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Abstract
By supporting decentralized applications (DApps), modern blockchains have become the technology
of choice for the Web3, a decentralized way for people to interact with each other. As the popularity
of DApps is growing, the challenge is now to allocate shard or subnetwork resources to face the
associated demand of individual DApps. Unfortunately, most sharding proposals are inherently
static as they cannot be adjusted at runtime. Given that blockchains are expected to run for years
without interruption, these proposals are insufficient to cope with the upcoming demand.

In this paper, we present dynamic blockchain sharding, a new way to create and close shards
on-demand, and adjust their size at runtime without requiring to hard fork (i.e., creating duplicated
instances of the same blockchain). The novel idea is to reconfigure sharding through dedicated smart
contract invocations: not only does it strengthen the security of the sharding reconfiguration, it
also makes it inherently transparent as any other blockchain data. Similarly to classic sharding,
our protocol relies on randomness to cope with shard-takeover attacks and on rotating nodes to
cope with the bribery of a slowly-adaptive adversary. By contrast, however, our protocol is ideally
suited for open networks as it does not require fully synchronous communications. To demonstrate
its efficiency, we deploy it in 10 countries over 5 continents and demonstrate that its performance
increases quasi-linearly with the number of shards as it reaches close to 14,000 TPS on only 8 shards.
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1 Introduction

Blockchains, which originally aimed at enabling transparent asset transfers between
permissionless individuals [23], has become the de-facto technology for the new version
of the World Wide Web, called Web3. In January 2022 alone, the total volume of Web3
sales through decentralized applications (DApps) represented $16B [19]. These DApps
are an appealing alternative to centralized applications, because they offer a transparent
execution on secure data. Unfortunately, DApps create congestions on popular smart
contract blockchains, like Ethereum [32]. The key idea to reduce this congestion is called
sharding, which consists of splitting the workload across disjoint set of computers called
shards, subnetworks or zones. In the context of DApps, sharding typically means executing
distinct sets of DApps or smart contract functions on different sets of computers [14].

Unfortunately, the existing blockchain sharding protocols (Table 1, later detailed in
Section 5) suffer from limitations. In fact, they are typically static: once the blockchain
is spawned, there is no way to change the number of shards it uses. The problem is that
blockchains are intended to run for a long time (e.g., Bitcoin [23] has been running for
more than a decade without interruption) whereas new DApps are continuously uploaded to
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6:2 Dynamic Blockchain Sharding

Table 1 Comparison of sharded blockchains: the dynamism ranges from low, as indicated by
, to high, as indicated by , a checkmark indicates that the property holds while a cross

indicates that that the property does not hold and a dash “–” indicates that it remains unknown.

Sharded Transparency Dynamism Shard number Shard size No synchrony
blockchains dynamism dynamism needed
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OmniLedger [20]
RapidChain [33]
SSChain [6]

D
A

pp
s

Avalanche [27]
ChainSpace [1]
Cosmos [21]
Eth2 [31] –
Polkadot [5]
Zilliqa [29]
This work

blockchains at runtime. The popularity of these DApps is heterogeneous and a new popular
DApp may severly increase the number of requests to a particular smart contract, just like
the CryptoKitties DApp that congested the Ethereum network [16]. Ideally, a sharding
protocol should allow the blockchain governance to resize the shards and adjust the shard
number on-demand without hard forking, i.e., creating a duplicated instance of the same
blockchain. This would allow to seemlessly migrate DApps from one shard to a newly created
one, hence provisioning more resources for popular DApps, grouping less demanded DApps
on fewer shards, or offering more resources (e.g., CPU, storage) to a particularly congested
shard.

Another problem is that most sharding protocols are opaque (cf. 2nd column of Table 1):
there is no way to securely access their shard configuration. Even if a sharding protocol
was made dynamic by offering the users to change the number of shards at runtime, there
would be no secure way for these users to confirm the changes took effect. In some cases,
sharded blockchains offer a website where users can find information about the current shard
configuration. For example, Cosmos [21] offers a website to observe a map of its zones [25].
However, such a web service is typically centralized and prone to a single point of failure,
hence defeating the purpose of using a distributed ledger for security. First, this website could
simply be hacked, conveying a misleading sharding configuration. Second, the traffic towards
the website could be easily redirected with a network attack [12]. Finally, users could expose
themselves to phishing attacks by accessing a hacked copy of the website instead of the real
one. Such attacks are becoming frequent to fool blockchain users about the information they
access online [4].

In this paper, we propose a new dynamic blockchain sharding protocol. As it is intended
to operate in open networks, it does not assume synchrony but partial synchrony [11], in
that the bound on the message delays is unknown. This protocol is made transparent by
exploiting the blockchain itself: a minimum number of users can (i) create, (ii) close or
(iii) adjust the size of a shard by invoking functions of a smart contract residing on the
default shard (called mainchain) within a limited time window (if the network asynchrony
prevents them from succeeding, then they retry with a larger time window until success).
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As all smart contract invocations are logged to the secure storage of the distributed ledger,
the shard configuration is securely visible from the world state. Similar to Eth2 [14], a new
shard is created as a shard chain provisioned by the assets deposited on the mainchain by its
users. The most important challenge we had to solve was for the network topology to adapt
based on the output of the sharding smart contract: the reconfiguration function emits an
event that triggers the spawning, shutdown and restart of some of the blockchain machines.

Like other sharding approaches we provide randomness in shard creation to prevent shard
takeovers by malicious nodes. We also present a shard committee rotation approach to
mitigate bribery by a slowly-adaptive adversary and a mapping of transactions to shards.
Finally, we evaluate our solution on a scalable blockchain called CollaChain [30], which
combines DBFT [7], a formally verified [3] consensus protocol, that makes CollaChain fork
free; and a Scalable version of the Ethereum Virtual Machine, called SEVM, making it
compatible with the largest ecosystem of DApps. Our results confirm that our sharding
protocol leads to quasi-linear speedup, that the performance of shards can benefit from a
growing number of node resources, and that our mainchain does not act as a performance
bottleneck. To summarize, our contribution is threefold:

We introduce dynamic blockchain sharding, the ability for a blockchain to reconfigure the
number of its shards and the size of each of its shards without disrupting the blockchain
service. This ability is particularly appealing to cope with the growing of DApps over
recent blockchains.
We propose a dynamic sharding solution that creates a new shard, adjusts a shard, closes
a shard, and rotates the shard participants. We implement these algorithms as inherently
transparent smart contracts that emit events to replace the current sharding configuration
at the network level.
We demonstrate the feasibility of our approach by implementing our algorithms within a
recent scalable blockchain that we deploy in 10 countries across all 5 continents. The
experimental results confirm that the performance scales quasi-linearly with the number
of shards and demonstrate that the system can achieve close to 14,000 TPS with only 8
shards.

The rest of this paper is ordered as follows: In Section 2 we provide the model and
preliminary definitions. In Section 3, we present our dynamic sharding protocol. In Section 4,
we illustrate the performance of our solution when deployed at large scale. In Section 5, we
discuss the related work. In Section 6, we conclude.

2 Preliminaries

2.1 Blockchain
A blockchain is a decentralized, distributed system that processes user transactions and
logs the transactions to an auditable and cryptographically secure ledger. Each participant
keeps a replicated state of the system, and all validator/miner participants require to reach
consensus to agree on the set of transactions to be executed. The agreed upon transactions
reside in the body of a block data structure and each block has a pointer to the previous
block building a chain of blocks known as the blockchain. The header of a block structure
consists of a root of a merkel tree known as the state root. The state root represents the state
of the blockchain at a specific block. Each participant at block N will have the same state
root. By traversing through the Merkle tree from the state root in a block, the accounts,
balances, contract data and contract state can be retrieved. A blockchain committee is a set
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of blockchain participants that execute consensus separately from the rest of the network. In
this work, each blockchain committee maintains its own state and process a separate set of
transactions.

2.2 Model
In our system model, we assume our system consists of n participants. Each participant
controls a SEVM and Consensus node in Collachain [30]. Participants join the network in a
permission-less manner as outlined in Section 2.3 to tolerate Sybil attacks. From the sample
of joined nodes, a group of nodes are selected through a random mechanism (Section 2.3)
to the main chain. The set of nodes that execute consensus on the mainchain are termed
the mainchain committee. Mainchain comittee is tasked with administrative tasks of the
network such as shard creation, shard committee rotation, and dynamic adjustment of the
number of shards and the nodes in a shard. A mainchain can create one or many shards
from participants, we term as validator candidates. Each shard keeps separate state, and
transactions and is tasked with executing a unique DApp. The shard committee (i.e. the set
of validators in the shard) rotates per epoch which signifies a time t that is sufficiently small
to avoid shard takeover by a slowly-adaptive adversary (Section 2.2).

Our network model assumes honest nodes in the network are well-connected and the
communication channels between honest nodes are partially synchronous, i.e., if honest nodes
broadcast a message, all honest nodes receive it after an unknown time T and a bounded
maximum delay of δ. While various sharded blockchains typically assume a stronger property,
called synchrony [11], where the upper bound on the delay of every message is known, note
that synchrony is typically difficult to guarantee and can easily be violated in an open
network like the Internet [12], which has led to numerous double spending attacks against
blockchains [24, 13].

In our threat model, out of n participants, we assume f are byzantine such that f < n/4.
This is to ensure that a committee has k nodes such that fk < k/3 with high probability,
similar to previous work [20, 22]. Note that n and k can vary at run-time due to the dynamism
to our approach. Only 1/3 of the mainchain nodes can be byzantine. The byzantine nodes can
behave arbitrarily or collude to attack the system. All correct nodes adhere to the presented
protocol (Section 3). In order to cope with a Sybil attack, whereby an adversary forges
fake identifies to outnumber significantly the participants identities, we use a proof-of-stake
(PoS) mechanism as described in the subsequent section. A bribery consists of an adversary
incentivizing a committee participant to join its coalition. A shard-takeover attack consists
of an adversary gaining control over sufficiently many nodes within a committee to prevent
consensus from being reached. As explained below we assume a slowly-adaptive adversary
that can bribe all nodes but only progressively (not instantaneouly) [20, 33] and we cope
with this attack by proposing a rotating committee.

2.3 Bootstrapping
We consider a permissionless model. Any participant can join or leave the network without
permission. Our membership protocol is similar to Algorand [18] where participants that
require to be a part of consensus needs to stake some coins. A weight is assigned to each
joining participant based on their stake. Consequently, a subset of participants are selected
to perform consensus on the mainchain based on a random beacon and the weights of the
nodes. This helps prevent Sybil attacks. To mitigate bribery take-overs, the main chain
committee rotates periodically and the size of the main chain is changeable in a similar
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Figure 1 An example of the consecutive steps (from left to right) of a dynamic sharding execution
where 2 shards are created, one of these shards is closed and shard nodes are rotated.

approach to how we change the shard size (Algorithm 1 line 15), which allows new nodes to
join the main chain committee if a threshold of mainchain participants agree. We do not
implement our membership protocol in this paper but leave it as a part of future work.

3 The Dynamic Sharding Protocol

In this section, we present how the dynamic sharding protocol adjusts the size and number
of shards, and how it rotates shard nodes.

3.1 Overview
Figure 1 depicts a high level example of a dynamic blockchain sharding execution where
smart contract invocations stored in blocks reconfigure the sharding. Initially, there are 25
participants in the mainchain with a single genesis block, as depicted on the 1st column,
they decide the shard size. Then, external participants invoke the Join(·) function to join a
new shard (cf. 2nd column). When enough of them have joined, the CreateShard(·) function
is invoked on the mainchain smart contract and creates a new (blue) shard (cf. 3th column).
The resulting function invocation is stored as a transaction of a new block of the mainchain.
A new (blue) shard chain, maintained by the shard is created: it is linked to the block of
the mainchain where its creation invocation is stored. New participants invokes the Join()
function as depicted in the middle column. After that, the CreateShard(·) function creates
a new (green) shard while the old (blue) shard invokes the CloseShard(·) function, which
reports the blue shard history to a new block of the mainchain (cf. 4th column). Finally, the
new shard rotates its participants by executing the Replace(·) function whose invocation gets
stored in a new block.

3.2 Shard creation
The shard creation is presented in Algorithm 1 and is deployed on the mainchain as a smart
contract during the bootstrap of the blockchain. The variable admins keeps track of a set
of mainchain participants and NumberOfAdmins refers to the number of participants in the
mainchain.

The shard creation smart contract is initialized with a set of data structures. The variable
event refers to a broadcast message sent to all blockchain nodes in a shard. The event has a
name (e.g., ShardNodes) and values that it broadcast (i.e. ShardNodes broadcasts an unsigned
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Algorithm 1 The smart contract that triggers the creation of a new shard.

1: Initialization:
2: event ShardNodes(uint, string[], address[])
3: uint shardSize
4: uint NumAccounts
5: mapping (string→ string[])shard
6: mapping (address→ bool))called
7: mapping (string→ bool))voted
8: mapping (uint→ address[])accounts
9: mapping (uint→ uint)SizeOfShard

10: mapping (uint→ uint)NumberOfShards
11: mapping (uint→ bool)Created
12: admins : the set of addresses of admins
13: NumberOfAdmins = | admins |
14:
15: SetSize(val, NShards): ▷ threshold of admins set shard size, number & accounts/shard
16: if SenderAddr ∈ admins then ▷ if function invoker is an admin
17: SizeOfShard[val]++
18: NumberOfShards[NShards]++
19: if NumberOfShards[Shards] == (2 ∗NumberOfAdmins/3-1 ) &

SizeOfShard[val] == (2 ∗NumberOfAdmins/3-1 ) then ▷ if shard size, number, accounts agreed
20: shardSize = val
21: NumShards = NShards
22:
23: JoinShard(ipAddr): ▷ when a node wants to join a shard as validator
24: if called[senderAddr ] == false & voted[ipAddr ] == false then ▷ avoid assigning IP twice to shard
25: called[senderAddr ] = true
26: voted[ipAddr ] = true
27: random = RANDContractaddr .GetRand() ▷ Fetch random number from RANDAO
28: shard[random mod (NumShards)] ∪ ipAddr
29: accounts[random mod NumShards] ∪ senderAddr
30: if length(shard[random mod (NumShards)]) == shardSize & Created[tag] == false then
31: CreateShard(random mod (NumShards),shard[random mod (NumShards)],
32: accounts[random mod (NumShards))
33: length(shard[random mod (NumShards)]) = 0 ▷ reset the shard tag value to 0
34: length(accounts[random mod (NumShards)]) = 0 ▷ reset the shard tag value to 0
35:
36: ClosedShards(tag): ▷ admin calls this if received n-t COMMITS for close from shard chain
37: Closed[tag] = true
38:
39: CreateShard(tag, []shard), []accounts):
40: emit ShardNodes(tag, shard, accounts) ▷ emit ip addresses & accounts of shard nodes, triggers shard start
41: Created[tag] = true ▷ Assign shard as created

integer, a string array and an address array). A mapping is a data structure mapping a key
to a value. The bool is a boolean data type and | admins | is the set containing the wallet
addresses of admin nodes.

Admins of the main chain start by setting the size of shards and the number of shards
(Algorithm 1 line 15). Note that a threshold of admins should agree to the same settings
for these values to be set (Algorithm 1 line 19), and a threshold of admins can again agree
to change these values during run time making the sharding dynamic. Note that unlike
any other sharding scheme, we provide the capability to change shard size and number of
shards even when the number of nodes in the network remains constant (no nodes joining or
leaving).

The validator candidates invoke the JoinShard function and parse their IP address
(Algorithm 1, line 23) in an attempt to join a shard. Note that, at line 24 of Algorithm 1,
prevents validator candidates from joining multiple shards as well as two validator
candidates from joining shards with the same IP address. Consequently, the shard creation
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contract fetches a random number random from a verifiable random number generation
contract (Algorithm 1, line 27) taken out of our system. (We rely here on the Randao
implementation [26] of a random number generator that is expected to be used in Ethereum 2.0
as an example only. Randao is synchronous but a partially-synchronous random number
generation solution can easily be used instead [9]).

Based on random, the IP address of a validator candidate is assigned to a random
key of a shard mapping (Algorithm 1, line 28). Deriving the key values as: random
mod NumShards ensures that the IP address of a candidate is assigned a shard tag x such
that x ∈ {0, 1, ..., NumShards}.

Similarly, wallet address of the validator candidate is also added to a random key
corresponding to a shard tag of an account mapping.

We underscore that NumShards can be adjusted by admins to accommodate more, or less
shards in the system. If for a particular shard key/tag the maximum number of nodes (i.e.,
ShardSize) that could be assigned is complete, a CreateShard function is invoked, parsing an
array of validator candidates and validator accounts for a shard tag (Algorithm 1, line 32).

The CreateShard function, emits a smart contract event ShardNodes (i.e., a broadcast to
all participants) with the validator IP addresses and accounts that should be in a particular
shard tag (Algorithm 1, line 32).

Validator candidates upon receiving ShardNodes event verifies its IP address is included
in the event. If included, the validator candidates reconfigure and form a validator committee
for a shard with a specific tag. Details of this process is outlined in Algorithm 2.

Algorithm 2 The algorithm executed by a participant to create a new shard upon reception of
the smart contract creation event.

1: Upon receiving a smart contract event:
2: event ← subscribe(CreateContractAddr) ▷ all nodes subscribe to events from shard create smart contract
3: if localIP ∈ event then ▷ If local IP is in event
4: tag, shard, accounts ← extract(event) ▷ extract values from event
5: stop(node)
6: editGenesis(accounts) ▷ Edit genesis with accounts
7: connectPeers(shard) ▷ connect with other members of the shard
8: start(node)

3.3 Shard closing
Shard closing is a procedure that helps prevent resource wastage. If a shard is not processing
many transactions or is idle for a while a shard nodes can decide to close the shard. This is
a part of the extended dynamism our protocol provides.

Algorithm 3 presents the smart contract algorithm for closing a blockchain shard in
a partially synchronous manner. The variable Nv is the number of nodes that the shard
contains.

Firstly, once a shard node decides to close the shard it is a part of, it invokes the CloseShard
(Algorithm 3 line 10) parsing the state root the node prefers to close at. Algorithm 3 line 11-
line 12, ignores if a state root is parsed to the function by participants more than once.
Otherwise, the threshold is increased (Algorithm 3, line 14), which indicates the number
of participants that have parsed a specific state root to the CloseShard function. At line 15
of Algorithm 3, if 2 · N/3 + 1 nodes s.t. N is the total number of participants in the shard
have parsed the same state root to CloseShard, then a commit event is emmitted with the
ShardTag. Otherwise, the parsed state root to the CloseShard function is emitted in a Bs

event.
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Algorithm 3 The smart contract that triggers the closing of a new shard.

1: Initialization::
2: event Bs(string y)
3: event COMMIT(string x, string m)
4: mapping(string→ uint) threshold
5: uint Nv
6: bool reached
7: mapping(bytes32→ string) called;
8: Nv = val ▷ The number of nodes in a shard from Algorithm 1
9: ShardTag = tag ▷ tag of shard generated– based on RANDAO in Algorithm 1

▷ nodes call CloseShard parsing the state root
10: CloseShard(stateroot):
11: if called[hash(SenderAddr, stateroot)] == true then ▷ SenderAddr parsed stateroot before
12: return ▷ avoids double voting
13: called[hash(SenderAddr, stateroot)] = true ▷ ’SenderAddr’ parsed stateroot
14: threshold[stateroot] = threshold[stateroot] + 1 ▷ number of nodes parsed specific ’stateroot’
15: if threshold[stateroot] == 2*Nv/3+1 & !reached then ▷ state root first reaching threshold
16: reached = true
17: emit COMMIT(stateroot, ”COMMIT”, ShardTag) ▷ emits a commit event with the stateroot
18: emit Bs(stateroot) ▷ emits event with the parsed stateroot

Algorithm 4 The algorithm executed by a participant to close a shard upon reception of the
smart contract closure event.

1: Upon receiving a smart contract event:
2: event← subscribe(CloseContractAddr) ▷ all nodes subscribe to closing smart contract
3: if contains(event, commit) then ▷ smart contract event contain the “COMMIT” string
4: number = getCurrentBlockNumber()
5: for i = 0; i < number ; i++ do
6: block ← getBlock(i)
7: if block.stateroot = event.stateroot then
8: Close(block.number) ▷ parse closing block number to sync balances algo
9: exit() ▷ exit code

10: else
11: if nodeHas(event.stateroot) then ▷ If node has same state root
12: closeContractAddr .CloseShard(event.stateroot) ▷ pass stateroot to SC
13: else
14: pending.push(event.stateroot) ▷ push the stateroot to a pending array
15: Check()

16: Check(): ▷ Do in parallel
17: for i=0; i < length(pending); i++ do
18: if nodehas(pending[i]) then
19: CloseContractAddr .CloseShard(pending[i]) ▷ parse stateroot to smart contract

Algorithm 4 presents the execution at a shard participant when either a commit or a Bs

smart contract event is received from the shard close smart contract algorithm (Algorithm 3).
A shard participant subscribes to the close shard smart contract in its state. Upon

receiving a smart contract event from this smart contract (CloseContractAddr) at the shard
node, the event is filtered. Consequently, the shard participant checks if the event is a
commit event (i.e., whether it contains the keyword commit) at Algorithm 4 line 3. If this
condition is met, the current block number (Algorithm 4 line 4) of the participant is retrieved
and the state of the shard participant is traversed from the 0th block to the current block to
find the block number that contains the state root. If a block exists with the received state
root in the shard node, it decides to parse the block number to a Close function (Algorithm 4
line 8) shown in Algorithm 5 and exits.

If the event is not of type commit but the shard participant has the state root contained
in the event (Algorithm 4 line 11), the participant invokes the CloseShard function in the
Close shard smart contract parsing the state root. If the event is not of types commit and
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the shard node does not have the state root received, it is pushed to a pending array and
kept (Algorithm 4 line 14), in case the shard participant sees the state root sometime in the
future. In Algorithm 4 line 16, a Check function concurrently and repeatedly checks, if the
shard node has the pending state root. The CloseShard function is invoked parsing the state
root if the state root is found (Algorithm 4 line 19).

Algorithm 5 Shard chain participant Send Closing Account Balances to main chain.

1: Initialization:
2: A is the set of account addresses in the shard
3: Account(address, balance) ▷ A tuple of address and balance
4: SA is the set of Account(address, balance) tuples

5: Close(BNumber): ▷ parse block number at which the shard should close
6: for a ∈ A do
7: b ← getBalance(a, BNumber) ▷ Balance of account a at closing block
8: SA ∪Account(a, b)
9: Broadcast(SA, ShardTag) ▷ Broadcast to main chain nodes

10: stop(shardNode)

Algorithm 5 executes at each shard participant and retrieves balances of all accounts at
the block number that the shard closes (Algorithm 4 line 8) and broadcasts it and the shard
tag to the main chain participants (Algorithm 5 line 9). Note that this broadcast is a reliable
broadcast and waits for an ack before the shard participants stop in the subsequent line.

Algorithm 6 Syncing of balance at the main chain from shard chains .

1: Initialization:
2: threshold = 2N/3 + 1 s.t. N is the total number of shard chain nodes
3: mapping (bytes32 → uint) count

4: Receive(SA), ShardTag: ▷ Receive Account tuple set
5: count[hash(SA)] ← count[hash(SA)] + 1 ▷ times specific account tuple set received
6: if count[hash(SA)] == threshold then ▷ If threshold of same SA received
7: CreateContractAddr .ClosedShard(ShardTag)
8: stop(node)
9: editGenesis(SA) ▷ Edit the genesis, adding accounts and balances tuple set

10: start(node)

A main chain participant upon receiving the tuple set of accounts and balances SA

from shard participants, and the shard tag, executes Algorithm 6. Upon receiving SA, the
algorithm keeps count of the number of unique SA sets received (Algorithm 6 line 5). If
2 · N/3 + 1 number of the same SA set is received s.t. N is the number of participants in the
closing shard, the mainchain node invokes the ClosedShard function in Algorithm 1 to set
the shard with the specific tag as closed. Consequently, the main chain participants stop
(Algorithm 6 line 8), edits the genesis adding the new accounts and balances (Algorithm 6
line 9) and restarts (Algorithm 6 line 10). This way, the mainchain participants are synced
with the accounts and balances of the shard chain. Note that, syncing accounts and balances
from multiple shard chains upon shard closing does not affect the consistency of the state in
the main chain since accounts in each shard are disjoint.

3.4 Shard committee rotation
A shard with a particular tag remains active once it is created until it is closed. There is a
risk of participants being bribed by a slowly-adaptive adversary while a shard is active. If
sufficiently many participants in a shard committee are bribed this way (at least 1/3), there is
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a risk of shard takeover. To mitigate this risk, we propose a shard committee rotation protocol
that is part of the shard creation smart contract (Algorithm 1) but presented separately
below for clarity. We consider an epoch as a specific time t where a shard committee processes
transactions. At every t interval, all correct shard participants performs committee rotation
correctly. Note that the number of correct nodes in a shard is greater than 2Nv/3.

Algorithm 1 Extension Shard committee rotation algorithm, a part of shard creation smart
contract.

42: Initialization::
43: mapping (string→ uint) ReplaceIpInvoked
44: mapping (address→ uint) ReplaceAddressInvoked

45: Replace(ipAddr , tag): ▷ Shard node parses its Ip address
46: ReplaceIpInvoked[ipAddr ]++
47: ReplaceAddressInvoked[senderAddr ]++
48: if ReplaceIpInvoked[ipAddr ] > 2 ·Nv/3 & ReplaceAddressInvoked[senderAddr ] > 2 ·Nv/3 then
49: called[senderAddr ] = false
50: voted[ipAddr ] = false
51: Created[tag] = false
52: JoinShard(ipAddr) ▷ Invoke JoinShard in Algorithm 1

The committee rotation starts with shard participants invoking Replace in the Algorithm 1
Extension at line 45. Each correct shard participant parses the IP address of each of its
committee members and their shard tag simultaneously to the Replace function. If a particular
IP address and sender address has been used for the invocation 2 · Nv/3 times, the called
and voted mappings are set to false for the corresponding IP address and sender address.
Consequently, the Create[tag] is set to false and the JoinShard function is invoked parsing
the IP address. The JoinShard function ensures shard participants are assigned to new
shard committees following the same process of shard creation, that is, rotating the shards
committees every epoch. Note at the end of an epoch before the committee is rotated, the
mainchain participants can adjust the number of shards and the number of members per
shard parameters according to the workload, which will change the number of shards and
the nodes per shard, making our sharding approach dynamic.

3.5 Transaction assignment
In a web-scale blockchain that we foresee, each DApp executes on at most one shard. This
concept is known as application or service-oriented sharding [17]. For example, we would
have a Twitter DApp on one shard, a Youtube DApp on another shard. Each client sends
requests to the shard that executes their required DApp. Each shard tag and the services
they execute will be made available publicly so the clients can connect to the shard they
prefer to send their transactions. Due to the service-oriented nature of sharding the state
of each shard is disjoint, hence state consistency is not affected due to data migrations
happening from shard closing and shard rotation of multiple shards. Also, due to the shard
independence there is no need for cross-shard transactions. We do not present our own
cross-sharding protocol and it is out of the scope of this paper.

3.6 Availability
Committee rotation in every epoch is essential to tolerate a slowly-adaptive adversary.
However, frequent changes of committees is a challenge when the state is sharded. A new
shard committee, needs to sync the state from a previous shard committee, to service the
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DApps for a particular shard tag. This syncing process involves downloading the entire
blockchain from previous nodes and is an expensive task, which is known to bottleneck
performance and affect the availability of shard nodes for transaction processing [6]. Since
our sharding approach is byzantine fault tolerant downloading the latest state would suffice
by querying f + 1 previous shard committee members. There is no need to download the
entire state history (i.e. snapshots) nor the entire block history. As such, we provide better
availability than some sharding approaches that shard the state as well [20].

3.7 Proof sketches
The first lemma shows that each shard contains less than Nv/3 byzantine participants with
high probability. This is key to guarantee agreement among each shard to guarantee that
the view of the blockchain is consistent across all replicas. For simplicity in the analysis,
we assume that the shard participants correspond to a sample of Nv participants taken
uniformly at random among the whole set of n participants and we reuse the same reasoning
as in [22].

▶ Lemma 1. In each shard of Nv participants, there are less than Nv/3 byzantine participants
with high probability.

Proof. By assumption we return a participant taken uniformly at random among all n

participants. Consider each of this event as a Bernoulli trial such that a random variable Xi

is 1 if the returned participant is correct and 0 if it is byzantine. Let ρ be the portion of
byzantine participants. Because there are at most f < n/4 byzantine participants among
the initial n participants, we have ρ < 1/4.

Pr[Xi = 1] = p = (n−ρ)
n ,

Pr[Xi = 0] = 1 − p = ρ
n .

The random variable X =
∑Nv

i=1 Xi thus follows a binomial distribution and Pr[X = k] =(
Nv

k

)
ρNv−k(1 − ρ)k, hence we can derive the probability Pr[X ≤ 2Nv/3] of creating a shard

with less than 2/3 of correct participants:

Pr[X ≤ 2Nv/3] =
2Nv/3∑

k=0

(
Nv

k

)
ρNv−k(1 − ρ)k.

As this probability decreases exponentially fast with Nv there exists a parameter λ and
a constant n0 for which Pr[X ≤ 2Nv/3] ≤ 2−λ for all Nv ≥ n0. As a result, each shard
contains at most ⌈Nv/3⌉ − 1 byzantine participants with high probability, which concludes
the proof. ◀

Given Lemma 1 and that our protocol relies on the DBFT [7] consensus protocol, which
is resilient optimal, we know that participants agree when less than Nv/3 are byzantine.
Hence each time a new block is added to a shard that did not fail, then the shard remains
consistent with high probability. As a result, the transparent access to sharding information
remains guaranteed. An important remark is that the proof of Lemma 1 relies on having
Nv ≥ n0, however, for the sake of the empirical analysis we choose Nv relatively small (up
to 60 machines) in Section 4 to limit the cost of our AWS experiments.

▶ Lemma 2. If 2 · Nv/3 + 1 of the participants of shard s invoke its CloseShard() function
with the same argument, then the shard s eventually closes.
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Figure 2 Throughput per shard. Figure 3 Linear increase in throughput
with increasing number of shards.

Proof. The state root at which a shard participant wishes to close the shard is received by
all correct participants in the shard by the Bs event (Algorithm 3, line 18) since the network
is partially synchronous. Also, if a participant agrees to close the shard at a particular state
root after seeing the state root event, they will either have that state root in their history
or will eventually have it since consensus ensures the nodes have the same state history
eventually. Therefore, if at some point in time, 2 · Nv/3 + 1 participants (Algorithm 3 line 15)
– where the number of byzantine participants is f < Nv/3, agree on the state root, a commit
event will be emitted (line 17) triggering the close of the shard. ◀

4 Evaluation

In this section, we evaluate the performance and the dynamism of our sharding solution. Our
sharding approach was implemented on Collachain [30], a DApp supported blockchain. Note
that while we evaluated on Collachain to benefit from the fork-free guarantees, our solution is
adaptable for any Ethereum-based blockchain should the fork-free guarantees not be needed.
We implemented our smart contract algorithms using Solidity and algorithms running at
participant nodes using Web3js. All the experiments were performed on AWS, with c5.4xlarge
(16 vCPUs, 32GB RAM) blockchain instances (i.e., which have similar performance to a
modern PC) and c5.xlarge (4 vCPUs, 8GB RAM) client instances sending asset transfer
transactions. A balanced workload was sent to each shard.

4.1 Dynamic shard adjustment
Figure 3 presents the scalability of our solution. Each shard consists of 60 machines evenly
distributed across 10 AWS regions spanning 5 continents: Ohio, Mumbai, Seoul, Singapore,
Sydney, Tokyo, Canada, Frankfurt, London, Paris, Stockholm, São Paulo. The dotted
line is a straight line indicating the ideal speedup one could expect from multiplying the
performance of the first shard by the number of shards. The continuous line represents the
throughput with the number of shards. As we can see, the throughput increases almost linearly
with the number of shards. At 8 shards, the throughput is 13,808 TPS. The quasi-linear
growth in throughput is expected since, each shard processes a unique set of transactions,
without performing cross-shard transactions because, as mentioned previously, our shards
are dedicated to independent DApps. Therefore, the throughput of the entire network at 8
shards almost equals the sum of the throughputs of all shards.

Due to the dynamism of our sharding approach, the number of shards can be varied by
creating or closing shards at runtime. Figure 4 depicts the throughput over time when new
shards are created. Each shard consists of 8 machines and was evaluated in the Sydney AWS
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Figure 4 Throughput over time when new shards
join.

Figure 5 Throughput of 3 shards as
their size increases.

region. At 0 second, there is only 1 shard. At around 10 seconds, another shard is created
and starts processing transactions. Before the curve flattens and because a new shard starts
processing transactions, the throughput keeps growing. Finally, the throughput stabilizes
as expected when both shards keep processing transactions at full capacity. Note that the
throughput of the mainchain is not considered as it only performs administrative tasks such
as shard creation and shard rotation and does not process client transactions.

4.2 Dynamic node adjustment
With the dynamism we provide, the number of nodes in a shard can also be adjusted at
runtime after an epoch time period, even when the total number of nodes in the network
remains constant. Figure 5 illustrates this capability: We keep the number of shards fixed to
3 and vary the amount of nodes per shard. As can be seen, when the number of nodes per
shard increases from 20 to 100, the total throughput also increases. At 50 participants per
shard, a throughput of ∼6000 TPS is achieved. As CollaChain is known to be scalable [30]
in that its performance grows with the provided resources, so does the throughput with the
increasing number of nodes here. This makes our sharding approach particularly suited to
run on top of CollaChain, so as to achieve dynamism while maintaining performance. Note
that, the number of nodes per shard could have been increased further while maintaining
performance due to CollaChain scalability.

5 Related Work

In this section, we present works related to blockchain sharding and previously summarized
in Table 1. Section 5.1 lists the sharding protocols of blockchains offering native transfers of
assets while Section 5.2 lists the sharding protocols of blockchains supporting smart contract,
and thus DApp, execution. Interestingly, even the protocols for blockchains that support
smart contracts do not invoke smart contract functions to reconfigure their shards. Some
interesting works already create shards based on attributes (like locations [2]) while others
rotate shards with randomization [8] like we do, however, we focus below on dynamism.

5.1 Payment Blockchains
Elastico [22] is the first sharded permissionless blockchain that tolerates byzantine failures.
Elastico assumes synchrony and that at most 1/4 of the computational power is owned
by byzantine participants. It mitigates Sybil attacks and shard take-overs with proof-of-
work (PoW) and randomness, respectively, and rotates committees to tolerate static and
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round-adaptive adversaries launching bribery attacks. Elastico upper bounds the number of
validators per committee to 100, indicating a partial shard size dynamism, but it requires
the number k of committees to be adjusted offline, which limits shard number dynamism.
We are not aware of any mechanism to audit Elastico’s current sharding configuration, like
the number of validators.

OmniLedger [20] improves upon Elastico’s decentralization and high failure probability
and offers higher performance. Like for Elastico, Omniledger assumes synchrony, offers Sybil
resistance via randomness and does not allow to audit the sharding configuration or to
change the shard number at runtime. Omniledger rotates validators in each epoch using
cryptographic sortition and a verifiable random function to mitigate bribery attacks. In
addition of shards running their own instance of consensus, Omniledger also shards the
blockchain state. Unlike Elastico, OmniLedger does not limit the number of validators, hence
offering a higher degree of dynamism, yet it does not communicate transparently the number
of validators to its users.

RapidChain [33] is the first sharded blockchain to support up to f < n/3 byzantine
failures where n is the number of participants. Like Omniledger, RapidChain assumes
synchrony and lets each shard maintain a portion of the blockchain state and run its own
consensus instance. Candidate nodes solve a proof-of-work puzzle and create identities that
they send to a reference committee, which randomly defines the next epoch committees.
RapidChain allows nodes to join and leave the network and assigns them to existing shards,
hence it offers a static shard number but a dynamic shard size.

SSChain [6] avoids the rotation of shard committees to shard the state without having to
download the blocks and state. These data migrations, needed to verify transactions, can
severly impact availability of the sharded blockchain. SSChain changes shards by allowing
nodes to freely join, however, the risk is for a byzantine coalition to take over a shard.
SSChain mitigates this attack by introducing a two-chained approach: a root chain verifies
the blocks coming from each shard before committing them, which provides safety despite
shard take-over at the condition of maintaining the entire state. SSChain offers neither
transparency nor shard number dynamism but offers shard size dynamism.

5.2 DApp supported blockchains
Ethereum 2.0 (Eth2) is expected to introduce sharding to improve Ethereum’s performance.
Eth2 contains a fixed set of 64 shard chain and a single beacon chain [15]. Our approach is
similar to Eth2 since we also request validators to escrow a deposit on the mainchain before
assigning them to shard chains. However, Eth2 requires a minimum of 111 validators [31] to
lower the probability of 2/3 adversarial nodes in a shard to 2−40. At the end of each epoch,
validators are rotated to maintain availability despite a slowly-adaptive adversary. Each
shard runs a series of 64 Casper FFG consensus instances per epoch, after which a new block
containing the shard states is appended to the beacon chain. Our approach differs from Eth2
by not forking, thanks to DBFT [7], not assuming synchrony, executing smart contracts even
in the mainchain, and offering transparency and dynamism.

ChainSpace [1] is a transparent sharded blockchain that does not assume synchrony.
An admin contract maps other smart contracts or “objects” to nodes that function as a
shard, hence allowing users to consult the sharding configuration without inconsistencies.
ChainSpace requires the admin contract creator to be trustworthy because if a shard contains
a too large byzantine coalition, then the state of the blockchain could be compromised.
ChainSpace offers transparency of the sharding configuration to its users and allows to
dynamically adjust the number of nodes per shard, but cannot change the number of shards
at runtime.
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Zilliqa [29] exploits PoW and a random beacon to maintain two committees: one
committee, called the “DS committee”, is elected with PoW to create shards. Two pseudo-
random numbers are generated: r1 comes from the last block in the previous DS committee
while r2 comes from the last transaction block in a shard. The nodes solve an Ethash PoW
cryptopuzzle based on their private key Pk, IP, r1 and r2. The first to solve this puzzle
proposes a block that the DS committee agrees upon. Consequently, the successful miner
is added to the DS committee and the oldest miner is churned out. At all times the DS
committee has the most recent n miners. Zilliqa does not shard the state, assumes network
synchrony and does not provide sharding dynamism or transparency.

Avalanche [27] offers “subnets” that can be viewed as shards. Three default subnets
run three separate blockchains, the P-Chain handles metadata, the C-Chain handles native
payments and the X-Chain handles smart contract executions. Avalanche offers dynamism
because new subnet can be created and new validators can be added to an existing
subnet. Unfortunately, Avalanche cannot work in a partially synchronous setting because
its participants have to wait for the response of a small sample of nodes to progress, which
could all be faulty [28]. Avalanche offers a JSON API to retrieve information about subnets,
however, we are not aware of any verifiable way to collect tamper-proof information.

Cosmos [21] is a network of “zones” that can be viewed as shards as well. Each zone is a
separate blockchain and the main one, called Hub, manages the governance of this network.
Each zone builds upon the Tendermint consensus protocol that assumes partial synchrony
and requires f < n/3 to solve consensus. Zones are not fully dynamic in that there cannot
be more than a maximum of validators per zone, seemingly because performance decreases
with the Tendermint participants. Even though the maximum number of validators per zone
is announced to grow from 100 to 300 over a period of 10 years, one cannot add validators
beyond this point. Although Cosmos offers information about validators [10] and zones [25]
we are not aware of any way to guarantee this information is correct, as this information is
not stored in the cryptographically secure ledger.

6 Conclusion

In this paper, we introduced dynamic blockchain sharding, the ability for a blockchain to
change its sharding configuration at runtime without hard forks. Our implementation relies
on smart contracts, hence anyone can double check the effectiveness of the reconfiguration
by auditing the current state of the blockchain. The performance of our world-wide geo-
distributed setting demonstrates that dynamic sharding scales quasi-linearly and can offer
close to 14,000 TPS with only 8 shards.
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