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—— Abstract
In this paper, we present the first attempts to design and implement an algorithm that effectively
responds to errors in a student’s resolution in problems related to polynomials of degree two or
lower. The algorithm analyzes the student’s input by comparing pre-established resolution patterns.
The obtained results of the implementation show that the algorithm is effective at the classes of
problems created within the project’s scope. Future work will concern the expansion of the number
of classes to other common types of problems, such as higher-degree polynomials, and its use at a
large scale using open-source software with CAS capabilities.
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1 Introduction

Feedback is crucial in the development of a student’s ability to validly reason in any subject
of study [2, 3, 1]. Consequently, the detection of mistakes made by students while solving a
problem is of extreme importance, as it permits the personalization of feedback, highlighting
aspects of the problem that the student should pay more attention to. Once a student knows
which issues they should focus on, studying goes from a task about haphazardly improving
at a set of problems into recognizing and formulating specific ideas associated to the material
at hand, facilitating the identification and communication of issues.
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Feedback Systems for Students Solving Problems

Given the number of students assigned to a class, it can be difficult or even impossible for
a teacher to provide each student with the advice needed to improve at the subject at hand,
and this situation becomes even more complex for students with difficulties in expressing
their doubts, some of them choosing to focus only on autonomous study as a consequence.

Unlike many other fields, mathematics deals with structured forms that have definite
rules, allowing anyone, even computers, to modify previous structures into others. While
generating interesting structures continues to be an issue, verifying them automatically is
something that computers excel at.

In this article, we propose a general method to generate feedback based on the input of
an ordered list of structured equations provided by a student, presenting a particular case of
using this procedure for problems involving polynomials of degree two or lower.

2 Feedback

In general, feedback can be defined as a piece of information related to the previous results of
a particular task that reflects what ought to be improved. For example, information detailing
only the subject’s achieved score would be considered as a form of feedback [7].

Given that definition, one aspect to focus on would be the quality of the information
provided. In particular, the information that we decided to tackle in this article concerns
only the quality of the result or the method used by the student; this restriction was made
to ensure the feasibility of the project within its intended scope. An example of a type of
feedback that falls outside of those two categories would be recommendations regarding the
mindsets that a student should consider while studying.

With regard to education, feedback seeks to increase the long-term score of a student’s
ability to perform the tasks associated to the subject being taught. From various experiments
performed over the years using a variety of methods, the positive effects of feedback within
education have been empirically validated with a high degree of statistical certainty [8].
However, different categories of feedback and subsets thereof have also proven to be more
influential than others [5, 6], necessitating a more particular analysis of the chosen categories
for the project.

Using our categorizations of feedback, we were interested in knowing how much feedback
regarding the student’s methodology would benefit them over merely providing an aptitude
score. In accordance with relevant research [4], while the results aren’t drastic enough to
cause a sudden shift in the education system, the measurable increase in providing both
types of feedback was sufficient enough for us to deem it as a worthwhile endeavor.

Though effective feedback can take many forms [2], only the lesser of them tend to get
implemented into software that’s meant to support the education of students. In particular,
one commonly observed detail about many of those programs is that they can only discern
whether or not an answer is correct; some of them might also provide a solution written out
by a professor. While having a curated solution can definitely help students struggling to
answer questions aptly, it might not help them with understanding the subject at hand, only
to memorize a list of steps that lead to a correct answer. Though a proper understanding is
not the goal of all students, having such might help them generalize what they’re taught,
improving performance in similar kinds of questions over a variety of circumstances.

3 Motivation and Problem

The difficulty in solving this particular kind of problem primarily stems from automating the
process of identifying a mistake and appropriately associating it to its respective feedback.
While the former problem can be solved by using a sufficiently powerful CAS, the fact that a
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problem can be solved through a variety of means and with varying amounts of detail makes
the latter problem a bit less trivial to solve. For example, the two mistaken resolutions
r4+1=0<«= z=1landz+1=0 <= 2+1—-1=04+1 <= zx =1 have different

lengths and vary in detail but still display the misuse of signs being the source of the issue.

As such, the feedback returned by the algorithm should be invariant to such changes.

Our motivation to implement a system based on axiom schemata and tree substitution
came from the necessity to generate structured data using simple rules. Originally, we
believed that it would be too computationally inefficient, but further tests showed that a
naive implementation would suffice for the sample of rules necessary to represent a subset
of the types of mistakes performed by a student in the given task. Later on, different
ideas for optimization were considered but deemed unnecessary for the algorithm’s first
implementation; more research will be made in that regard.

Given the initial goal of managing polynomials of degree two or lower, a previous attempt
used the roots of the provided polynomial to construct a canonical representation by expanding
its factored form and dividing all coefficients by the value of the leading coefficient. From
there, comparisons would be made between that representation and the one of the step at
which the student made a mistake. However, due to its lack of generality beyond polynomials,
this algorithm was dropped in favor of the one detailed in this article.

An idea that came from that previous attempt was to automatically encode every step in
a canonical representation; in particular, the canonical representations would be constructed
in a way that would facilitate the detection of mistaken symbols, such as inserting a minus
instead of a plus. This idea was also abandoned due to the lack of a general pattern regarding
what might facilitate the detection of mistakes for more complicated kinds of equations.

4 Algorithm

4.1 Overview

The algorithm described in this article consists in four steps: parsing and cleaning text,
validating the equality of the solution sets of adjacent steps, generating paths that match
the student’s mistake, and providing adequate feedback. Following the presented order, each
of the following paragraphs will detail the overview of the process.

The parsing algorithm that we implemented consists of a collection of metrics that decide
whether or not to include a character of the input based on surrounding characters and if it
belongs to a curated set of expected characters. After that, a structured tree is formed using
the order of operations that are either implicit or explicit through the use of parentheses and
common syntax.

The goal of a validation system is to ensure that each step is entailed from those that
came before it. A property that facilitates this goal is that equations can be marked as
equivalent if they have equal solution sets. Knowing that, our method uses a CAS to search
for the first step in which a mistake was made by testing the equality of the solution sets
of each ordered pair of consecutive steps. For a formalization thereof, see Algorithm 1; it
should be noted that  is a function that returns the solution set associated to a step and
that Steps is a tuple representing each equation written down by the student in order.

Once the first two equations in which a mistake happened have been identified, the system
will take the first of them and generate all of the possible expressions from it using the
supplied patterns; it will repeat that process for a finite number of steps. Finally, it will
aggregate all of the paths with solution sets that are equal to the solution set of the mistaken
step.
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5:4 Feedback Systems for Students Solving Problems

Algorithm 1 Determine First Erroneous Step.

: fori=1,...,|Steps| — 1 do
if Q(Steps;) # Q(Steps;+1) then
return (Steps;, Steps;i1,i+ 1)
end if
end for
return ()

Given that each pattern used in the previous step has an associated flag, the final aspect
of the algorithm is to return the feedback associated to each of the generated paths in natural
language.

Figure 1 shows an overview of the algorithm’s logic.

Generate

Structured
Tree

Are the steps valid? Return No Mistakes r End

No.

Determine
First
Erroneous
Step

Filter by Matches

Return Default Mistake //—{ End J

Return Matches

|

Figure 1 Flowchart of the Algorithm’s Logic.
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4.2 Patterns

Within our implementation, expressions are represented as trees with subtrees that are
determined by the order of operations presented within the mathematical expression. In the
case of polynomials, only functions of arity two or lower need to be considered, so each node
in a polynomial expression need only have two or three children, where those children can be
strings or other trees.

Each pattern consists of an axiom schema that reflects a particular deformation that can
be applied to an expression. Our implementation represents axiom schemata as pairs of trees
consisted only of constants, schematic variables, and subtrees. Constants are strings that must
be exactly matched to have the pattern apply, whereas schematic variables are strings that
are uniquely denoted using a dollar symbol before their declaration and can be substituted by

a constant or a tree; subtrees are used to encode the order of operations within an expression.

For example, (("$17,” 4+ 7,7$27),(7$2”,” 4+ ”,”$1”)) would represent the commutativity of
additiOn, and ((77$177, b * 77’ (77$277, b + 77, 77$377))’ ((77$1777 ” * 77, 77$277)7 ” + 777 (77$177’ 2 * 77’ 77$377)))
would represent the distributive property of multiplication over addition.

4.3 Applying Patterns

Similar to many previous approaches regarding applying rules to structured data, using an
ordered list of strings denoting schematic variables, constants, and other lists of the same
type to represent a tree, applying a pattern merely requires verifying several conditions
before performing a substitution.

A necessary property to apply patterns is to detect when they can be applied. This can
be achieved by having the tree representing the pattern be a generalization of the structure
that we want to deform, which primarily pertains to the order of its subtrees and schematic
variables. We say that X is a generalization of Y, which we denote as X > Y, if and only if

IX|=Y|AVie || X],X; >Y;V(X; e Vx AY; € E),

where Vx is the set of schematic variables of X and of all of the subtrees thereof; should X
be a string, Vx will return a set containing only X if and only if X is a schematic variable,
returning an empty set otherwise. Another aspect of importance is that if X and Y are
strings, then X > Y if and only if X is a schematic variable or syntactically equal to Y.
Finally, F represents the set of strings that cannot be considered for substitutions; our
implementation disregarded operators, functions, and predicates.

Let S be the set of all strings. Given that X > Y, the next step is to generate a set
containing all of the differences between them. This can be done by defining

{(X,Y)} XeSAX#AY
AXY)={ U AXLY) XESAX#Y
’ ie[|X]]
0 X=Y

We say that a set of differences is consistent if and only if it can be constructed into a
function. In other words, Vz,y € A(X,Y),z1 = y1 = %2 = y2, which we represent as
H(A(X,Y)).

Under the assumption that it’s consistent, we need a function to apply the set of differences
provided by A to a particular tree. Denoting it by «, we can define it as

A(X,Y )i Jie A Y]], X = A(X, )i
a(X,AX,Y)) = x Vie [AX,Y),X #AX, V)i AXES.
(Q(leA(Xv Y))7 . '7a(X\X\’A(X7Y))) Vi € HA(X’ Y)HvX # A(X’ Y)i,l NX ¢S
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Having defined all of the above, the substitution function can, therefore, be defined as

(X, (v, 7)) = 4“0 AN X)) Y = XAGAY, X))
o X Y # X V-g(A(Y, X))

where (Y,Y”) represents a pattern.

4.4 Generating Paths

A path consists of an ordered list of trees. Given a particular axiom schema, our implementa-
tion generates a path by starting from the top node, creating one tree where the axiom schema
is not applied and one where it is applied, and applying this algorithm recursively to each
of the possibilities generated by the previous step. Finally, once all of the axiom schemata
have been applied, all of the generated paths are collected and taken into consideration for
the next application of the same set of axiom schemata, and this process repeats itself for a
number of steps chosen by the user. More precisely, letting

{{X,a(x, VYNIU U G X2, Xigr,..) | 2 € (X5, (Y, Y')) X ¢S

(X, (Y,Y) = iefiX|] .,
{o(X,(V,Y"))} Xes

we can generate all possibilities of the application of a pattern to a particular tree. From
that, denoting A as the last step before the first mistake, we can start with an initial set T,
where Ty = {(A)}. As such, to generate the paths, we need only state that

T, = U {1,y Zm,y) |y € B(zm,Y)},
((11,-~~7$m,),y)€Ti_1 xP

where P represents the set of all specified patterns for the algorithm. This process of iterating
T; happens until 7 reaches a desired value.
For an overview of this section in pseudocode, see Algorithm 2.

Algorithm 2 Generate Paths.

1. Paths < {(Stepsk, ()}

2: fori=1,...,n do

3: Copy < Paths

4: for ((z1,p1),.. ., (z:,p:)) € Copy do

5: for j € Patterns do

6: Paths < Paths U {((x1,p1),-.., (xs,0:), (x,7)) | x € Z(xs, )}
7. end for

8: end for

9: end for

10: return Paths

4.5 Returning Feedback

Once all paths have been generated, the algorithm picks only the ones whose final step has a
solution set that’s equal to the solution set of the student’s mistaken step.

It is important to note that since only the solution sets need to be equal, which is not as
strict as requiring syntactic equality between a generated step and the subsequent step, the
algorithm is robust against not having all steps provided or a general lack of detail. While
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this might come at the cost of potentially returning irrelevant feedback when the algorithm is
equipped with patterns that conditionally return the same solution sets without having the
same sort of feedback associated, we believe that certain heuristics or statistical models could
be used to manage conflicts of that sort by ranking each piece of returned feedback. To that
end, under the assumption that the probability that a student will perform many mistakes is
low, we chose to implement a heuristic that sorts the list of matches by the number of steps
associated to each match in ascending order, putting at the forefront the matches that are
considered more common. While many other heuristics were considered to rank the matches,
they were not a part of what was researched.

After the matches have been filtered, a function that maps each used pattern to its
associated feedback is used. For a complete picture of the algorithm, see Algorithm 3.

Algorithm 3 Feedback Algorithm.

1: Error <— Determine First Erroneous Step(Steps)

2: if Error # () then

3: Paths < {p € Generate Paths(Errory, Patterns) | Q(pjp),1) = Q(Errors)}

4: if |Paths| > 0 then

5: return {(Feedback(p,),..., Feedback(py,), Errors) | ((x1,p1),--.,(Tn,pn)) €
Paths}

6: else

7: return {(Errors)}

8: end if

9: else

10: return {)

11: end if

4.6 Complexity

One aspect of concern within this project regarding its generality is how the computational
complexity of algorithm grows with an increase in the number of patterns and the maximum
path length. In particular, this information can help make guided decisions on how the
algorithm might be made more efficient in future works.

While the complexity varies significantly with the patterns and input being used, an
approximation for the upper bound can trivially be found. Under the assumption that n
patterns that are different from the identity pattern and result in k expressions can be
applied during each step, the algorithm can generate (n* k4 1)™ paths at most from a single
expression, where m represents the maximum path length; the addition of unity comes as a
consequence of the necessity of at least one pattern being the identity pattern. As such, an
increase in the number of patterns causes a polynomial growth in complexity, whereas the
algorithm’s complexity scales exponentially with the maximum path length.

Taking the approximation for an upper bound of the algorithm’s complexity into account,
we can conclude that it is more efficient to add more patterns and reduce the maximum path
length. However, while decreasing the maximum path length and increasing the number of
patterns, care must be taken not to reduce the algorithm’s ability to properly discern the
necessary information to provide feedback.

Finally, given that each pattern can be applied independently from the others during
each step, parallelization can be implemented trivially, opening avenues for hardware that
supports it. While implementing it might not be prove to be too beneficial for a large
maximum path length, it might be helpful for time-sensitive tasks, such as a server hosting
an implementation of this algorithm responding to requests from clients.
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5 Preliminary Results

5.1 Example

Before ascertaining the results, let’s manually perform the algorithm. Using only (" —7,74")
as a pattern and a maximum path length of one, we’ll run through an informal example of
how the algorithm ought to be performed.

Given that z—1 =0 <= x = —1 is the student’s input, let’s attempt to provide feedback.
First of all, we need to find the first pair of adjacent steps whose solution sets are different;
since {1} # {—1}, we’ve found a mistake on the second step. Secondly, each equation within
the mistaken step provided must be formatted as a tree, leading x —1 =0 and x = —1 to be
formatted as (("x”,” —7,717),” =7,70”) and ("z”,” =", (7 —”,”1")) respectively. Next, we
need to exhaustlvely apply our patterns to the ﬁI‘bt of those expressions:

(7,7 =7, 71),7 =7,707), (=7, 7)) =

{07, 7 = 7,717, = 2,707, 0((7a7, 7 =7, 717),7 = 2,70%), (" =", + ")} U {(x,
2I0%) € B((a7, =), 0= 4 DU, = 7,010,700 | e
L= IO = 1), =) [ € SO0 (=7 ) =

)
{((aamw’ » w7 ”1”), ” _ 77’ 77077)} U {(l‘, ” _ 77’ 7707a) | = Z((”.’I}”, » _ w7 9 77), » w 9 77))} —
{((”.’L‘”, » 77’ 77177)’ » _ 77’ 77077)} U {(.13, n _ 77, 77077) | T € {(”Z‘”, » _ 77’ ”1”)7 ( .13”, ”» 77’ 771,7)}} —

{07, =7, 71),7 =7 00), (7,7 +7,717),7 = 7, 707)),
Finally, by checking the solution sets of our acquired paths, we can conclude that (("z”,” +
7.717),” =7,70”) has the same solution set as ("z”,” =7, ("
led to that path was changing a sign, we may return feedback stating that the student erred

on the second step by mistaking a sign.

z(

—7,717)); as such, since what

5.2 Results From a Python Implementation

To perform a preliminary test of the algorithm’s ability to provide meaningful feedback,
twenty representative examples were chosen and tested with an implementation of this
algorithm in Python using SymPy. These examples were manually sampled from what we
considered to be common mistakes, such as mistaking signs or factoring incorrectly; our future
works will go over results aggregated on a larger scale and under more realistic conditions.
The following is a list of the patterns used for the examples:
=), (=),
(78177 4 7,7827), 7w 7 727) (P17, kw7 727), 7 4 7 (78277 % k7 727))),
(78177 =7 7827) 7w k7 727) (P17, kw7 727), 7 = 7 (78277 k7 727,
(78177 %+ 727), 7 7 (78277 % 7 727)) (P81, + 7, 7827), 7« %7, 727)),) and
(7817, % %7, 727),7 =7 (7827, 7 % 7, 727)), (("$17,7 — 7, 7$27),” x %7, 72")).
Before interpreting the results, a metric of success ought to be defined. Given the easy
way of finding the first step in which a mistake occurred, we consider a result to be successful
if and only if one of the found matches returns feedback that would’ve prevented the mistake.
That being said, even if it can only detect which step was mistaken, the algorithm might
still prove to be useful to many students.

Given that definition, despite the good results with the limited patterns used, more of them
might need to be added to correctly detect certain categories of mistakes. For example, given
49 — 22 =0 <= (7 — )% = 0 as the input, the equipped patterns would not be sufficient;
however, the addition of more patterns, such as ("$17, (("$17, =7, ("17,7/7,727)), "%x”,"27)),
would permit the algorithm to respond aptly.
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Table 1 Results From a Python Implementation of the Misuse of Signs.

Input Erroneous Step Output Expected Output
Second Step Sign Error Sign Error
g
"z, = Second Step Sign Error Sign Error

(" =7,710"),” =
» ),

Second Step

Sign Error

Sign Error

Second Step

Sign Error

Sign Error

N

xT

Second Step

Sign Error

Sign Error

(57,7 %7, (72", 7 % %7,727)), " + 7, (" —
(72,7 % %7,727), 7 + 7 (" —

=7 70")
s s

Third Step

Sign Error

Sign Error

Second Step

Sign Error

Sign Error

(27,7 %7, (72", 7 %47, 727)), 7 — T LY, P = 7 70,
g m e ( P

Second Step

Sign Error

Sign Error

Second Step

Sign Error

Sign Error

Table 2 Results From a Python Implementation of the Misuse of Factoring.

Input

Erroneous Step

Output

Expected Output

Second Step

Factoring Error

Factoring Error

(a7 +7,727),
(27,75
7 (=7, (7507, 7 % #7, (71

Second Step

Factoring Error

Factoring Error

k7, 797) 7

(a7 e, 720),

PR

Second Step

Factoring Error

Factoring Error

="

Second Step

Factoring Error

Factoring Error

Second Step

Factoring Error

Factoring Error

Second Step

Factoring Error

Factoring Error

Second Step

Factoring Error

Factoring Error

, ’ (717,77, 727)
a7, M) P = (7 (72", — 7, 727) 7 ko x »
R L PP (72,7 % 7, 727,

2=, ((1,0)7,020), 7 e, (0

Second Step

Factoring Error

Factoring Error

), 7w, 727) 7 47
R O
(= n

Second Step

Factoring Error

Factoring Error

Third Step

Factoring Error

Factoring Error
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Another issue with this approach is that it requires the solution sets of all of the expressions
to be computable by the CAS. Given the task of solving it for polynomials of degree two
or lower, this was not a problem, but it is possible that complications may arise from
generalizations of this algorithm.

6 Future Work

Given what was discussed in the section about the algorithm’s complexity, one avenue of
research is finding which patterns should be used to reduce the number of steps needed
to provide apt feedback. In particular, the plan is to develop a method of automatically
generating useful patterns and manually label them with appropriate feedback; currently, we
plan to research how machine learning could be used to do such.

Beyond that, as mentioned in our section about preliminary results, experiments will be
performed on a larger scale with open-source software with CAS capabilities. The hope is to
be able to find software that can serve as a front-end interface for the presented algorithm
and test its capabilities on a larger scale and with a greater variety of inputs and patterns.
Should the results show promise, other avenues of improvement will be researched.
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