutes for the 150-customer instances.

For the solution quality, our two-stage heuristic provides competitive solutions comparing
to CPLEX solutions on the same set of simulated benchmark instances. By comparing
same-scenario columns between the exact methods and two-stage heuristic, we observe that
within the given time limit, our two-stage heuristic is able to find solutions within 4% of the
solutions computed by CPLEX. Even though all exact and heuristic methods columns are
non-optimal (since global optimum is extremely difficult to compute, as shown in Fig 1), we
want to showcase the fact that our two-stage heuristic is able to provide same-quality solutions
and within less amount of time compared to CPLEX. Besides, the two-stage heuristic is
more robust in real-life applications and can provide up-to-date decisions at different service
preparation stages based on different levels of available information.

Hypothetically, if we obtain the complete customer cancellation information in the first
place, we can simply merge the two heuristic stages and deal with only stochastic travel and
service times. To determine the additional cost of making multi-stage decisions, we run a
parallel experiment “1-stage Heur”, assuming complete information for cancelled customers.
It achieves lower objective costs than the two-stage heuristic “2-stage Heur”, which receives
no customer cancellation list but only cancellation probability during the initial planning
stage. Yet, our two-stage heuristic is not worse-off in terms of average objective values and
computing time from the results. For experiment sets with 100 and 150 customers, “2-stage
Heur” outperforms “1-stage Heur” in the expected objective function value although with
slightly longer computing time on average. We recognise two potential reasons behind this
phenomenon: local search-based heuristics cannot guarantee the global optimum in general,
and the solutions computed by “1-stage Heur” being over-fitted to the single scenario than
the benchmark instances/scenarios from the evaluation stage.

To conclude, we are able to include last-minute customer cancellations into our solution
process and make initial decisions based on probabilistic customer cancellations, all at a
reasonable additional cost. The additional cost is mainly due to our requirement to nest the
second-stage narrower appointment time window within the first stage’s, thus limiting the
freedom to optimise the best routes and leading to slightly worse-off solutions. However,
no perfect information exists in reality. The differences between one-stage and two-stage
solutions can be treated as the costs of “imperfect information”, or equivalently, the costs
for making a priori decisions and previous-day customer notifications without getting the
complete picture.

7 Summary

This paper studied the H-SARA problem, which integrates the fleet-sizing, assignment,
routing, and scheduling problems. We have proposed a stochastic MIP model for the H-
SARA problem, whose deterministic and stochastic versions are solved with two accelerated
methods for small and medium scaled instances. We also developed a tailored two-stage
heuristic solution method with an embedded ALNS improvement heuristic, to support a
real-life decision-making process taking the evolution of information into account. Our
proposed two-stage heuristic shows good performance in terms of computational time and
solution quality. It also demonstrates good flexibility and robustness in adapting to multiple
scenarios with different travel times, service times, and customer cancellation rates. Using
our decision support framework, we can provide time and cost-effective decisions with low
idling, waiting, and overtime costs, as well as two sets of customer appointment time windows,
and balanced service team workload within geographically clear service zones.
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A Appendix

A.1 Districting MIP Formulation

Let J1, nK, be the set of customers and {0} be the depot as before. Let ωi ∈ R+ be the
activity measure associated with customer i. The number of districts to be formed is the
same as the pre-defined number of vehicles m. The average activity measure per district
is defined as µ = 1

m

∑
i∈J1,nK ωi. We denote ωmin ≤ 100 and ωmax ≥ 100 as the minimum

and maximum percentage of activity measures in a district, respectively. L is the maximum
allowed working time. Denote by di,j the travel (Euclidean) distance between customers
i and j. Finally, the decision variable yi,j is equal to one if customer i is assigned to the
district centred at customer j, and it is zero otherwise. Here yj,j takes the value of one if
customer j is selected to be the district centre. The districting MIP model can be defined as
below:

min
∑

j∈J1,nK

∑
i∈J1,nK

ωid
2
i,jyi,j (7a)

∑
j∈J1,nK

yi,j = 1 ∀i ∈ J1, nK (7b)

∑
j∈J1,nK

yj,j = m (7c)

yi,j ≤ yj,j ∀j ∈ J1, nK (7d)∑
i∈J1,nK

ωiyi,j ≥
ωmin

100 µ · yj,j ∀j ∈ J1, nK (7e)

∑
i∈J1,nK

ωiyi,j + 2d0j ≤ L ∀j ∈ J1, nK (7f)

yi,j ∈ {0, 1} ∀i, j ∈ J1, nK (7g)

Constraints (7b) require every customer to be assigned to a district. Constraint (7c) requires
exactly m districts to be formed. Constraints (7d) state that each formed district must
have a center. Constraints (7e) define the minimal workload of any district. Constraint (7f)
stresses that the workload within each district, i.e. the activity measure within each district
together with the pendulum tour to and from the depot, has to be no more than the total
time allowance (or other self-defined upper bound using ωmax).
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A.2 ALNS Improvement Heuristic

A.2.1 Destroy and Repair Operators
The algorithm removes a pre-defined number of nodes from the solution together with their
linking arcs before adding them back iteratively, with the hope that the newly formed solution
yields a smaller objective value. We introduce the whole list of destroy operators below:
1. Random Removal: a group of q randomly selected customers are removed from their

existing routes and placed inside the customer pool.
2. Worse Removal: originally proposed in [31] to remove the q customers with the highest

removal gain, which is the difference in cost when this customer is inside an allocated
tour, and when the customer is not.

3. Related Removal: a single customer is randomly selected and moved together with the
(q − 1) nearest customers from their tours to the customer pool.

4. Tour Removal: randomly remove a single tour. Move all the allocated customers from
this single tour to the customer pool.

5. Longest Tour Break into Half: break the longest tour found into two smaller tours. Link
the start and end of the smaller tours to the depot.

6. Overcapacitated Tour Break into Half: break all the infeasible tours (time capacity
violated) in the middle and form two smaller tours. Link the start and end of the smaller
tours to the depot.

The first three destroy operators are at the customer node level, and the latter three are
at the routing level. We set default q = 5 from experimental results. Customers inside the
customer pool will be re-inserted by an repair operator selected from below [18]:
1. Greedy Insertion: Randomly select a customer from the customer pool, insert it into

the position that increases the total expected costs by the least. The insertion can be
between two consecutive customers or between the depot and a linking customer.

2. Greedy Insertion Perturbation: The same mechanism as Greedy Insertion. However,
the insertion cost of the selected customer at each specific position is influenced by a
perturbation factor d between [0.8, 1.2].

3. Greedy Insertion Forbidden: The same mechanism as Greedy Insertion, only that a
customer node cannot be re-inserted to the same position removed from.

Since destroy and repair operators (with local search) allow us to modify the number of
existing tours, it therefore is possible to re-optimise the fleet size during the ALNS search.
As a result, ALNS allows our first-stage heuristic to be less affected by a poor selection of
service team number m at the beginning.

A.2.2 Local Search
Local search methods (move, swap, and 2-opt) are applied after each destroy-repair iteration to
further improve the repaired solutions. However, since local search is usually computationally
expensive, we only wish to apply it to promising candidates whose objective values after
the repair stage are within a limit of the best-found incumbent (default 30%). A graphical
description of the move, swap, and two-opt methods is given in Figure 5.

A.2.3 Roulette Wheel Selector with Adaptive Weight
We apply the roulette wheel (a probabilistic mechanism) to independently select the des-
troy and repair operators at each iteration. An operator i is selected with probability
owi

/ ∑K
k=1 owk, where K is the group of same-category operators and owi is operator i’s
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Move / Relocate
Move a single node from its position to a new position

Intra-tour Inter-tour

Inter-tour

Swap / Exchange
Swap the positions of two distinct customers

Intra-tour

2–OPT
Delete two non-adjacent edges and replace them with two other edges

Intra-tour

Overlap-Breaker
Find two overlapping tours, merge them, and split workload evenly

Inter-tour

Figure 5 Local Search Operators.

weight. The weight can be interpreted as the operator’s “capability” to bring improvement
to the incumbent (best current solution), and can be mathematically updated to reflect its
in-time performance in the previous N iterations as well as its overall performance throughout
the ALNS solution process. We can compute operator i’s weight in segment j + 1:

owi,j+1 =
{

owi,j(1− r) + πi

Qi
r if πi > 0,

owi,j if πi = 0,
(8)

where owi,j is the weight of operator i in the previous segment j. A segment is a consecutive
number of iterations during the solution process. πi is the score that operator i earned in
segment j for contributing to improving the incumbent’s quality, and Qi is the number of
times operator i has been employed. Thus πi

Qi
is the average score operator i earns each time

it was selected in segment j. This is weighted by a reaction factor r that controls how much
the previous segment j determines each operator’s overall performance. Here we choose
r = 1/2 based on experimental results.

A.2.4 Acceptance and Stopping Criteria

ALNS has an embedded simulated annealing (SA) meta-heuristic served as the acceptance
criterion, which allows the algorithm to accept a newly-found solution s′ that not necessarily
brings a lower total cost. SA contributes to ALNS’s strong capability and robustness in
exploring the solution neighbourhood with both diversification and intensification, allowing
the search to escape from a local minimum and visit unexplored areas of the search space.
Mathematically, we accept the new solution s′ with probability ef(s′)−f(s)/Tem where s is the
current solution and Tem the initial temperature.

For the stopping criteria, we force the search to terminate after either a certain amount
of time or a prescribed number of non-improving iterations is reached.
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A.2.5 Further Improvements
To further improve on the real-life practicality of our routes and schedules derived after the
districting-first-routing-second construction heuristic (Section 5.2) and ALNS improvement
heuristic (A.2), we have considered the following improvements for our first-stage solution:
workload balance between teams, multiple tours overlapping minimisation, and single tour
self-intersection elimination.

Each service team’s assigned workload is bounded by (7e) and (7f), which means a team
could still be assigned a much higher or lower workload compared to the rest of the teams.
To further balance the workload amongst the teams, we include a soft workload balance
penalty P ·max{|

∑
i∈k

ωi−µ

µ | − α, 0} in the ALNS objective function to penalise the extra
units of workload above or below a certain threshold α for any service team (district k) and
an average workload µ amongst all districts. We have chosen α = 0.3 based on experimental
results.

Occasional multiple tours overlapping is unavoidable, especially with a tight number
of available service teams. Service durations have a larger scale than the inter-customer
travel times, leading to customer assignments prioritising a good fit of customer service times
into the remaining workload over the geographical adjacency. The randomness of customer
geographical location can result in an unevenly high concentration of customers, challenging
for the algorithm to form disjoint, compact, and contiguous driver zones within a reasonable
computing time (since local search is computationally expensive). However, the application
of overlap-breaker or 2-opt (Figure 5) can remove the majority of overlaps and eliminate
twisted tours that self-intersect.
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