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Abstract
Model predictive control (MPC) represents the state of the art technology for multivariable systems
subject to hard signal constraints. Nonetheless, in many real-time applications MPC cannot be
employed as the minimum acceptable sampling frequency is not compatible with the computational
limits of the available hardware, i.e., the optimisation task cannot be accomplished in one sampling
period. In this paper we generalise the classical receding-horizon MPC rationale to the case where
n > 1 sampling intervals are required to compute the control trajectory. We call our scheme
Overlapping-horizon MPC – OH-MPC for short – and we numerically show its attitude at providing
a tunable trade-off between optimisation quality and real-time capabilities.
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1 Introduction and background

In modern control applications, Model Predictive Control (MPC) is the approach of election
to optimal feedback regulation of multivariable (possibly nonlinear) systems subject to input
and output constraints [1]. The key ingredient of all MPC strategies is the so-called Receding-
Horizon policy, hereinafter RH-MPC for short. According to this policy, at each control
step occurring at fixed period, the control signal trajectory is computed by considering its
(predicted) impact on the state of the system over a future time window of finite length.
Then, only the first sample of the optimal control sequence is applied to the system, whereas
the whole input trajectory is re-optimised over a moved prediction horizon at the following
sampling instant [9].

Despite the uncountable successful applications of such an approach [6], practical imple-
mentations of MPC schemes still present tough challenges for many real-world applications [5],
among which: integration with data-driven model learning procedures [11], automatic tuning
of MPC weights [8] and efficient on-line optimisation [12]. In particular, the latter represent a
strong limitation for all applications where limited computational resources are available and
a minimum sampling frequency is fixed by the dynamics at hand, in that the optimisation
task must be accomplished in one period. Indeed, the expansion of MPC toward real-time
systems on the one hand, and large-scale problems on the other, make the problem of allotting
computational resource timely far more relevant than it was in the past, see e.g. [10].
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Figure 1 Role of the hold horizon NH assuming that the optimisation problem (OPT) can be
solved in one step; since in this particular example NH < NC , not all the computed control moves
are applied; solid circles denote the control sequence actually fed to the process.

In [7], a suitable MPC scheme was proposed to overcome the above issues, by allowing
the control action to be updated only “sporadically”, standing on the assumption that an
inner control layer is available to regulate the system, while the outer MPC is running
in open loop. Another approach is to embed the predictive controller within a general
event-based/asynchronous framework (see, e.g., [3] and [13]), thus limiting the number of
computations but, at the same time, making the analysis unnecessarily complicated for a
system whose signals are periodically sampled and with no network-related problems, like
event-triggering or communication delays [14]. Moreover and most important, in sporadic
and event-based strategies, when a new optimisation is required, this still must be done
within one control step.

In order to deal with the problem of limited resources, in this work we propose a
generalisation of the standard RH control scheme, for the case where n > 1 samples are
required to perform the optimisation over the selected prediction horizon NP . The proposed
generalised scheme will be named Overlapping-Horizon MPC (OH-MPC) hereafter, in that
its key idea is to start optimising the new input sequence while the previous control is applied
– along this interval the old and new sequences are thus “overlapped”, whence the name –
and switch to the updated control trajectory as soon as this is available. In particular, by
defining a hold horizon NH as the number of samples of the computed input sequence that is
actually applied to the system, we will discuss that, for 2n−1 ≤ NH ≤ NP , we can span with
continuity (of course quantised in steps) between two extrema. One is the classical RH-MPC
policy; the other (that we name herein Open-Loop MPC or OL-MPC for short) consists of
applying the entire sequence of control samples as coming from the optimisation over the
prediction window. In addition and most important, then, while spanning in between the
said extrema we can always comply with the computational constraints. Finally, we will
show that, if n = 1, our generalisation reduces to the traditional RH-MPC scheme, with
all the related properties. In a nutshell, to summarise, we can outline our proposal by the
following statements.

Taking RH-MPC and OL-MPC as extrema, we introduce and exploit an additional degree
of freedom in the form of applying only a part (NH) of the computed control horizon.
We build on this to propose a methodology for addressing the case in which the solution
of the optimisation problem necessarily spans more than one control time step as dictated
by the physics of the problem, which apparently makes RH-MPC infeasible.

The remainder of the paper is organised as follows. In Section 2, the notion of hold
horizon NH for a predictive control scheme is defined and the OH-MPC scheme is introduced
and explained. Then, Section 3 discusses the presented ideas, also in a view to providing some
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Figure 2 Horizons when the optimisation problem (OPT) cannot be solved in one step; here we
set NC < NH – hence all the computed control moves are applied – just for the sake of variety and
completeness; again, solid circles denote the control sequence actually fed to the process.

application-oriented motivation for the additional degrees of freedom introduced. Section
4 provides a benchmark numerical example, to show that OH-MPC represents the best
trade-off when limited computational resources are available. The paper is ended by some
concluding remarks.

2 Overlapping-horizon MPC

In this section, we present the OH-MPC policy in general, and outline the corresponding
algorithm. Let the system S to control be described in the discrete time domain by

x(t + 1) = f(x(t), u(t)), (1)

where x ∈ Rn represents the state vector, while f denotes a nonlinear function of the past
state and input u ∈ Rm. The standing assumption of the work is the following.

▶ Assumption 1. The sampling time Ts of the application is dictated by the physical control
problem, thus cannot be changed, and is so short that n > 1 samples are required to solve a
state-feedback optimal control problem for (1).

In such a situation, not infrequent in the applications, the standard receding horizon policy
cannot be applied. In this section, we will therefore derive our scheme as a generalisation of
traditional MPC, to deal with this specific – yet potentially critical – case.

The bove said, in its most general form the OH-MPC problem is stated as

min
u(n),...,u(Nc)

1
Np − n

Np∑
h=n

L(x(h), u(h)) (2)

subject to : x(t + 1) = f(x(t), u(t)), t = 1, . . . , Np,

u(i) = ū(Np − n + i), i = 1, . . . , n,

x(j) ∈ X , u(j) ∈ U , j = n, . . . , Np

As can be seen, the objective of the control strategy is to minimise a (possibly economic [4])
cost, expressed by the time average of a nonlinear function L(·, ·) of states and inputs over
a prediction horizon Np, so that x and u are constrained to belong to some feasibility sets,
called X ⊂ Rn and U ⊂ Rm, respectively.

NG-RES 2022
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Figure 3 Horizons when the optimisation problem (OPT) cannot be solved in one step – particular
but interesting case in which the optimisation problem can use all the available computational
capability (we set here NC = NP for simplicity, as this is a quite frequent choice); here too, solid
circles denote the control sequence actually fed to the process.

The key feature of OH-MPC is that, since we assume n samples are required to return
the optimisation results, the first n − 1 samples of the input trajectory are set as the latest
n − 1 ones delivered at the previous iteration, namely, ū(Np − n + 1), . . . , ū(Np). Such a
sequence is used within the optimisation routine to estimate (through the model f) the
starting trajectory of the state x and then set the initial condition, i.e., the predicted value of
x(n), for the input sequence to be optimised, that is, u(n), . . . , ū(Nc), where Nc denotes the
control horizon. We further assume that, when Nc < Np, the sequence u(Nc + 1), . . . , u(Np)
is constant and equal to the most recent control u(Nc).

Within this framework, there arises the need to introduce an additional degree of freedom
NH , called hold horizon, as the number of the computed control samples that are actually
applied to the system. The role and meaning of the newly introduced hold horizon NH is
visually explained in Figure 1 for the traditional case of n = 1.

Even in this scenario, where the solution can be made available in one step, one might
decide to apply a subset of the computed controls. For instance, in open-loop MPC (OL-MPC,
hereafter), where the control input is applied in open-loop and updated only after the end of
the prediction horizon, one might decide to apply only NH samples of u (out of Nc) and then
rerun the optimisation earlier. However, a typical choice of the hold horizon in OL-MPC
with NC = NP is NH = NC , namely, the input is optimised over the whole horizon and all
the outcoming samples are applied to the system.

The choice of NH becomes particularly interesting when n > 1 (see Figure 2). In fact, we
can here highlight that the hold horizon must satisfy

2n − 1 ≤ NH ≤ NC . (3)

The upper bound is encountered in those situations like OL-MPC where, no matter how
large n is, the control system is run in open-loop (and, typically, NC = NP ). The lower
bound might become instead a rather restrictive constraint, in that it limits the minimum
amount of input samples that have to be injected into the system in open-loop, due to the
computational constraints. The limit case NH = 2n − 1, where the control action is updated
at the maximum possible frequency (dictated by n) is visually illustrated in Figure 3.

The overall strategy – that should now be clearly qualified as a generalisation of standard
MPC, an aspect that will be further discussed in the next section – can be summarised as
per Algorithm 1.
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Algorithm 1 The OH-MPC algorithm.

/* Problem acquisition & setup */
1 acquire the guaranteed No. n of steps to optimize;
2 acquire the horizons NP , NC , NH ;
3 acquire the model of the problem, i.e., L(·, ·), f(·, ·);
4 acquire the initial conditions x(0), ū(t), t = NP − n + 1, . . . , NP ;

/* Execution */
5 while control system is running do
6 solve (2) and collect u(n), . . . , u(Nc);
7 set u(i) = u(NC), i = NC + 1, . . . , NP ;
8 compose the sequence

u(t) =
{

ū(NP − n + t), t = 1, . . . , n,

u(t), t = n, . . . , NH

9 apply the composed sequence to the system S in (1);
10 when the sequence ends, thus the new optimisation time is reached, set x(NH) as

the new x(0) and ū(t) = u(t), t = 1, . . . , NP ;
11 end

3 Discussion and motivation

We devote this section to briefly discuss the possibilities opened by the OH-MPC policy, also
providing – compatibly with the proposal-oriented scope of this paper – some operational
motivation for its adoption.

To this end, we first observe that by suitably setting the involved horizons, OH-MPC
specialises to both known problems and new ones, of importance discussed below, to exploit
the introduced additional degrees of freedom. In particular, if n = 1 is feasible, the following
staements hold true.

With n = 1 and NH = 1, OH-MPC apparently reduces to the classical RH-MPC problem.
With n = 1 and NH = NP , the so-called “open-loop MPC” (OL-MPC) is obtained; here,
we call this “one-step-compute” OL-MPC to stress the condition on n.
In the latter case, taking NP as given, choosing NC < NP is the one degree of freedom
to reduce the size of the optimisation problem.

This said, let us briefly review alternatives to the proposed OH-MPC in its application
case of election, i.e., when n = 1 is not feasible, and for reasons too long to discuss herein,
OL-MPC is not considered reliable enough. These alternatives are substantially two. One
can either downsize the optimisation problem by reducing the prediction and/or the control
horizon, or replace the said problem with local equivalents (for example, linearising in the
vicinity of conveniently chosen operating points) that require less effort to be solved.

More interesting, and motivating for the presented research, is therefore to study the
case in which n = 1 is infeasible, but at the same time – once again for a variety of possible
reasons that we are not treating in this paper – the optimisation problem must be solved as
is. Here, OH-MPC can be fruitfully exploited to provide the needed additional degrees of
freedom.

NG-RES 2022
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With reference to Figure 2, we assume for the scope of this work that optimisations
occur only when some horizon elapses, i.e., we exclude for the moment techniques involving
event-triggered optimisations like the sporadic one above.

This said, first the hold horizon NH can be made both larger and smaller than the control
one NC . This allows to use the former to dictate the (constant) cadence of optimisations,
while - for the latter - one can take the value dictated by the optimisation problem definition.

Second, when an optimisation is in progress, the control samples applied to the process
come from the previous one, which – as will be shown – is tendentiously better than e.g. just
holding the control signal till a new sequence is ready.

Third, once n is reliably obtained e.g. by profiling techniques aimed at WCET (Worst
Case Execution Time) estimation [2], NH allows to optimally use all the available resources.
In detail, setting NP = NC and NH = 2n − 1 allocates all the computation time to perform
the maximum number of optimisations – as illustrated in Figure 3 – compatibly with the
time needed to compute one.

4 A proof-of-concept example

We now show a simulation case study – deliberately minimalistic – to witness the usefulness
of OH-MPC. The system to be controlled is the linear time-invariant plant

x1(t + 1) = 0.9 · x1(t) + 0.1 · u(t)
x2(t + 1) = 0.6 · x1(t) + 0.4 · x2(t)

y(t) = x2(t),
(4)

while the control problem we wish to solve is of the form in (2), with

L(x(t), u(t)) = x(t)T Qx(t) + u(t)T Ru(t),

R = 1, and

Q =
[
10 0
0 100

]
.

In the addressed problem, we also set a constraint on the value of the control variable u, that
must lie within the [-1,1] range. No constraints on x are given, namely X ≡ R2. We consider
the achieved closed-loop properties in terms of disturbance rejection using different model
predictive controllers, via an experiment with a unitary matched load disturbance applied to
the process at t = 0 and removed at t = 30. The prediction horizon NP is set equal to 9
steps.

Case study no. 1. Let us assume that the computation time needed for the solution of the
control problem amounts to three steps, thus n = 3.

In order to fairly assess the performance of OH-MPC, we consider a comparison among
the following strategies, all with NP = NC :

1. an oracle (in fact infeasible) solution, given by an OL-MPC approach, where we assume
– contrary to the OH-MPC hypothesis – that the solution can be computed in one step,
that is n = 1, and NH = NP = NC ;
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Figure 4 Case study no. 1. Time responses of state x to a step disturbance with different
MPC strategies: OL-MPC (unfeasible), OL-MPC with final n-step holding and OH-MPC (feasible).
OH-MPC clearly provides the best feasible performance.

2. a baseline feasible solution, in which the constraint n = 3 is taken into account, named
OL-MPC w/ hold. This solution is obtained starting from the one above, but, at the
beginning of a new optimization, the control variable is held equal to the latest available
control sample for n − 1 steps, waiting for the new solution;

3. the OH-MPC approach with NH = NP = NC .

The time histories of the state trajectories are illustrated in Figure 4, where it can be
clearly seen that the OH-MPC solution remains limited as compared to the baseline one,
even if it is not able to reach the attenuation level provided by OL-MPC. It is however worth
stressing that this OL-MPC is calculating the optimal solution in one step only, which is
infeasible under the assumption that n = 3.

The fact that OH-MPC can be considered as a good trade-off solution (namely, the best
alternative if the constraint n = 3 is active) is further confirmed by comparing the value of
the optimal cost

J =
N∑

t=1
x(t)T Qx(t) + u(t)T Ru(t),

where N denotes the length of the whole experiment, in Figure 5.

Case study no. 2. Considering the same system of the previous example, we now suppose
that the designer’s desire is to use all the available computational power to run the controller
at the maximum frequency, however under the physical constraint that the computation time
needed for the solution of the control problem amounts to five steps (n = 5), which can be
considered even more challenging than the previous situation, if NP = 9. Again, we consider
a comparison with the baseline strategy OL-MPC w/hold, but now – to use all the available
time – NH = 2n − 1 = 9.

NG-RES 2022
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Figure 5 Case study no. 1. Cost J for different MPC strategies: OL-MPC (unfeasible), OL-MPC
with final (n − 1)-step holding and OH-MPC (feasible). OH-MPC clearly provides the best feasible
performance.

The time histories of the state trajectories are illustrated in Figure 6, where it can be
observed that the OH-MPC solution remains better than the baseline also in such a critical
scenario. A confirmation of this fact can be found in Figure 7, where the cost J is highlighted,
thus confirming OH-MPC gets closer to the ideal situation.

Summing up, OH-MPC appears to yield intermediate results between the (infeasible)
one-step-computing solution (n = 1) and the baseline one based just on holding the last
control value.

5 Conclusions and future work

We presented an MPC scheme, named Overlapping-Horizon MPC to comply with the case in
which the optimisation problem cannot be solved in one control time step, or said otherwise,
its solution can be guaranteed to terminate only within a number n > 1 of such steps. The
addressed case is potentially critical and occurs whenever computational resource limitations
can be relevant, whence the usefulness of OH-MPC in real-time control systems.

Although the presented research is still at a preliminary stage, OH-MPC definitely exhibits
interesting properties, in particular not requiring to modify the optimisation problem with
respect to its “original” formulation, nor to alter the sampling time with respect to the value
dictated by the control system physics (another desirable propoerty in the real-time case).

Future work will be directed toward a formal analysis of the OH-MPC scheme, possibly
articulating the study per characteristics of the controlled system and/or cost function, as
well as toward an engineered realisation, suitable for implementation and testing on real
plants.
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Figure 6 Case study no. 2. Time responses of state x to a step disturbance with different MPC
strategies: OL-MPC with final n-step holding and OH-MPC.
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Figure 7 Case study no. 2. Cost J for different MPC strategies: OL-MPC with final (n − 1)-step
holding and OH-MPC (feasible).
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