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Abstract
Knowledge Graphs (KGs) are becoming increasingly popular in the industry and academia. They
can be represented as labelled graphs conveying structured knowledge in a domain of interest, where
nodes and edges are enriched with metaknowledge such as time validity, provenance, language,
among others. Once the data is structured as a labelled graph one can apply reasoning techniques
to extract relevant and insightful information. We provide an overview of deductive and inductive
reasoning approaches for reasoning in KGs.
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1 Introduction

Knowledge Graphs (KGs) [55, 61, 111, 119] are becoming increasingly popular in the industry
and academia. They can be represented as labelled graphs conveying structured knowledge in
a domain of interest, where nodes and edges are enriched with metaknowledge. Provenance
and time validity are the most common kinds of metaknowledge. Since facts in KGs usually
come from multiple datasources, it is important to record the provenance information, which
is often in the format of an URL (or multiple URLs). Facts may happen multiple times and,
therefore, a temporal dimension with time validity is important to record such information.
Other kinds of metaknowledge include contextual information and language.

One of the most popular methods to model KGs consists in representing them as directed
edge-labelled graphs [55, 61]. In this model, each entity in the domain of interest (people,
places) are represented as nodes, while the different relations between pairs of these entities
are expressed as as directed edges with a label that specifies the type of the relationship.
Figure 1 depicts an example of such graph using entities such as Artur Ávila and Brazil, and
relationships such as citizenship.

In addition to data models, there are concrete languages and systems which implement
KGs. The Resource Description Framework (RDF) [79] is one of the most prominent of
these languages. In fact, RDF is the W3C standard for writing KGs. A KG written
in RDF, that is an RDF graph, is a collection of triples (subject, predicate, object) that
indicate that a relationship (given by the predicate) holds between the entities given as
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Figure 1 Example of directed edge-labelled graph.

subject and object. Example 1 depicts the RDF graph corresponding to the directed edge-
labelled graph from Figure 1. Here, we will also refer to triples using a prefixed notation:
predicate(subject, object), which is closer to the logical formalisations discussed in Section 2.

▶ Example 1. We present below the RDF graph using Terse RDF Syntax, known as “Turtle”,
each line corresponds to a triple. The relationships (predicates) with prefix rdf and rdfs
are imported from existing vocabularies that define the intended meaning of the terms.

1 @prefix rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#> .
2 @prefix rdfs: <http :// www.w3.org /2000/01/ rdf - schema #> .
3 @prefix : <http :// www. example .org/> .
4
5 # "Artur Avila" "is a" "Human"
6 : ArturAvila rdf:type :Human .
7 # "Artur Avila" "has country of citizenship " " France "
8 : ArturAvila : citizenship : France .
9 # "Artur Avila" "has country of citizenship " " Brazil "

10 : ArturAvila : citizenship : Brazil .
11 # " France " "is a" " Country "
12 : France rdf:type : Country .
13 # "Artur Avila" " participated in" "Math Olympiad "
14 : ArturAvila : participatedIn : MathOlympiad .

As example of well-known KGs, we have Wikidata [112], a KG which contains much of
the information displayed on Wikipedia. Example 2 discusses an excerpt of the Wikidata
about Artur Avila.

▶ Example 2. Figure 2 contains some information about the mathematician Artur Ávila.
Binary relations, such as participantIn, serve as labels to edges connecting nodes in
the graph. In this example, the nodes would be the mathematician, the International
Mathematical Olympiad, and the Fields medal. The fact that he participated in this event
can be represented with the triple participantIn(ArturAvila, MathOlympiad). There is
temporal metaknowledge associated with this fact which is the year of the participation, 1995.
As we can see in Figure 2, not every fact is annotated with all the relevant metaknowledge,
such as provenance information. The fact that Artur Ávila won the Fields medal is annotated
with both temporal information and provenance (in the format of URLs).

Once the data is structured as a labelled graph one can apply reasoning techniques to
extract relevant and insightful information. The three main classical types of reasoning are
deduction, induction, and abduction:

in deduction, we assume that a proposition or a formula α holds and, if α→ β is valid,
we can deduce β;
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Figure 2 Excerpt of the Wikidata page of Artur Ávila (Q715043).

in induction, we have that α and β holds and attempt to generalize the facts and generate
a rule, which is an expression of the form α→ β (or β → α);
finally, in abduction, we assume that a proposition or a formula β holds and, if α→ β is
valid, we attempt to find an explanation α for β.

▶ Example 3. Consider the rule “if someone is a participant of an event then this person
attended the event”, which can be expressed in First Order logic (FOL) with the sentence
∀x, y(participantIn(x, y)→ attendant(x, y)) (and in Description Logic with the role inclu-
sion participantIn ⊑ attendant). Given the triple in Example 2 and the rule, we can deduce
that Artur Ávila attended the event, in symbols, attendant(ArturAvila, MathOlympiad).
If, instead of the rule, we have attendant(ArturAvila, MathOlympiad) and the triple in
Example 2, then an inductive procedure could attempt to generalize the fact and gener-
ate the rule ∀x, y(participantIn(x, y) → attendant(x, y)) (or ∀x, y(attendant(x, y) →
participantIn(x, y)), which can happen since inductive procedures can make wrong gener-
alizations). Finally, given the rule and the fact attendant(ArturAvila, MathOlympiad), an
abductive procedure could attempt to find the triple in Example 2 as an explanation for the
fact attendant(ArturAvila, MathOlympiad).

While reasoning can often empower information retrieval [14, 63] and reasoners can work
as query mechanisms, our focus is on reasoning rather than data retrieval. Pure database-like
retrieval is strictly more constrained, as nothing that is not asserted can be derived (except
in the case that the missing data is treated immediately as false). Yet, the line between the
two is sometimes blurry [61]. Here, we focus on the main approaches commonly regarded
as reasoning. We provide an overview of deductive (Section 2) and inductive (Section 3)
reasoning approaches for reasoning in KGs. We do not cover query languages such as
SPARQL [90], even though one can enrich SPARQL queries with reasoning capabilities. We
conclude in Section 5.
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2:4 Reasoning in Knowledge Graphs

2 Deductive Reasoning

Deductive reasoning in KGs is commonly performed by mapping its contents to a logic-based
formalism. With this transformation in place, users and designers can apply reasoners for
extracting logical consequences from the information specified in a KG. In this section, we
discuss three of the most popular formalisms for deductive reasoning with KGs: Description
Logics, Datalog and SHACL. Description Logics underpin the Web Ontology Language,
OWL 2 [84], which is the current W3C standard for ontologies. Datalog corresponds to a family
of languages inspired by the logical programming language Prolog, whose computational
properties makes it attractive in many use-cases. Finally, SHACL is a more recent W3C
recommendation designed to validate constraints in RDF graphs.

2.1 Description Logics
Description logics (DLs) are a family of knowledge representation formalisms [7]. Each DL
has its own language with its own expressivity and, thus, different computational costs for
different tasks. As already mentioned, DLs underpin OWL (including the current version
OWL 2). Thus, the field of DL flourished together with the popularisation of ontologies as a
way of sharing knowledge in disciplines such as Medicine and Biology. While the use-cases
of ontologies and KGs diverge, the two are, nevertheless, related. KGs such as DBPedia
incorporate ontologies [71] that help users and developers to understand the data.

In the following, whenever we refer to a DL ontology or a knowledge base, we mean a
finite set of formulas (or axioms) in a DL. Despite their differences, these languages are very
similar in the way which they are used to describe knowledge. Moreover, most DLs have
decidable reasoning problems and are tailored for specific applications making DL ontologies
valuable tools for deductive reasoning with KGs, even if DLs cannot capture everything that
a KG can represent. In all DLs, the main ideas of the domain of interest are described via
concept descriptions. These concept descriptions essentially create classes to which one can
assign the elements of the domain. Then, a DL ontology will contain statements (formulas)
that, among other things, determine how these concept descriptions relate to each other. We
will discuss more about representing knowledge with DLs next.

Given a domain of interest, the first step is to determine the key notions to be described,
which will then form a set of terms. These terms can be either concept names, role names
or individual names. Concept names determine the basic groups to which elements of the
domain may belong, role names the basic relationships between these elements and individual
names refer to (some) elements of the domain. The set of terms in an ontology is called
signature, composed of three pairwise disjoint sets: concept names (NC), role names (NR)
and individual names (NI).

▶ Example 4. If we are modelling knowledge on notable scientists, following Figure 2, we
could have among the atomic concepts in our signature Scientist, Award and University.
We could also have roles such as receivedAward and participantIn. Finally, we would
need individual names to refer to particular elements of the domain, such as ArturAvila,
FieldsMedal and MathOlympiad.

These are just the fundamental building blocks, as it is possible to build complex concept
descriptions (and sometimes even complex roles) by using a set of constructors, which varies
according to the DL selected. Many DLs allow the ontology engineer to represent the con-
junction (intuitively, the intersection) of two concepts, for instance, Scientist ⊓ Brazilian
to refer to Brazilian scientists. Table 1 lists the concept constructors allowed in the DL ALC.
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Table 1 Complex concepts in ALC. C, D are concept expressions and r ∈ NR.

Name Syntax Semantic

Conjunction C ⊓ D CI ∩ DI

Disjunction C ⊔ D CI ∪ CI

Negation ¬C ∆I \ CI

Existential Restriction ∃r.C {x ∈ ∆I | ∃y.(x, y) ∈ rI ∧ y ∈ CI}
Value Restriction ∀r.C {x ∈ ∆I | ∀y.(x, y) ∈ rI → y ∈ CI}

Using concepts, roles and individuals, one can write formulas which express the constraints
about the domain of interest. These formulas, or axioms, also vary according to the DL at
hand. Regardless of the DL, ontologies are often split into two parts, the TBox and the ABox.
The TBox contains the terminological knowledge, that is, the relationships between concepts
and between roles, while the ABox contains the assertions, which concern characteristics
of individuals. Table 2 lists the types of axioms allowed in ALC. Concept inclusions and
equalities are TBox axioms, while concept and role assertions are ABox axioms.

Table 2 Axioms in ALC, a, b ∈ NI.

Name Syntax Semantics

Concept inclusion C ⊑ D CI ⊆ DI

Concept equality C ≡ D CI = DI

Concept assertion C(a) aI ∈ CI

Role assertion r(a, b) (aI , bI) ∈ rI

Now, we make additional notes about the relationship between KGs and DL ontologies.
As we mentioned in the beginning of this section, KGs may have ontologies associated to
them. In this context, the “ontology” usually refers to the part of KG that corresponds to
a TBox, while the remaining part of the KG corresponds to an ABox [61]. There are also
components in KGs in general, even when considering RDF alone, that cannot be mapped
into DL axioms (such as metadata, as discussed in Section 1). Example 5 continues our
running example, with a simple ALC ontology which describes some constraints about the
domain.

▶ Example 5.

Scientist ⊑ Human

Human ⊑ ¬University

PhD ⊑ ∃educatedAt.University

Scientist(ArturAvila)
participantIn(ArturAvila, MathOlympiad)

In the ontology above, the first axiom states that every scientist is a human, and the second
says that no human is a university. The third axiom says that everyone with a PhD title
should have been educated at some university. The last two are assertions: one states that
Artur Ávila is a scientist and the other that he participated in the International Mathematical
Olympiad.

AIB 2022
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In DLs, interpretations act as the most popular form of semantics. An interpretation is a
pair (∆I , ·I) where ∆I is an arbitrary set of elements and ·I is a function which maps each
concept to a subset of ∆I , each role to a subset of ∆I ×∆I , and each individual name to
an element of ∆I . Each axiom in an ontology places a new constraint on interpretations
that satisfy the ontology. Tables 1 and 2 describe how each axiom constrains the possible
interpretations of an ontology. If an interpretation I complies with every requirement
specified by an ontology O, we say that I satisfies O, in symbols I |= O. Example 6 clarifies
this notion with an interpretation for the ontology in Example 5.

▶ Example 6. Consider the following interpretation J = (∆J , ·J ) such that

∆J = {ArturAvila, Bob, IMO1995, UFRJ};
HumanJ = {ArturAvila, Bob};

ScientistJ = {ArturAvila};
PhDJ = {ArturAvila};

UniversityJ = {UFRJ};
educatedAtJ = {(ArturAvila, UFRJ)};

participantInJ = {(ArturAvila, IMO1995)};
ArturAvilaJ = ArturAvila; and

MathOlympiadJ = IMO1995.

The interpretation J satisfies the ontology in Example 5.

2.1.1 Attributed DLs

While DLs provide an important advantage when reasoning with OWL ontologies, there
are important features seen in real-world KGs that cannot be captured in a useful way in
traditional DLs. OWL and RDF were designed using a directed edge-labelled model, which
enforces every piece of data to be either a node (an entity or literal) or a relation. However,
not only there are RDF graphs (and even OWL features) that cannot be expressed in DLs,
but there are other graph data models which allow nodes and edges to be enriched with
annotations. In a property graph (used for instance in Neo4J), each node and relation may
have a map from keys to values as annotations. The Wikidata model is even more flexible,
as whole statements (already more complex than assertions) may have different annotations
(called qualifiers), with multiple values for the same type of qualification. For example, in
Figure 2 the year 1995 is the value for the qualifier “point in time” for the statement “Artur
Ávila participated in the International Mathematical Olympiad”.

Attributed DLs [21,22, 65, 68, 85] add non-functional attribute-value pairs to DL axioms
(not only assertions) with the goal of representing annotations. This extension presupposes a
set of variables NV which can be used to build specifiers. These are expressions representing
sets of annotations.

▶ Definition 7. The set of specifiers S is the smallest set containing the following expressions:
variables: X;
closed specifiers: [a1 : v1, . . . , an : vn]; and
open specifiers: ⌊a1 : v1, . . . , an : vn⌋;
where X ∈ NV is a variable, n ∈ N, ai ∈ NI and vi ∈ NI ∪ {+} ∪X.c with c ∈ NI.



R. Guimarães and A. Ozaki 2:7

The symbol “+” has the meaning “at least one”. A closed specifier is satisfied iff the set
of annotations matches exactly the specification, while an open specifier requires only that
the annotations appear (others might occur as well).

▶ Example 8. Consider the statements in Figure 2. Using attributed DLs, we can express
specifically the statement about Ávila’s participation as follows:

participantIn(ArturAvila, mathOlympiad)@[pointInTime : 1995].

However, to express the Fields medal award, an assertion with an open specifier would
be preferred, to account for other annotations (e.g. provenance):

awardReceived(ArturAvila, FieldsMedal)@⌊pointInTime : 2014⌋.

Given a classical, non-attributed, DL L (e.g. ALC), its attributed version, L@+ (e.g.
ALC@+), has essentially the same concept expressions as L except that concept and role
names are associated with a specifier. For instance, since in ALC A ⊓B is a valid concept
expression, we have that A@S ⊓ B@S′ is a valid concept expression in ALC@+, in which
S, S′ are specifiers as in Definition 7. Note that we can use an empty open specifier ⌊⌋ if we
do not want to constrain annotations.

▶ Example 9. The following are valid concept and role expressions in ALC@+:
Brazilians: Brazilian@⌊⌋
Doctors of Philosophy whose only annotation is start time 1995: PhD@[startTime : 1995]
The “membership” relation with some starting time memberOf@⌊startTime : +⌋

In Example 9, we deliberately omitted specifiers of the form X.c as they are more intricate.
We will clarify their meaning later when we discuss axioms in attributed DLs. Regarding
concept and role expressions, given a standard DL L, its attributed extension L@+ allows
the following axioms:
L@+ concept assertions are A(a)@S;
L@+ role assertions are r(a, b)@S; and
L@+ concept inclusions are X1 : S1, . . . , Xn : Sn(C ⊑ D);

where A ∈ NC, r ∈ NR, a, b ∈ NI, C and D are L@+ concept expressions, S is a specifier that
is not a set variable, X1, . . . , Xn ∈ NV and S1, . . . , Sn are specifiers.

▶ Example 10. If we consider the DL ALC, and its attributed version ALC@+ we can express
the following statements:

PhD(ArturAvila)@⌊reference : +⌋
memberOf(ArturAvila, USNAS)@[startTime : 2019]
X : ⌊reference : +⌋(PhD@[reference : X.reference] ⊑

∃educatedAt@⌊reference : X.reference⌋.University)

The semantics is also similar to standard DLs and it is given by interpretations, but
modified to include annotation sets. Hence, terms are interpreted as follows:

AI ⊆ ∆I × Pf (∆I ×∆I);
rI ⊆ (∆I ×∆I)× Pf (∆I ×∆I);
aI ∈ ∆I ;

where Pf (S) is the set of all finite subsets of a set S. Example 11 clarifies the meaning of
interpreting terms alone (that is, without considering complex concepts nor specifiers).

AIB 2022
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▶ Example 11.
ArturAvilaJ = ArturAvila

CarlosChagasJ = CarlosChagas

PhDJ = {(ArturAvila, {(pointInTime, 2001)}), (CarlosChagas, ∅)}
memberOfJ = {((ArturAvila, USNAS), {(startTime, 2019),

(subjectRole, ForeignAssociate)})}
BrazilianJ = {(ArturAvila, {(reference, cv)}), (CarlosChagas, ∅)}
FrenchJ = {(ArturAvila, {(reference, cv)})}

The semantics of specifiers and other expressions containing free variables is defined using
a variable assignment. A variable assignment is a function, Z : NV 7→ Pf (∆I ×∆I)

XI,Z := {Z(X)};

[a : b]I,Z := {{(aI , bI)}};

[a : X.b]I,Z := {{(aI , δI) | ∃δ ∈ ∆I : (bI , δ) ∈ Z(X)}};

[a : +]I,Z := {{(aI , δ1), . . . , (aI , δℓ)} | ℓ ≤ 1 and δi ∈ ∆I}};

[a1 : v1, . . . , an : vn]I,Z := {∪n
i=1ψi | ψi ∈ [ai : vi]I,Z

, 1 ≤ i ≤ n};

⌊a1 : v1, . . . , an : vn⌋I,Z := {ψ ∈ Pf (∆I ×∆I) | ψ ⊇ ϕ for some ϕ ∈ [ai : vi]I,Z}.

Given the semantics of terms and specifiers, concept names and role names with non-empty
specifiers are interpreted as follows:

A@SI,Z := {δ ∈ ∆I | (δ, ψ) ∈ AI for some ψ ∈ SI,Z};
r@SI,Z := {(δ1, δ2) ∈ ∆I ×∆I | (δ1, δ2, ψ) ∈ rI for some ψ ∈ SI,Z}.

The concept constructors in an attributed DL are inherited from its standard counterpart,
with the semantics extended to accommodate the annotations. Intuitively, a specifier will
reduce the extension of a concept or role, that is, if t ∈ NC ∪ NR and S is a specifier, then,
for any interpretation I: t@SI ⊆ t@⌊⌋I .

▶ Example 12. Consider the interpretation J from Example 11. Below we list the in-
terpretation of the concept and role expressions from Example 9 in J using Z(X) =
{(startTime : 2000, startTime : 2019, reference : cv)}.

Brazilian@⌊⌋J ,Z = {ArturAvila}

PhD@[startTime : 1995]J ,Z = ∅

memberOf@⌊startTime : +⌋J ,Z = {(ArturAvila, USNAS)}

French@[reference : X.reference]J ,Z = {ArturAvila}

The main drawback of attributed DLs is that even ALC@+ is undecidable, preventing the
development of sound and complete reasoning mechanisms. Krötzsch et al. [68] proved that
ALCH@ is still decidable, although its satisfiability problem lies in 2ExpTime. Bourgaux
and Ozaki [21] proved that reasoning in a more restricted DL, called DL-LiteR

@ , is in PSpace.
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2.1.2 Description Logic Reasoners
Reasoning in DLs refers to obtaining implicit knowledge from explicit data. The formal
semantics discussed before allows us to derive new information which respects the constraints
defined in a DL ontology. For example, if we specify that “PhDs are humans” by adding
to an ontology the axiom PhD ⊑ Human, then from the assertion PhD(ArturAvila) we can
conclude Human(ArturAvila), that is, that since Artur Ávila has a PhD title, he is a human.

Reasoning with DL ontologies is a mature and active field of study. There are already
many well-known reasoners such as ELK [59], HermiT [100], Pellet [101], FaCT++ [107],
Konclude [102] and RDFox [82] used in academia and in the industry. Some of these
reasoners are benchmarked in standard reasoning tasks so that both users and developers
can have an overview of the empirical state-of-art [89, 97]. There are also many prototypical
implementations, which are tailored to specific extensions of DLs which still do not have a
widespread adoption.

The DL reasoners differ in a number of factors, for example, ELK can only handle
OWL 2 EL ontologies, which are restricted to the DL EL++. Besides differing according to
their target language (e.g. EL++), they may also be based on different reasoning techniques
(e.g. tableaux, hyper-tableaux, consequence-based reasoning) [7]. Other reasoners specialise
in performance, for instance, by giving approximate results such as the case of TrOWL [105].

2.2 Datalog
Datalog is a query language derived from the logical programming language Prolog [30]. It was
actively studied in the late 80s an early 90s, in the database community as an implementation
of recursive queries. More recently, its interest has been revived for applications for querying
graph-like data structures in ontology-based data access [14] and query answering [3, 27].
Besides the ability to express recursive queries, Datalog has polynomial complexity for many
reasoning tasks which relate to queries and motivate its use today for querying databases,
ontologies, and KGs. There are many extensions of Datalog [26,27,44,94] but here we will
focus on “pure” Datalog and its relevant modifications for handling KGs and ontologies.

2.2.1 Syntax
We begin the formalisation of Datalog with the signature. We assume three pairwise disjoint
sets of symbols: a set of variables V, a set of constants C, and a set of predicates P. Each
predicate is represented as P/n where P is its name and n its arity. A term in Datalog is
either a variable or a constant. An atom is an expression of the form P (x1, . . . , xn) where
P/n ∈ P and xi ∈ C ∪V for 1 ≤ i ≤ n. Using atoms we can write rules. A rule r is an
expression of the form H ← B1, . . . , Bm where H is the head atom and B1, . . . , Bn are body
atoms or subgoals [2, 108]. In Datalog, these rules must be safe, that is, each variable that
appears in the head of the rule appears in its body. A finite collection of safe rules constitutes
a Datalog program.

▶ Example 13. The following rule says that if someone teaches at a university then he/she
is a lecturer:

Lecturer(x)← TeachesAt(x, y), University(y).

The rule above is safe because the variable x appears both in the head and in the body. As
an example of an unsafe rule, consider a rule which says that a worker is someone who works
at some place:

WorksAt(x, y)← Worker(x).

AIB 2022
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If an atom has no variables we call it a fact, for instance, we can state that Artur Ávila
is a PhD with PhD(ArturAvila). A Datalog database instance is a finite collection of facts.
The safety constraint for rules and the requirement that every database contains only facts
ensures that the logical derivations in a Datalog system are finite. Meaning that, in a finite
number of applications of the rules over the database instance, one can derive every possible
fact that is entailed.

▶ Example 14. In this example, we want to use Datalog to know if Artur Ávila has an Erdős
number. The following rules are useful for knowing if someone has an Erdős number

HasErdosNumber(x)← HasErdosNumber(y), CoAuthor(x, y).
CoAuthor(x, y)← CoAuthor(y, x).

And then, we can state some basic facts

HasErdosNumber(PaulErdos).
CoAuthor(ArturAvila, BarrySimon).
CoAuthor(VilmosTotik, BarrySimon).
CoAuthor(VilmosTotik, PaulErdos).
CoAuthor(ArturAvila, WellingtonDeMelo).

Example 14 shows one interesting feature of Datalog: recursion. In the first rule, for
example, the predicate HasErdosNumber/1 appears both in the head and in the body of the
same rule. In pure Datalog, recursion does not complicate the semantics much, and in many
cases a recursive program can be rewritten without it [2]. However, some complications occur
in Datalog extensions (as some mentioned later in this section).

2.2.2 Semantics
Semantics in Datalog can be defined in many ways: with a model-theoretic approach, via
fixpoint semantics, or based on proofs. Here, we introduce the first of these, as it relates
more closely to the semantics of Description Logics introduced in Section 2.1. To understand
the semantics, we must first map each rule to a sentence in FOL. Given a Datalog rule
H ← B1, . . . , Bn, its corresponding FOL sentence is:

∀x1, . . . , xm ((B1(u1) ∧ · · · ∧Bn(un))→ H(uh))

where uh is the sequence of variables that appear in H, ui is the sequence of variables that
appear in Bi, and x1, . . . , xm are the variables occurring in the rule. Moreover, each fact
corresponds to an atomic formula in FOL.

Then, we will need to consider only Herbrand interpretations. A Herbrand interpretation
maps each constant to its own name and each n-ary predicate to a subset of Cn. In this
way, a Herbrand interpretation can be identified with the set of facts that it satisfies. An
interpretation I satisfies a database instance I, if I ⊆ I. An interpretation I satisfies a
rule H ← B1, . . . , Bn if for every variable substitution by constants θ, {B1θ, . . . , Bnθ} ⊆ I
implies Hθ ∈ I. Finally, an interpretation satisfies a program P if it satisfies every rule. We
denote the satisfaction relation with an infix operator |=, where I |= X indicates that the
interpretation I satisfies X, where X can be a fact, a database instance, a rule, a program,
or a set combining those.
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▶ Example 15. Consider the two following Herbrand interpretations:

I1 = {PhD(ArturAvila),
Scientist(ArturAvila),
educatedAt(ArturAvila, UFRJ),
participantIn(ArturAvila, MathOlympiad) }

I2 = (I1 ∪ {University(UFRJ)}) \ {Scientist(ArturAvila)}.

The interpretation I1 satisfies the fact Scientist(ArturAvila), but it does not satisfy
University(UFRJ), which is only satisfied by I2. Moreover, the rule

University(y)← educatedAt(x, y) ∧ PhD(x),

is only satisfied by I2 as University(UFRJ) ̸∈ I1. The rule PhD(x)← Scientist(x) is satis-
fied by both interpretations. I1 satisfies both PhD(ArturAvila) and Scientist(ArturAvila),
and I2 satisfies the rule vacuously because Scientist(ArturAvila) ̸∈ I2.

Example 15 shows that we can have multiple interpretations for a given Datalog program
and database instance. We can associate each pair of Datalog program and database instance
(P, I) with the set of all Herbrand interpretations that satisfy them HI(P, I). Interestingly,
we can take the intersection of these models (even if there are infinitely many) and obtain the
minimal Herbrand interpretation for (P, I) [30]. This allows to assign the following meaning
to the consequences (cons) of a program P with database instance I in terms of all possible
Herbrand models as follows

cons(P, I) =
⋂

I∈HI(P,I)

I

The semantics as presented here confer Datalog an interesting property: the unique name
assumption (UNA). The name of each constant identifies it uniquely. In DLs, the convention
is that there is no UNA, which can cause confusion regarding the possible interpretations of
an ontology. Arguably, UNA matches the intended meaning in database applications [2].

2.2.3 Datalog Extensions
Pure Datalog, as we have presented, often lacks expressive power to represent more complex
rules (or queries in a database point of view). To cover these gaps, many extensions of
Datalog have been developed [2, 26,44].

Many Datalog extensions allow rule atoms to appear negated, which gives the possibility
to express interesting relationships. However, these Datalog variants have to deal with two
issues that arise from negation. The first concerns groundings, replacements of variables by
constants, on infinite domains. The second regards the actual semantics of Datalog programs
and happens because the intersection of Herbrand interpretations ceases to characterise
the consequences of Datalog with negation in a meaningful way. There are many different
approaches to circumvent both issues [2], sometimes using semantics that differ considerably
from the one presented here for pure Datalog. In other cases, the issues are solved by employing
a similar semantics but placing syntactic restrictions on the usage of negation [2, 30]. A
complete categorisation of the different possibilities (and thus, of Datalog variants) is beyond
the scope of this work, and we refer the reader to classical references on Datalog for the
details [2, 108].
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Many Datalog implementations also include built-in predicates which represent, for
example, arithmetic operations (e.g. sum, subtraction) and numeric comparisons (such as
less than, <). These elements may also induce infinite groundings, so their syntactic use is
usually constrained in a similar way as it happens with negation.

There are also Datalog extensions which focus on temporal reasoning [23,34,51]. Nowadays,
temporal extensions of Datalog, and associated reasoners, often address the Stream Reasoning
paradigm [38, 113]. In Stream Reasoning, the goal is to perform inferences of a (usually)
rapid stream of data. In [11], for example, the authors employ DatalogMTL to formalise
reasoning tasks that must account for time. Such tasks involve calculating or counting values
over a period of time, for instance, to compute the revenue per year of a company [11].

2.2.4 Datalog and Description Logics

Datalog and Description Logics are not completely disjoint fields. There have been many
studies on how these two formalisms relate [43, 67, 94, 95], in particular because Datalog
materialisation, a form of inferring new facts, is very efficient and can be applied to reasoning
problems involving ontologies [27,28] and KGs [110].

Datalog±, for instance, is a family of Datalog variants designed to capture the expressivity
of Description Logics in the DL-Lite family. DL-Lite is composed mostly of lightweight
DLs tailored for querying large collections of assertional data, while the concept inclusions
are kept relatively simple. In fact, Datalog± is strictly more expressive than DL-Lite [27].
Krötzsch, Rudolph and Schmitt [67] investigated fragments of Description Logics (such as
ALC and SROIQ) that can be captured in Datalog, while Rosati [94] proposes a framework
for integrating DLs with Datalog¬∨, that is, Datalog extended with negation in the body
and boolean disjunction in the head.

The Semantic Web Rule Language (SWRL) [57] closely relates DLs and Datalog. More
specifically, this language is based both on OWL DL (a fragment of the first OWL proposal)
and RuleML (which is essentially a fragment of Datalog. The resulting language is very
expressive, so much that reasoning with SWRL with very expressive DLs such as SROIQ
is undecidable. There are, however, subsets of SWRL that retain decidability, even when
combined with SROIQ, the so called DL rules [66].

2.2.5 Reasoning with Datalog

There are numerous implementations of Datalog embedded in database management systems
and inference engines (e.g. RDFox [82], Apache JENA1) or available as libraries (e.g. pyData-
log2, Datalog in Racket3). The implementations vary regarding the extensions implemented,
the semantics adopted, and the actual syntax of the Datalog rules. Next, we discuss some of
the most recent reasoning systems to perform inferences in Datalog rules and KGs.

RDFox [82] is a column store which employs a parallel materialisation method for Datalog
reasoning. Materialisation is a popular strategy to save time in reasoning systems. Every
entailment computed is stored instead of being discarded after each query, saving costs in
subsequent calls. RDFox is designed to manage large volumes of RDF data and provide
reasoning services using Datalog extensions tailored for this use case.

1 https://jena.apache.org/
2 https://sites.google.com/site/pydatalog/
3 https://docs.racket-lang.org/datalog/

https://jena.apache.org/
https://sites.google.com/site/pydatalog/
https://docs.racket-lang.org/datalog/
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Another notable Datalog system built with KGs as its primary use case is Vadalog [12]. It
focusses on Warded Datalog±, a variant of Datalog with the three highly desirable properties:
(1) ability to express recursive patterns, (2) enough expressivity to capture queries over KGs
in fragments of DL-Lite (more precisely, SPARQL queries with OWL 2 QL entailment), and
(3) polynomial data complexity.

Carral et al. [29] devised a rule engine with reasoning services based on Datalog ma-
terialisation. The engine is designed for an extension of Datalog similar to Datalog± and
targets KGs as its main use-cases. One of the aspects that distinguishes this tool from other
approaches mentioned here is the ability to easily integrate with data sources in different
formats such as OWL ontologies, SPARQL endpoints, and RDF stores.

As we mentioned in the previous sections, KGs often include uncertain information and
time-sensitive data. Chekol et al. [32] devised a framework combining Markov Logic Networks
(MLNs) [92] and Datalog extended with inequalities to facilitate time-aware maintenance of
KGs. MLNs are a Statistical Relational Learning approach which combines First-Order Logic
and probabilities to represent dependencies between events, while they still remain uncertain.
In a similar vein, Bellomarini et al. [10] extend the Vadalog system to express probabilistic
rules. Recently, Wang et al. [114] developed a DatalogMTL reasoner by combining traditional
reasoning methods for Datalog (materialisation) and automata-based methods.

Leone et al. [73] adapted the DLV2 answer set programming system, which already had
Datalog capabilities, to handle large KGs (in the paper, the authors focus on DBPedia). These
improvements concern mostly scalability, reducing processing time and memory consumption.

2.3 SHACL
The Shape Constraint Language (SHACL) is a W3C recommendation [62] whose purpose is
to validate RDF graphs. Each SHACL constraint is called a shape which specifies to which
nodes it applies and what conditions such nodes must satisfy. Given a KG in RDF, one can
use different tools to check that the KG complies with a set of shapes. KGs generally lack
a schema when compared with a database. Therefore, constraints are crucial for quality
assessment and maintenance of large KGs [88]. SHACL and similar languages, such as
ShEx [17], are tailored for the particular task of constraint validation, whereas OWL is
tailored for modelling domains of knowledge and for reasoning. However, as we discuss later
in this section, one can define reasoning problems and perform inference using SHACL. Next,
we illustrate the capabilities of SHACL with an example.

▶ Example 16. The RDF graph below, written in terse triple notation, describes a single
shape using SHACL (we omit the prefixes’ declarations here).

1 : HumanShape rdf:type sh: NodeShape ;
2 sh: targetClass :Human; # applies to all humans
3 sh: property [
4 sh:path : birthDate ; # predicate for the date of birth
5 sh: maxCount 1 ; # must have at most 1
6 sh: minCount 1 ; # must have at least 1
7 sh: datatype xsd:date ; # must be a date
8 ];
9 sh: property [

10 sh:path : citizenship ; # citizenship predicate
11 sh: minCount 1 ; # must have at least 1
12 sh:node [ a sh: NodeShape ;
13 sh:class : Country ]; # must be a country
14 ] .
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The first defines the name of the shape (:HumanShape). The shape targets the nodes
whose type (rdf:type) is the node :Human (Line 2). It also specifies that each such node
must have exactly one birth date and it must be a valid date (lines 3 to 8). Lines 9 to 14
state that the target nodes must (1) be related via :citizenship to at least one node and
(2) be related by :citizenship only to objects of type :Country (this specification is done
by using an anonymous shape in lines 12 and 13).

Programs called SHACL processors check whether an RDF graph complies with a set of
shapes. These programs generate a validation report for a given graph and set of shapes,
indicating which nodes and constraints are violated, if any. Example 17 depicts an example
of validation report.

▶ Example 17. A SPARQL processor receiving shapes from Example 16 and the RDF graph
from Example 1 could produce the validation report below4.

1 [
2 a sh: ValidationResult ;
3 sh: resultSeverity sh: Violation ;
4 sh: sourceConstraintComponent sh: MinCountConstraintComponent ;
5 sh: sourceShape _:n51;
6 sh: focusNode <http :// www. example .org/ArturAvila >;
7 sh: resultPath <http :// www. example .org/birthDate >;
8 sh: resultMessage "Less than 1 values ";
9 ] .

10 [
11 a sh: ValidationResult ;
12 sh: resultSeverity sh: Violation ;
13 sh: sourceConstraintComponent sh: NodeConstraintComponent ;
14 sh: sourceShape _:n52;
15 sh: focusNode <http :// www. example .org/ArturAvila >;
16 sh:value <http :// www. example .org/Brazil >;
17 sh: resultPath <http :// www. example .org/ citizenship >;
18 sh: resultMessage "Value does not have shape Blank node _:n53 ";
19 ] .

The report specifies two violations: one says that the RDF graph does not include a birth
date for :ArturAvila (lines 1 to 9) and the other (lines 10 to 19) indicates that the graph
does not guarantee that :Brazil is a country.

2.3.1 DL-like Syntax for SHACL
Since we are interested in SHACL from the point of view of reasoning, we will look at the
SHACL formalisation by Jakubowski and Van den Bussche [16] which adapts the one by
Corman, Reutter and Savković [35]. This alternative syntax is much closer to that presented
for Description Logics in Section 2.1, and it will aid us in describing SHACL’s semantics and
its connections to the DLs.

First, we need three pairwise disjoint sets of node names (NN), shape names (NS) and
property names (NP). A signature Σ is be subset of NN ∪ NS ∪ NP. Using these terms, one
can define path expressions which are either property names or built as in Table 3 (these
path expressions essentially come from SPARQL [35, 62]). Finally, we can consider shape
expressions: terms in NS or expressions using the constructors in Table 4.

4 The validation report was generated at https://shacl.org/playground/.

https://shacl.org/playground/
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Table 3 Syntax and semantics of abstract SHACL path expressions [16].

Name Syntax Semantics

Inverse p− {(a, b) | (b, a) ∈ pI}
Union E1 ∪ E2 E1

I ∪ E2
I

Composition E1 ◦ E2 {(a, b) | ∃c.(a, c) ∈ E1
I ∧ (c, b) ∈ E2

I}
Reflexive closure E? EI ∪ {(a, a) | a ∈ ∆I}

Reflexive-transitive Closure E∗ The ⊆-minimal S with E?I ⊆ S and
(a, b), (b, c) ∈ S implies (a, c) ∈ S

Table 4 Syntax and semantics of abstract SHACL shape expressions [16]. I is an interpretation
defined over the signature Σ, E is a path expression, p ∈ NP, s ∈ NS, c ∈ NN n ∈ N, Q ⊆ NP and
ϕ1, ϕ2 are shape expressions. Also, R(a) denotes the set {b | (a, b) ∈ R}, where R is a binary relation.

Name Syntax Semantics

Top ⊤ ∆I

Atomic Shape s sI

Nominal {c} cI

Conjunction ϕ1 ∧ ϕ2 ϕI
1 ∩ ϕI

2

Disjunction ϕ1 ∨ ϕ2 ϕI
1 ∪ ϕI

2

Complement ¬ϕ1 ∆I \ ϕI
1

Minimum cardinality ≥ nE.ϕ1 {a ∈ ∆I | (#(ϕI
1 ∩ EI(a))) ≥ n}

Equality eq(p, E) {a ∈ ∆I | pI(a) = EI(a)}
Disjointness disj(p, E) {a ∈ ∆I | pI(a) ∩ EI(a) = ∅}
Closed shape closed(Q) {a ∈ ∆I | pI(a) = ∅ for every p ∈ Σ \ Q}

We can regard a set of shapes, as the one in Example 16, as a set of statements relating
shape expressions. These statements can be of two types shape definitions and shape
constraints. Shape definitions are expressions of the form s ≡ ϕs with s ∈ NS and ϕs a shape
expression. Shape constraints are statements of the form ϕ1 ⊑ ϕ2. A set of shapes can be
represented as a pair of sets (D,T ) called shape schema [6], in which D is a set of shape
definitions and T a set of shape constraints. The shape schema must satisfy some syntactical
requirements to ensure that it represents a valid SHACL document, we refer the reader
to [6, 16] for more details.

▶ Example 18. This is a translation of the SHACL constraints over the citizenship relation
in Example 16.

¬(≥ 1.citizenship.¬({country})) ∧ (≥ 1.citizenship.⊤)

The first conjunct states that the target can only be related via citizenship to countries
Country. The second specifies that there must be at least one object to which the target
relates to via citizenship.

2.3.2 Semantics
When considering SHACL semantics, we have to make distinctions similar to the Datalog
case. However, in this case the distinction concerns recursion. A shape is recursive if it refers
to itself directly or indirectly, otherwise, it is non-recursive. The W3C recommendation [62]
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describes the language precisely enough to specify the meaning of validation against non-
recursive shapes, however, the semantics of validation containing recursive shapes is open.
This gap in SHACL’s semantics sparked a number of distinct approaches attempting to
clarify the validation of recursive SHACL [6,15,35].

For the purposes of this work, it will be enough to consider the semantics for non-recursive
SHACL alone. Here, we will also focus on the formalisation proposed by Bogaerts, Jakubowski
and Van den Bussche [16]. Thus, we will present the semantics using interpretations, which
is also similar to the ones seen in Section 2.1. However, before we proceed, we remark two
key differences between standard DL (and OWL) reasoning and SHACL reasoning. The first
is the presence of the UNA in SHACL [62]. This means that every term in NN ∪ NP must be
mapped to a different element of the domain in SHACL [16], similarly to the case of many
Datalog semantics [2]. Furthermore, even blank nodes in a RDF graph (i.e. those who do
not have an IRI) must be mapped into distinct elements of the domain [35].

The second main difference is that relations in SHACL are closed, meaning that if the
graph does not have a triple (subject, predicate, object), then it is assumed to be false. More
precisely, each triple can be seen as a fact (similar to the meaning in Datalog) or an assertion
(as in DL ABoxes). For example, the triple (Artur Ávila, memberOf, USNAS) represents
the fact that Artur Ávila is member of the United States’ National Academy of Science
(USNAS). If such triple would not be present in the Wikidata’s KG, then SHACL would
assume that Artur Ávila is not a member of the USNAS when validating the KG against a
set of shapes. This is not the case in standard OWL and DL reasoning which follows the
Open World Assumption (OWA). With the OWA, unless there is a statement or its negation
(either asserted or inferred), the status of any triple is assumed to be unknown. As Bogaerts,
Jakubowski and Van den Bussche [16] remark, this does not mean that SHACL presupposes
the Closed World Assumption (CWA) completely. Triples about unknown entities could still
be true or false. For instance, if the KG did not include any reference to Artur Ávila, then the
status of the triple (Artur Ávila, memberOf, USNAS) would be “unknown”, thus there could
be an interpretation for that KG in which the triple is true, while another interpretation
would consider it false.

Now, for the actual semantics, we consider that a KG G is a finite set of triples (subject,
predicate, object), or equivalently, facts of the form predicate(subject, object). Given a
KG G, we write NG to denote the set of nodes (entities that appear as subject or object)
that occur in G, and pG to represent the set {(a, b) | (a, p, b) ∈ G}. One can build an
interpretation I(G) = (∆I(G), ·I(G)) over NN ∪ NP based on the KG G that preserves the
intended meaning of the triples and shapes as follows [16]

∆I(G) = NN;
cI(G) = c, for all c ∈ NN; and
pI(G) = pG, for all p ∈ NP.

The semantics for complex path expressions follows the rules stated in Table 3. Shapes
are mapped to subsets of ∆I(G) using the rules described in Table 4.

2.3.3 Reasoning with SHACL
The main reasoning task in SHACL is validation of constraints, that is, given an RDF graph
which acts as an interpretation, one must decide whether it satisfies a set of constraints
defined by shapes. As mentioned earlier, there are programs called SHACL processors
which are either standalone programs [47], or embedded in larger systems for managing
KGs, such as RDFox [82]. We list the most prominent of these reasoning tasks below (see
also [5, 72,87,88]).
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Shape containement: given two shapes ϕ1 and ϕ2, decide whether every target node that
complies with ϕ1 will also comply with ϕ2. If so then we say that ϕ1 is contained in ϕ2.

SHACL satisfiability: given a set of shapes S, decide whether there exists G that complies
with all shapes in S.

Explanation for Violations: Given a set of shapes S and a KG G, decide whether (B,A)
with B ⊆ G and A ∩G = ∅ is such that (G \B) ∪A complies with S.

Leinberger et al. [72] studies the decision problem of shape containment through DLs
using the abstract formalisation of SHACL proposed by Corman, Reutter and Savković [35]
that we presented here. More precisely, they map the problem of shape containment to
concept subsumption, a well known decision problem in DLs [7]. The problem of shape
containment was later generalised by Pareti et al. [88]. The authors studied the containment
problem between sets of shapes and also proposed and investigated SHACL satisfiability
and a more restricted version, constraint satisfiability. The tasks studied were restricted to
non-recursive SHACL, but they are also being extended to consider recursive shapes [87].

While explanation finding and associated tasks are classified as abductive reasoning, we
find it convenient to mention here the work due to Ahmetaj et al. [5]. The authors define and
investigate the computational complexity of many reasoning problems related to explanations
in SHACL, as the one we mentioned before. Their theoretical framework rely on a primarily
deductive approach which is also underpinned by the DL abstraction of SHACL.

3 Inductive Reasoning

Inductive reasoning in KGs can be performed with different approaches. One of the main
goals of this task is to “complete” the KGs. KG completion is the task of inferring new facts
which are plausible based on patterns already present in a given KG. In this section, we
discuss classical approaches for KG completion, namely, knowledge graph embeddings [20]
(see [55] for some approaches using graph neural networks).

3.1 Knowledge Graph Embeddings
An embedding in Representation Learning (a subarea of Machine Learning) corresponds to a
mapping from a collection of objects to a vector space model, often low-dimensional ones.
The first approaches for knowledge graph embeddings mapped both objects (corresponding
to nodes in the KG) and relations to vectors into a low-dimensional latent space encoding
regularities in the KG [20]. These methods also have a score function that determines if a
given triple is likely to be true or not, given the embeddings learned. Here we will assume,
without loss of generality, that the higher the score, the more likely the triple is to be true.
The score function is also the main component of the loss function that should be minimised
during the training phase.

▶ Example 19. Consider a KG G that contains the entities ArturAvila, CarlosChagas,
NiedeGuidon, archelogist, biologist and mathematician; and the relation occupation.
Ideally, an embedding method should learn vector representations (embeddings) for entity
and relations that allows us to infer new and correct triples. For instance, suppose that G con-
tains (ArturAvila, occupation,mathematician) and (CarlosChagas, occupation, biologist),
but does not include (NiedeGuidon, occupation, archeologist). If the KG also includes
NiedeGuidon in other triples, then we would expect that we could derive the missing triple
by looking at the embeddings for NiedeGuidon, occupation and archeologist. For instance,
if we use TransE [20] and it generates the embeddings (0.5, 0.2) for NiedeGuidon, (0.25, 0.5)
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for (archeologist), and (−0.3,−0.2) for the relation occupation, then we could expect to
infer the triple (NiedeGuidon, occupation, archeologist), as TransE gives high scores for a
triple (s, p, o) if ||(s + p) − o||ℓ ≈ 0, where s, p and o are, respectively, the embeddings
learned for s, p and o, and ||.||ℓ denotes the ℓ-norm.

Even today, this is the standard approach when designing KG embedding models, despite
the variety of strategies: some rely on geometric-based mappings [20,103], others on expressing
the graph as products of tensors [106], and more recent methods rely on neural networks [40].

This representation is shown to be not suitable for encoding rules, in particular, concept
and role inclusions present in ontologies [53,58,118]. For example, we could have a concept
inclusion that states that every mathematician is a scientist, but traditional embedding
methods would not be able to use this information when learning embeddings, nor would
guarantee that such constraint would be respected. They also do not take into account
the time dimension, which may be central in some KGs that contain inconsistencies if we
disregard the temporal annotations. Since there is already a fairly recent survey on KG
embedding methods in general due to Dai et al. [36], we will focus on the approaches which
propose embedding models which focus on compliance with ontological constraints or on
representing the time dimension.

3.1.1 KG Embeddings and Ontological Constraints
There are different approaches to incorporate ontological constraints in KG embeddings. The
goal is to improve the accuracy of these methods in KG completion tasks and also reduce the
amount of data required to achieve a reasonable performance during training, particularly
when the KG has sparse relations [46]. Moreover, compliance with ontological constraints
might also lead to models that capture the semantics of the relations and entities included.

Fatemi, Ravanbakhsh and Poole [46] modify the SimplE embedding model so that it
complies with additional constraints which express concept and role inclusions by enforcing
inequality constraints on the score function of affected triples. More precisely, to express
the role inclusion r ⊑ s, the model enforces that the score function f is such that f(x, r, y) ≤
f(x, s, y) while also requiring every coordinate of every embedding to be non-negative.
The strategy for concept inclusions is analogous, but involves transforming the pertinence
relation to each class (i.e. the relation rdf:type) into a new relation. The resulting variant,
named Simple+ performs similarly to SimplE, and with faster convergence when taxonomic
information is available. It also retains the same theoretical qualities of the original model.

In [37], the authors introduce two KG embedding models, TransOWL and TransROWL,
which employs a knowledge injection approach. The two models proposed consist in adaptions
of TransE [20] and TransR [77] in which the loss function is enriched with terms expressing
ontological constraints expressing class and property hierarchies and equivalences, and inverse
properties. The empirical evaluation shown reductions on the false positive rates, but also
that there is still room for improvement.

BoxE [1] is a geometric KG embedding model designed to cope with patterns between
relations such as symmetry, inversion and composition, as well as one-to-many and many-to-
many relations. The ability to expresses those complex relationship patterns is a common
short-coming in translation-based embedding models [1, 103], which can damper the benefits
of their comparatively more explainable formal framework. In addition, BoxE employs
knowledge injection to guarantee that the outcome always satisfies a rule. The authors prove
that BoxE can be injected with rules in a language that combines the union, symmetry,
hierarchy and intersection constraints. There were previous approaches to rule injection, but
with more limited languages [41,93].
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There are also other approaches which rely directly on existing reasoners. Wiharja et
al. [118] investigate iterative strategies for KG completion using a combination of meth-
ods that involves deductive reasoning (classical reasoners) and inductive reasoning (KG
embeddings). In addition to showing that traditional KG embeddings do not comply with
ontological constraints specified in OWL or in SHACL. In their iterative approach they
employ an incomplete, but highly efficient reasoning procedure to detect triples that violate
the constraints. The wrong triples are deleted, and the correct triples are added to the
current KG, and the process is repeated until a fixpoint or other convergence condition is
reached. ReasonKGE is a similar iterative approach proposed by Jain et al. [58] that relies
on the use of deductive reasoning as an intermediate step. The main difference is that the
wrong triples (that is, the ones that violate the ontological constraints) are not discarded,
they are added to the set of negative samples for training the internal embedding model.

Gutiérrez-Basulto and Schockaert [53] introduce geometric models, where relations are
mapped to convex regions, rather than vectors. This principled solution is suitable for a
large fragment of the first-order Horn rule language, called quasi-chained. This language also
corresponds to the chain-Datalog variant, which also places constraints on the negation (in
particular, in combination with recursion) [109]. In this approach using convex regions [53],
any triple predicted by that embedding model will not only be consistent with the quasi-
chained ontology at hand, but it will also be a logical consequence of that same ontology.
However, the geometric model based on convex-region, as introduced in the mentioned
work, does not capture negation beyond the ability of expressing disjointness [86]. This is
investigated in a new semantics for representing relations which allows full negation, called
cone semantics [86]. In cone semantics, an interpretation maps each concept name to an
axis-aligned, convex, cone (henceforth, simply cone). The authors then focus on the DL ALC
and extend the semantics to all of its concept expressions (i.e. those built using the concept
constructors in Table 1) so that those are also mapped to cones.

To conclude this discussion on KG embeddings and ontological constraints, we remark
that there are still open questions regarding the ability of embedding models in capturing
the semantics of entities and relations in a way that is logically consistent. The main
argument for focussing on these questions remains to be able to verify that the embeddings
capture connections between entities, concepts and relations. Therefore, there is still
work to be done if we consider different languages and other forms of building defining
interpretations using embeddings, as even the most principled approaches in this direction
still have drawbacks [53,58,86].

3.1.2 KG Embeddings and Temporal Information
There are two prominent aspects in KGs that invoke time-awareness. First, as discussed
earlier, KGs often include facts annotated with time validity [39]. For instance, the fact that
Artur Ávila is member of the USNAS is only valid from 2019 onwards. The second aspect
is the dynamic nature of KGs [60,99]. KGs can be edited both by humans and programs,
receiving constant updates, which also require constant repair. Hence, the KG itself changes
with time. When performing reasoning, for instance via KG completion with embeddings,
it might be crucial to take into account time validity and changes over time. These needs
fostered KG embedding proposals that give a particular attention to temporal information.
This is still a very recent and active area of research, and as such, we only briefly summarise
some approaches in this field while presenting some of the characteristics that differentiate
these methods from usual (atemporal) KG embedding strategies. We refer the reader to the
survey due to Kazemi et al. [60] for a more detailed and thorough overview of temporal KG
embedding approaches (and other time-aware Representation Learning methods for KGs).
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Many approaches for temporal embeddings depart from atemporal KG embedding methods
and modify the models to accommodate time [98] or devise frameworks in which traditional
KG embedding methods are seen as components [120, 125]. Moreover, the strategies for
creating this models often fall into the same three categories as traditional embedding models:
geometric models [96, 115,116,122], tensor factorisation models [31, 50, 76, 98] and models
based on neural networks [74]. HyTE [39], for example, was one of the first embedding
models to encode time into the embeddings. HyTE represents the dynamic KG as a series
of snapshots, each snapshot being a static KG at a specific point in time. In this model,
translation-based embedding models, such as TransE, are modified with the specification of
hyperplanes that indicate the time component of a fact. Wang and Li [116] employed the
same hyperplane-based approach and extended TransD.

SEDE [127] also departs from TransE and uses the same snapshot-modelling intuition
as HyTE. However the adaption for accommodating temporal information is inspired by
strategies used in semantic word evolution. QCHyTE is another model based on HyTE which
view the changes over time as gradual rather than abrupt, using a probabilistic approach [33].
Other methods that also model changes as gradual processes using probabilities include the
frameworks due to Liao et al. [75] and ATiSE model [123]. TKGFrame [126] quantifies and
models the temporal dependencies between relations over the same individual. TKGFrame is
able to quantify, for example, that a transition from bornIn to marriedTo requires more
“time” than the transition from bornIn to diedIn [126].

The existing models for temporal KG embeddings also differ regarding on whether they
focus on events (individual time points), such as DE-SimplE [50], or if they are able to handle
intervals, as is the case of TeRo [122]. Granularity of time intervals and precision of time
points is also relevant to time-sensitive applications and it has been explored in the context
of KG embeddings [70, 83, 124]. The TDG2E model [104], for instance, extends TransE
with temporal information and uses a recurrent neural network to encode the dependencies
between different snapshots and address issues related to the sparsity of temporal annotations.
Li et al. [74] also use recurrent neural networks to represent temporal dependencies, but
without using a geometric model underneath. The strategy relies primarily on an application
of recurrence structures with graph convolutional networks [74]. The TIME2BOX model [25]
is particularly expressive as it can deal with facts with unspecified time validity, open intervals
and closed intervals (including left/right-open).

We note that some challenges that remain ubiquitous to KG embedding models in general
are also being addressed in the temporal subfield. As usual, computational performance,
in terms of resource usage, is an eminent concern [121], as well KG completion quality
under adverse conditions, such as relations that occur in few facts in a KG [81]. Ensuring
that the semantics of entities and relations is captured adequately (and ideally, with formal
guarantees) is also a major concern and an active research problem in this field [78]. Models
such as RETRA [117] and the approach due to Lie et al. [78] focus on contexts of facts
defined by sharing of entities and relations.

Bourgaux, Ozaki and Pan [22]’s proposal also addresses the problem of capturing temporal
aspects and ontological constraints. More precisely, the authors extended the geometric
models as proposed by Gutiérrez-Basulto and Schockaert [53] from the classical DL setting
to attributed DLs (as presented in Section 2.1.1). Then, they include the time dimension by
enriching the attributed DL obtained with temporal operators. These operators allow a user
to specify temporal dependencies such as “before”, “until” and “during”. Furthermore, the
authors identify a fragments of the resulting language that ensure that a convex geometric
model exists capturing its semantics.
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4 Extracting Rules

Association Rule Mining (ARM) [4] and Formal Concept Analysis (FCA) [49] are two
approaches for extracting rules from data. Initially, these techniques were applied for data
structured in the format of databases. More recently, there has been increased interest in
applying ARM and FCA for extracting rules from KGs [18,19,48,52,54,69].

ARM is a practical and highly scalable approach for extracting rules from KGs. One of
the most prominent tools to extract rules from KGs based on ARM is AMIE [48]. Current
versions of this tool can extract rules from large KGs in a few minutes [69]. This approach
uses two measures, called support and confidence, to guide the search of rules and to identify
significant patterns to be extracted. In this context, the support of a rule is the number
of true predictions of a rule in a KG. The authors of AMIE point out that for many real
world KGs the support measure drastically decreases for the vast majority of the rules with
more than 4 predicates in the body of the rule. Since low support for a rule means that
the rule would only be applicable to few objects, this implies that, in most cases, long and
difficult to interpret rules (with more than 4 predicates) can be discarded. Moreover, many
combinations of 2 or 3 predicates already results in low suport.

▶ Example 20. Consider a rule with the binary predicate “teachesAt” in its body. The
first argument of this predicate can only refer to educators while the second can only refer
to educational institutions, which already significantly limits the possible combinations of
predicates that can result in a rule with high support.

So the search space can be drastically reduced by applying the support measure to guide the
search for significant patterns in the data. The main difficulty with the ARM approach is that,
in order to achieve high scalability, the structure of the rules can be radically limited and that
it does not provide theoretical guarantees regarding the extracted rules. In particular, this
approach does not guarantee that all relevant rules in a certain rule language are extracted.
It is also the case that the number of rules extracted can be very large (even though the size
of each rule is limited).

The FCA approach addresses the difficulties of ARM, in particular, it gives theoretical
guarantees for the rules extracted. The classical setting focuses on propositional Horn theory.
In the DL context, there are e.g. works applying FCA to compute all concept inclusions of
the EL ontology language (this language corresponds to the ALC description logic without
negation, disjunction, and value restriction, see Table 1) that hold in a dataset [42, 52].
FCA also focus on succinctness, in particular, on constructing a set of rules that is minimal,
called the Duquenne-Guigues base or stem base. The main challenges in applying FCA for
extracting rules from KGs are (1) scalability, (2) the presence of a significant portion of
erroneus information, and (3) the fact that rules generated with FCA can be complex and
difficult to interpret. One way of dealing with challenges (1) and (2) is to combine FCA and
ARM. A simple way of dealing with challenge (3) is by limiting the size of rules extracted, as
it is the case in ARM.

5 Conclusion

In this work, we discussed different forms of inductive and deductive reasonings on Knowledge
Graphs. Deductive and inductive reasoning have different strengths and shortcomings.
Combining those to provide efficient and explainable reasoning is one of the current challenges
in Artificial Intelligence. Besides deductive and inductive reasoning, there is also a third
modality: abductive reasoning, which we briefly discuss next.
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This third form of reasoning also aims at inferring facts, but from another perspective.
Instead of focusing on new consequences that can be discovered, abductive reasoning concerns
finding explanations for entailments already known or the lack of expected entailments. For
example, suppose that we find out using inductive reasoning that the Wikidata KG implies
that Artur Ávila is European. An abductive reasoning procedure could then be used to
identify, among the numerous facts in Wikidata, which are strictly necessary to reach this
conclusion. That is, we would like to find an explanation for that conclusion. Similarly, we
might be interested in adding facts, axioms or rules to our KG or reasoning system to reach
a particular conclusion without explicitly stating it.

Abduction in DLs, for instance, is a rich area of research with many different applic-
ations [13, 45, 64, 91]. One of them is debug and repair of DL ontologies via explanations
and “explanation-like” objects, such as justifications [56], MinAs [9] and others [80]. The
main goal is to find the explanations for undesired consequences and transform the ontology
(or KG) so that it does not entail those anymore. Also, in the context of repair, we might
be interested in finding the largest portions of the KG that do not entail a certain fact or
present a particular behaviour. Such sets, and similar constructions, appear under many
names in the Ontology Repair literature such as MaNAs [9], repairs [8], among others [80].
Some studies relate abductive reasoning and Datalog, either solving this problem for Datalog
programs [24] or using Datalog to perform abduction in other languages. Additionally, as we
mentioned in Section 2.3, there are also works on explanations for SHACL violations [5].

To conclude, we note that the approaches presented and mentioned here differ regarding
the treatment of the KG and the reasoning problems they aim to solve. Understanding their
advantages and disadvantages is key to devising better solutions for the existing challenges
in reasoning with KGs.
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