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Abstract
Knowledge bases are typically incomplete, meaning that they are missing information that we would
expect to be there. Recent years have seen two main approaches to guess missing facts: Rule Mining
and Knowledge Graph Embeddings. The first approach is symbolic, and finds rules such as “If
two people are married, they most likely live in the same city”. These rules can then be used to
predict missing statements. Knowledge Graph Embeddings, on the other hand, are trained to predict
missing facts for a knowledge base by mapping entities to a vector space. Each of these approaches
has their strengths and weaknesses, and this article provides a survey of neuro-symbolic works that
combine embeddings and rule mining approaches for fact prediction.
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1 Introduction

A knowledge base (KB) is a computer-processable collection of knowledge about the world.
KBs typically contain real-world entities (such as organizations, people, movies, or locations)
and their relationships (who was born where, which movie plays where, etc.). Thousands of
such KBs are publicly available, including, e.g., Wikidata [60], DBpedia [4], and YAGO [53].
These KBs contain millions of entities and relationships between them, saying, e.g., who
was born in which city, which actor acted in which movie, or which city is located in which
country. Such KBs are used for question answering, Web search, text understanding, personal
assistants, and other AI applications [66].

KBs are usually never complete; there are always facts that are missing from the KB. This
is due to the way in which KBs are constructed: Some of them are constructed automatically
by extracting facts from Web sources. Such an extraction may fail to extract all information,
and the underlying sources can be incomplete themeselves. Other KBs are fed by a community,
and may be incomplete simply because not all facts have yet been added. Fact prediction is
the task of predicting facts that are true in the real world, but missing in the KB. Although
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Figure 1 Rule Mining and Embeddings.

this may never make the KB complete, it will at least add facts that were missing. There are
two major approaches to this end: Rule Mining and Knowledge Graph Embeddings. Rule
mining is a symbolic approach. It finds rules such as the following in a KB:

married(x, y) ∧ livesIn(x, z) ⇒ livesIn(y, z)

This rule means that if some person x is married to some person y, and x lives in a city z,
then y also lives in that city. Such rules are usually not true in all instances, and typically
come with a confidence score. Modern systems [30, 34, 40] can find such rules automatically
on KBs of millions of entities. These rules can then be used to predict missing facts: If we
know that some person lives in some city, but we do not know the place of residence of their
spouse, we can use the rule to predict that, with high likelihood, the spouse lives in the same
city.

The other methods to predict missing facts are embedding-based methods. These methods
are a gift of the renaissance of neural networks in the 2010’s. They project the entities
and facts of a KB into a vector space. In its simplest variant, an entity x is mapped to
its embedding, the vector x⃗. A relationship r, likewise, is mapped to a vector r⃗. These
embeddings have the following property: If r⃗ is the vector for the livesIn relationship, then we
can walk from the embedding x⃗ of a person x to the embedding z⃗ of their place of residence
z by computing z⃗ = x⃗ + r⃗. This gives us another way of guessing the place of residence for
some person y: We just find the city whose embedding is closest to y⃗ + r⃗.

Each of these methods has its advantages and disadvantages: While rules are easy to
understand for humans (and embeddings are less intuitively accessible), embeddings can
take into account signals from all facts in which an entity occurs (and not just the ones
mentioned in the rule, which are typically few). Therefore, recent years have seen fruitful
endeavors to combine neural methods with symbolic methods. Both rule mining techniques
and embedding techniques have been surveyed in recent articles [62, 9, 46, 73], among which
is our own previous tutorial article [54]. Hence, in this tutorial, we survey approaches that
combine both techniques.

The article is structured as follows: Section 2 introduces knowledge bases, rule mining
techniques, and embedding techniques, following largely [54]. Section 3 discusses embeddings
in more detail. Section 4 discusses embedding techniques that use rule mining techniques.
Section 5, vice versa, discusses rule mining techniques that use embedding techniques. We
conclude in Section 6.
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2 Preliminaries

2.1 Knowledge Bases
Knowledge Bases. To define a knowledge base [54], we need a set I of entities. An entity is
anything that can be an object of thought [67]. General-purpose KBs are typically concerned
with entities such as places (e.g., Paris, or India), people (such as politicians, scientists,
or actors), organizations (such as companies or associations), or artworks (such as movies,
books, etc.). But knowledge bases can also be concerned with biomedical entities, geological
formations, scientific articles, or any other type of entities.

In what follows, we assume a set R of binary relation names (also called relations,
relationships, or predicates). For example, the relation locatedIn holds between a city and a
country; the relation actedIn holds between an actor and a movie; and the relation president-
Of holds between a person and a country. Finally, we need a set L of literals. These are
strings or numbers. A fact (or an assertion, triple, or statement) is then of the form ⟨s, r, o⟩
with a subject s ∈ I, a relation r ∈ R and an object o ∈ I ∪ L [30]1. An example of a fact is
⟨Paris, locatedIn, France⟩. The inverse of a relation r is a relation r−, so that ⟨x, r, y⟩ holds
if and only if ⟨y, r−, x⟩ holds. For example, the inverse of hasNationality is hasCitizen. A
knowledge base K over the sets I, R, L is then a set of facts over these sets. Whenever K is
clear from the context, we write ⟨s, r, o⟩ to mean ⟨s, r, o⟩ ∈ K.

Taxonomies. Knowledge bases typically also define classes. Intuitively, a class can be
understood as a set of entities, its instances. For example, the class of capital cities contains
the city of Paris, the city of Beijing, etc. Many formalisms use unary predicates to express
class membership, stating, e.g., city(Paris). If every instance of some class y is also an
instance of some class y′, then y is called a subclass of y′. For example, the class capitalCity
is a subclass of the class city, which is itself a subclass of geographicLocation. This gives us a
hierarchy of classes – the taxonomy. Figure 2 shows an example of a taxonomy of classes.

Many KBs express the taxonomy by binary relations. To say that an entity x belongs to
a class y, the KB adds the triple ⟨x, type, y⟩. To say that a class y is a subclass of a class y′,
we add ⟨y, subclassOf, y’⟩. However, a taxonomy has an inherent semantics that is different
from other facts that hold between entities, and therefore, one is usually ill-advised to treat
the link ⟨Paris, type, city⟩ in the same way as ⟨Paris, locatedIn, France⟩.

Axioms. KBs typically come with a set of logical constraints. For example, we can impose
that if x is an instance of a class y, and if y is a subclass of the class y′, then x must also be
an instance of y′:

⟨x, type, y⟩ ∧ ⟨y, subclassOf, y′⟩ ⇒ ⟨x, type, y′⟩

Typical axioms are the following:
Domain and Range Constraints say that the subject (resp. object) of a relation must
belong to a certain class, as in “People are born in places (and not, say, in organizations)”.
Cardinality Constraints say that the number of objects per subject for a certain
relation is restricted, as in “People can have at most one birth place”.
Symmetry, transitivity, and inverse constraints say that a relation is symmetric,
transitive, or the inverse of another relationship.
Disjointness constraints say that two classes cannot have instances in common, e.g.,
places and people.

1 For our purpose, in line with the other works [17, 18, 40], we do not consider blank nodes.
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Such axioms exist in packages of different complexity: The Resource Description Framework
Schema RDFS is a system of basic axioms that are concerned mainly with class membership.
The axioms are so basic that they cannot result in contradictions. The Web Ontology
Language OWL is a system of axioms that exists in several flavors – from the simple to
the undecidable [54]. Such packages of axioms, together with the taxonomy, are sometimes
called ontology or schema. Automated reasoners can be used to (1) predict facts that follow
logically from these axioms and (2) determine whether a KB is inconsistent with respect to
these axioms.

Fact Prediction. In what follows, we will assume an ideal knowledge base K∗, which
contains all facts of the real world (see [44] for a discussion of such a KB). One typically
assumes that all facts in some given KB K are also true in the real world, i.e., K ⊆ K∗.
However, the KBs are typically incomplete, i.e., there are facts in the real world that are not
in the KB (i.e., K ⊊ K∗). Predicting a fact f that is true in the real world, but not yet in
the KB, is called the problem of fact prediction.

World Assumptions. Fact prediction is complicated by the fact that the KBs typically
do not store negative information [43]. That is: while a KB may store that Elvis Presley
has sung the song “All Shook Up”, it will not store the fact that he did not sing the song
“The Winner Takes It All”. This raises the question what we should do if the KB does not
contain certain statements (e.g., the KB does not contain the fact that Elvis sang “Always
on my mind”, which is true in the real world). In a database, one would assume that any
fact that does not appear in our data is not true in the real world – an assumption known
as the Closed World Assumption. This assumption, however, is usually false for KBs, as
KBs are highly incomplete and miss many facts from the real world. Hence, it is more
appropriate to make the Open World Assumption, which says that if an assertion is not
in the KB, it may or may not be true in the real world. Thus, in our example, if the
KB does not contain the assertion that Elvis sang “Always on my mind”, we would not be
entitled to conclude that this assertion would be false in the real world (which it is indeed not).
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Negative assertions. A negative assertion is a statement that is known to be false. Such
statements are essential as counter-examples in rule mining and fact prediction, so as to
avoid an over-generalization. For example, Woody Allen married his step-daughter. If we
find 10 other people who married their step-daughter, and no person who is not married to
their step-daughter, we would conclude that people in general marry their step-daughters.
The problem is now that KBs do not contain negative assertions. No KB tells us that Elvis
Presley was not married to his step-daughter. And the Open World Assumption prevents us
from assuming this negative assertion from the facts that are in the KB. This means that we
have, in theory, no way to generate counter-examples for rule mining and fact prediction.
Hence, we could mine the rule “Everybody is married to their step-daughter” without any
obstruction.

Several remedies have been proposed. One is the Partial Completeness Assumption, or
Local Closed World Assumption [17]. It says that if a KB contains the facts ⟨s, r, o1⟩, ...,
⟨s, r, on⟩, then any fact ⟨s, r, o′⟩ with o′ ̸∈ {o1, ..., on} must be false in the real world. The
rationale is that if some contributor made the effort to add the objects o1, ..., on, they would
for sure also have added any remaining object o′. It can be shown that this assumption is
generally true for relations that have few objects, such as hasBirthDate or hasNationality [18].
Indeed, in most KBs, the relations are designed in such a way that the average number of
objects per subject is lower than the average number of subjects per object [18]. For example,
a KB is more likely to contain the relation hasNationality (one person has few nationalities)
rather than hasCitizen (one country has millions of citizens). A relation that has a higher
average number of objects per subject than subjects per object can simply be replaced by its
inverse [18]. With this, the PCA works generally well.

The method can be used as follows to generate a large number of negative examples: take
any fact ⟨s, r, o⟩ from the KB, replace o by a randomly chosen object o′ such that ⟨s, r, o′⟩ is
not in the KB, and assume that ⟨s, r, o′⟩ is a negative assertion. The assertion ⟨s, r, o′⟩ is
called a corrupted variant of ⟨s, r, o⟩. The method is also often applied in the same way to
the subjects of the triples. This, however, creates a problem: Since relations generally have
more subjects per object than vice versa, the PCA is much less plausible in this setting. For
example, while it is, under the PCA, safe to assume that if some person Mary is American,
she is not French, it is not safe to assume there are no more Americans than those in the
KB. This is why the original PCA is applied only to the objects.

2.2 Rule Mining

Rules and Axioms. We have already seen that KBs can come with axioms, such as the
symmetry of a relation. These axioms are usually defined manually, and they allow no
exceptions. In what follows, we will be concerned with rules. These also express constraints
on the data, but different from axioms, they are not imposed on the data, but automatically
mined from the data. As such, they also allow for exceptions. For example, we can find that
marriedTo is “usually” symmetric in the data of a given KB, meaning that for most couples,
the marriedTo fact holds in both directions – although there are some couples for which the
relation holds only in one direction, presumably because of missing data. This is why such
rules are also called soft rules (as opposed to the “hard” axioms). Let us now make this idea
more formal.

AIB 2022
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Atoms and Rules. An atom is an expression of the form ⟨α, r, β⟩, where r is a relation and
α, β are either entities or variables [30] (we write variables in lower case, and entities in
upper case). For example, ⟨x, livesIn, Berlin⟩ is an atom with one variable, x. An atom is
instantiated if at least one of its arguments is an entity. If both arguments are entities, the atom
is grounded and tantamount to a fact. A conjunction of atoms B1, ..., Bn is of the form B1∧...∧
Bn. For example, we can build the conjunction ⟨x, livesIn, Paris⟩∧⟨x, wasBornIn, Berlin⟩,
which, intuitively, designates all people x who were born in Berlin and live in Paris. To make
this intuition more formal, we need the notion of a substitution. A substitution σ is a partial
mapping from variables to entities. Substitutions can be straightforwardly extended to atoms
and conjunctions. For example, the substitution σ = {x → Mary} can be applied to our
conjunction above, and it yields ⟨Mary, livesIn, Paris⟩ ∧ ⟨Mary, wasBornIn, Berlin⟩.

A (Horn) rule is a formula of the form B1 ∧ ... ∧ Bn ⇒ H, where the B1 ∧ ... ∧ Bn is a
conjunction of body atoms, and H is the head atom. An example for a rule is

⟨x, married, y⟩ ∧ ⟨x, livesIn, z⟩ ⇒ ⟨y, livesIn, z⟩

Let us call this rule R∗ in what follows. Two atoms A, A′ are connected if they have common
variables. It is common [17, 18, 40] to impose that all atoms in a rule are transitively
connected and that rules are closed. A rule is closed if every variable in the head appears in
at least one atom in the body. A rule is grounded if all of its atoms are grounded.

Predictions. Given a rule R = B1∧...∧Bn ⇒ H and a substitution σ, we can apply σ to both
the body and the head of R, and obtain an instantiation of R, which we denote by σ(R). In our
example, we could instantiate the above rule R∗ by σ = {x → Mary, y → Bob, z → Paris},
and obtain σ(R∗) as

⟨Mary, married, Bob⟩ ∧ ⟨Mary, livesIn, Paris⟩ ⇒ ⟨Bob, livesIn, Paris⟩

If σ(Bi) ∈ K ∀i ∈ {1, ..., n}, we call σ(H) a prediction of R from K, and we write K∧R |= σ(H).
Suppose, e.g., that we have a KB K = {⟨Paris, locatedIn, France⟩, ⟨Mary, married, Bob⟩,
⟨Mary, livesIn, Paris⟩}. Here, our example rule R∗ can be instantiated as before by
σ = {x → Mary, y → Bob, z → Paris}. Then, all body atoms of the instantiated rule σ(R∗)
appear in K. Hence, the rule predicts the head atom of σ(R∗), which is ⟨Bob, livesIn, Paris⟩.
Hence, we write K ∧ R∗ |= ⟨Bob, livesIn, Paris⟩.

Mining Rules. Inductive Logic Programming (ILP) is the task of finding rules automatic-
ally [54]. Typically, one provides a set of positive examples (i.e., facts that the rules shall
predict), and a set of negative examples (facts that the rules must not predict). In the
context of KBs, ILP faces several challenges: First, KBs usually do not provide negative
examples. We have discussed a method to generate negative examples above, the Partial
Completeness Assumption (Section 2.1). Another challenge is that a strict application of
the definition of ILP to rule mining would find only rules that are true in all instantiations.
However, in real-world KBs, there can be exceptions to rules, e.g., due to faulty or missing
data. Hence, rule mining typically aims for rules that have a high support (the number of
positive examples predicted by the rule), and a high confidence (the proportion of examples
it predicts that are positive). In this way, the methods can find rules even if they do not
apply in all instances, such as “If two people are married, then the children of one of them
are also the children of the other”.

AMIE [17] was one of the first rule mining systems for large KBs under the Open World
Assumption. It starts with the most general rules (such as “everybody is married with
each other”), and refines them until their confidence is high enough (e.g., “if two people are
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parents of the same children, they are most likely married”). This relies on the observation
that the support of a rule decreases monotonically when a rule is made more specific. The
RuDiK system [40] can mine logical rules like AMIE, but brings a number of improvements:
First, RuDiK can also mine negative rules, such as “If two people are siblings, they are not
married”. Second, RuDiK can mine relations between literals, such as “Someone’s birth date
is always before someone’s death date”. Finally, RuDiK removes facts that have been covered
by a rule, so that subsequent rules are forced to predict facts that have not already been
predicted. This allows not just for some optimizations of the mining algorithm, but also to
mine rules that predict more unknown facts correctly.

The AnyBURL system [34] is a bottom-up rule mining system: It starts with path rules
that are specific to one instance, and generalizes them to achieve good support. A particular
advantage of the system is that the user can trade running time for rule quality, i.e., get
better rules by waiting longer.

The DRUM system [49] is a linear formulation of the rule mining problem using one-
hot-encoding vectors for entities and adjacency matrices for relations. As it is linear, the
problem is fully differentiable and can then be solved using gradient descent techniques. This
solving appraoch proved to be very good for predictions involving previously unseen entities
or relations.

Let us now turn to the second family of methods that can be used to predict missing
facts: Knowledge Graph Embeddings.

2.3 Embeddings
Embeddings. An embedding for a group of objects (e.g. words, relations, or entities) is an
injective function that maps each object to a real-valued vector, so that the intrinsic relations
between the objects are maintained [54]. In the case of KBs, we are looking to embed entities
and relations. In particular, given a KB, we would want the entities that are semantically
similar in the KB to be mapped to vectors that are close to each other in the vector space.

The most basic embeddings [7] are designed so that, for a fact ⟨s, r, o⟩, we have s⃗ + r⃗ ≈ o⃗,
where ·⃗ is the embedding vector of the underlying entity or relation. For example, if we know
⟨Elvis, marriedTo, Priscilla⟩, then we would want the vector

−−−→
Elvis +

−−−−−−−−→
marriedTo to be close

to the vector
−−−−−−→
Priscilla. An embedding with these properties has several advantages: First,

the embedding allows us to feed entities and relations into machine learning methods that
work on vectors (e.g., classification algorithms). The vectors are typically low in dimension
(e.g., a few hundred), which makes them particularly suited for such applications. Second,
the embedding provides a natural way of grouping together similar entities, so that given
one entity, we can find its peers by scanning the vector space. In our example, we would
expect Elvis to be close in the vector space to other singers. Finally, the embeddings allow
for link prediction: If we do not know the spouse of Elvis, we can just compute the vector−−−→
Elvis +

−−−−−−−−→
marriedTo and propose that the person that we find there is the spouse. If the

embedding is well designed, that would actually work.

Terminology. In the literature about KB embeddings, the KB is often called a knowledge
graph (KG) instead of a knowledge base. This is because embedding approaches typically
project away literals and facts with literals. Consequently, fact prediction is known as link
prediction in this scenario. Furthermore, the approaches typically do not deal with classes,
taxonomies, or axioms. What remains is then a graph where the nodes are entities, and the
edges are relations. In this scenario, facts are usually called triples, the subject is called the
head of the triple, and the object is called the tail.

AIB 2022
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Link prediction with embeddings. Knowledge graph embeddings are created by trainable
machine-learning models, typically neural networks. We will discuss these methods in detail
in Section 3. All of these models take as input a fact ⟨h, r, t⟩, and output a score of its
likelihood of being true: the higher the score, the more likely the model believes the fact
to be. This score is typically denoted by f(⟨h, r, t⟩) or fr⃗ (⃗h, t⃗). To train such a model,
we need a KB of true facts. We train the model to give a high score to these facts. To
avoid over-generalization, we also have to train the model with counter-examples. These are
typically generated by corrupting the facts from the KB (Section 2.1), i.e., by taking a fact
⟨h, r, t⟩ from the KB and replacing the tail by a random entity t′. The model is then trained
to give the true triples from the input KB a higher score than the corrupted triples.

We can then use the models for link prediction as follows: We take a partially-filled triple
for which we would like to know the head or tail entity, e.g., ⟨Elvis, marriedTo, ?⟩. We try
out all possible tail entities from the KB, and score the resulting triple using the scoring
function. The predicted entity is intuitively the one with the highest resulting score. All
entities can be sorted according to the scores of their triple. Each entity is then associated
to its prediction rank, i.e., to the position that it has in the ranked list of predictions.

In the supervised setting, we often know the true answer (Priscilla), and we can compute
its prediction rank PR⟨Elvis,marriedTo,?⟩(Priscilla). Several metrics are computed from the
prediction ranks of head and tail entities. If T the set of known true facts, the metrics are
the following:

Mean Rank (MR): the average prediction ranks of the correct entities

MR = 1
2 |T |

 ∑
(h,r,t)∈T

PR⟨?,r,t⟩(h) + PR⟨h,r,?⟩(t)


Mean Reciprocal Rank (MRR): the average of the inverse of the prediction ranks

MRR = 1
2 |T |

 ∑
(h,r,t)∈T

1
PR⟨?,r,t⟩(h) + 1

PR⟨h,r,?⟩(t)


Hit at k (Hit@k): proportion of the tests in which the prediction rank is better than k

(typical values for k are 1, 3 and 10)

Hit@k = 1
2 |T |

 ∑
(h,r,t)∈T

1{PR⟨?,r,t⟩(h) ≤ k} + 1{PR⟨h,r,?⟩(t) ≤ k}


Both MRR and Hit@k have values between 0 and 1, higher values indicate better results. In
some cases, multiple entities can be correct answers (e.g. for 1-N relations) and the model
should not be penalized for predicting another true answer that is simply more likely than
the one at hand. Those metrics are usually computed in a filtered setting in which prediction
ranks are computed by removing the other true entities ranked better than the one at hand.

3 Embedding Models

In the last decade, numerous methods for computing knowledge graph embeddings have been
proposed. The methods differ from one another in terms of how they relate the entities and
relations of the KG in the latent space. The existing models can be categorized as geometric,
tensor-based or convolutional. In this section, we introduce and discuss a few popular models
from each category.



A. Boschin, N. Jain, G. Keretchashvili, and F. Suchanek 4:9

In the following, let us consider a KG with n entities E = {e1, . . . en} and m relations
R = {r1 . . . rm} that is to be embedded in a d-dimensional vector space. R (resp. C) is the
field of real (resp. complex) numbers.

3.1 Geometric models
Geometric models interpret relations as geometric operations in the vector space. The earliest
of these models is TransE, which we now describe in detail.

TransE [7] is a translation-based model, i.e., it uses a geometric distance to measure the
similarity of the entities. Given a fact ⟨h, r, t⟩, its goal is to find vectors h⃗, r⃗, t⃗, so that
h⃗ + r⃗ ≈ t⃗.
One way to do that is to design a neural network [54]. We first create a vocabulary, i.e.,
an ordered list of all entities in the KG. Then we create, for each entity, its one-hot
encoding. This is simply a vector that has as many dimensions as there are entities. Every
element of the vector is set to zero, and only the ith element is set to one, where i is the
position of the entity in the vocabulary. The same is done for the relations. Then we
design a network as follows: The input is the one-hot encoding of the head, the one-hot
encoding of the relation, and the the one-hot encoding of the tail of a given fact from
the KB. That is, if n is the number of entities, and m is the number of relations, the
network has m + 2 × n input neurons. The first hidden layer of the network then maps
each of these vectors to a d-dimensional real vector in Rd. An entity e is mapped to a
vector e⃗, and a relation r is mapped to r⃗. The further layers then reduce these vectors to
a single output that scores the input assertion. More precisely, the network computes, for
an input fact ⟨h, r, t⟩ from the KB, the function fr⃗ (⃗h, t⃗) = −||⃗h + r⃗ − t⃗|| (where || · || is
either the 1-norm or the 2-norm). The network is then trained with facts from the KB to
maximize this score for these facts. It is trained with negative assertions to minimize this
score. This leads to embeddings that verify the simple arithmetic equation h⃗ + r⃗ ≈ t⃗ [54].
The important thing here is that the later hidden layers take their decision based solely
on the output of the first hidden layer. The vectors computed by the first layer thus
contain all the necessary information to assess the truth value of an assertion – and this
is what we want from a good embedding. Thus, we will use the vectors that the first
layer outputs as the embeddings of the input entities.
One limitation of TransE is the inability to model symmetric relationships [65]: if r is
symmetric (i.e. ⟨h, r, t⟩ true implies ⟨t, r, h⟩ to be true as well), then r tends to have
an embedding vector close to 0⃗ because minimizing both ||⃗h + r⃗ − t⃗||2 and ||⃗t + r⃗ − h⃗||2
simultaneously happens if and only if r⃗ = 0⃗. Another problem appears with one-to-
many relations. Consider for example the facts ⟨ElonMusk, founderOf, SpaceX⟩ and
⟨ElonMusk, founderOf, Tesla⟩. TransE would give very similar embeddings to both
SpaceX and Tesla, and thus fail to differentiate between the two companies. TransE also
has problems modeling many-to-one, reflexive, and transitive relations, and to capture
multiple semantics of a relation.

TransH [65] tries to alleviate some limitations of TransE by allowing an entity to have
different representations in the embedding space depending on the relation it is involved
with. Each relation r is represented not only by a vector r⃗, but also by an hyperplane
(i.e. a sub-space of one dimension less than the embedding space). Algebraically an
hyperplane can be defined by a single vector, namely the vector that is orthogonal to it.
Thus, each relation r is associated with a set of two vectors: r⃗ for the relation itself, and
h⃗r for its hyperplane.

AIB 2022



4:10 Combining Embeddings and Rules for Fact Prediction

To compute the score of a triple ⟨h, r, t⟩, the embeddings h⃗, t⃗ of the entities are first
projected onto the hyperplane defined by h⃗r, and they are then connected by the
translation vector r⃗ of the relation. Given a relation r, let pr be the linear orthogonal
projection on the hyperplane defined by h⃗r. Then the loss function of TransH can be
written as f(⟨h, r, t⟩) = fr⃗ (⃗h, t⃗) = −||pr (⃗h) + r⃗ − pr (⃗t)||22.
This is designed to solve the limitations of TransE: a reflexive relation r can have a
translation vector r⃗ close to 0⃗, since all information is contained in h⃗r. For relations with
several objects, likewise, the objects can be embedded in the same place in the hyperplane
only for that specific relation.

TransR [31] extends the idea of sub-space projection of TransH by proposing that the
projection step is now done on any sub-space of a given dimension. Let d be the
dimension of the embedding space and d′ the dimension of the relation-specific sub-spaces.
Algebraically a linear projection from a vector space of dimension d into one of its
sub-spaces of dimension d′ is simply represented by a matrix of dimension d × d′. Each
relation r is then represented by a vector r⃗ and a projection matrix Mr. Thus, TransR is
simply an evolution of TransH that increases the expressiveness of the model by increasing
the number of parameters. Intuitively, this should allow the model to learn a greater
amount of useful information from the known facts it is trained on. CTransR [31] is
an extension of TransR, which operates by clustering diverse head-tail entity pairs into
groups and learning distinct relation vectors for each group.

TransD [25] in turn proposes to keep the idea of projecting on any possible sub-space but
reduces the number of parameters compared to TransD in order to limit the risk of
overfitting. This is done by allowing only the sub-space projections that are defined by a
low-rank matrix: that is a matrix that can be decomposed as a product of vectors.

Several other improvements have also been proposed in the direction of translation embedding
methods, including TransG [68], TransF [16], and KG2E [21]. Other geometric models
perform rotation-like transformations in the vector space instead of pure translations. Its
most prominent examples are RotatE [55] and HAKE [72].
RotatE [55] aims to be particularly suited for relations that are symmetric, anti-symmetric,

inverses of each other, and compositions of each other, which are typical for KGs. For
instance, the relation marriedTo is a symmetric relation: ⟨x, marriedTo, y⟩ implies ⟨y,
marriedTo, x⟩. Further, many relations such as familial relations are compositional. For
example, ⟨x, hasParent, y⟩ and ⟨y, hasParent, z⟩ imply ⟨x, hasGrandParent, z⟩. RotatE
captures these relation patterns by defining each relation as a rotation from the head
entity to the tail entity in the vector space. Specifically entities and relations are now
embedded in Cd and for any relation r, the modulus of each component r⃗i is 1. For a
triple ⟨x, r, y⟩, the model then tries to achieve y⃗ ≈ x⃗ ◦ r⃗, where ◦ is the element-wise
product. Intuitively, a relation r applies a coordinate-wise rotation on the head entity
so as to come close to the tail entity. The score function is then ||x⃗ ◦ r⃗ − y⃗||. A relation
is symmetric if and only if its embedding belongs to {−1, +1}d (i.e. coordinate-wise
rotations of 0 or π radians), r1 and r2 are are symmetric if and only if their embeddings
are complex conjugates, and a relation r3 is the composition of two relations r1 and r2
if and only if r⃗3 = r⃗1 ◦ r⃗2 (i.e., the coordinate-wise rotations of r3 are the successive
rotations of r1 and r2).

HAKE [72] extends the RotatE embeddings by taking into account and preserving the
semantic hierarchies of the entities in the KGs. For example, the entity Paris is part of
France, which is a part of the EU. Such hierarchies between entities are quite common in
most KGs such as Yago and Freebase. To model these relations between entities, HAKE
represents an entity e (and a relation r) in the vector space in two parts: as e⃗m and r⃗m
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in the modulus part and as e⃗p and r⃗p in the phase part. The modulus part is aimed at
differentiating entities at different hierarchies from each other, such as Paris from France,
while the phase part distinguishes the different entities at the same hierarchy level, e.g.
Paris and Lyon. In this manner, HAKE is able to represent the semantic hierarchies
associated with KGs, and outperform other techniques by learning better embeddings.

3.2 Semantic Matching models

Another common category of embedding methods compares the vector of the subject and
the vector of the object directly in order to assess how likely the fact is to be true.
RESCAL [38] is the simplest model in this category. Entities are represented as vectors and

relations become bilinear functions (simply represented as square matrices). A triple
⟨h, r, t⟩ is then scored by the application of the relation-specific bilinear function to the
entity embeddings: f(⟨h, r, t⟩) = h⃗t · Mr · t⃗, where h⃗ (resp. t⃗) is the embedding of h

(resp. t) and Mr ∈ Rd×d is the representing matrix of r. Intuitively, this bi-linear scoring
function can be interpreted as some sort of scalar product between the entities in some
relation-specific distortion of the embedding space. This is simply an intuition as no
sufficient constraints are imposed on the relation matrices to make them scalar products.
Precisely, they are not forced to be symmetric nor positive definite.

DistMult [69] is a variation of the RESCAL models where the relation matrices are all
forced to be diagonal. This simplifies the computations, and reduces the parameter
space. As a drawback, DistMult gives the same score for the triples ⟨h, r, t⟩ and ⟨t, r, h⟩.
Thus, it is unable to model asymmetric relations such as sonOf, actedIn etc. Despite
these limitations, DistMult has been recently shown to perform as well as many recently
proposed models, presumably due to its simplicity and scalability [48].

ComplEx [58] improves upon the DistMult model by using the same diagonal constraint,
but with complex-valued embedding vectors. Entities and relations are then simply
represented as vectors in Cd and the Hermitian product is used instead of the bi-linear
product in the scoring function. This allows the approach to take into account asymmetric
relations in the KGs, as in the triple ⟨Paris, capitalOf, France⟩ (where France is not the
capital of Paris). The scoring function is defined as f(⟨h, r, t⟩) = Re(⃗h · MR · ¯⃗t) where
Re(c) is the real part of c ∈ C and Mr is the diagonal matrix with r⃗ on its diagonal. The
fact that the Hermitian product is not commutative solves the problem of representing
asymmetric relations and switching to complex vector space doubles the number of
parameters thus increasing the expressiveness of the model.

SimplE [27] proposes to extend one of the most generic multiplicative methods: Canonical
Polyadic (CP) decomposition [22]. This method is used for decomposing tensors into a
sum of products. It can be applied to KG embeddings because a KG with n entities and
m relations is simply represented as a 3-dimensional adjacency tensor T ∈ {0, 1}n×n×m:
T [i, j, k] = 1 if ⟨ei, rk, ej⟩ is true and 0 else. As explained in [27], CP decomposition
represents entities e with two vectors (h⃗e, t⃗e) ∈ (Rd)2 and relations r with a vector
r⃗ ∈ Rd where d is the dimension of the embedding. These vectors are learned in
order to be able to reconstruct the tensor T by estimating T̂ [i, j, k] = ⟨h⃗ei

, t⃗ej
, r⃗k⟩ =∑

ℓ=1..d h⃗ei
[l] × t⃗ej

[l] × r⃗k[l]. This estimation is used in the case of KG embeddings as a
scoring function of triples. SimplE just proposes to represent relations r with two vectors
r⃗ and ⃗r−1, the scoring function being now f(ei, r, ej) = 1

2 (⟨h⃗ei
, t⃗ej

, r⃗⟩ + ⟨h⃗ej
, t⃗ei

, ⃗r−1⟩).
The authors show that their model is fully expressive, meaning that if given enough
embedding dimensions it can exactly represent any KG. It is then argued that simple
logical constraints can be implemented in the model by applying constraints on the
relation embeddings. We will later see one such application in Section 4.3.
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3.3 Deep Models
Deeper neural architectures have also been introduced for KB embeddings, with the hope that
hidden layers can capture more complex interaction patterns between entities and relations
(and then estimate more complex scoring functions). In such models, the first part of the
network (which, in shallow networks, just maps facts to their embeddings or their projections)
now adds additional layers (possibly numerous) that receive as inputs the embeddings, and
produce as outputs some extracted features. The second part of the network now computes
the scoring function from the features extracted by the first part of the network, and not
directly from the embedding (or its projection) as in shallow models. The scoring function
also becomes a parameter of the model (to be trained) and is not defined a priori anymore.
This often entails that we lose the interpretability of the scoring function [54]. There are
many deep neural network based models that have been proposed over the years, early
examples of such models are SME, NTN and MLP [6, 52, 13].

NTN [52] was introduced by Socher et al. as a generalization of the RESCAL model. It
employs a combination of linear transformations and nonlinear activation functions to
obtain head and tail embeddings. As such, while this is a more expressive model, it is also
quite complex with a large number of parameters that are harder to train. Better and
lightweight architectures have been since proposed, such as MLP, where the paramaters
are shared among all the relations.

ConvE and ConvKB [11, 10] are popular examples of models that are based on convolutional
neural networks (CNN). These can learn complex nonlinear features of the entities and
relations with fewer parameters by using 2D convolutions over embeddings. ConvE has
been shown to be particularly effective for complex graph with nodes having a high
number of incoming edges. The model introduced the 1-N scoring scheme where for a
given triple ⟨h, r, t⟩ where t is to be predicted, the matching is performed with all the
tail entities at the same time, leading to speedier training. ConvE has proven to be
a competitive embedding model and a popular baseline for more recent deep learning
approaches.

Graph Convolutional Networks (GCNs) have recently gained popularity for performing link
prediction in knowledge graphs in tandem with standard embedding techniques. GCNs
are a form of message passing multi-layer neural networks, first introduced by [28] for
semi-supervised node classification on graph structured datasets. One layer of GCN
encodes information about the immediate neighbours of a node in feature vector, and k

layers stacked on top of each other can encode the information of the neighbourhood k

hops away. GCNs can overcome the limitations of knowledge graph embedding models
in terms of neglecting the attributes of the entities and ignoring the graph structure by
encoding the entities based on their neighbours in the graph. Several extensions of GCNs
have been suggested for multi-relational knowledge graphs.

Relational GCNs (R-GCNs) [50] are GCNs for graphs with a large number of relations, which
makes them particularly suitable for knowledge graphs. Link prediction is essentially an
auto-encoder framework: An encoder creates the feature representations for the entities
from its neighbours (these features are generated from relation-specific transformations
that are dependent on the type and direction of the relations). A decoder (in this case,
DistMult factorization) is a scoring function to predict the labelled edges. R-GCNs show
improvements compared to DistMult, HolE and ComplEx for the link prediction task.
While R-GCN extended the GCN models on knowledge graphs by including the different
types of relations during the generation of entity representations, they do not represent
relations themselves.
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VR-GCN [70] is an extension of the R-GCN model that generates both entity and relation
embeddings explicitly. It ensures relation representation and different entity roles (head or
tail in different triples), and it conforms to the translation representation from translational
embeddings where h⃗ + r⃗ ≈ t⃗. While the primary goal of this technique is to enable graph
alignment, the performance of VR-GCN is also discussed in terms of the link prediction
task, with VR-GCN acting as the encoder and DistMult as the decoder for scoring the
triples.

SACN [51] leverages a variant of the existing knowledge graph embeddings ConvE and TransE
as decoder along with a variant of GCN (weighted GCN) as encoder. The weighted
GCN encoder learns representations for the entities in the graph by utilizing the graph
structure, node attributes and the associated relations while weighing different relations
differently and learning these weights during the training. The entity representations are
given to the decoder, which is a combination of ConvE and TransE (based on ConvE but
having the translational property of TransE model) that performs better than the ConvE
model. The encoder and decoder are trained jointly to learn the entity representations
and score triples to verify and improve the representations.

CompGCN [59] generalizes previous GCN methods by jointly learning the representation
of the nodes and the relations in the multi-relational KGs while leveraging composition
functions from embedding approaches. CompGCN is able to scale well with the increasing
number of relations and outperforms several previous models including TransE, DistMult,
ComplEx, R-GCN and SACN.

3.4 Evaluation of Embedding Methods

3.4.1 Evaluation Protocol

Evaluation. Rule methods are typically evaluated under the open world assumption, i.e.,
any fact that is predicted is manually evaluated to see whether it holds in the real world
or not. Thus, even a fact that does not appear in the KB can be counted as correct. This
evaluation is obviously very labor-intensive, but it targets what rule mining is interested
in: the prediction of yet-unknown facts. KB embedding models, in contrast, are typically
evaluated under the closed world assumption: Given a KB, one removes a certain portion of
it to obtain a training KB. One then trains the embeddings on this reduced KB, and uses the
embeddings to predict facts. If these facts appear in the original KB, they count as correct,
otherwise they count as incorrect.

Datasets. Three very common KBs for evaluating embedding approaches are FB15k [7],
WN18 [6] and Yago3-10 [11]. FB15k and WN18 were both proposed by Bordes et al.
respectively in 2013 and 2014. FB15k is an extraction from Freebase where entities were
selected based on the number of citations in the original KB. WN18 is a subset of Wordnet
in which entities are synsets, that is semantic senses of words (selected on their popularity in
the KB) and predicates are lexical relations between those senses. Yago3-10 was proposed by
Dettmers et al. in 2018 as a subset of Yago3 [33] in which most of the facts describe people
(e.g., by citizenship, gender, and profession). The three KBs have been initially randomly
split into training, validation and test subsets and those splits always stay the same. Table 1
shows some statistics about these datasets.
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Table 1 Details on the various KBs used for embedding evaluation.

Dataset Number
of entities

Number
of relations

Number of
training facts

Number of
evaluation facts

Number of
test facts

FB15k 14,951 1,345 483,142 50,000 59,071
FB15k-237 14,541 237 272,115 17,535 20,466
WN18 40,943 18 141,442 5,000 5,000
WN18RR 40,943 11 86,835 3,034 3,134
Yago3-10 123,182 37 1,079,040 5,000 5,000

3.4.2 Shortcomings of Benchmarks
While embedding models have gained popularity for the link prediction task and obtained
state-of-the-art results, several studies have recently taken a critical look at the performance
and evaluation aspects of these models. The benchmark datasets on which the embedding
models are trained have also been scrutinized.

Toutanova et al. [57] were the first to find data leakage issues in the FB15k dataset. More
precisely, the authors noted that, for certain relations r, the inverse relation r− was also
present in the data. This makes the prediction of a fact ⟨x, r, y⟩ trivial if the fact ⟨y, r−, x⟩
is already there. As a remedy, the authors constructed the dataset FB15k-237 by removing
the inverse triples and keeping only one relation out of the reverse relations. Dettmers et
al. [11] similarly found issues with the WN18 dataset and created the WN18RR dataset.
Table 1 shows the statistics about these datasets. With the introduction of these new
datasets and their adoption for the evaluation of newer embedding models, it could be
ensured that the models are not just learning trivial entailment, but learning to correctly
predict non-trivial facts that require actual inference. However, most papers still showed
the results for the evaluation of new models on both the old and new version of the
datasets.

Akrami et al. [2] conducted a further detailed study questioning the performance of embed-
ding models in the presence of data leakage and data redundancy. The study found a
sizeable percentage of inverse, duplicate, and Cartesian product relations in the popular
datasets FB15k, WNRR and Yago3-10. Duplicate relations are relations with different
names that share the same facts (e.g., hasCitizenship and hasNationality). Cartesian
product relations are relations that hold between all instances of a class (e.g., sameSpe-
ciesAs). Such relations can be predicted trivially. Hence, the authors argued, the
performance of these models would be significantly worse for link prediction on actual
unseen data in realistic settings. Their experiments analysed various popular embeddings
models including TransE, TransH, TransR, TransD, DistMult, ComplEx, ConvE, Tucker,
and RotatE and showed substantial drops in performance with different datasets after
removing the unrealistic triples, so much so that simple rule based techniques could
achieve better accuracy than complex embedding techniques. The authors therefore
strongly advocated the need to re-evaluate existing embedding approaches to find an
effective solution for the link prediction task.

Rossi et al. [47] take a critical look at the properties of the entities in the benchmark datasets
that are used to evaluate link prediction performance of embedding models. They focused
on the Freebase and Wordnet datasets and performed a detailed experimental analysis of
the features of these datasets and their limiting effect on the performance of embedding
models. For instance, the authors showed that embedding models perform artificially
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better for the most frequent entities in the dataset. In FB15k, the entity United States
appears in a lot of triples, and therefore, the TransE and DistMult models show better
scores while predicting this entity as the missing entity. If the most frequent entities
were removed from these datasets, the model performance (counter-intuitively) improved,
indicating the over-fitting of the models on the most representative entities. Therefore,
the authors advocated that better benchmarking practices and metrics are needed to
determine the capability and fairness of the models.

Pujara et al. [42] performed an interesting study on the effect of sparsity and unreliable data
on the performance of embeddings. Existing curated KGs like Wordnet and Freebase were
modified in different experiments to introduce sparsity (in terms of relations or entities)
and unreliable or corrupted triples, so that they resemble real-world KGs derived from text
(such as NELL [8]). The authors found that performance is closely linked with sparsity,
i.e. embeddings work well for relations and entities that have a dense representation and
sparsity adversely affects their performance. Experiments showed that unreliable triples
also degraded the performance. However, the authors made an interesting conclusion,
namely that corrupted triples still improved embeddings marginally, therefore it is better
to have a large noisy KG rather than a small set of very high quality triples.

These studies helped in bringing into focus the flaws that are inherent in all the popular
benchmark datasets due to which global metrics for the evaluation of embedding models are
proved to be insufficient and misleading. Thus, there is a need for careful and fine-grained
evaluation of the performance of embedding models for their application in realistic use cases.

3.4.3 Shortcomings of the protocol
Several works have studied the shortcomings of the evaluation protocol for KB embeddings.
Pezeshkpour et al. [41] focused on the evaluation metrics and pointed out the need and

importance of calibration of the embedding models before they can be deployed in
real-world scenarios. For example, if the model says with 0.5 confidence that a triple
is true, then the actual probability of the triples with this confidence should also be
0.5. In particular, they found that the model calibration as well as the ranking metrics
were highly susceptible to the choice of negative sampling during training, with random
replacement of subject or object entity (Random-N) leading to worst results. In order to
improve the evaluation techniques, the authors proposed the CarefulN method to select
negative samples. Here, the highest scoring negative sample having an entity type which
is different from the target entity type is selected as a negative sample. E.g. given a triple
⟨Barack Obama, presidentOf, USA⟩, if USA is the target entity to be predicted, and the
ranked list of predicted entities is (USA, Hawaii, United Nations, Michelle Obama, . . . ),
then we choose ⟨Barack Obama, presidentOf, Michelle Obama⟩ as the negative sample
since the type for Michelle Obama is different from USA. This technique explicitly ensures
that the negative sample being generated is a true negative. Following this technique,
they derived a new benchmark dataset Yago3-TC for evaluating KG completion that
consists of both true and false facts for facilitating the correct measurement of triple
classification accuracy.

Sun et al. [56] looked into the very specific issue of the recent neural-networks based em-
bedding models showing inconsistent performance gains across different datasets such
as FB15k-237 and WNRR18. They investigated in detail the models ConvKB [10] and
CapsE [61] and found an unusual score distribution to be the reason for this discrepancy.
For instance, many negatively sampled triples were given the same score as the correct
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triple. To break ties for the triples with the same score, they proposed a RANDOM
evaluation protocol, i.e. if multiple triples have the same score, one of them is chosen
randomly. Experiments demonstrated that recent deep models such as ConvKB, and
CapsE were indeed affected by different evaluation protocols (unlike other models like
ConvE and RotatE) and this could be detected with the proposed RANDOM protocol.

Kadlec et al. [26] were among the first to question the performance gains achieved by the
newly proposed model architectures. The authors were able to perform suitable fine
tuning the hyper-parameters for DistMult, one of the first embedding models proposed,
and outperform several new models. This raised concerns on the performance gains by the
newer models, advocating for a closer inspection of the training practices and objectives.

Ruffinelli et al. [48] re-implemented several existing models and performed extensive analysis
of the performance of these models to compare them on a common ground. Going
beyond previous works such as [36] (which studied the loss functions) and [29] (which
looked into the negative sampling strategies), this paper performed a comprehensive and
empirical evaluation of the effect of different training strategies and parameters such as
the regularizer, optimizer and loss functions on a number of new and old embedding
models. Their analysis indicated that the training parameters play a major role in
the embedding performance. With a systematic fine tuning of these parameters, even
the older model architectures such as RESCAL can match or outperform the recently
introduced improved models. This work makes a strong point of the need for re-assessing
the individual benefits claimed by recent and newer embedding models in light of the
older models. The authors caution that the performance gain reported by newer models
could be mitigated by merely fine tuning of the training strategies and therefore, this
warrants close inspection.

Jain et al. [23] raised questions regarding the very semantic representation learned by the
embeddings models in the first place. They performed classification and clustering
experiments on the embeddings in order to analyse their semantic capability. The authors
challenge the common notion that entities having similar meaning (i.e. belonging to
the same class or type) such as politicians, actors etc. would be represented by similar
vectors. They constructed a dataset with entities belonging to different levels of the
taxonomy for Yago3-10 and DBpedia datasets, such as from person to artist to painter.
Detailed experiments demonstrated that both clustering and classification showed poor
results for entities having fine-grained classes. This means that embeddings are unable
to capture the semantics of entities beyond the top level classes (person, organization,
places in Yago). These surprising results indicated that though embeddings might show
good performance on the link prediction task, their utility for other semantic tasks such
as reasoning etc. should be carefully examined.

Wang et al. [64] inspected the evaluation protocol of the embedding techniques for the
KB completion task. They argue that the Entity Ranking (ER) protocol, where the
missing head or tail entity is predicted for a triple, is more suitable for evaluating a
question answering task, but not for the KB completion task. This is due to the fact
that the context of the missing information in terms of a head or tail entity would not be
available when attempting to find new missing triples of the form ⟨?, r, ?⟩. With the ER
protocol, the models may not be penalized for ranking certain incorrect triples higher
since they are not encountered at all. The paper instead proposes a Pairwise Ranking
(PR) protocol where all possible entity pairs are considered and ranked with respect to a
particular relation. Extensive experiments show that popular embedding models provide
worse performance with PR protocol than with the ER protocol, even on seemingly easy
datasets.
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These studies have emphasized the need for better evaluation protocols and a critical look at
the training strategies of the embedding models for the task of KB completion in realistic
settings.

4 Embedding Methods with Logical Components

4.1 Rationale
Rule mining methods and embedding methods are complementary for the purpose of link
prediction:

Rule mining produces patterns that can be understood by humans. Thus, their predictions
can be explained and justified.
Rule mining can, in principle, work together with the schema of the KB, axioms, and
other types of logical constraints.
Rule mining methods can deal with literals and numerical values, while embedding
methods typically project these away. Rule mining can find, e.g., that the death date is
always later than the birth date.
Rule mining is typically evaluated under the open world assumption: it is explicitly
designed to predict facts that are not yet in the KB. Embedding methods, in turn, are
typically tuned to predict what is already there.
On the flip-side, rule mining methods typically predict based on a single rule; it is harder
to predict facts with several rules that reinforce or contradict each other.
Rule mining methods do not have a holistic view on an entity, with all its relations; they
are restricted to the relations that appear in the rules.
Rule mining methods often generate rules with a low confidence, i.e., with a high rate of
false predictions.

For these reasons, several works have taken to combine symbolic and embedding methods.
Here, the symbolic component does not necessarily come from Rule Mining, but can also
come from the logical axioms of the ontology of the input KB. The existing approaches fall
into three classes:

Adding simple axioms. Some approaches constrain the embeddings by simple ax-
ioms, which concern inverse, symmetric, or equivalent relations. We discuss them in
Sections 4.2 [12], 4.3 [15], and 4.4 [35].
Complex constraints. Other approaches support more general and complex logical
constraints on the embeddings. We discuss them in Section 4.5 [23], 4.6 [14], and 4.7 [63].
Joint learning. Finally, a number of approaches jointly embeddings and confidences for
rules. We discuss them in Section 4.8 [19] and 4.9 [20, 71].

4.2 Improving Knowledge Graph Embeddings Using Simple Constraints
A first simple combination of logical rules and embeddings is presented by Ding et al. [12].
The authors focus on relation entailments, i.e., rules of the form ⟨x, r, y⟩ ⇒ ⟨x, r′, y⟩ that can
also be denoted as r ⇒ r′. For example, if two people are married, then they also know each
other: marriedTo ⇒ knows. Such entailments can either be axioms from the ontology, or
they can be soft rules, i.e., rules with a confidence score that do not hold in all instantiations.
For example, a soft rule can be: If a person is born in a country, then the person probably
has the citizenship of that country. This is very often the case though not always. Such soft
rules can be mined by a rule mining system, and from now on, a set of such entailments is
assumed to be available.
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If it is known that a relation r entails a relation r′ and that ⟨x, r, y⟩ holds for some entities
x, y, then ⟨x, r′, y⟩ holds. Thus, the score that an embedding model gives to the fact ⟨x, r, y⟩
should not be larger than the score it gives to ⟨x, r′, y⟩:

f(⟨x, r, y⟩) ≤ f(⟨x, r′, y⟩) (1)

The authors enforce this condition on the ComplEx model (see Section 3) by imposing that
for a given entity x, all the real parts of the components of the embedding vector x⃗ ∈ Cd

have to be non-negative, and all the imaginary parts have to be smaller than or equal to one.
Given an entity x, d the embedding dimension, the constraints are formalized in Equation 2
where Re(·) (resp. Im(·)) returns the real (resp. imaginary) part of a complex number and
x⃗i is the ith component of the vector x⃗.

∀i ∈ {1, . . . , d} : Re(x⃗i) ≥ 0 ∧ Im(x⃗i) ≤ 1 (2)

This constraint can be intuitively justified by seeing each component of x⃗ as a feature, whose
value is zero if the feature does not apply to the entity x, and greater than 0 if the feature
applies to x, but never below zero. The constraint on the imaginary component serves as a
kind of normalization. With this non-negativity constraint, the desideratum of Equation 1
can be achieved by requiring:

∀i ∈ {1, . . . , d} : Re(r⃗i) ≤ Re(r⃗′
i) ∧ Im(r⃗i) = Im(r⃗′

i) (3)

If the entailment does not hold strictly, but only with a certain confidence, the condition can
be relaxed by introducing a real-valued confidence level λ and vector slack variables α⃗, β⃗,
which turn Equation 3 into

∀i ∈ {1, . . . , d} : λ × (Re(r⃗i) − Re(r⃗′
i)) ≤ α⃗i, λ × (Im(r⃗i) − Im(r⃗′

i))2 ≤ β⃗i (4)

The larger the confidence level λ, and the smaller the slack variables α⃗ and β⃗, the more
Equation 4 resembles the hard constraint of Equation 3.

When these constraints are imposed on the ComplEx model, then the model is forced to
give a high score to facts that are logically entailed by other facts to which it gave a high
score. The authors then show that this improves the performance of link prediction over the
original model.

4.3 Improved Knowledge Graph Embedding Using Background
Taxonomic Information

Fatemi et al [15] introduce another way to improve knowledge graph embeddings, which uses
the taxonomy of the KB. For example, a knowledge base might contain the information that
Emmanuel Macron is a president, but it does not contain information that he is a mammal,
because it is implied by taxonomical knowledge. With this knowledge, if we know that
mammals are warm-blooded, we can conclude that Emmanuel Macron is warm-blooded as
well, without having explicit facts about this relation in the KG. Going one step further than
relation entailment, this work leverages the subsumption property of the relations as well as
the classes in KG. For example, the relation presidentOf is a sub-property of managerOf,
which in turn is a sub-property of employedBy. Formally, if a relation r1 is a sub-property of
a relation r2, then ∀x, y : ⟨x, r1, y⟩ ⇒ ⟨x, r2, y⟩. To represent class subsumption, the authors
model the entities as the characteristic functions of the class they belong to. This means that
if entity e is in class C i.e. ⟨e, type, C⟩, then the characteristic function between e and C is
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true – written as ⟨e, C, true⟩. Hence, class subsumption can be expressed as a special case
of relation subsumption. For instance, if president is subclass of mammal in the taxonomy,
then ⟨EmmanuelMacron, president, true⟩ ⇒ ⟨EmmanuelMacron, mammal, true⟩.

The proposed framework is a modification of the SimplE [27] embedding model (see
Section 3.2), which makes use of these axioms. SimplE considers two embeddings for each
relation: one embedding r+ for relation itself and another r− for its inverse relation. Similarly,
there are two embeddings for each entity: one as a head entity e+, and another as the tail
entity e−. These embeddings are concatenated to obtain the final embedding for a relation
or entity. The proposed modification of this model is restricting the entity embeddings to be
element-wise non-negative.

In order to enforce the axiom that a relation r is a sub-relation of a relation s (∀x, y :
⟨x, r, y⟩ ⇒ ⟨x, s, y⟩), the model adds an equality constraint as r⃗ = s⃗ − δ⃗r where δ⃗r is a
non-negative vector, which expresses how r is different from s. This vector is learned during
training. With this, the function µ (that maps embeddings to the probability of a triple)
obeys the constraint µ⟨x, s, y⟩ ≥ µ⟨x, r, y⟩.

Thus, the resulting SimpleE+ model is able to enforce subsumption properties for entities
and relations and therefore, incorporate taxonomic knowledge in the embeddings to learn
more interpretable representation for words [37]. The experimental evaluation shows that
the proposed model is able to outperform traditional SimplE for the KG completion task
and also has a faster convergence rate when taxonomic information is available.

4.4 Regularizing Knowledge Graph Embeddings via Equivalence and
Inversion Axioms

We have so far seen approaches that concentrate on subproperty axioms. We shall now look
into two other types of axioms [35]: Given two relations r1 and r2, an equivalence axiom
r1 ≡ r2 means that r1 and r2 are semantically equivalent though distinct in the KB (e.g.,
part of and component of ). An inverse axiom r2 ≡ r̄2 means that r1 is the inverse predicate
of r2 (e.g., part of and has part). The approach assumes that these axioms are defined in
the ontology of the input KB.

Given the two sets of equivalence and inversion axioms, constraints are enforced in the
training of the models. Let r1 ≡ r2 be an equivalence (resp. inversion) axiom. This means
that relations r1 and r2 are equivalent (resp. inverse) and then the scoring function f of
an embedding model should verify f(⟨h, r, t⟩) = f(⟨h, r2, t⟩) (resp. f(⟨h, r, t⟩) = f(⟨t, r2, h⟩))
given any entities h and t.

In the case of equivalence, this is simply implemented by forcing the embeddings of
r1 and r2 to be the identical. In the case of an inversion axiom, the constraint has to be
specified for each model in the form of a model-dependent function Φ such that the constraint
r⃗2 = Φ(r⃗1) results in f(⟨h, r1, t⟩) = f(⟨t, r2, h⟩). For example, in the case of TransE [7], using
Φ : r⃗2 7→ −r⃗1, one gets f(⟨h, r1, t⟩) = ||⃗h + r⃗1 − t⃗|| = || − h⃗ − r⃗1 + t⃗|| (by homogeneity of the
norm) and then f(⟨h, r1, t⟩) = ||⃗t + Φ(r⃗1) − h⃗|| = f(⟨t, r2, h⟩). Note that Φ needs to be an
involution, i.e., ∀r, Φ(Φ(r)) = r.

These constraints are called hard constraints because they entirely determine some
embeddings. Another possibility is to use soft constraints in order to enforce axioms that
are not entirely true. For example married with and partner of are not entirely semantic
equivalents but their embeddings are similar to one another. Intuitively the objective of
soft constraints is to nudge the model to adopt some desired properties rather than enforce
hard-coded requirements. This is done by adding two weighted terms to the usual training
loss: L̂ = L + λ

[∑
r1≡r2

||r⃗1 − r⃗2||22 +
∑

r1≡r̄2
||r⃗2 − Φ(r⃗1)||22

]
where λ is an hyper-parameter

that needs to be determined during training.
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Figure 3 ReasonKGE Framework.

4.5 Improving Knowledge Graph Embeddings with Ontological
Reasoning

Until now, we have concentrated mainly on very simple types of axioms to improve embeddings.
ReasonKGE [24] is a method that can use complex constraints as well. The idea is to use
symbolic reasoning to find predictions by the model that are logically inconsistent, and to
feed these as negative samples into a retraining step. Traditionally, embedding methods
generate negative triples by randomly replacing the head entity or tail entity in a triple
from the KB (Section 2). This method, however, has two problems: First, as we have
already discussed, it does not work as well for the head entities (Section 2.1). Furthermore,
traditional methods do not necessarily create negative statements that violate domain and
range constraints. For example, a triple such as ⟨Elvis, hasNationality, Priscilla⟩ cannot be
true since hasNationality requires a country as object. If such triples are not generated as
negative examples, the model may produce them as predictions. Therefore, ReasonKGE sets
out to generate negative examples by axioms – inspired by the NELL system [8], which also
uses axioms for the generation of examples.

The framework of the proposed method is shown in Figure 3. The inputs of the framework
are the KG and its ontology, whereas the outputs are negative samples, which can then be
used for training the model in the next iteration. The first iteration simply generates the
baseline model with a default sampling method. Here, traditional sampling methods are
used to generate the negative facts, and the model is trained based on positive and negative
facts to obtain the predictions. The predicted triples are checked for inconsistencies with
respect to the underlying ontology with the help of a reasoner. The inconsistent triples
are then generalized to other semantically similar triples which would also cause the same
inconsistencies. Lastly, all the generated negative samples are fed back to the model for
the next iteration of training. With each round of training, the model learns to identify
inconsistencies and therefore make more consistent predictions.

The consistency checking procedure (step 4) is one of the main steps, that detects
which predictions made by embedding model are inconsistent with the original KG (G) and
ontology O. For computational purposes, this check is done only on the subset of relevant
facts. The relevant set is defined as follows:

Relv(α, G) = {α} ∪ {β ∈ G|Ent(β) ∩ Ent(α) ̸= ∅} (5)

Here, α is the predicted triple and β are triples in the KG. For example, consider α =
⟨Samsung, locatedIn, Emmanuel Macron⟩. For this prediction the relevant set could consist
of the following triples:
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Relv(α, G) = {⟨Emmanuel Macon, livesIn, France⟩,
⟨Emmanuel Macron, spouse, Brigitte Macron⟩,
⟨Emmanuel Macron, type, person⟩,
⟨Samsung, type, company⟩}

It is sufficient to perform consistency checking on Relv(α, G) ∪ O, instead of α ∪ G ∪ O. In
our example, a reasoner would flag this prediction as inconsistent, because the ontology tells
us that locatedIn requires a location, and hence ⟨Samsung, locatedIn, Emmanuel Macron⟩
implies that the type of Emmanuel Macron is location. That contradicts the fact ⟨Emmanuel
Macron, type, person⟩, together with the axiom that states that people and locations are
disjoint. Thus, this triple can serve as a negative sample.

Further, in Step 5, the negative samples obtained via consistency checking are fed to
a generalization module to obtain multiple similar inconsistent facts that have a similar
structure within KG. This is beneficial in 2 ways: firstly, by generating several negative
samples that cause the same inconsistency, the model would be able to learn the inconsistency
pattern and thus, the prediction of similar incorrect triples in next training iterations would
be avoided. Secondly, it enables us to obtain sufficient number of negative samples for a given
triple during the training of the model. The generalization of inconsistent predictions is done
in the following way: in an inconsistent predicted fact ⟨h, r, t⟩, t can be replaced with another
entity k that has similar triples. For example, if α = ⟨Samsung, locatedIn, Emmanuel Macron⟩
is a predicted inconsistent triple, then we can take α = ⟨Samsung, locatedIn, Joe Biden⟩ as
another negative example if Joe Biden has the same neighbour triples as Emmanuel Macron,
i.e. ⟨Joe Biden, type, person⟩.

The authors show experimentally that ReasonKGE achieved better results on the link
prediction task as compared to traditional methods (TransE, ComplEx). Experiments
conducted on the Yago3-10 dataset were particularly significant, as the model achieved
more than 10% improvement for all the measures as compared to TransE. Additionally,
ReasonKGE reduced the ratio of inconsistent predictions over the test set when compared
to other models that employ static or random sampling techniques. A limitation of this
method is the use of DL-Lite [3] ontologies, due to which, theoretically, not all possible
similar negative samples will be obtained based on a given inconsistent prediction in the
generalization step.

4.6 Injecting Background Knowledge into Embedding Models for
Predictive Tasks on Knowledge Graphs

Similar to ReasonKGE, this paper proposes to improve KG embeddings by injecting available
background knowledge in the form of ontological axioms [14]. The authors propose TransOWL
and TransROWL models, as improved versions of the traditional embedding methods TransE
and TransR respectively.

The injection of background knowledge during the training phase involves two main
components - reasoning to add negative samples and Background Knowledge (BK) injection
to add constraints on the scoring function.

During reasoning, negative samples are generated by leveraging the ontological properties
such as domain, range, disjointWith, functionalProperty with the help of the Apache Jena
framework. For example, if a particular entity type (or concept in ontology terminology),
let’s say location is disjoint with another type e.g. person, then negative samples are
generated by replacing the person entity in a triple with all location entities present in the
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KG. Thus, for a triple ⟨Samsung, locatedIn, South Korea⟩, a list of negative samples can
be generated by replacing South Korea with Joe Biden, Barack Obama, John Smith

and so on.
During BK injection, ontological properties such as equivalentClass, equivalentProp-
erty, inverseOf and subClassOf are applied for the definition of additional constraints
on the scoring function such that resulting embedding vectors can reflect these prop-
erties. New triples corresponding to these properties are generated and added to the
training set of the model. For example, for the equivalentClass property, if class A
is equivalent to class B, then for a triple ⟨entity1, type, A⟩, it is possible to generate
another triple ⟨entity1, type, B⟩ as well. Similarly this is performed for other properties as
well and a considerable number of additional triples is generated before training the model.

The basic loss function for TransE is defined as∑
⟨h,r,t⟩∈∆,⟨h′,r,t′⟩∈∆′

[γ + fr(t, h) − fr(t′, h′)] (6)

here γ ≥ 0 is the hyperparameter margin. For TransOWL, this loss function is more complex
due to the additional constraints from the axioms. For example, the addition of the the
inverseOf axiom would add a term to the loss function as∑

⟨t,s,h⟩∈∆,⟨t′,s,h′⟩∈∆′

[γ + fs(t, h) − fq(t′, h′)] (7)

where f is the scoring function, ∆ refers to the set of additional triples generated by a reasoner
and s is the inverse relation of r. Similarly, the constraints are added in the loss function for
the other axioms as well. Experimental evaluation shows that the models generated through
this procedure show improvement for link prediction as well as triple classification in KGs as
compared to the original TransE and TransR models.

4.7 Knowledge Base Completion Using Embeddings and Rules
In [63], the authors propose to constrain knowledge graph embeddings by an altogether
different type of axioms: cardinality axioms. This is done by an Integer Linear Programming
problem: the objective function is computed using the scoring function of an embedding
model under the constraints from the symbolic axioms.

Let the E = {e1, e2, . . . , en} and R = {r1, r2, . . . , rm} be the sets of entities and relations
in a KG at hand. The linear problem is defined with mn2 decision variables {xk

i,j , 1 ≤ i, j ≤
n, 1 ≤ k ≤ m} such that xk

i,j indicates whether the fact ⟨ei, rk, ej⟩ is true or false. The weight
of a triple is computed using the scoring function f of an embedding model. This results in
an objective function of the form:

max
xk

i,j

∑
i

∑
j

∑
k

f(⟨ei, rk, ej⟩) · xk
i,j

The constraints of this optimization problem are derived from four types of rules:
Type 1: noisy observation. Observed triples are very likely to be true but KBs are
prone to noise. In order to take into account the rare cases in which an observed fact is
false, slack variables ϵk

i,j are introduced for each observed triple and the R1 constraint is
added along with a penalization term in the objective function. This is a classical method
in linear programming, which allows the easy identification of noisy triples.



A. Boschin, N. Jain, G. Keretchashvili, and F. Suchanek 4:23

Type 2: argument type expectation. Some predicate-specific type constraints should
be respected by the head and tail entities. This results in the R2 constraint in which Sk

(resp. Ok) contain the indexes of the entities that have the type of the head (resp. tail)
of the relation rk.
Type 3: at-most-one restraint. Some relations can handle at most one head per
tail (many-to-one) or one tail per head (one-to-many). For example, the relation city-
LocatedInCountry is a one-to-many relation meaning that a city can be located in at most
one country. Other relations are one-to-one. Those three types of relations result in three
constraints R3.1, R3.2 and R3.3 in which R1−M , RM−1 and R1−1 are respectively the
sets of one-to-many, many-to-one and one-to-one relations.
Type 4: simple implication. A relation r1 can imply another relation r2, if ⟨x, r1, y⟩ ⇒
⟨x, r2, y⟩ for any entities x and y. It is denoted r1 ⇒ r2. This gives us the constraint R4.

With this, the final Integer Logic Program is:

max
xk

i,j

∑
i

∑
j

∑
k

f(⟨ei, rk, ej⟩) · xk
i,j

(R1) xk
i,j + ϵk

i,j = 1, ∀(i, j, k) : ⟨ei, rk, ek⟩ is observed
(R2) xk

i,j = 0, ∀k, ∀i : ei /∈ Sk, ∀j : ej /∈ Ok

(R3.1)
∑

i

xk
i,j ≤ 1, ∀k : rk ∈ R1−M , ∀j

(R3.2)
∑

j

xk
i,j ≤ 1, ∀k : rk ∈ RM−1, ∀i

(R3.3)
∑

i

xk
i,j ≤ 1,

∑
j

xk
i,j ≤ 1, ∀k : rk ∈ R1−1, ∀i, ∀j

(R4) xk1
i,j ≤ xk2

i,j , ∀k1, k2 s.t. rk1 ⇒ rk2

where xk
i,j ∈ {0, 1}, ∀i, j, k; ϵk

i,j ∈ {0, 1}, ∀(i, j, k) : ⟨ei, rk, ek⟩ is observed

In spite of their promising results, the authors highlight two main limitations to this approach.
First, constraints do not take into account the possible many-to-many relations, possibly
missing out some ontology information. Second, solving the integer linear programming
problem is time consuming and the approach then lacks scalability. In this regard, the
authors propose a divide-and-conquer strategy for future work.

4.8 Jointly embedding KGs and Rules
So far, we have constrained embeddings by axioms. There are, however, also approaches that
use soft rules instead of axioms, and that learn embeddings jointly with confidence scores
for these soft rules. The first of these [19] improves the training procedure of the TransE
model [7] by a new training loss that integrates both observed triples and groundings of some
logical rules. The method focuses on rules of only two shapes: ∀x, y, ⟨x, r1, y⟩ ⇒ ⟨x, r2, y⟩
and ∀x, y, ⟨x, r1, y⟩ ∩ ⟨y, r2, z⟩ ⇒ ⟨x, r3, z⟩, where r1, r2 and r3 are relations from the graph.

Following Rocktäschel et al. [45], the truth value of a grounded rule is computed from
the truth values of the constituent triples and t-norm logic principles. For this, the truth
value of a single triple is first defined as:

f(⟨x, r, y⟩) = 1 − 1
3
√

d
||x⃗ + r⃗ − y⃗||
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This is simply a normalization of the TransE [7] scoring function. To compute the truth
value of more complicated logical formulae, this definition has to be broaden to negation,
conjunction, and disjunction. The truth value of a negated triple ¬p is simply 1 − f(p).
The truth value of a conjunction is given by a t-norm, i.e., a function that is commutative,
associative, and monotonous, and that has 1 as the identity element. The work of [19] uses
simply the product as the t-norm, i.e., f(p ∧ q) = f(p) × f(q). With this, the truth value f

of an implication is

f(p ⇒ q) = f(¬p ∨ q) = f(¬(p ∧ ¬q))
= 1 − f(p) × (1 − f(q))
= 1 − f(p) + f(p) × f(q)

The only question left is how to generate the logical rules that are taken as input of this
improved training procedure. A natural method could be to run a logical approach such
as AMIE or RuDiK [17, 40]. The authors of [19] have a different approach that uses their
method of scoring rule groundings to select the best ranking rules in a greedy manner.

4.9 Knowledge Graph Embedding with Iterative Guidance from Soft
Rules (RUGE)

The Rule-Guided Embedding (RUGE) algorithm [20] is another method that learns embed-
dings jointly with confidence scores for logical rules. Its main steps are shown in Figure 4.
The system starts out with soft rules (top of the figure), mined by the AMIE system [17].
These are instantiated to make predictions (see Section 2.1) – each with a confidence. The
Embedding Step (bottom of the figure) takes as input the predictions of the rules as well as
labeled triples from the KB. The embedding is trained on these two sources. This allows
the prediction of new facts, which will in turn predict new facts by help of the rules. This
process is iterated, thereby amplifying automatically the number of labeled examples.

The rule mining system gives each rule a confidence. However, this confidence concerns
the rule as a whole, not an individual grounded variant of the rule, where all variables are
instantiated. To compute the confidence of an individual grounded rule, the approach uses
the scores ϕ(·) of the embeddings of the facts that appear in the rule, as well as the score
s(·) of the fact that the rule predicts, and proceeds according to the definitions of t-norm
based fuzzy logics, in much the same way as [19].
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The approach then aims to find a scoring function s(·) that is as close as possible to
the current scoring function ϕ(·), while at the same time making the confidences π(·) of
all grounded rules as close as possible to 1 (the maximum). This is done by solving an
optimization problem. This yields scores s(·) for facts that are predicted by the rules.

In the second step, the approach then corrects its embeddings ϕ(·) so that they mirror (1)
the truth value of facts that appear already in the KB and (2) the score s(·) for facts that
do not appear in the KB, but were predicted by the rules. This updated embedding is then
fed again into the rules, and the process is iterated. Experiments show that this method
achieves significant improvements in link prediction task on Freebase and YAGO.

A variant of this approach is the SoLE system [71] (“Soft Logical rules enhanced Embed-
dings”), whose architecture is shown in Figure 5. Like RUGE, SoLE takes as input a KB
and rules. It uses the rules to predict new facts in an iterative manner until no more facts
can be predicted (a technique called forward chaining). The rules are then grounded, and a
confidence score is computed for each grounded rule, not unlike this is done in RUGE as well.
Different from RUGE, SoLE then minimizes a joint loss so as to find embeddings that can
(1) predict the labels of triples contained the KB, while also (2) imitating the confidences of
rules.

5 Rule Mining with embedding techniques

In the previous section, we have discussed several embedding methods that use logical
techniques to improve their performance. The other direction is much less common: there are
few methods that use embedding models in order to improve logical rule mining techniques.
We will now present the most prominent ones.

5.1 ILP Rule Mining
A first small application of embeddings for rule mining is presented in an extension of
RuDiK [40] by Ahmadi et al. [1]. The new system can also mine rules about class membership,
such as “Politicians are not married to officeholders of a different party”:

[⟨x, party, xp⟩ ∧ ⟨y, party, yp⟩ ∧ xp ̸= yp

∧ ⟨x, type, Politician⟩ ∧ ⟨y, type, Office Holder⟩] ⇒ ¬⟨x, spouse, y⟩
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The question is now what classes should be considered in such rules. Considering all classes
may lead to rules that are too fine-grained. It would also be inefficient. Using only the
top-level classes, in contrast, may miss out on useful rules that hold in a subclass.

RuDiK therefore clusters the instances of the KB. The method of choice here are entity
embedding methods. The authors observe that the clusters obtained this way are more
uniform in what concerns the structural similarity of entities (i.e., the outgoing relations that
they share) than class membership. This is because two entities with different relations can
belong to the same class, and entities with the same relations can belong to different classes.
The embedding, in contrast, groups entities by their relations, which is more amenable to
the rule mining.

It turns out that entities with popular classes, such as Person, can be spread across
multiple clusters, but classes with finer granularity, such as Politician and OfficeHolder are
grouped together. For each cluster, RuDiK then determines a class (e.g., the class that most
entities in the cluster belong to). This class is then used for mining rules such as the one
above.

5.2 Few-shot learning for label propagation

As stated in Section 2.1, a recurrent problem when working on KBs is the lack of negative
statements. That makes it difficult to classify a prediction of any model. In an ideal situation,
an operator would be available during training in order to manually tag generated facts as
positive or negative. This is rarely the case because it is very costly but it could be very
useful in the generation of false statements for example. This problem of manually tagging
samples (here triples) is not specific to KB processing and it has given birth to a field of
research called few-shot learning. This is the study of learning algorithms that work on a
very small number of samples. It often applies in fields were the creation of supervision labels
is costly, for example computer vision.

In [32] the authors propose a few-shot rule-based knowledge validation framework that
uses an embedding model (HypER [5]) in order to propagate the decisions of a human
operator to whom triples to tag are submitted. The goal of the method is to enrich the KB
with positive and negative examples that allow a better evaluation of a set of rules. The
proposed propagation method relies on a measure of similarity between facts. To compute
the similarity, a vector representing each triple is computed by concatenating the embeddings
of the entities. The propagation of manual labels is done locally to triples sharing the same
relation, and so their embedding is omitted in the concatenation. For example, let’s say that
an operator labeled the fact ⟨Barack Obama, marriedTo, Sasha Obama⟩ as false, this label
is going to be propagated to triples involving Barack Obama and MarriedTo or MarriedTo
and Sasha Obama that are similar enough to the initial one. Eventually the set of manually
labeled triples along with the automatically labeled ones improve the evaluation process of
the rules. The authors apply their method to rules mined with AMIE [17] and RuDiK [40].
The proposed method uses HypER as embedding model but the authors insist on the fact
that any model can be used for this task.

5.3 Approximate algorithms

AMIE [17] is an exhaustive rule mining system, i.e., it finds all rules above user-specified
confidence and support thresholds. This makes AMIE quite heavy to run on large knowledge
bases. AMIE+ [18] improved the runtime by approximating the computation of the confidence
value of rules. This comes at a minor cost in the precision of the algorithm but allows
reducing the computation time by several orders of magnitude.
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Another way to speed up the rule mining is by sampling. The underlying intuition is
that a rule of the form ⟨e, r1, e1⟩ ∧ ⟨e1, r2, e2⟩ ∧ · · · ∧ ⟨en, rn+1, e′⟩ ⇒ ⟨e, r, e′⟩ can be seen as
the co-occurrence in the knowledge graph (KG) of two paths from e to e′: one of length 1
(passing through the relation r), and one of length 2n + 1 (through the entities e1, e2, . . . ,
en and the relations r1, r2, . . . , rn+1). Exploring the possible rules then comes down to
finding possible paths from one entity to another. This graph exploration is computationally
expensive, and so the authors of [39] propose a two-step acceleration of the graph exploration
and of the evaluation of the rules.

First, the size of the graph is reduced by sampling the KG. Given a relation r that should
appear in the head atom of the rule and a maximum length l ≥ 2, the neighborhood of r

is computed iteratively. We start from a set E0, which includes any entity involved in a
fact with r. We then compute Ei for 1 ≤ i ≤ l − 2 by including entities linked to some
entity of Ei−1 by any predicate. The neighborhood of r is then defined as N (r) = ∪l−2

i=0Ei

and it includes all entities relevant to find paths of maximum length l and then rules
involving l atoms in the body and p in the head.
Subsequently, instead of exhaustively exploring all the possible paths in the neighborhood
of the relation r, the authors suggest to use a bilinear embedding model to learn matrix
representations of relations (see Section 3.2). A relation path r1, r2, . . . , rl in the graph
can then be represented as the product of the matrices of the relations Mr1 ·Mr2 · · · · ·Mrl

.
The similarity between the path (corresponding to the body of the potential rule) and r

is computed using the matrix Frobenius norm sim(r, [r1, r2, . . . , rl]) = exp(−||Mr − Mr1 ·
Mr2 · · · · · Mrl

||F ).
The authors compare their approach to AMIE+, and show that the new approach mines
more rules, and rules of better quality in terms of confidence. Furthermore, the process is
much faster for rules that have the shape of paths.

6 Conclusion

Knowledge Bases (KBs) find many uses in AI applications, such as personal assistants,
question answering systems, or text analysis. And yet, KBs are usually incomplete and miss
facts. Two avenues of research have taken to predict missing facts: a symbolic one, based
on rule mining, and a neural one, based on embeddings. Each of them has their respective
strengths, and in this article we have presented an overview of both. We have also discussed
recent studies on the criticism of the benchmark and protocols used during evaluation of
embedding models. We have then presented approaches that successfully combine both
symbolic and neural methods to perform fact prediction in KBs. While there are several
approaches that use rules in order to improve embeddings, there are rather few approaches
that use embeddings to improve rule mining. This may thus be an interesting direction for
further research.
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