
Efficient Memory Management for Modelica
Simulations
Michele Scuttari #

Politecnico di Milano, Italy

Nicola Camillucci #

Politecnico di Milano, Italy

Daniele Cattaneo #

Politecnico di Milano, Italy

Federico Terraneo #

Politecnico di Milano, Italy

Giovanni Agosta #

Politecnico di Milano, Italy

Abstract
The ever increasing usage of simulations in order to produce digital twins of physical systems led to
the creation of specialized equation-based modeling languages such as Modelica. However, compilers
of such languages often generate code that exploits the garbage collection memory management
paradigm, which introduces significant runtime overhead. In this paper we explain how to improve
the memory management approach of the automatically generated simulation code. This is achieved
by addressing two different aspects. One regards the reduction of the heap memory usage, which
is obtained by modifying functions whose resulting arrays could instead be allocated on the stack
by the caller. The other aspect regards the possibility of avoiding garbage collection altogether
by performing all memory lifetime tracking statically. We implement our approach in a prototype
Modelica compiler, achieving an improvement of the memory management overhead of over 10
times compared to a garbage collected solution, and an improvement of 56 times compared to the
production-grade compiler OpenModelica.

2012 ACM Subject Classification Software and its engineering → Compilers; Computing methodo-
logies → Modeling and simulation

Keywords and phrases Modelica, modeling & simulation, memory management, garbage collection

Digital Object Identifier 10.4230/OASIcs.PARMA-DITAM.2022.7

1 Introduction

The explosion of Industry 4.0 has driven a renewed interest in the topic of modeling and
simulation, due to a significant increase in complexity of systems that need to be simulated. At
the same time, simulation is nowadays used for a range of vital taks in the lifecycle of industrial
products, generally subsumed under the moniker of digital twins [16, 5, 15]. Digital twins
promise the ability to perform a wide range of experiments, assessments, and predictions on
real-world physical systems, such as cars, planes, buildings and power-distribution networks.
The phenomena to be modeled in digital twins are natively expressed in terms of Differential
and Algebraic Equations (DAE). Those equations need to be translated into an imperative
simulation program performing numerical integration by means of well-known mathematical
methods. The resulting program is then executed to obtain the evolution of the system
during a period of time.

© Michele Scuttari, Nicola Camillucci, Daniele Cattaneo, Federico Terraneo, and Giovanni Agosta;
licensed under Creative Commons License CC-BY 4.0

13th Workshop on Parallel Programming and Run-Time Management Techniques for Many-core Architectures and
11th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM
2022).
Editors: Francesca Palumbo, João Bispo, and Stefano Cherubin; Article No. 7; pp. 7:1–7:13

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:michele.scuttari@polimi.it
https://orcid.org/0000-0001-8609-0470
mailto:nicola.camillucci@mail.polimi.it
https://orcid.org/0000-0002-5163-691X
mailto:daniele.cattaneo@polimi.it
https://orcid.org/0000-0003-1453-3257
mailto:federico.terraneo@polimi.it
https://orcid.org/0000-0001-7475-6167
mailto:agosta@acm.org
https://orcid.org/0000-0002-0255-4475
https://doi.org/10.4230/OASIcs.PARMA-DITAM.2022.7
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


7:2 Efficient Memory Management for Modelica Simulations

Equation-based modeling languages are declarative languages that directly allow to
input a system of equations, taking advantage of the always-increasing computing power by
performing automated model translation. This approach relieves the modeler from the time-
consuming and error-prone task of manually translating models of increasing complexity into
the corresponding algorithmic solution code. One of the most popular modeling languages is
Modelica [17]. Other than allowing to define DAE systems, it also encompasses the possibility
to define functions in a way similar to imperative programming languages. This capability is
useful in Cyber Physical Systems (CPS) to model the algorithmic part, such as controllers,
as well as to express numerical correlation or tabular material properties – such as the fluid
ones [8].

Just like in regular programming languages, Modelica functions can also receive and
return arrays. More in detail, arrays in Modelica always have a fixed number of dimensions –
that we will call rank – but the size of each of them can either be fixed or change during the
execution of the simulation.

For what regards memory management, Modelica does not provide explicit access to
pointers but rather consider arrays as objects without specifying how implementations should
handle array copying. This is in accordance with the Modelica objective, that is to provide a
high-level language to model complex systems.

The absence of explicit memory management is usually addressed by Modelica compilers
by leveraging garbage collectors [20], which take care of periodically analysing memory
reachability and deallocate the blocks detected as no longer in use. This technique has
been widely tested throughout the years, but even if effective it is not optimal in terms of
performance [19]. The overheads incurred from usage of garbage collection are particularly
significant in the context of embedded systems. In particular, they hamper the usability of
Modelica and similar languages for automatically producing system mock-ups as proposed
by the eFMI open standard [14], which has been growing in importance in the last few years.

Our contribution consists in the introduction of two optimization passes that operate
on the LLVM-IR produced by a prototype LLVM-based compiler, but can nonetheless be
applied to other intermediate representations. The first one enables the allocation on the
stack of all fixed-size arrays, independently from their usage as argument or result within a
function. The second pass addresses the deallocation of the dynamically-sized – and thus
heap-allocated – ones, by introducing the deallocation instructions in the right positions
within the IR and thus avoiding the need for garbage collection.

The document is organized as follows. In section 2 we describe the semantics of the
Modelica languages that are useful for this work and also briefly discuss the state of the art in
Modelica compilers, with a focus on the memory management aspect. In section 3 we describe
our code-generation strategy for memory management, in particular a transformation by
which all the fixed-size arrays can be potentially allocated on the stack, and how to correctly
place the deallocation instructions for heap-allocated arrays in order to remove the need for
garbage-collection. Then, in section 4 we examine the correctness of our approach by using
a prototype compiler based on LLVM [13]. We also make some comparisons with another
industry-grade compiler and with a customized version of our compiler that uses the Boehm
garbage collector. Finally, in section 5 we review the results and we discuss future directions
for improvements of Modelica compilers.



M. Scuttari, N. Camillucci, D. Cattaneo, F. Terraneo, and G. Agosta 7:3

2 Background

Declarative modeling languages include Modelica, gPROMS [6], Simscape [22] and Omola [4].
Of these, Modelica is one of the most popular, providing a separate language specification that
is implemented by both open source and commercial simulation environments. In the first
category we find OpenModelica [10], while in the second we find Dymola [9] and JModelica [3].
These languages allow the modelers to focus on the description of the systems and delegate the
implementation details, such as memory management, to the model translator or compiler.

In general, a Modelica program consists of a set of DAE equations describing the evolution
in time of the physical system to simulate. These equations involve a fixed set of variables,
among which we can find the system state variables, that represent the current state of the
system at a given moment in time. All these have the exact same lifetime as the simulation
itself, thus obviating the need for memory management.

However, Modelica also allows to define functions as in common imperative programming
languages. Functions receive some arguments and return others. The return values are
computed by executing the imperative code in the body of the function. In accordance with
the language specification, we will call the former input values and the latter output values.
Within the body of a function it is not allowed to modify the input values, while the output
ones can be rewritten as many times as needed. Inside the function it is also possible to
define protected values living only within the function; their modifications obey to the same
rules of output ones.

An example is shown in code listing 1. The foo function declares three input arrays, two
scalar input values, one output array and one protected array. All the arrays of this example
are characterized by a size that is potentially known only at runtime. In the body of the
function, the first assignment at line 9 consists in the sum of three input arrays: the first
sum between a and b creates a temporary array that is summed with c; the resulting array
value is assigned to the internal array d. At line 10, the values within d are doubled and
stored into e. Then, according to the expand value, the array e may be set with the values
returned by the bar function call. The body of bar is not relevant and thus omitted, but the
signature clearly shows how the dimension of the output array y is different from the size of e
as computed up to this point. According to the language specification, all the assignments to
d and e are legit, as they write into a protected and an output variable, and at the same time
they also determine their size. Finally, a loop increments all elements in e by the input value
v. From this simple example we notice several peculiarities that set Modelica aside from
many other imperative languages. Specifically, the fact that an assignment to an array may
determine or change its size at runtime, the immutability of input values and the possibility
of creating complex expression with array operands. Moreover, the assignments of arrays in
Modelica have the same semantics as an element-by-element copy – in other words, array
types are not references.

While these peculiarities are important to understand the semantics of the language,
our compiler operates on an LLVM intermediate representation (LLVM-IR) of the program
that follows its own specific rules, which are closer to assembly languages. Modelica-specific
semantics are enforced by previous stages within the compilation pipeline which generate
this intermediate representation. In order to avoid any confusion, unless otherwise specified,
in the following sections we will always refer to constructs implemented in, and with the
semantics of, LLVM-IR.

PARMA-DITAM 2022



7:4 Efficient Memory Management for Modelica Simulations

Listing 1 Modelica function example.
1 function foo
2 input Real[:] a, b, c;
3 input Boolean expand;
4 input Real v;
5 output Real[:] e;
6 protected
7 Real[:] d;
8 algorithm
9 d := a + b + c;

10 e := d * 2;
11
12 if expand then
13 e := bar(d);
14 end if;
15
16 for i in 1:size(e,1) loop
17 e[i] := e[i] + v;
18 end for;
19 end foo;
20
21 function bar
22 input Real[:] x;
23 output Real[size(x,1) * 2] y;
24 end bar;

In contrast to most imperative programming languages, the Modelica language specifica-
tion1 does not specify any particular memory management paradigm, but just the expected
lifetime of each variable and the value semantics. Therefore, complete freedom is left for the
implementor to choose a memory management approach that satisfies the semantics of the
language.

Even though functions can be defined, the semantics of Modelica are not enough for
general-purpose programming. An extension of Modelica, called MetaModelica [21], has
been devised to make the language powerful enough for programming applications. This
language extension introduces some constructs – such as lists and exceptions – which do not
belong to the standard Modelica specification but allow for the OpenModelica compiler to
be self-hosting. MetaModelica shares many design aspects with functional languages [11] –
as a result, memory management using garbage collection is a natural design choice. This
decision also permeated into the simulation programs generated by OpenModelica, which
make use of the Boehm garbage collector even for standard Modelica models not using any
MetaModelica language construct. A recent study aims to introduce the LLVM infrastructure
into the backend of OpenModelica in order to translate both MetaModelica and Modelica into
LLVM-IR instead of C code, but the garbage-collected nature of the language implementation
has been retained [23] in order to support MetaModelica.

1 https://specification.modelica.org/maint/3.5/MLS.html

https://specification.modelica.org/maint/3.5/MLS.html


M. Scuttari, N. Camillucci, D. Cattaneo, F. Terraneo, and G. Agosta 7:5

Table 1 Calling conventions used for Modelica functions within LLVM-IR after the execution of
the discussed passes.

Input Output

Scalar By value By value

Fixed array Pointer to memory allocated by
caller [Promoted to input]

Dynamic array Pointer to memory
(dynamically) allocated by caller

Pointer to memory
(dynamically) allocated by callee

3 Proposed solution

In this section we analyze the two transformation passes that we implemented in our prototype
Modelica compiler.

The initial intermediate representation given as input to the passes has the following
characteristics: all output arrays are allocated on the heap and there are no deallocation
instructions; the input arrays are either the ones of state variables (which are placed on the
heap in order to live throughout the whole simulation), the ones returned by function calls
(thus, heap-allocated) or protected ones (which are allocated on the stack if their size is fixed,
or on the heap otherwise).

We will first focus on the output arrays and describe a transformation pass by which
some of them may become stack-allocated. We will then examine the remaining dynamically
sized arrays and determine how to correctly place deallocation instructions in order to avoid
garbage collection.

3.1 Promotion of Output Arrays

Depending on how an array is used by a function, its memory allocation strategy may change.
For example, in the C programming language, an array declared within a function is allocated
on the call stack. Therefore, the array ceases to exist automatically as soon as the function
terminates. Instead, if the array must outlive the function where it is created, it must be
either dynamically allocated on the heap, or allocated on the stack beforehand by the caller
of the function. These semantics of the C language map directly to LLVM-IR and machine
code.

In the context of Modelica, arrays outliving the function where they are declared are
always denoted as output parameters – input parameters are immutable. A compiler can
avoid generating heap allocations for such arrays by creating the corresponding allocation
on the stack before each call to the function. As a result, in the implementation, fixed size
output arrays become mutable input arrays passed by reference, a construct that cannot
be directly expressed in the Modelica language. This transformation is called promotion of
output arrays.

In order to perform this transformation, we implement a pass which identifies the output
arrays that can be potentially allocated on the stack and converts them into arguments to
the function. The promotion may be applicable or not depending on multiple factors, such
as the overall size of the array (which could lead to a stack overflow) or whether the function
is a recursive one. For the sake of simplicity, we will limit our strategy to just consider the
fixed or dynamic nature of the array, as visible in table 1.

PARMA-DITAM 2022



7:6 Efficient Memory Management for Modelica Simulations

Algorithm 1 Output-to-input promotion pass for functions.

Function promoteFunctionResults
Input: f : F unction

L← ∅
foreach ti ∈ resultTypes(f) do

if canBePromoted(ti) then
newArgument← addArgumentWithType(f, ti)
L← L ∪ {i}
allocation← getAllocInstruction(f, i)
replaceUsages(allocation, newArgument)

end
end
removeResultsFromSignature(f, L)
returnInstruction← getReturnInstruction(f)
results← {}
foreach vi ∈ arguments(returnInstruction) do

if i /∈ L then
results← append(results, vi)

end
end
setArguments(returnInstruction, results)

end

While performing this transformation, function call sites also need to be updated so that
they reflect the updated function signatures.

The transformation pass is described by algorithms 1 and 2. The promoteFunctionResults
function modifies each function signature and definition, while the promoteCallsResults
function updates the calls to those functions. Some utility methods are used within the
pseudo-code and their implementation depends on the characteristics of the intermediate
representation being used. Some of them are self-explanatory, while the remaining ones are
defined as follows:

addArgumentWithType(f, t). Append a new argument with type t to the signature of
function f and returns the newly added argument.

alloca(t). Allocate on the stack a value with type t.

canBePromoted(t). Determine whether a value with type t can be placed on the stack.

getAllocInstruction(f, i). Get the allocation instruction that is used within the body of
function f to create the result with index i. The index consists in the position of the
result among the original ones.

removeResultsFromSignature(f, I). Remove the results with the positions given by set I
from the signature of function f.

replaceUsages(op, V). Replace all the usages of the results of instruction op with the values
of set V ; the original instruction op is also eliminated.

At the end of the transformation pass all the fixed-size output arrays have become
stack-allocated by the caller. As a consequence, the only fixed-size arrays that are left on the
heap are the ones related to the state variables, which need to live throughout the whole
simulation.



M. Scuttari, N. Camillucci, D. Cattaneo, F. Terraneo, and G. Agosta 7:7

3.2 Heap Array Deallocation
As we have just seen, fixed-size arrays can be potentially always allocated on the stack.
Dynamically-sized arrays, on the contrary, must be allocated on the heap because their size
is known only at runtime. Static analysis may simplify some cases in which their size can be
inferred at compile time to be fixed, but yet the rule holds for the most generic case.

Differently from arrays placed on the stack, heap-allocated arrays are not automatically
released and thus explicit deallocations must take place. The pass we are going to describe
aims to insert such deallocations in the correct positions, so that all the arrays are deallocated
exactly once and only when they are not used anymore.

It must be noted that, since array expressions are allowed in Modelica, intermediate
values of such expressions are also arrays. These arrays might be dynamically allocated if
the size of the array operands is unknown, but after the initial allocation their size is fixed.
On the contrary, dynamic arrays declared by the programmer may require a reallocation
due to resizing at runtime. In order to implement this behaviour, the underlying buffer that
stores its content must be replaceable during the execution of the simulation. For this reason,
this last kind of arrays is represented by means of a pointer to pointer. When a reallocation
happens the new pointer is stored in such data structure, overwriting the older pointer.

However, overwriting the previous address would lead to memory leaks, as no reference
to the previously addressed memory would exist anymore. In order to avoid this issue, the
first part of this transformation pass takes care of finding the store operations overwriting
the address, and, right before each of them, place a deallocation instruction for the address
that is going to be overwritten. The first run-time deallocation would indeed be illegal as no
previous memory would have been reserved yet, but a simple check on the pointer validity is
sufficient to avoid this failure.

For what regards the temporary dynamic arrays, we have already seen how their size is
determined at runtime but yet will never change. For this reason, they are not referenced by
a pointer to a pointer. However, the deallocation must take also aliases into consideration.
An example of aliasing is subscription, which creates a reduced-rank view over the original
array but without allocating further memory.

Algorithm 3 shows the procedure to be applied in order to retrieve the list of heap-
allocated arrays and their aliases. The arrayAndAliases procedure takes the function to be
analyzed and returns the sets L and A: the former contains the SSA values representing the
heap-allocated arrays we need to handle; the latter consists in pairs of values mapping each
alias to the aliased array. Moreover, an allocation is considered as an alias of itself. In case
of nested sub-views, A maps to the view being aliased and not to the original array. Some
utility functions have also been used within the algorithm, and reported here for clarity:

isAlias(v). check if the value v is an alias for some other value.
shouldBeDeallocated(v). check if value v is heap-allocated and does not belong to the set

of arrays created by reallocations (which are already handled, as explained earlier).

The placement of the deallocation instructions takes place accordingly to function pla-
ceDeallocations of algorithm 4, which is applied to each function within the IR. The definition
of the most important utility functions leveraged within the algorithm are the following:

createDeallocationAfter(v, op). Create the deallocation instruction for value v right after
instruction op.

findCommonPostDominator(aliases). Find the block that post-dominates all the blocks in
which the values contained in the set aliases are defined. This requires the capability to
compute the dominance information regarding the blocks of the function; being this a
well known dataflow analysis [12], we will not explore its implementation details.

PARMA-DITAM 2022



7:8 Efficient Memory Management for Modelica Simulations

Algorithm 2 Output-to-input promotion pass for function calls.

Function promoteCallsResults
Input: call : Instruction

args← arguments(call)
newArgs← {}
promoted← ∅
filteredResultT ypes← {}
n← numResults(call)
foreach ti ∈ resultTypes(call) do

if canBePromoted(ti) then
newArgs← append(newArgs, alloca(ti))
promoted← promoted ∪ {i}

else
filteredResultT ypes← append(resultT ypes, ti)

end
end
args← append(args, newArgs)
newCall← createCall(callee(f), args, filteredResultT ypes))
results← {}
j ← 0
k ← 0
for i = 0, . . . n do

if i ∈ promoted then
results← append(results, newArgs[j])
j ← j + 1

else
results← append(results, result(newCall, k))
k ← k + 1

end
end
replaceUsages(call, results)

end

findLastUsageInBlock(v, b). Get the last operation within the block b that has the value v
among its arguments.

isBefore(op1, op2). Check if the operation op1 is placed before the operation op2 within
the IR; the two operations are assumed to belong to the same block.

4 Experimental Evaluation

In order to prove the correctness of our approach, we use a benchmark Modelica model
describing a series of heat exchangers operating with methanol in the gaseous phase as the
working fluid. This models makes use of functions to model the methanol properties. These
functions have been written in three different forms, leading to three different models: the
first one operates only with scalar values, the second uses arrays with fixed size, and the
third covers the more generic case of dynamically-sized arrays.

All the tests have been performed on a Linux machine with the following hardware
characteristics and software setup:

OS: Ubuntu 20.04
CPU: Intel Xeon CPU E5-2650 2.30GHz
RAM: 72 GB DDR3 2133 MHz
LLVM 13.0.0
OpenModelica v1.19.0-dev.392+g2ca59e4f7e



M. Scuttari, N. Camillucci, D. Cattaneo, F. Terraneo, and G. Agosta 7:9

Algorithm 3 Array and aliases discovery.

Function arraysAndAliases
Input: f : F unction

Output: L : Set, A : Set

L← ∅
A← ∅
foreach op ∈ operations(f) do

v = result(op)
if shouldBeDeallocated(v) then

L← L ∪ {v}
A← A ∪ {(v, v)}

else if isAlias(v) then
s← aliasedValue(v)
if ∃(a, b) ∈ A : b == s then

A← A ∪ {(s, v)}
end

end
end

end

For what regards the simulation options, all the models have been simulated using the
forward Euler method with a time step of 0.01s for a total amount of 1 000 000 steps.

4.1 LLVM-based prototype compiler

The LLVM-based prototype compiler was developed starting from an already existing one
that was used to demonstrate the limitations of current solutions [1]. A profiling system was
also introduced in order to keep track of the number of heap allocations and deallocations
executed during the simulation, together with the time spent in doing such operations. This
allowed to verify that the number of allocations is equal to the deallocations one, and thus
ensuring that no memory leak or double deallocation happens. Valgrind [18] has also been
leveraged to confirm this result, and it indeed showed the absence of definitely, indirectly or
possibly lost references.

Furthermore, we also created a custom version of our compiler leveraging the Boehm
garbage collector and we compared its performance with the original implementation. Table 2
shows the measurements for what regards the total execution time and the time spent during
the heap memory management. The values have been computed on an average of 1 000
executions.

The version without garbage collection showed a speed-up of 6.5% for what regards the
total execution time. The time spent in the heap management reported an improvement
of a factor ∼ 13. One may argue that the ∼ 2 seconds difference of the total execution
should perfectly reflect within the heap management. However, the latter does not take
into consideration the overhead of the creation and destruction of the GC-related structures,
which happen at the beginning and at the end of the simulation and thus are not captured
by the profiling of the individual allocation instructions.

Finally, the Valgrind tool has again been used to measure the peak heap-allocated memory
with and without garbage collection. No significant differences were observed, in both cases
the measurement is approximately 446 KB.

PARMA-DITAM 2022



7:10 Efficient Memory Management for Modelica Simulations

Algorithm 4 Placement of deallocation instructions.

Function placeDeallocations
Input: f : F unction

(L, A)← arraysAndAliases(f)
foreach array ∈ L do

aliases← ∅
aliasQueue← {array}
while ¬ empty(aliasQueue) do

current = popFront(aliasQueue)
foreach (a, b) ∈ A : a == current do

aliasQueue← append(aliasQueue, b)
end

end
block ← findCommonPostDominator(aliases)
lastUsage = firstOp(block)
foreach a ∈ aliases do

u = findLastUsageInBlock(a, block)
if isBefore(lastUsage, u) then

lastUsage← u

end
end
createDeallocationAfter(array, lastUsage)

end
end

Table 2 Execution times for the model with dynamically sized arrays, compiled with OpenModelica
(OM) and the Prototype LLVM-based compiler.

OpenModelica Prototype
Garbage collection Yes Yes No

Total execution time [s] 74.19 27.36 25.58
Heap management time [s] 7.23 1.77 0.13
Heap management fraction [%] 9.75 6.47 0.51

4.2 Comparison with OpenModelica

Considering the third model – that is the most interesting one, with dynamically sized arrays –
we compared the simulation generated by our prototype compiler with the one given by
OpenModelica. As in the previous section, we measured the total execution time and the
time spent in heap memory management on an average of 1 000 executions.

OpenModelica is known to be affected by some inefficencies in handling large-scale
models [7, 1, 2]. In fact, the total simulation time shows a difference of a factor ∼ 3
with respect to our compiler without garbage collection. However, also the heap memory
management shows a difference of around 9%.

For all the models we finally measured the number of heap allocations regarding the arrays
passed as input and returned as output by the functions. The allocations of the model’s
variables are not taken into consideration, as they live throughout the whole execution and
thus are not a matter of the transformation passes described in section 3. The results are
shown in table 3.



M. Scuttari, N. Camillucci, D. Cattaneo, F. Terraneo, and G. Agosta 7:11

Table 3 Number of malloc calls performed by each model when compiled by OpenModelica (OM)
and the prototype LLVM-based compiler.

OpenModelica Prototype
Garbage collection Yes Yes No

Scalar model 0 0 0
Fixed size array model 2000006 0 0
Dynamic size array model 2000006 2000000 2000000

The scalar case is trivial in both cases since functions deal only with scalar variables, both
in input and output. The second model deals with arrays of fixed size. OpenModelica allocates
all of them on the heap, while our prototype compiler takes advantage of the optimization
described in section 3.1. All the output arrays are in fact promoted to arguments and thus
allocated on the stack by the caller, together with the input ones. Finally, the model with
dynamically sized arrays can not be optimized and thus the heap allocation persist. The
slightly different number of allocations between the two compilers is given by the fact that
OpenModelica also performs some additional simulation cycles for initialization purposes,
whose details are not a concern of this document.

5 Conclusions

We introduced two optimization passes to improve the memory management within the
Modelica simulations. The first transformation consists in analyzing the signature of each
function and promoting the output arrays with fixed-size dimensions to arguments, so that
the allocation is delegated to the caller and thus the stack can be used. The second aims
to correctly place the deallocation instructions for the dynamically sized arrays, which are
instead always placed on the heap due to their nature.

We then implemented such transformations within an LLVM-based prototype compiler and
we checked their correctness by means of both an internal profiler and the external Valgrind
tool. We also modified our prototype compiler to leverage the Boehm garbage collector
instead of our new deallocation strategy. Even though the garbage collector manifested
an efficient memory management, results showed that the time overhead is not irrelevant.
Avoiding garbage collection led to a speed-up of a factor ∼ 13 for the heap management and
an overall 6% reduction of the total execution time.

Finally, we compared the simulations generated by our prototype compiler with the ones
generated by OpenModelica. As expected, the output arrays promotion for fixed-size arrays
took place and led to zero heap allocations, while OpenModelica showed the same number
of allocations in both the fixed and dynamically sized arrays scenarios. For what regards
the performance measurement, we focused our attention on a model with dynamically sized
arrays – that is where we expected the biggest improvement. We registered a 9% reduction
in the time spent in heap memory management and a speed-up of factor ∼ 3 for the whole
simulation.

While the work presented in this paper effectively handles memory management in
Modelica compilers, there are several other key aspects for improving the performance of
both the compiler and the generated code. In particular, future directions for our work aim
primarily at extending and improving our prototype compiler, with the goal of efficiently
handling Modelica equation arrays [1].

PARMA-DITAM 2022



7:12 Efficient Memory Management for Modelica Simulations

References
1 Giovanni Agosta, Emanuele Baldino, Francesco Casella, Stefano Cherubin, Alberto Leva, and

Federico Terraneo. Towards a high-performance modelica compiler. In Proceedings of the 13th
International Modelica Conference, pages 313–320, 2019. doi:10.3384/ecp19157313.

2 Giovanni Agosta, Francesco Casella, Stefano Cherubin, Alberto Leva, and Federico Terraneo.
Towards a benchmark suite for high-performance Modelica compilers. In 9th International
Workshop on Equation-Based Object-Oriented Modeling Languages and Tools, November 2019.
doi:10.1145/3365984.3365988.

3 Johan Åkesson, Magnus Gäfvert, and Hubertus Tummescheit. Jmodelica – an open source
platform for optimization of modelica models. In 6th Vienna International Conference on
Mathematical Modelling, 2009.

4 Mats Andersson. An object-oriented language for model representation. In Proc. 2nd IEEE
Control Systems Society Workshop on Computer-Aided Control System Design, pages 8–15,
Tampa, FL, USA, 1989.

5 Barbara Rita Barricelli, Elena Casiraghi, and Daniela Fogli. A survey on digital twin:
Definitions, characteristics, applications, and design implications. IEEE Access, 7:167653–
167671, 2019. doi:10.1109/ACCESS.2019.2953499.

6 Paul I. Barton and Constantinos C. Pantelides. Modeling of combined discrete/continuous
processes. AIChE journal, 40(6):966–979, 1994.

7 Francesco Casella. Simulation of large-scale models in modelica: State of the art and future
perspectives. In 11th Int’l Modelica Conference, pages 459–468, 2015.

8 Francesco Casella, Martin Otter, Katrin Proelss, Christoph Richter, and Hubertus Tummes-
cheit. The modelica fluid and media library for modeling of incompressible and compressible
thermo-fluid pipe networks. In Proceedings of the 5th international modelica conference, pages
631–640, 2006.

9 Hilding Elmqvist. DYMOLA – a structured model language for large continuous systems. In
Proc. Summer Computer Simulation Conference, Toronto, Canada, 1979.

10 Peter Fritzson, Peter Aronsson, Adrian Pop, Hakan Lundvall, Kaj Nystrom, Levon Saldamli,
David Broman, and Anders Sandholm. Openmodelica-a free open-source environment for
system modeling, simulation, and teaching. In 2006 IEEE Conf on Computer Aided Control
System Design, 2006 IEEE Int’l Conf on Control Applications, 2006 IEEE Int’l Sym on
Intelligent Control, pages 1588–1595. IEEE, 2006.

11 Peter Fritzson, Adrian Pop, Adeel Asghar, Bernhard Bachmann, Willi Braun, Robert Braun,
Lena Buffoni, Francesco Casella, Rodrigo Castro, Alejandro Danós, et al. The openmodelica
integrated modeling, simulation and optimization environment. In Proceedings of the 1st
American Modelica Conference, pages 207–220. Modelica Association, 2018.

12 John B Kam and Jeffrey D Ullman. Global data flow analysis and iterative algorithms. Journal
of the ACM (JACM), 23(1):158–171, 1976.

13 Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong program analysis
& transformation. In International Symposium on Code Generation and Optimization, 2004.
CGO 2004., pages 75–86. IEEE, 2004.

14 Oliver Lenord, Martin Otter, Christoff Bürger, Michael Hussmann, Pierre Le Bihan, Jörg
Niere, Andreas Pfeiffer, Robert Reicherdt, and Kai Werther. efmi: An open standard for
physical models in embedded software. In Proceedings of 14th Modelica Conference, 2021.
doi:10.3384/ecp2118157.

15 Kendrik Yan Hong Lim, Pai Zheng, and Chun-Hsien Chen. A state-of-the-art survey of
digital twin: techniques, engineering product lifecycle management and business innovation
perspectives. Journal of Intelligent Manufacturing, 31(6):1313–1337, 2020.

16 Mengnan Liu, Shuiliang Fang, Huiyue Dong, and Cunzhi Xu. Review of digital twin about
concepts, technologies, and industrial applications. Journal of Manufacturing Systems, 58:346–
361, 2021. Digital Twin towards Smart Manufacturing and Industry 4.0. doi:10.1016/j.jmsy.
2020.06.017.

https://doi.org/10.3384/ecp19157313
https://doi.org/10.1145/3365984.3365988
https://doi.org/10.1109/ACCESS.2019.2953499
https://doi.org/10.3384/ecp2118157
https://doi.org/10.1016/j.jmsy.2020.06.017
https://doi.org/10.1016/j.jmsy.2020.06.017


M. Scuttari, N. Camillucci, D. Cattaneo, F. Terraneo, and G. Agosta 7:13

17 Sven Erik Mattsson, Hilding Elmqvist, and Martin Otter. Physical system modeling with
modelica. Control Engineering Practice, 6(4):501–510, 1998.

18 Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight dynamic
binary instrumentation. ACM Sigplan notices, 42(6):89–100, 2007.

19 Arunkumar Palanisamy, Adrian Pop, Martin Sjölund, and Peter Fritzson. Modelica based
parser generator with good error handling. In Proceedings of the 10th International Modelica
Conference; March 10-12; 2014; Lund; Sweden. number 096, pages 567–575. Linköping
University Electronic Press, 2014.

20 Adrian Pop, Per Östlund, Francesco Casella, Martin Sjölund, Rüdiger Franke, et al. A new
openmodelica compiler high performance frontend. In 13th International Modelica Conference,
volume 157, pages 689–698, 2019.

21 Martin Sjölund, Peter Fritzson, and Adrian Pop. Bootstrapping a modelica compiler aiming
at modelica 4. In 8th Int’l Modelica Conference, Dresden, Germany, pages 510–521. Linköping
University Electronic Press, 2011.

22 The Mathworks, Inc. Simscape documentation. https://mathworks.com/help/physmod/
simscape/, 2022 (latest version).

23 John Tinnerholm. An llvm backend for the open modelica compiler, 2019.

PARMA-DITAM 2022

https://mathworks.com/help/physmod/simscape/
https://mathworks.com/help/physmod/simscape/

	1 Introduction
	2 Background
	3 Proposed solution
	3.1 Promotion of Output Arrays
	3.2 Heap Array Deallocation

	4 Experimental Evaluation
	4.1 LLVM-based prototype compiler
	4.2 Comparison with OpenModelica

	5 Conclusions

