
COLA-Gen: Active Learning Techniques for
Automatic Code Generation of Benchmarks
Maksim Berezov #

Mines Paris, PSL University, France

Corinne Ancourt #

Mines Paris, PSL University, France

Justyna Zawalska #

Mines Paris, PSL University, France

Maryna Savchenko #

Mines Paris, PSL University, France

Abstract
Benchmarking is crucial in code optimization. It is required to have a set of programs that we
consider representative to validate optimization techniques or evaluate predictive performance models.
However, there is a shortage of available benchmarks for code optimization, more pronounced when
using machine learning techniques. The problem lies in the number of programs for testing because
these techniques are sensitive to the quality and quantity of data used for training.

Our work aims to address these limitations. We present a methodology to efficiently generate
benchmarks for the code optimization domain. It includes an automatic code generator, an associated
DSL handling, the high-level specification of the desired code, and a smart strategy for extending
the benchmark as needed.

The strategy is based on Active Learning techniques and helps to generate the most representative
data for our benchmark. We observed that Machine Learning models trained on our benchmark
produce better quality predictions and converge faster. The optimization based on the Active
Learning method achieved up to 15% more speed-up than the passive learning method using the
same amount of data.

2012 ACM Subject Classification Software and its engineering → Source code generation; Computing
methodologies → Active learning settings

Keywords and phrases Benchmarking, Code Optimization, Active Learning, DSL, Synthetic code
generation, Machine Learning

Digital Object Identifier 10.4230/OASIcs.PARMA-DITAM.2022.3

Supplementary Material Software (Source Code): https://github.com/cri-internship/loop-
generator

Acknowledgements We want to thank Patryk Kiepas for productive discussion and ideas that helped
this research to be finished.

1 Introduction

Benchmarking is an essential part of testing code optimization techniques and models. Such
benchmark programs should be representative and reflect similar code characteristics that
we are targeting.

Our objective is to have benchmarks adapted to the evaluation of source-to-source code
transformations. These transformations make it possible to improve program characteristics
such as the spatial and temporal locality of the data accesses, the loop iteration order,
the potential parallelism. The execution time gain of the transformation depends on the
transformation parameters that have to be instantiated for each kernel and the target
architecture.

© Maksim Berezov, Corinne Ancourt, Justyna Zawalska, and Maryna Savchenko;
licensed under Creative Commons License CC-BY 4.0

13th Workshop on Parallel Programming and Run-Time Management Techniques for Many-core Architectures and
11th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM
2022).
Editors: Francesca Palumbo, João Bispo, and Stefano Cherubin; Article No. 3; pp. 3:1–3:14

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:maksim.berezov@mines-paristech.fr
mailto:corinne.ancourt@mines-paristech.fr
mailto:justyna.zawalska@cri.ensmp.fr
mailto:maryna.savchenko@cri.ensmp.fr
https://doi.org/10.4230/OASIcs.PARMA-DITAM.2022.3
https://github.com/cri-internship/loop-generator
https://github.com/cri-internship/loop-generator
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


3:2 COLA-Gen

There are various known benchmarks for the C programming language that address
specific aspects. For instance, BEEBS Benchmarks [18], Embench™ [2], MiBench [10] address
different aspects of performance on embedded platforms. PolyBench 4.2 [23], Livermore loops
(LFK) [17], LCALS v1.0.2, TSVC, [16], LORE [3] focus mainly on compiler optimizations
and performance analysis. However, these benchmarks contain a limited number of typical
kernels. For instance, TSVC contains 151 perfectly-nested loops, PolyBench 4.2 contains 30
computational kernels (kernel may contain several loop nests), Livermore loops (LFK) have
30 loop-nests, and LCALS v1.0.2 contains 32 loop-nests, LORE aggregates loops from other
benchmarks and contains 2499 loops in C.

This amount of data may not be enough when code optimization actively uses Machine
Learning (ML) techniques. The strength of ML techniques often comes from the use of a
large training set. For instance, MNIST [22] a benchmark for image processing contains
70,000 images, LibriSpeech [19] for speech recognition includes 1000 hours of speech, Enron
corpus [12] for natural language processing aggregates 500,000 messages.

Therefore, there are much less data in the code optimization domain than in the fields
where ML is running at its peak performance. There is not enough training data to properly
cover the feature space for complex transformations such as loop tiling, loop unrolling, loop
interchange, etc. Also note that different transformations have different feature spaces from
the ML perspective. One training set may capture better features for one transformation,
another set – for a different transformation. It becomes challenging or even impossible to
create a universal training set.

There are two main approaches to solve this problem: data mining [11, 8, 9] and synthetic
code generation [7, 6, 4]. Nevertheless, data mining approaches have drawbacks such as data
accuracy, completeness, parsing difficulties, libraries they may depend on, etc. In our study,
we investigate the approach of synthetic code generation. Existing approaches either rely on
the known predefined statistical distribution of the parameters [4] or require a huge training
set for the deep learning model to mimic the given distribution [6].

Our work proposes a solution to these problems. We introduce a methodology to generate
a representative benchmark that captures many computation patterns crucial for parallel
computations. We let the ML model decide which data to include in the training benchmark
among many potential candidates to achieve the best result. These candidates were not even
compiled. Also, we present a code generator which can automatically create synthetic data.
Our code generator uses information like array sizes, data-dependencies, loop index order,
and data access functions as a high-level specification of the generated code. We use a DSL
to easily manipulate these concepts and generate code in a very parametric and flexible way.
Active learning methods allow us to direct code generation to the target function of the ML
model. This data generation approach enables the creation of representative training sets for
program optimization in the ML context. Moreover, we are able to generate our codes for
different benchmark distribution styles, such as PolyBench.

This paper is structured as follows. Section 2 presents the context of our work and
pointing out the guidelines we used in our code generator. Section 3 introduces our automatic
code generator of C kernels. Section 4 presents the ML pipeline we use to get the predictions
of the transformation parameters in the context of code optimization. Finally, Section 5
presents the data augmentation process with active learning techniques and its promising
experimental results.



M. Berezov, C. Ancourt, J. Zawalska, and M. Savchenko 3:3

2 Context

To apply code optimizations, some transformation parameters must be defined. For example,
to apply loop unrolling we have to predict the number of iterations to unroll, to apply
loop tiling, the block sizes have to be selected. We follow three concepts as guidelines for
building an automatic code generator of programs, used by ML techniques to predict efficient
transformation parameters.

First, ML algorithms build prediction models based on training data. The key idea is
that the model should capture meaningful patterns in training data and should be able to
generalize them for arbitrary input. We use such high-level concepts for the code generator,
which make it easy to mimic different code distributions and extend them as needed. We
describe this strategy in Sections 3.

The second important aspect is the amount of available data. From the ML perspective,
the more data available, the better, the more insights we can obtain. However, data labeling
can be a very time-consuming process. Therefore, time also constraints the size of the
training set. It is important to build a representative benchmark of a reasonable size.

We solve this problem by using active learning methods. The main idea of Active Learning
is that not all points in a training set have the same impact on the model training and its final
performance. The goal is to select only the most representative samples from the training
set in order to match the time constraints. This issue is discussed in detail in Section 5.
We compare this approach with classical passive learning techniques, where all points from
the training set are treated equally and have the same probability of being taken to the
final training set. In contrast, active learning methods assign a score to each point that
corresponds to the profit that we can gain if we take this point for training.

The third aspect concerns the code characteristics. Because loop nests are often the time-
consuming computation parts in programs, our study focuses on optimizations commonly
used by compilers (e.g. loop permutation, tiling) that could potentially exploit all the benefits
of parallel execution. To optimize their execution time, it is necessary to take into account
the spatial and temporal locality of the data accesses and data dependencies to extract the
potential parallelism and apply the transformations only when they are legal.

In this paper, we evaluate our methodology on the tiling transformation. The tiling
transformation is one of the most crucial code optimization techniques to expose data locality
and parallelism. The main idea is to split the initial iteration space into blocks and traverse
them in a special order. This transformation is parametric and very sensitive to parameter
tuning. Poor parameter tuning can lead to much lower performance than the initial code.
We consider 3-D cubic tiling, which means that we split 3-D iteration space by cubic tiles.
The goal of Machine Learning is to predict the sizes of the tiles for each code. We investigate
three feature spaces to address this problem: a) Yuki and al.[24], b) Liu and al.[15] and
c) one-hot encoding of all array accesses.

We show that our methodology can accelerate the learning process in the context of given
feature spaces by generating the most representative data.

3 Code Generator Design

In this section, we introduce the main components of our automatic generator of C code. For
each of them, we specify the type of code generated. Figure 1 highlights its main building
blocks.

PARMA-DITAM 2022



3:4 COLA-Gen

Figure 1 Generation pipeline.

3.1 Output Code and Input Data
The objective of the generator is to automatically produce a code written in C that respects
the following hypothesis:

it is correct. The code must not produce any runtime errors such as out of bounds
memory access, etc;
it meets the code criteria specified by the user in the DSL sample;
it includes the necessary infrastructure to perform performance tests such as header files,
directives/pragmas and calls to timing reporting functions;
it can be compiled and executed. For instance, the arrays are properly initialized in the
code.

In addition to these requirements, we use high-level input criteria for code optimization
through a DSL. These are the number of arrays and their sizes (memory pressure), data
dependencies, an order of the loop indices, and array access functions (pressure on spatial and
temporal locality). These concepts allow us to explore the legality of potential transformations
and optimize the code.

We apply the workflow of Figure 1 after parsing the input. After these steps, we get
the first version of our code. Then there is the option to process the generated code to
PolyBench-like style or another benchmark distribution style. The input example is shown
in the appendix A, the corresponding output computations are shown in appendix B and the
full code infrastructure is presented in appendix C.

3.2 Array Declaration and Initialization
The code generator takes array sizes from the input file (DSL description) and dynamically
or statically (depending on the chosen option) allocates the requested arrays. The code
generator may choose array sizes automatically if the user uses the PolyBench-like style of
kernels. For instance, the EXTRALARGE_DATASET directive indicates that arrays should
not fit the L3 cache.

3.3 Computation Instructions
This component generates the computation instructions included in the loop nest. Each
instruction is composed of a reference to a write array and several (at least one) to read
arrays. The array access functions are either explicitly given by the user or defined by the
generator that respects the data dependencies which have been expressed in the DSL sample.



M. Berezov, C. Ancourt, J. Zawalska, and M. Savchenko 3:5

3.4 Loop Bound Computation
The generated code should be correct. To avoid out-of-bounds memory accesses to array
elements, the generator computes the largest computation iteration domain according to the
array declarations and the array access functions. We use linear-programming techniques to
compute correct bounds. For constant dependencies, we generate numerical values for loop
bounds.

3.5 Code Infrastructure
This component consists of adding all the infrastructure necessary for the execution of a
stand-alone C program with time reporting functions. It includes: header files, variable
declaration, and initialization, array allocation and deallocation, calls to time reporting
functions, pragmas and directive insertion, and adjustment of array sizes according to the
requested cache size, etc. We propose a processing pass that transfers our generated kernel
to a PolyBench-like style.

4 Machine Learning modelling

Our objective is to show that our approach can accelerate the techniques of code optimization
using ML in the context of a given feature space. In this section, we describe the pipeline
that we would like to accelerate using Active Learning techniques. By accelerating, we mean
the need for less training data to achieve good performance.

4.1 Machine Learning pipeline

Figure 2 Training and prediction pipeline.

We investigate the problem of loop tiling size prediction for 3-D cubic tiles to validate
our Machine Learning model. We consider tile sizes from 2 till 512 for the experiments and
predictions. As features, we take the code characteristics proposed by a) Yuku et al. [24],
b) Liu et al. [15] and c) one-hot encoding of array references.

We consider this problem as a regression problem. The model takes the features mentioned
above as input and predicts the values of the tile sizes in the real domain. A heuristic of
rounding the tile size to the nearest divisor of the loop bound could be applied and was used
in our experiments. Then we generate the code based on predicted tile size. The training
and prediction pipelines are shown in Figure 2.

Note that once the training pipeline phase is complete, the parameters of the prediction
model are fixed. It is possible to predict with this tuned model the best parameters of the
program transformation we want to apply in one shot. This model can then be integrated
into a compiler.

PARMA-DITAM 2022



3:6 COLA-Gen

A program Autotuner, such as LOCUS [20], typically uses several techniques to traverse
a solution space and find an optimal version of a program. But the time needed to reach
this solution for a program is not comparable to that of a single one-shot prediction of a
tuned machine learning model. For this reason, we use the result of the Autotuner only as a
reference of the optimal version to compare with our best predicted version of the program.

4.2 Machine Learning models
Non-linear machine learning models are more appropriate for our problem. To illustrate this
point, we consider the case where the loop nest to be optimized is potentially vectorizable.
There exist cases where the model must solve the following dilemma: If the loops are parallel,
then tiling the innermost loop is the best, but this may be contrary to the optimization
strategy of maximizing data locality. It can be seen as a decision tree. This is the main
prerequisite for using nonlinear models for this task.

Random Forest regressor [14] showed the best results in terms of metrics considered in
our experiments. This model was used to plot all the predictions of this paper.

4.3 Metrics
The mean squared error (MSE) loss was used as a Loss Function for regression.

MSE = 1
n

∑n
t=1(y∗

i − yi)2, where yi is the ground-truth value of the optimal tile size of
the i-th data sample, and y∗

i was predicted by our ML model. We use this metric for ML
modelling since optimal tile sizes are distributed near the same neighborhood, and we want
to penalize our model if it predicts tile sizes that are far from the global optimum.

This cost function has several drawbacks. It does not provide explicit information about
our target goal - fast code execution. The loss provides no information to the programmer
on how the generated code would perform in terms of execution time. Moreover, it does not
provide insights about architecture parallelism and the profitability that we can gain from
the transformation.

That is why we introduce the second-step metric showing how far we are from the most
efficient generated code. We use the following relative speedup metric.

RSi = speedup(ŷi)
speedup(y∗i) , where speedup(ŷi) gives the speedup obtained after tiling the code

with the predicted parameter. And speedup(y∗i) gives the speedup found by the Autotuner.
An average relative speedup can be computed with RS = 1

n

∑n
i=1 RSi.

The drawbacks of this function are that it is very sensitive to outliers. RS of a tile in the
same neighborhood could be different due to factors that are not possible to take into account
using existing feature spaces. Moreover, it does not have derivatives; it is a piecewise-defined
function. Hence, it is not applicable to be used for training of many ML models. Thus, each
metric is more appropriate for the stage where it is used. The combination of both provides
a more correct way to navigate the training process and evaluate the results.

Figure 3 MSE on validation set.



M. Berezov, C. Ancourt, J. Zawalska, and M. Savchenko 3:7

5 Active Learning

Data labeling is the calculation of a value of the target variable for a data sample of the
training set. This step can be very time-consuming in traditional ML pipelines. It makes
sense to find a trade-off between how quickly we collect data and the accuracy of the final
model. The issue of optimal experimental design arises. How to construct our training set to
get the maximal possible gain? The techniques used in the active learning domain seem a
promising direction to answer this question.

5.1 Active Learning Overview
Active Learning is a sub-field of Machine Learning. The crucial idea is that the model itself
decides which data to use for more effective training. It finds thought in areas where data
annotation is relatively expensive or may be not feasible.

Active Learning pipelines work under several scenarios: pool-based scenario [13], stream-
based selective sampling [5] and membership query synthesis [1] The pool-based approach
seems the most suitable for code optimization because it is the richest for a relatively low-cost.
This approach assumes that we have a relatively small pool of annotated data and a much
larger pool of not annotated data. At each iteration of the pool-based approach, the algorithm
ranks all samples from the big pool according to a function. This function is chosen so that
it returns a high value to the samples that have the potential to increase the performance of
the ML model. The algorithm sends a query to the annotator to get labels for these samples.
Then these annotated samples are added to the small pool of annotated data.

Sampling Strategies. The sampling strategy generates a query to the annotator in a
pool-based scenario. In this subsection, we introduce the sampling strategies that can be
used for supervised learning. In our experiments, we studied three approaches proposed by
Wu et al.[21] for a regression problem.

Greedy Sampling on the Inputs. The main idea is to choose the initial point as the closest
to the centroid of the global pool, and then iteratively choose points farthest from the
one already chosen to increase the diversity of the data in a given feature space.
Greedy Sampling on the Outputs. The key idea is to use greedy sampling on the inputs
to build the initial model, then to choose points with the farthest distance but in the
output space according to the model prediction.
Improved Greedy Sampling on both Inputs and Output. This approach considers the
multiplication of the distances in the input and output spaces as the deciding metric.
The data sample with the highest value is chosen.

5.2 Experimental statement
The learning process goes more efficiently for data generated with active learning, especially
when we do not have expert knowledge about the given domain. We expose this statement to
demonstrate the applicability of active learning techniques for the code optimization domain.
While any handwritten strategy brings some bias to data, especially in case the expert knows
which benchmarks will be used for testing, active learning appears to be the approach to
facilitate representative data generation without introducing significant bias.

The pipeline for training the model is shown in Figure 2. The set of C programs could
be obtained using naive sampling (passive learning) or more sophisticated strategies (active
learning). The quality of the predictions and the speed of convergence of the models depends
on this set.

PARMA-DITAM 2022



3:8 COLA-Gen

5.3 Generating strategy

Training, test, and validation sets are required to properly tune the model and evaluate its
applicability for real problems.

We train the ML model on the training set. The validation set is needed to evaluate the
model performance (MSE) and determine its parameters based on that. Test set represents
real-world data. We use our generator to sample data for the training and validations sets.
We use a simple generation strategy that does not require any expert knowledge about the
feature space for the loop tiling size prediction. The most important parameters that we
vary are: existence of data dependencies, number of statements and array involved into the
computations, loop index permutations.

Ten thousand kernels were randomly sampled to obtain a pool of not annotated data.
Then, the Active Learning phase chooses 1250 most suitable kernels (training set for Active
Learning). We do the labeling of chosen samples and train the model on them. Three
hundred kernels were sampled (from the same distribution as 10k kernels) and labeled for
validation set. There are not involved into model training but used as intermediate evaluation
of the performance.

Nine known computational kernels were taken to form our test set. We compute the
average relative speedup for them after tiling to assess the quality of the generated code.

5.4 Passive Learning Training Set

We sample the same amount (1250) of kernels with a random sampling to compare the
performance of the model trained on the training set obtained with Active Learning. These
1250 kernels were chosen randomly also from 10k samples of not labeled data.

We investigate the possibility of Active Learning to shift the distribution to meaningful
patterns in a given distribution.

5.5 Data labelling

The data labeling process begins after the choice of the kernels of the training set. This
process is very time-consuming. For each kernel, we generate about 300 code variants (tiled
codes with different tile sizes) and execute them to assign labels for the regression problem.
The time to propose a variant plus its execution time varies from 0.1s to 50s, the median
value is about 2s.

The whole process is equal to number of repetitions × number of variants × number
of kernels × (the time to generate a variant + the time to execute the variant). For us it
took around 30 days to label all the required data. This estimation illustrates that the data
labeling process time can be significant. When time is limited, data quality becomes crucial.
This is the main motivation for using the Active Learning approach.

5.6 Experimental results

The objective in this paper is not to find the best ML algorithm to perform tiling but to
propose efficient techniques to automatically generate benchmarks suitable for the evaluation
of code transformations and used as input for the ML techniques. In this section, we compare
the results obtained with the Active and Passive Learning approaches.



M. Berezov, C. Ancourt, J. Zawalska, and M. Savchenko 3:9

The experiments were run on Intel® Core™ i7-8650U 4C/4T @1.90GHz with capacity
caches of L1: 32KB, L2: 256KB, L3: 8192KB and 32GB DDR4 DIMM RAM, Phys. cores: 4,
Compiler: GCC 5.4.0, Number of Threads: 4, Opt. level: -O3

5.6.1 Loss on the validation set
Figure 3 compares the MSE on the validation set for the Active Learning approach and the
Passive Learning approach for 3 different feature spaces. MSE was scaled by the minimal
found value for the Active Learning strategy for the corresponding feature space. At some
point, the losses for both strategies converge. But Active Learning significantly overperforms
(for Yuki et al. and One-hot encoding) Passive learning under current settings due to the
choice of the most diverse data. This fact could be used for problems where we have time
constraints for data labeling and we need a faster-converged ML model.

5.6.2 Losses on the test set
We measure the average relative speedup for the test set to evaluate the quality of the
generated code. Figure 4 shows the results for nine well-known computational kernels after
applying loop tiling and for three different feature spaces. The blue columns correspond
to the training process based on passive learning settings, the red ones - based on Active
Learning.

The other columns correspond to speedups obtained with the state-of-the-art LOCUS
auto-tuner [20] when loop tiling is applied. The autotuner’s search space is made up of the
same points as for our ML model (integer values from 2 till 512 for 3-D cubic tiling). LOCUS
was asked to execute 300 points out of the search grid to find its best solution. These last
results are used as references to know how far we are from the optimum.

Figure 5 introduces the relative average speedups for the three different feature spaces.
The average relative speedup with the Yuki et al. [24] features obtained by the Active
Learning is 71% out of the speedup found by LOCUS autotuner. The average speedup
obtained by the Passive Learning is 58%. The same result is observed for the one-hot encoded
features. The average speedup with Active Learning is 69% compared to 64 % without it.
The corresponding values for Liu et al. [15] features are 68% and 53%.

Active Learning performs better than passive learning on average and for the majority
of kernels. The average speedup along feature spaces is 1.11x higher with the use of Active
Learning. The results obtained show that the active learning approach can traverse the
learning process more efficiently and shift the distribution of chosen kernels towards important
patterns. For the results shown in this paper, we used the Greedy Sampling on both Inputs
and Outputs since it achieved the best quality.

Figure 4 Average relative speedup for the test set.

PARMA-DITAM 2022



3:10 COLA-Gen

Figure 5 Average relative speedups.

6 Conclusion

This paper presents a methodology for efficiently generating benchmarks for code optimization
using ML techniques. It includes 1) an automatic code generator enabling to imitate some
existing benchmark styles 2) a smart strategy with active learning for extending the benchmark
as needed.

We have proposed a strategy to increase the amount of data in a limited time. In this
way, we only generate the most useful inputs. This approach allows us to select the best data
for analysis and generate the most representative machine learning models if we do not have
enough expert knowledge about the domain or do not want to introduce bias in the selection.
The speedup gain for our strategy is up to 15% higher depending on the feature space and
11% higher on average.

Our future improvements targets extending the number of possible transformations and
exploring more Active Learning techniques.

Our generator can be extended to many programming languages (not only C) because
the main concepts we used are language-agnostic. It only requires a few modifications to the
syntax and code routines to achieve a successful translation into the target language.

References
1 Dana Angluin. Queries revisited. In International Conference on Algorithmic Learning Theory,

pages 12–31. Springer, 2001.
2 J Bennett, P Dabbelt, C Garlati, GS Madhusudan, T Mudge, and D Patterson. Embench: An

evolving benchmark suite for embedded iot computers from an academic-industrial cooperative.
3 Zhi Chen, Zhangxiaowen Gong, Justin Josef Szaday, David C Wong, David Padua, Alexandru

Nicolau, Alexander V Veidenbaum, Neftali Watkinson, Zehra Sura, Saeed Maleki, et al. Lore: A
loop repository for the evaluation of compilers. In Intern. Symp. on Workload Characterization
(IISWC), pages 219–228. IEEE, 2017.

4 Alton Chiu, Joseph Garvey, and Tarek S Abdelrahman. Genesis: a language for generating
synthetic training programs for machine learning. In 12th ACM Intern. Conf. on Computing
Frontiers, pages 1–8, 2015.

5 David Cohn, Les Atlas, and Richard Ladner. Improving generalization with active learning.
Machine learning, 15(2):201–221, 1994.

6 Chris Cummins, Pavlos Petoumenos, Zheng Wang, and Hugh Leather. Synthesizing benchmarks
for predictive modeling. In Intern. Symp. on Code Generation and Optimization (CGO), pages
86–99. IEEE, 2017.



M. Berezov, C. Ancourt, J. Zawalska, and M. Savchenko 3:11

7 Etem Deniz and Alper Sen. Minime-gpu: Multicore benchmark synthesizer for gpus. ACM
Transactions on Architecture and Code Optimization (TACO), 12(4):1–25, 2015.

8 Jaroslav Fowkes and Charles Sutton. Parameter-free probabilistic api mining across github.
In 24th ACM SIGSOFT intern. Symp. on foundations of software engineering, pages 254–265,
2016.

9 Georgios Gousios and Diomidis Spinellis. Mining software engineering data from github. In
39th Intern. Conf. on Software Engineering Companion (ICSE-C), pages 501–502. IEEE, 2017.

10 Matthew R Guthaus, Jeffrey S Ringenberg, Dan Ernst, Todd M Austin, Trevor Mudge, and
Richard B Brown. Mibench: A free, commercially representative embedded benchmark suite.
In 4th Intern. workshop on workload characterization. WWC-4 (Cat. No. 01EX538), pages
3–14. IEEE, 2001.

11 Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M German, and
Daniela Damian. The promises and perils of mining github. In 11th working conf. on mining
software repositories, pages 92–101, 2014.

12 Bryan Klimt and Yiming Yang. Introducing the enron corpus. In CEAS, 2004.

13 David D Lewis and William A Gale. A sequential algorithm for training text classifiers. In
SIGIR’94, pages 3–12. Springer, 1994.

14 Andy Liaw, Matthew Wiener, et al. Classification and regression by randomforest. R news,
2(3):18–22, 2002.

15 Song Liu, Yuanzhen Cui, Qing Jiang, Qian Wang, and Weiguo Wu. An efficient tile size
selection model based on machine learning. Journal of Parallel and Distributed Computing,
121:27–41, 2018.

16 Saeed Maleki, Yaoqing Gao, Maria J Garzar, Tommy Wong, David A Padua, et al. An
evaluation of vectorizing compilers. In Intern. Conf. on Parallel Architectures and Compilation
Techniques, pages 372–382. IEEE, 2011.

17 FH McMahon. Livermore fortran kernels: A computer test of numerical performance range
ucrl-53745. LLNL, CA., USA, 1986.

18 James Pallister, Simon Hollis, and Jeremy Bennett. Beebs: Open benchmarks for energy
measurements on embedded platforms. arXiv preprint, 2013. arXiv:1308.5174.

19 Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: an asr
corpus based on public domain audio books. In Intern. conf. on acoustics, speech and signal
processing (ICASSP), pages 5206–5210. IEEE, 2015.

20 SFX Thiago Teixeira, Corinne Ancourt, David Padua, and William Gropp. Locus: a system and
a language for program optimization. In Intern. Symp. on Code Generation and Optimization
(CGO), pages 217–228. IEEE, 2019.

21 Dongrui Wu, Chin-Teng Lin, and Jian Huang. Active learning for regression using greedy
sampling. Information Sciences, 474:90–105, 2019.

22 Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. arXiv preprint, 2017. arXiv:1708.07747.

23 T. Yuki and L. Pouchet. Polybench 4.2, Jan 26, 2021. URL: https://sourceforge.net/
projects/polybench/.

24 Tomofumi Yuki, Lakshminarayanan Renganarayanan, Sanjay Rajopadhye, Charles Anderson,
Alexandre E Eichenberger, and Kevin O’Brien. Automatic creation of tile size selection models.
In 8th Intern. Symp. on Code Generation and Optimization, pages 190–199, 2010.

PARMA-DITAM 2022

http://arxiv.org/abs/1308.5174
http://arxiv.org/abs/1708.07747
https://sourceforge.net/projects/polybench/
https://sourceforge.net/projects/polybench/


3:12 COLA-Gen

A Generated code examples. Input file.

Listing 1 JSON-like DSL specification.
[{" array_sizes ": {"xA": 64, "yA": 32, "zA": 128} , "type ": "int",
" init_with ": " random ", " loop_nest_level ": 3,

" arrays ": ["A[xA ,yA ,zA]", "B[256 ,256]"] ,
" instructions ": [{" array_name ": "A",

" index_permutation ": "(1 ,0 ,2)" ,
" dependencies ": {" distance ": "[(1 ,2 ,3)]"} ,
" additional_computation ": [{" array_name ": "B",

" array_access_function ": "[[0 ,2 ,0 ,8] , [1 ,1 ,1 ,8]]"}]}]}]

B Generated code examples. Output computations.

Listing 2 Generated computations.
int A [64][32][128] , B [256][256];

....
for (int i = 0; i < 30; i++)
for (int j = 0; j < 63; j++)
for (int k = max(-i-j-8, 0); k < min (248 -i-j, 125); k++)

A[j][i][k]=A[j+1][i+2][k+3]+B[2*j+8][i+j+k+8];

C Generated code examples. Full code infrastructure.

Listing 3 PolyBench style generated code.
# include <stdio.h>
# include <unistd .h>
# include <string .h>
# include <math.h>
# include <polybench .h>
# include <stdio.h>
# include <time.h>
# include <stdlib .h>
# include "1648808249866439. h"
static void init_array (int xa ,int ya ,int za ,
DATA_TYPE POLYBENCH_3D (A,xA ,yA ,zA ,xa ,ya ,za),
int xb ,int yb , DATA_TYPE POLYBENCH_2D (B,xB ,yB ,xb ,yb ))
{ srand(time(NULL ));
int i,j,k,l;
for (i = 0; i < xa; i++)

for (j = 0; j < ya; j++)
for (k = 0; k < za; k++)

A[i][j][k] = rand ()%50;

for (i = 0; i < xb; i++)
for (j = 0; j < yb; j++)

B[i][j] = rand ()%50;
}



M. Berezov, C. Ancourt, J. Zawalska, and M. Savchenko 3:13

static void print_array (int xa ,int ya ,int za ,
DATA_TYPE POLYBENCH_3D (A,xA ,yA ,zA ,xa ,ya ,za),
int xb ,int yb , DATA_TYPE POLYBENCH_2D (B,xB ,yB ,xb ,yb))
{ int i,j,k,l;
POLYBENCH_DUMP_START ;
POLYBENCH_DUMP_BEGIN ("A");
POLYBENCH_DUMP_START ;
POLYBENCH_DUMP_BEGIN ("A");
for (i = 0; i < xa; i++) {
for (j = 0; j < ya; j++) {
for (k = 0; k < za; k++) {
fprintf ( POLYBENCH_DUMP_TARGET , "\n");
fprintf ( POLYBENCH_DUMP_TARGET , DATA_PRINTF_MODIFIER , A[i][j][k]);
}}}
POLYBENCH_DUMP_END ("A");
POLYBENCH_DUMP_FINISH ;
POLYBENCH_DUMP_START ;
POLYBENCH_DUMP_BEGIN ("B");
POLYBENCH_DUMP_START ;
POLYBENCH_DUMP_BEGIN ("B");
for (i = 0; i < xb; i++) {
for (j = 0; j < yb; j++) {
fprintf ( POLYBENCH_DUMP_TARGET , "\n");
fprintf ( POLYBENCH_DUMP_TARGET , DATA_PRINTF_MODIFIER , B[i][j]);
}}
POLYBENCH_DUMP_END ("B");
POLYBENCH_DUMP_FINISH ;
}
int main(int argc , char ** argv)
{
int xa = xA;
int ya = yA;
int za = zA;
int xb = xB;
int yb = yB;
POLYBENCH_3D_ARRAY_DECL (A, DATA_TYPE ,xA ,yA ,zA ,xa ,ya ,za);
POLYBENCH_2D_ARRAY_DECL (B, DATA_TYPE ,xB ,yB ,xb ,yb);
init_array (xa ,ya ,za , POLYBENCH_ARRAY (A),xb ,yb , POLYBENCH_ARRAY (B));
kernel_1648808249866439 (xa ,ya ,za , POLYBENCH_ARRAY (A),xb ,yb ,
POLYBENCH_ARRAY (B));
polybench_prevent_dce ( print_array (xa ,ya ,za ,
POLYBENCH_ARRAY (A),xb ,yb , POLYBENCH_ARRAY (B)));
POLYBENCH_FREE_ARRAY (A);
POLYBENCH_FREE_ARRAY (B);
return 0;
}
void kernel_1648808249866439 (int xa ,int ya ,int za ,
DATA_TYPE POLYBENCH_3D (A,xA ,yA ,zA ,xa ,ya ,za),int xb ,int yb ,
DATA_TYPE POLYBENCH_2D (B,xB ,yB ,xb ,yb )){
polybench_start_instruments ;
# pragma scop
tiling_3D : for (int i = 0; i < 30; i++)
tiling_2D : for (int j = 0; j < 63; j++)
for (int k = max(-i-j -8 ,0); k < min (248 -i-j ,125); k++)

A[j][i][k]=A[j+1][i+2][k+3]-B[2*j+8][i+j+k+8];

PARMA-DITAM 2022



3:14 COLA-Gen

clock_t stop = clock ();
double elapsed = (( double )( stop - start )) / CLOCKS_PER_SEC ;
printf ("%f", elapsed );
deallocate_3d_array (A, 64, 32, 128);
deallocate_2d_array (B, 256, 256);
return 0;
}


	1 Introduction
	2 Context
	3 Code Generator Design
	3.1 Output Code and Input Data
	3.2 Array Declaration and Initialization
	3.3 Computation Instructions
	3.4 Loop Bound Computation
	3.5 Code Infrastructure

	4 Machine Learning modelling
	4.1 Machine Learning pipeline
	4.2 Machine Learning models
	4.3 Metrics

	5 Active Learning
	5.1 Active Learning Overview
	5.2 Experimental statement
	5.3 Generating strategy
	5.4 Passive Learning Training Set
	5.5 Data labelling
	5.6 Experimental results
	5.6.1 Loss on the validation set
	5.6.2 Losses on the test set


	6 Conclusion
	A Generated code examples. Input file.
	B Generated code examples. Output computations.
	C Generated code examples. Full code infrastructure.

