
20th International Workshop on
Worst-Case Execution Time
Analysis

WCET 2022, July 5, 2022, Modena, Italy

Edited by

Clément Ballabriga

OASIcs – Vo l . 103 – WCET 2022 www.dagstuh l .de/oas i c s

Editors

Clément Ballabriga
Lille University, France
clement.ballabriga@univ-lille.fr

ACM Classification 2012
Computer systems organization → Real-time systems; Theory of computation → Program analysis;
Software and its engineering → Software verification and validation; Software and its engineering →
Software safety; Software and its engineering → Software performance

ISBN 978-3-95977-244-0

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-244-0.

Publication date
July, 2022

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/OASIcs.WCET.2022.0

ISBN 978-3-95977-244-0 ISSN 1868-8969 https://www.dagstuhl.de/oasics

mailto:clement.ballabriga@univ-lille.fr
https://www.dagstuhl.de/dagpub/978-3-95977-244-0
https://www.dagstuhl.de/dagpub/978-3-95977-244-0
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/OASIcs.WCET.2022.0
https://www.dagstuhl.de/dagpub/978-3-95977-244-0
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/oasics

0:iii

OASIcs – OpenAccess Series in Informatics

OASIcs is a series of high-quality conference proceedings across all fields in informatics. OASIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Daniel Cremers (TU München, Germany)
Barbara Hammer (Universität Bielefeld, Germany)
Marc Langheinrich (Università della Svizzera Italiana – Lugano, Switzerland)
Dorothea Wagner (Editor-in-Chief, Karlsruher Institut für Technologie, Germany)

ISSN 1868-8969

https://www.dagstuhl.de/oasics

WCET 2022

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/oasics

Contents

Preface
Clément Ballabriga . 0:vii

Committees
. 0:ix

Papers

StAMP: Static Analysis of Memory Access Profiles for Real-Time Tasks
Théo Degioanni and Isabelle Puaut . 1:1–1:13

LLVMTA: An LLVM-Based WCET Analysis Tool
Sebastian Hahn, Michael Jacobs, Nils Hölscher, Kuan-Hsun Chen,
Jian-Jia Chen, and Jan Reineke . 2:1–2:17

DELOOP: Automatic Flow Facts Computation Using Dynamic Symbolic
Execution

Hazem Abaza, Zain Alabedin Haj Hammadeh, and Daniel Lüdtke 3:1–3:12

20th International Workshop on Worst-Case Execution Time Analysis (WCET 2022).
Editor: Clément Ballabriga

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

Preface

Welcome to the 20th International Workshop on Worst-Case Execution Time Analysis
(WCET 2022). WCET 2022 is organized in conjunction with the Euromicro Conference
on Real-Time Systems (ECRTS 2022) in Modena, Italy, and is held the first day of the
conference (July 5th). The WCET workshop is the main venue for research on worst-case
execution time analysis in the broad sense and serves as a yearly meeting for the WCET
community.

This year, the workshop features an invited keynote talk by Prof. Peter Puschner from
Technische Universität Wien entitled From Timing Prediction to Predictable Timing and 3
presentations of regular papers. Each of these 3 papers received 3 reviews from members of
the program committee. The final selection was then based on an online discussion.

The WCET workshop is the result of the combined effort of many people. First, I like
to thank the authors of the WCET 2022 papers, and the keynote speaker Prof. Peter
Puschner, for contributing the scientific content of the workshop. I also thank the members
of the program committee for their high-quality reviews and fruitful online discussion. I
thank the steering committee for their guidance and advice on the organization of this
workshop. Special thanks go to Michael Wagner for the help in publishing the proceedings of
WCET 2022.

The WCET exists to exchange ideas on all WCET-related topics in a friendly atmosphere.
I invite you to enjoy the presentations and to actively participate in the discussions!

Lille, France
June 28th, 2022

Clément Ballabriga

20th International Workshop on Worst-Case Execution Time Analysis (WCET 2022).
Editor: Clément Ballabriga

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

Committees

Program Chair

Clément Ballabriga – Lille 1 University, France

Program Committee

Jan Reineke – Saarland University, Germany
Enrico Mezzetti – Barcelona Supercomputing Center, Spain
Pascal Sotin – Université de Toulouse - IRIT, France
Pascal Raymond – VERIMAG/CNRS, France
Florian Brandner – Télécom Paris, France
Martin Schoeberl – Technical University of Denmark, Denmark
Renato Mancuso – Boston University, USA
Björn Lisper – Mälardalen University, Sweden
Heiko Falk – Hamburg University of Technology, Germany
Jakob Zwirchmayr – TTTech Auto, Austria
Damien Hardy – IRISA, France
Peter Wägemann – Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany

Steering Committee

Björn Lisper – Mälardalen University, Sweden
Isabelle Puaut – University of Rennes I/IRISA, France
Jan Reineke – Saarland University, Germany

20th International Workshop on Worst-Case Execution Time Analysis (WCET 2022).
Editor: Clément Ballabriga

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

StAMP: Static Analysis of Memory Access Profiles
for Real-Time Tasks
Théo Degioanni !

École Normale Supérieure de Rennes, France

Isabelle Puaut ! Ï

Univ Rennes, Inria, CNRS, IRISA, France

Abstract
Accesses to shared resources in multi-core systems raise predictability issues. The delay in accessing
a resource for a task executing on a core depends on concurrent resource sharing from tasks executing
on the other cores. In this paper, we present StAMP, a compiler technique that splits the code
of tasks into a sequence of code intervals intervals, each with a distinct worst-case memory access
profile. The intervals identified by StAMP can serve as inputs to scheduling techniques for a tight
calculation of worst-case delays of memory accesses. The provided information can also ease the
design of mechanisms that avoid and/or control interference between tasks at run-time. An important
feature of StAMP compared to related work lies in its ability to link back time intervals to unique
locations in the code of tasks, allowing easy implementation of elaborate run-time decisions related
to interference management.

2012 ACM Subject Classification Computer systems organization → Real-time systems; Computer
systems organization → Embedded systems

Keywords and phrases Worst-Case Execution Time Estimation, Static Analysis, Multicore, Interfer-
ence, Implicit Path Enumeration Technique

Digital Object Identifier 10.4230/OASIcs.WCET.2022.1

Supplementary Material Text (Appendix): https://files.inria.fr/pacap/puaut/papers/WCET_
2022_appendix.pdf

Acknowledgements The authors would like to thank Abderaouf Nassim Amalou and the anonymous
reviewers for their fruitful comments on earlier drafts of this paper.

1 Introduction

In order to guarantee timing constraints of real-time software, an upper bound of the
Worst-Case Execution Time (WCET) of its sequential tasks is needed [17]. Static WCET
estimation techniques provide such upper bounds (WCET estimates) and are well understood
for single-core processors. However, multi-core architectures are now commonplace as they
offer unprecedented processing power and low power consumption. Applying static WCET
analysis to multi-core systems is more difficult than single-core ones since a task running on
a core may suffer from interference delays caused by resource sharing with software executing
on the other cores. Shared resources may be the Last-Level Cache (LLC), the memory bus
or the memory controller.

Different approaches may be used to deal with interferences (see [11] for a survey). One
class of techniques is to avoid interferences, by using, for instance, specific task models like
PREM (PRedictable Execution Model, [13]), which separates the code of each task in a
memory phase and an execution phase that does not perform any memory access. Specific
scheduling techniques can then be designed to avoid the co-scheduling of phases that interfere
with each other [14,18]. Another class of approaches allows interferences to occur at run-time,
and leverages knowledge of the usage of shared resources to compute the resulting worst-case

© Théo Degioanni and Isabelle Puaut;
licensed under Creative Commons License CC-BY 4.0

20th International Workshop on Worst-Case Execution Time Analysis (WCET 2022).
Editor: Clément Ballabriga; Article No. 1; pp. 1:1–1:13

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:theo.degioanni@ens-rennes.fr
mailto:isabelle.puaut@irisa.fr
https://team.inria.fr/pacap/members/isabelle-puaut/
https://orcid.org/0000-0001-9310-9651
https://doi.org/10.4230/OASIcs.WCET.2022.1
https://files.inria.fr/pacap/puaut/papers/WCET_2022_appendix.pdf
https://files.inria.fr/pacap/puaut/papers/WCET_2022_appendix.pdf
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

1:2 StAMP: Static Analysis of Memory Access Profiles for Real-Time Tasks

interference delays [7,9]. This latter class of approaches relies on knowledge of shared resource
usage of tasks executing concurrently, but surprisingly few methods provide such information
at a granularity smaller than the entire task.

In this paper, we propose StAMP, a static analysis technique that divides the code of
a compiled program into a linear sequence of non-overlapping code intervals, each with a
distinct worst-case memory access profile. State-of-the-art methods for the static analysis of
memory accesses [2, 12] all rely on time-based approaches: they divide the execution timeline
into time segments for which they compute a worst-case number of memory accesses. In
these approaches, there is no direct way to link segments back to concrete code sections.
Therefore, run-time decisions to avoid or control interference have to rely on time only
and are agnostic to the code location where the decision is taken. As compared with these
time-based techniques, StAMP can link back its output time segments to concrete code
intervals. This allows run-time decisions to be based not only on time but also on the code
interval under execution. Such run-time decisions may, for instance, re-calculate interference
based on the current progress of tasks or introduce synchronizations to avoid or minimize
interference between intervals [15,16].

Dividing the binary code of tasks into a linear sequence of code intervals is based in StAMP
on a compiler technique that operates at the binary level. StAMP first divides the binary
code into a tree of “well-formed” regions, called Single Entry point Single Exit point (SESE)
regions [8]. The advantage of using such regions is that the entry and the exit of each region
are natural frontiers for intervals, and as such natural points for introducing interference-
related scheduling decisions. StAMP generates different sizes of intervals depending on the
depth at which the SESE region tree is explored (deeper exploration induces finer-grain
intervals). It is then possible to apply worst-case memory access analysis to each interval
individually.

Traditional extraction of SESE regions is edge-centric [8], creating sections with a single
entry edge and a single exit edge. We show in this paper that when using node-centric SESE
regions (regions with a single entry node and a single exit node), the number of regions
is more important than when using edge-centric regions. This provides fine-grain regions
to scheduling strategies, in particular on code with many branches, which we believe will
improve the quality of scheduling strategies.

The contributions of this paper are the following:
We propose StAMP, a compiler technique that splits the binary code of a task into
consecutive code intervals. Similarly to state-of-the-art techniques [2,12], StAMP generates
worst-case memory access profiles for intervals with known WCETs. However, in contrast
to [12] and [2], StAMP links back intervals to locations in the code of tasks. Moreover, the
algorithmic complexity of StAMP is much lower than the one of the algorithms from [2].
We provide an extensive experimental evaluation of StAMP, showing in particular that:

Interval extraction using node-centric SESE regions results in finer-grain regions than
traditional edge-centric regions.
Controlling the depth at which the SESE region tree is explored allows us to control
the size of the produced intervals.

The memory access profiles generated by StAMP can be used by off-line scheduling
strategies to minimize interference overhead. Moreover, the fact that StAMP links back
intervals to locations in the code of tasks provide useful information to take elaborate run-time
decisions such as dynamic reconfiguration of schedules and re-calculation of interference
delays [15, 16]. This paper focuses on calculation of memory access profiles, their use for
off-line or on-line scheduling strategies is considered outside the scope of the paper.

T. Degioanni and I. Puaut 1:3

The rest of this paper is organized as follows. The method implemented in StAMP is
described in detail in Section 2. Experimental results are given in Section 3. Section 4
compares our approach to related techniques. We finally discuss the results achieved and
present our future work in Section 5.

2 Estimation of memory access profiles with StAMP

After presenting the system model StAMP relies on (Section 2.1, the properties of code
intervals as computed by StAMP are detailed in 2.2. SESE regions, the blocks from which
code intervals are constructed, are defined in 2.3. Sections 2.4 and 2.5 then respectively
present the construction of code intervals and the calculation of their worst-case number of
memory accesses.

2.1 System model and problem statement
StAMP operates of the binary code of an individual task, from static analysis of its Control
Flow Graph (CFG). The target architecture may have a complex memory hierarchy (instruc-
tion and data caches). We assume that there exists a way (for instance static cache analysis
as in our experimental evaluation in Section 3) to figure out if an access to a given address
may result in a memory access.

The problem addressed by StAMP is the following. Given the code of a task, StAMP
splits its code in consecutive code intervals (formally defined in 2.2) and for each of them
calculates the worst-case number of memory accesses that may occur when executing the
interval (memory access profile).

2.2 Code intervals
The analysis in StAMP first divides a given control-flow graph into consecutive code intervals,
each linked to a code section, for which we individually compute the number of worst-case
memory accesses. Then, WCET analysis is performed to convert the code-based segmentation
into a time-based segmentation, allowing a straightforward bidirectional mapping between
the two.

Picking the right abstraction to represent code intervals is critical for the correctness
and effectiveness of the method. In this work, a code interval is a single-entry, single-exit
sub-graph of the control-flow graph. Code intervals cover the entirety of the control-flow
graph and are chained as a sequence. Figure 1 represents an example control-flow graph
along with an example code interval cover for it.

Figure 1 Example control-flow graph in black with an example code interval cover of length 3 in
pink. Notice how all exit edges of a given code interval point to the entry point of the next code
interval.

More formally, code intervals are defined as follows (Definition 3), based on the concepts
of Control Flow Graph (Definition 1) and Code Interval Cover (Definition 2).

WCET 2022

1:4 StAMP: Static Analysis of Memory Access Profiles for Real-Time Tasks

▶ Definition 1 (Control Flow Graph (CFG)). A CFG is a directed connected graph C = (V, E),
with V the vertices of the CFG (basic blocks, straight-line sequences of instructions with no
branch no out except at the exit) and E the edges (pair of nodes, subset of V × V), that
represent the possible control flows between basic blocks. A CFG can contain special vertices
(call nodes) representing calls to another CFG. A CFG has a single entry node and a single
exit node.

▶ Definition 2 (Code interval cover). Let n ∈ N. A code interval cover of length n is a
partition (Ik)k∈{1,...,n} of a CFG C such that for all k ∈ {1, . . . , n}, the following properties
hold:

If there exists m ∈ {1, . . . , n} different from k such that there exists (v1, v2) ∈ E with
v1 ∈ Ik and v2 ∈ Im, then m and v2 are unique.
No such m exists if and only if Ik contains the exit node of the CFG.

▶ Definition 3 (Code interval). A code interval is an element of a code interval cover.

A direct consequence of Definition 2 is that a code interval cover always covers the entirety
of the CFG, as it is a partition. A node of the CFG is thus always part of exactly one code
interval. Another consequence is that the exit edges of a given code interval always enter the
same code interval, as m in the definition is unique, and only the interval containing the
exit node does not have exiting edges. A code interval cover is thus always a chain of code
intervals. Note that a code interval cover always exists for a given control-flow graph, as the
single-element partition of the control-flow graph itself is a valid code interval cover.

2.3 SESE regions
The single-entry and single-exit nature of code intervals invites us to formally introduce and
use the notion of Single Entry Single Exit (SESE) regions. SESE regions may be edge-centric
as originally introduced in [8] or node-centric.

▶ Definition 4 (Edge-centric SESE region). An edge-centric SESE region of a CFG C = (V, E)
is a subset R ⊆ V for which there exists ein ∈ E and eout ∈ E such that:

For all (v1, v2) ∈ E, if v2 ∈ R then either v1 ∈ R or (v1, v2) = ein.
For all (v1, v2) ∈ E, if v1 ∈ R then either v2 ∈ R or (v1, v2) = eout.

Previous work has shown that it is possible to generate edge-centric SESE regions in a
tree arrangement in linear time [8]. A parent-child relationship in the tree indicates that
the child region is completely nested in its parent, and detected regions never partially
overlap. An example of edge-centric tree-arranged SESE regions (from the CFG of Figure 1)
is represented in Figure 2.

Figure 2 Control-flow graph from Figure 1 with stacked non-overlapping edge-centric SESE
regions in blue (darker is deeper in the SESE region tree).

As a side-product of our approach, we propose another way to define SESE regions.
Instead of defining frontiers of regions as entry and exit edges, we focus on entry and exit
nodes. Similarly to edge-centric regions, node-centric regions can be arranged in an inclusion
tree. An example of node-centric tree-arranged SESE regions (from the CFG of Figure 1) is
represented in Figure 3.

T. Degioanni and I. Puaut 1:5

Figure 3 Control-flow graph from Figure 1 with stacked non-overlapping node-centric SESE
regions in orange (darker is deeper in the SESE region tree).

▶ Definition 5 (Node-centric SESE region). A node-centric SESE region of a CFG C = (V, E)
is a subset R ⊆ V for which there exists vin ∈ V and vout ∈ V such that:

For all (v1, v2) ∈ E, if v2 ∈ R then either v1 ∈ R or v1 = vin.
For all (v1, v2) ∈ E, if v1 ∈ R then either v2 ∈ R or v2 = vout.

Node-centric regions are extracted from the CFG of a program using Algorithm 1.
A node-centric SESE region is canonically represented by its pair (vin, vout).

Algorithm 1 Algorithm to compute node-centric SESE regions from a control-flow graph C.
Returns a set of regions that are represented as their pair (vin, vout). This algorithm has a worst-case
time complexity of O(n3) where n is the number of CFG nodes in a function.
1: function ComputeNodeSESE(C)
2: compute dominators and post-dominators of C

3: regions := {} ▷ Generate all regions (including overlap).
4: for each node start ∈ V do ▷ C = (V, E)
5: for each dominator end of start do
6: if start is a post-dominator of end then
7: inside := nodes in region (start, end) ignoring back edges
8: if all back edges in region (start, end) link two nodes of inside then
9: regions.push((start, end))

10: end if
11: end if
12: end for
13: end for
14: overlapping_regions := {} ▷ Remove overlapping regions.
15: for each r1 in regions do
16: for each r2 in regions do
17: if r1 ∩ r2 ̸= ∅ and r1 ̸⊆ r2 and r2 ̸⊆ r1 then
18: overlapping_regions.insert(r1)
19: overlapping_regions.insert(r2)
20: end if
21: end for
22: end for
23: return regions ∖ overlapping_regions
24: end function

Algorithm 1 is based on the well-know concepts of dominators and post dominators used in
compilers1. It is divided in two loops: one generating all node-centric SESE regions, that could
possibly overlap, and one filtering out overlapping regions to enforce the inclusion property
among regions. The second loop operates as follows. Consider two regions r1 = (n1, m1) and
r2 = (n2, m2) that overlap without inclusion. We can consider without loss of generality that

1 A node d dominates a node n if every path from the entry node of the CFG to n must go through d.
A node d post-dominates a node n if every path from n to the exit node of the CFG must go through d

WCET 2022

1:6 StAMP: Static Analysis of Memory Access Profiles for Real-Time Tasks

n2 is also a node of r1. Therefore, r1 and r2 contain three node-centric SESE regions that
do not overlap: (n1, n2), (n2, m1) and (m1, m2). As these three regions cover the exact same
nodes as r1 and r2, r1 and r2 can be filtered out.

2.4 Computing code interval covers
Code interval covers can be computed through a depth-first traversal over the SESE tree.
The concept of SESE tree is defined in Definition 6. Whether the kind of regions used is
edge-centric or node-centric does not influence the definition.

▶ Definition 6 (SESE tree). A SESE tree has two constructors:
BasicBlock(n) containing a control-flow graph with node n alone.
Region(r, children) containing a SESE region r and a non-empty set of SESE tree
children. The two following properties must also hold:

Any CFG node covered by an element of children must be covered by r.
Any CFG node in r must be covered by exactly one element of children.

From this tree definition, we derive Algorithm 2 to generate a code interval cover.

Algorithm 2 Computes a control-flow ordered code interval cover, taking as parameters a SESE
tree and a fuel amount. The code interval cover is represented as a sequence of SESE trees exactly
covering the nodes of the code interval. The fuel parameter controls the exploration depth: the
higher the fuel, the more fine-grain the cover.
1: function CodeIntervalCover(tree, fuel)
2: if tree is a BasicBlock(n) then
3: if n is a call node to callee then
4: return [tree] + CodeIntervalCover(callee, fuel)
5: else if n has up to one control-flow successor then
6: return [tree]
7: else
8: return Unchainable
9: end if

10: else if tree is a Region(r, children) then
11: if fuel = 0 then
12: return [tree]
13: else ▷ Build CFG ordering of SESE children of tree, if possible.
14: result_intervals := []
15: child := control-flow entry of children

16: while child ̸= null do
17: child_result := CodeIntervalCover(child, fuel − 1)
18: if child_result = Unchainable then
19: return [tree]
20: end if
21: result_intervals := result_intervals + child_result

22: child := any control-flow successor of child in children

23: end while
24: return result_intervals

25: end if
26: end if
27: end function

This algorithm takes as parameters a SESE tree tree and an amount of fuel modeling the
maximum depth of the recursive exploration of tree (each recursive call consumes one unit of
fuel), and returns a sequence of SESE trees that will each represent a code interval. The

T. Degioanni and I. Puaut 1:7

depth-first traversal matches on the two constructors of SESE trees recursively, reducing fuel
on each recursive call. In the BasicBlock case, we either forward the construction to a
called CFG if there is one by unfolding the CFG of the callee, or check whether the node
can be part of a chain (returning Unchainable if not). In the Region case, we either end
the exploration if there is no fuel left, or recursively call the construction function on the
SESE children of the region, in control-flow order. Note that if one of the children cannot
be chained, we abort breaking the region in parts and simply return the region itself, as
we could not output a more precise code interval. The worst-case time complexity of the
algorithm is linear with respect to the number of SESE tree nodes, which in the general case
is equivalent to quadratic with respect to the number of CFG nodes in a function.

2.5 Computing memory access profiles
Once the control-flow graph is divided into code intervals, we compute the worst-case number
of memory accesses (WCMA) for each interval by largely relying on standard Implicit Path
Enumeration Technique (IPET) analysis [10], both for estimating: (i) the (partial) WCET of
code intervals; (ii) their worst-case number of memory accesses (WCMA).

To compute the WCET of each code interval, we constrain to zero the WCET value of
each basic block outside the code interval under analysis and outside any of the functions
it could call (recursively). The WCMA of each code interval is estimated in a similar way,
by setting to zero the WCMA of each basic block outside the interval under analysis. This
partial WCET/WCMA calculation is straightforward due to the single-entry single-exit
feature of code intervals.

Detecting if a load/store instruction may result in memory access depends on the presence
of instruction/data caches in the architecture under analysis. The experimental evaluation
of StAMP uses an architecture with instruction and data caches, thus not all load/store
instructions result in memory accesses, as explained in Section 3.1.

Then, the only step left is to create a memory access profile out of the code intervals.

▶ Definition 7 (Memory access profile). A memory access profile is a sequence of pairs
(wcet, wcma) representing a time-sequence of code intervals of maximum duration wcet in
which at worst wcma memory accesses can happen.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 10000 20000 30000 40000 50000 60000 70000 80000

W
or

st
-c

as
e

m
em

or
y

ac
ce

ss
 a

m
ou

nt

Cycles

Memory access profile

Figure 4 Example memory access profile (minver, node-centric SESE regions, non-limiting large
value of fuel parameter.

As code intervals are chained in a sequence, it is possible to create a memory access
profile by mapping code intervals in the produced sequence of code intervals to their pair
(wcet, wcma). An example of a memory access profile is given in Figure 4. The x-axis
represents the code intervals with their WCET in cycles, while the y-axis represents the
corresponding WCMA.

WCET 2022

1:8 StAMP: Static Analysis of Memory Access Profiles for Real-Time Tasks

3 Experimental evaluation

In this section, we present the details of our implementation and discuss the benefits and
limitations of StAMP through experiments.

3.1 Implementation of StAMP and experimental setup
StAMP was implemented within the Heptane WCET analysis platform [6]. In order to
evaluate the quality of the generated memory access profiles, we ran StAMP on the bench-
marks provided by Heptane (C code of the Mälardalen benchmarks [5] with loop bounds
annotated using the Heptane format). The target architecture used is based on MIPS with a
single layer of data cache and instruction cache. Both caches are 2-associative LRU caches
with 32-bytes cache lines and 32 sets. Heptane provides a built-in instruction cache, data
cache and address analysis. Every access not classified as always-hit by the cache analysis
of Heptane is assumed to perform a memory access. This allows obtaining the Worst-Case
number of Memory Access (WCMA) of each basic block. Heptane additionally provides
IPET analysis for WCET computation, that was modified to compute the worst-case number
of memory accesses of intervals. As such, most of the implementation work was to compute
the code interval covers.

3.2 Memory access profile results
We ran StAMP on all benchmarks with a very large value for the fuel parameter (simply
termed unlimited fuel hereafter). All the produced profiles are provided as supplementary
material that can be downloaded from [4]. An example generated profile is given in Figure 4.
Note that some intervals are only a couple of cycles long and are thus not visible on the
graphical representation. While this graphical representation of memory access profiles
is useful to compare StAMP with state-of-the-art methods, it does not translate all the
capabilities of StAMP. Indeed, each block in the memory profile corresponds to a code
interval. This allows mapping back each block’s WCET and WCMA information (in the
time domain) to a code interval (in the code domain). This is especially useful for schedulers
which operate at run-time when the current position in the code is also known.

3.3 Granularity using edge-centric versus node-centric SESE regions
StAMP is generic over the flavor of SESE regions (edge-centric vs. node-centric) used to
compute code intervals. Table 1 compares the length of code interval covers with edge-centric
and node-centric regions.

With unlimited fuel, node-centric SESE regions systematically outperform edge-centric
SESE regions in terms of length of the generated cover (the larger the number of intervals, the
more precise the information provided to the scheduler). This can be explained by noticing
that any edge-centric SESE region with ein = (s, t) and eout = (s′, t′) induces a node-centric
SESE region with vin = t and vout = t′. As such, there are always more node-centric SESE
regions than edge-centric SESE regions.

One of the most interesting results is observed on benchmark nsichneu, that features
many if statements. In this benchmark, edge-centric SESE regions generate only a single
code interval, while node-centric SESE regions generate 127 code intervals. The node flavor
of StAMP results in particularly fine-grain intervals, as shown in Figure 5. In this example,
the large number of intervals may increase the complexity of off-line scheduling strategies.
However, merging intervals is straightforward, because they form a sequence that covers all
the code.

T. Degioanni and I. Puaut 1:9

Table 1 Length (number of intervals) of code interval covers (CIC) (node vs edge-centric regions,
unlimited fuel).

CIC length
Benchmark Edge Node

ud 11 12
insertsort 3 3

sqrt 3 4
matmult 17 17

fibcall 3 5
fft 7 9

cover 13 13
expint 3 4
jfdctint 9 9

statemate 9 17
lcdnum 3 3

CIC length
Benchmark Edge Node

select 5 5
ns 3 5

minver 17 17
crc 5 15

minmax 1 3
simple 1 4
ludcmp 5 6

qurt 7 10
bs 5 5

bsort100 7 9
nsichneu 1 127

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 50000 100000 150000 200000 250000 300000 350000

W
or

st
-c

as
e

m
em

or
y

ac
ce

ss
 a

m
ou

nt

Cycles

Memory access profile

Figure 5 Memory access profile for benchmark nsichneu (node-centric regions, unlimited fuel).

3.4 Controlling the granularity of memory access profiles
The longer the generated code interval sequence length, the more accurate the interference
calculation, but the more complex the scheduling, which motivates the need to control the
length of the generated sequences. This control is provided in StAMP by the fuel parameter,
which commands how deeply the SESE tree is traversed. Figure 6 illustrates the effect of
varying the amount of fuel on the sequence length for node-centric regions. Evolution of
nsichneu is not drawn for clarity as the curve goes very high. Its behavior is however similar
to other benchmarks: after a few levels of recursion, it remains stable.

Augmenting the amount of fuel increases the generated code interval cover length. However,
this control is limited, as SESE trees in practice are not very deep in our benchmarks. As seen
in Figure 6, none of our benchmarks benefit from a value of fuel higher than five. Instead,
granularity can be reduced by merging consecutive code intervals as their union forms a new
code interval. This alternative method further allows control over the size of code intervals.

3.5 Limitation of code interval cover computation
The analysis in StAMP in some benchmarks does not go deep in the SESE tree no matter
the amount of fuel, and the number of intervals detected is rather small. This phenomenon
illustrates a limitation of the code interval model, occurring when control-flow bypasses a
large section. As an example, Figure 7 shows a situation in which fine-grained intervals could
not be generated because a bypass edge blocks the traversal of successors in Algorithm 2.

WCET 2022

1:10 StAMP: Static Analysis of Memory Access Profiles for Real-Time Tasks

2 4 6 8 10
Fuel provided

0

2

4

6

8

10

12

14

16

Co
de

in
te

rv
al

co
ve

rl
en

gt
h

fft
crc
bsort100
ns
bs
statemate
minver
lcdnum
expint
insertsort
minmax
cover
simple
prime
qurt
ud
fibcall
matmult
select
jfdctint
ludcmp
sqrt

Figure 6 Influence of the amount of fuel on the code interval cover length (node-centric regions).
nsichneu omitted for readability.

Some of our benchmarks (such as for example expint or select) resulted in a memory
access profile containing a single dominant block (surrounded by negligibly short blocks).
This is generally caused by if statements or loops enclosing most of the code as illustrated
in Figure 7.

Figure 7 The same CFG as in Figure 1 is no longer dividable in a code interval cover longer than
2 if we add a bypass edge from the leftmost to the rightmost block. In red is the longest possible
code interval cover.

4 Related work

The authors of [2] present TIPs, a technique to extract memory access profiles from code
using trace enumeration. Similarly, Oehlert et al. present in [12] a technique to extract event
arrival functions using IPET, with memory accesses as a particular case of intervals. These
two papers generate memory access profiles per interval, with an interval defined as a time
interval in task execution. StAMP, in contrast, first generates a profile in the code domain
and then converts its results to the time domain. This allows introducing specific code (i.e.
synchronization) for tighter identification of interference cost [15,16].

The time-domain output of the TIPs method differs significantly from StAMP and the
method presented by Oehlert et al. While the latter provides an upper bound of the number
of memory accesses left to do after a certain point in time, TIPs provides more precise data

T. Degioanni and I. Puaut 1:11

that describe the worst-case number of memory accesses during the ongoing time interval.
However, this is achieved via exponential time algorithms over the length of the program,
while StAMP is in polynomial time over the length of the program.

The PREM (PRedictable Execution Model, [13]) allows to separate phases that use
shared resources from those that do not and allows a scheduling technique that avoids the
co-scheduling of phases that interfere with each other [14,18]. Similarly to PREM, StAMP
identifies code intervals with different memory access patterns to shared resources but offers
more flexibility in the identified access patterns.

The MRSS task model introduced in [3] characterizes how much stress each task places on
resources and how sensitive it is to such resource stress and presents schedulability tests using
this model. Memory access profiles such as those produced by StAMP produce information
at a finer granularity than in [3] (interval level instead of task level) and could be used to
improve the schedulability tests of [3].

Code interval covers are similar to super blocks as defined in [1] in the sense that when
an interval in the cover is executed, all other intervals will be executed exactly the same
number of times, and as such enforce full coverage of the CFG. In contrast to the concept of
super block as defined in [1] intervals in our sequences are made of sub-graphs of the CFG
and not basic blocks.

5 Conclusion

We have presented StAMP, a technique that generates worst-case memory access profiles
from compiled code. StAMP links bidirectionally time-domain and code-domain information.
The technique generates a segmentation of a compiled program as a code interval cover in
polynomial time and generates a time-domain representation of the worst-case number of
memory accesses in this cover.

Future work should first experimentally evaluate the differences between the memory
access profiles generated by StAMP and the ones obtained by time-based technique of [2],
and most importantly their respective impact on scheduling strategies. Other directions
for future work are to improve the expressiveness of the method by improving the code
interval model (i.e., move from sequences of intervals to directed graphs), and to enhance
memory access profiles to detail when memory accesses occur within code intervals, similarly
to [12]. We also believe improvements to the worst-case complexity of the generation of
non-overlapping node-centric SESE regions are possible.

References
1 Hiralal Agrawal. Dominators, super blocks, and program coverage. In Proceedings of the

21st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
’94, pages 25–34, New York, NY, USA, 1994. Association for Computing Machinery. doi:
10.1145/174675.175935.

2 Thomas Carle and Hugues Cassé. Static extraction of memory access profiles for multi-core
interference analysis of real-time tasks. In Christian Hochberger, Lars Bauer, and Thilo
Pionteck, editors, Architecture of Computing Systems - 34th International Conference, ARCS
2021, Virtual Event, June 7-8, 2021, Proceedings, volume 12800 of Lecture Notes in Computer
Science, pages 19–34. Springer, 2021. doi:10.1007/978-3-030-81682-7_2.

3 Robert I. Davis, David Griffin, and Iain Bate. Schedulability Analysis for Multi-Core Sys-
tems Accounting for Resource Stress and Sensitivity. In Björn B. Brandenburg, editor, 33rd
Euromicro Conference on Real-Time Systems (ECRTS 2021), volume 196 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), pages 7:1–7:26, Dagstuhl, Germany, 2021. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ECRTS.2021.7.

WCET 2022

https://doi.org/10.1145/174675.175935
https://doi.org/10.1145/174675.175935
https://doi.org/10.1007/978-3-030-81682-7_2
https://doi.org/10.4230/LIPIcs.ECRTS.2021.7

1:12 StAMP: Static Analysis of Memory Access Profiles for Real-Time Tasks

4 Théo Degioanni and Isabelle Puaut. Stamp: Static analysis of memory access profiles for
real-time tasks: supplementary material, 2022. URL: https://files.inria.fr/pacap/puaut/
papers/WCET_2022_appendix.pdf.

5 Jan Gustafsson, Adam Betts, Andreas Ermedahl, and Björn Lisper. The mälardalen WCET
benchmarks: Past, present and future. In Björn Lisper, editor, 10th International Workshop on
Worst-Case Execution Time Analysis, WCET 2010, July 6, 2010, Brussels, Belgium, volume 15
of OASIcs, pages 136–146. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany,
2010. doi:10.4230/OASIcs.WCET.2010.136.

6 Damien Hardy, Benjamin Rouxel, and Isabelle Puaut. The Heptane static worst-case execution
time estimation tool. In International Workshop on WCET Analysis, pages 8:1–8:12, 2017.

7 Mohamed Hassan and Rodolfo Pellizzoni. Analysis of Memory-Contention in Heterogeneous
COTS MPSoCs. In Marcus Völp, editor, 32nd Euromicro Conference on Real-Time Systems
(ECRTS 2020), volume 165 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 23:1–23:24, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.
doi:10.4230/LIPIcs.ECRTS.2020.23.

8 Richard Johnson, David Pearson, and Keshav Pingali. The program structure tree: Computing
control regions in linear time. In Proceedings of the ACM SIGPLAN 1994 Conference on
Programming Language Design and Implementation, PLDI ’94, pages 171–185, New York, NY,
USA, 1994. Association for Computing Machinery. doi:10.1145/178243.178258.

9 Hyoseung Kim, Dionisio de Niz, Björn Andersson, Mark Klein, Onur Mutlu, and Ragunathan
Rajkumar. Bounding memory interference delay in cots-based multi-core systems. In 2014
IEEE 19th Real-Time and Embedded Technology and Applications Symposium (RTAS), pages
145–154, 2014. doi:10.1109/RTAS.2014.6925998.

10 Yau-Tsun Steven Li and Sharad Malik. Performance analysis of embedded software using
implicit path enumeration. In DAC: 32nd ACM/IEEE conference on Design automation, pages
456–461, 1995.

11 Claire Maiza, Hamza Rihani, Juan Maria Rivas, Joël Goossens, Sebastian Altmeyer, and
Robert I. Davis. A survey of timing verification techniques for multi-core real-time systems.
ACM Comput. Surv., 52(3):56:1–56:38, 2019. doi:10.1145/3323212.

12 Dominic Oehlert, Selma Saidi, and Heiko Falk. Compiler-based extraction of event arrival
functions for real-time systems analysis. In Sebastian Altmeyer, editor, 30th Euromicro
Conference on Real-Time Systems, ECRTS 2018, July 3-6, 2018, Barcelona, Spain, volume
106 of LIPIcs, pages 4:1–4:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.
doi:10.4230/LIPIcs.ECRTS.2018.4.

13 Rodolfo Pellizzoni, Emiliano Betti, Stanley Bak, Gang Yao, John Criswell, Marco Caccamo,
and Russell Kegley. A predictable execution model for cots-based embedded systems. In 2011
17th IEEE Real-Time and Embedded Technology and Applications Symposium, pages 269–279,
2011. doi:10.1109/RTAS.2011.33.

14 Benjamin Rouxel, Steven Derrien, and Isabelle Puaut. Tightening contention delays while
scheduling parallel applications on multi-core architectures. ACM Trans. Embed. Comput.
Syst., 16(5s):164:1–164:20, 2017. doi:10.1145/3126496.

15 Stefanos Skalistis and Angeliki Kritikakou. Timely fine-grained interference-sensitive run-
time adaptation of time-triggered schedules. In IEEE Real-Time Systems Symposium, RTSS
2019, Hong Kong, SAR, China, December 3-6, 2019, pages 233–245. IEEE, 2019. doi:
10.1109/RTSS46320.2019.00030.

16 Stefanos Skalistis and Angeliki Kritikakou. Dynamic Interference-Sensitive Run-time Adapta-
tion of Time-Triggered Schedules. In Marcus Völp, editor, 32nd Euromicro Conference on
Real-Time Systems (ECRTS 2020), volume 165 of Leibniz International Proceedings in Infor-
matics (LIPIcs), pages 4:1–4:22, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum
für Informatik. doi:10.4230/LIPIcs.ECRTS.2020.4.

https://files.inria.fr/pacap/puaut/papers/WCET_2022_appendix.pdf
https://files.inria.fr/pacap/puaut/papers/WCET_2022_appendix.pdf
https://doi.org/10.4230/OASIcs.WCET.2010.136
https://doi.org/10.4230/LIPIcs.ECRTS.2020.23
https://doi.org/10.1145/178243.178258
https://doi.org/10.1109/RTAS.2014.6925998
https://doi.org/10.1145/3323212
https://doi.org/10.4230/LIPIcs.ECRTS.2018.4
https://doi.org/10.1109/RTAS.2011.33
https://doi.org/10.1145/3126496
https://doi.org/10.1109/RTSS46320.2019.00030
https://doi.org/10.1109/RTSS46320.2019.00030
https://doi.org/10.4230/LIPIcs.ECRTS.2020.4

T. Degioanni and I. Puaut 1:13

17 Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing,
David B. Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika Mitra,
Frank Mueller, Isabelle Puaut, Peter P. Puschner, Jan Staschulat, and Per Stenström. The
worst-case execution-time problem - overview of methods and survey of tools. ACM Trans.
Embedded Comput. Syst., 7(3):36:1–36:53, 2008.

18 Gang Yao, Rodolfo Pellizzoni, Stanley Bak, Emiliano Betti, and Marco Caccamo. Memory-
centric scheduling for multicore hard real-time systems. Real Time Syst., 48(6):681–715, 2012.
doi:10.1007/s11241-012-9158-9.

WCET 2022

https://doi.org/10.1007/s11241-012-9158-9

LLVMTA: An LLVM-Based WCET Analysis Tool
Sebastian Hahn
Saarland University, Saarland Informatics Campus1, Saarbrücken, Germany

Michael Jacobs
Saarland University, Saarland Informatics Campus2, Saarbrücken, Germany

Nils Hölscher
TU Dortmund University, Germany

Kuan-Hsun Chen
University of Twente, The Netherlands

Jian-Jia Chen
TU Dortmund University, Germany

Jan Reineke
Saarland University, Saarland Informatics Campus, Saarbrücken, Germany

Abstract
We present llvmta, an academic WCET analysis tool based on the LLVM compiler infrastructure.
It aims to enable the evaluation of novel WCET analysis approaches in a state-of-the-art analysis
framework without dealing with the complexity of modeling real-world hardware architectures. We
discuss the main design decisions and interfaces that allow to implement new analysis approaches.
Finally, we highlight various existing research projects whose evaluation has been enabled by llvmta.

2012 ACM Subject Classification Software and its engineering → Software performance; Software
and its engineering → Automated static analysis; Software and its engineering → Compilers;
Computer systems organization → Real-time system architecture

Keywords and phrases WCET analysis, low-level analysis, LLVM

Digital Object Identifier 10.4230/OASIcs.WCET.2022.2

Supplementary Material llvmta and a patched version of LLVM are available as open source for
academic research purposes:
Software (Source Code): https://gitlab.cs.uni-saarland.de/reineke/llvmta
Software (Source Code): https://gitlab.cs.uni-saarland.de/reineke/llvm

Funding This work has been supported by the Deutsche Forschungsgemeinschaft (DFG) as part of
the Transregional Collaborative Research Centre SFB/TR 14 (AVACS); by the Saarbrücken Graduate
School of Computer Science, which received funding from the DFG as part of the Excellence Initiative
of the German Federal and State Governments; and by the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme (grant agreement No.
101020415).

Acknowledgements We would like to thank all the students at Saarland University who contributed
during the development of llvmta: in particular Claus Faymonville for his extensive contributions
in a very early development stage, but also Tina Jung, Darshit Shah, and Tobias Stark.

1 Work underlying this paper was performed between 2014 and 2019 while the author was still working at
Saarland University. Since 2019, the author is affiliated with AbsInt Angewandte Informatik GmbH
which is not related to work described in this paper.

2 Work underlying this paper was performed between 2014 and 2017 while the author was still working at
Saarland University. Since 2018, the author is affiliated with Artengis GmbH which is not related to
work described in this paper.

© Sebastian Hahn, Michael Jacobs, Nils Hölscher, Kuan-Hsun Chen, Jian-Jia Chen, and Jan Reineke;
licensed under Creative Commons License CC-BY 4.0

20th International Workshop on Worst-Case Execution Time Analysis (WCET 2022).
Editor: Clément Ballabriga; Article No. 2; pp. 2:1–2:17

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-8412-7716
https://orcid.org/0000-0002-6397-5134
https://orcid.org/0000-0002-7110-921X
https://orcid.org/0000-0001-8114-9760
https://orcid.org/0000-0002-3459-2214
https://doi.org/10.4230/OASIcs.WCET.2022.2
https://gitlab.cs.uni-saarland.de/reineke/llvmta
https://gitlab.cs.uni-saarland.de/reineke/llvm
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

2:2 LLVMTA: An LLVM-Based WCET Analysis Tool

1 Introduction

In this paper, we introduce llvmta, an open-source worst-case execution time (WCET)
analysis tool developed at Saarland University from 2014 onwards. Our aims with this paper
are twofold: First, we want to convey the main design goals of llvmta and how these design
goals manifest in its current design. Second, to facilitate future work on llvmta, we describe
the most important interfaces, which need to be implemented to adapt and extend llvmta.

At the onset of the work on llvmta, four WCET analysis tools were at the disposal of
the authors: the commercial WCET analyzer aiT by AbsInt GmbH, and the three academic
WCET analysis tools otawa [7], developed in Toulouse, Chronos [49] developed in Singapore,
and Heptane [38], developed in Rennes. Our goals at the time were to study WCET analysis
for microarchitectures that feature timing anomalies [53, 64] and to explore the potential
of compositional timing analysis [37]. In order to evaluate the full potential of the planned
approaches, we decided to implement them in a state-of-the-art analysis framework. To the
best of our knowledge, the required state-of-the-art analysis features (in particular abstract
execution graphs, as discussed in Section 2) were only available in the commercial aiT tool
created by Absint. Commercial analysis tools as aiT, however, exhibit a high degree of
complexity as they have to support a wide range of real-world hardware platforms and need
to scale to large real-world applications under analysis. Thus, we decided to create our own
analysis framework from scratch, to enable the rapid prototyping of novel analysis approaches.
Due to the use of state-of-the-art analysis techniques, it is still reasonable to judge whether
the observed gain in precision and/or efficiency of novel analysis approaches would translate
to commercial tools.

Also worth mentioning is the WCET compiler WCC [20] developed in Dortmund. WCC
is a compiler focusing on WCET optimizations, implementing its own high- and machine-level
intermediate representations, namely ICD-C and ICD-LLIR. WCC uses aiT for its timing
analysis and does not provide timing analysis on its own. While llvmta is using the LLVM
compiler infrastructure it does not perform code transformations on its own.

As part of T-CREST [60], a tool called Platin has been developed in Vienna. Platin also
uses aiT to provide low-level timing analysis or, alternatively, an internal analyzer, which,
however, does not feature a detailed microarchitectural analysis. Platin can compute loop
bounds by both static analysis, using LLVM infrastructure, and by simulating short traces.
These loop bounds can then be fed as flow facts to aiT.

We set out to create a new academic WCET analysis tool with these minimal requirements:
Support of precise and accurate analysis of microarchitectures with timing anomalies
using state-of-the-art techniques, in particular abstract execution graphs [72].
Support of compositional analysis [37] approaches in which the analysis of different timing
contributors is performed separately.
Flexibility to easily replace pipeline or cache models or to add new path constraints.

WCET analysis is challenging for several reasons, including some that we were not particularly
interested in, which entails some explicit “non-goals”:

Our goals has been to study fundamental challenges in WCET analysis, not to support
particular (commercial) microarchitectures. We note, however, that given sufficient
knowledge of the underlying microarchitectures, it would be possible to support particular
microarchitectures within llvmta.
WCET analysis typically applies to binary executables. This entails the challenge of
reconstructing the control-flow graph of the code, which is not explicit in the binary.
llvmta bypasses this challenge by integrating into the LLVM compiler.

S. Hahn, M. Jacobs, N. Hölscher, K.-H. Chen, J.-J. Chen, and J. Reineke 2:3

The remainder of this paper is structured as follows: We begin by giving a brief overview of
the architecture of static WCET analyzers. Next, we present an overview of the architecture
of llvmta. Subsequently, we present the usage of the command-line tool llvmta for a small
example. Finally, we conclude the paper with a brief discussion of existing applications of
llvmta by pointing out future steps in the development of the tool.

2 Standard Architecture of Static WCET Analysis Tools

In this section, we describe the de facto standard architecture underlying static WCET
analysis tools today, which in particular underlies llvmta. There are fundamentally different
WCET analysis approaches, such as measurement and hybrid WCET analysis, which are out
of scope in this discussion.

llvmta and other WCET analyzers operate on a control-flow graph (CFG) representation
of the program under analysis. A CFG is a directed graph whose nodes correspond to basic
blocks, i.e. straight-line code sequences, and whose edges correspond to possible control flow
between these nodes. The CFG of a program is not explicit in the machine code executed
on the hardware. Thus the first step of most WCET analysis tools is to reconstruct a CFG
from the program binary [75, 76, 45, 23, 67, 8]. In llvmta, the CFG is directly obtained
from the compiler generating the binary rather than by reconstructing it.

Given the program’s CFG, the WCET analysis problem can then be decomposed into
three subproblems:
1. Deriving constraints that approximate the subset of paths through the control-flow graph

that are semantically feasible.
2. Determining the possible execution times of program parts, such as basic blocks, ac-

counting for the timing effects of microarchitectural features such as pipelining and
caching.

3. Combining the information from 1. and 2. to derive a bound on the program’s WCET.

The first subproblem depends only on the program’s semantics and is thus independent of
the underlying microarchitecture. If the program under analysis contains loops, it is necessary
to bound each loop’s maximum number of iterations; otherwise, no WCET bound can possibly
be derived. Different loop bound analyses have been described in the literature [31, 52, 30, 74,
15, 19, 58, 6, 10]. Generalizing loop bound analysis, control-flow analysis derives constraints
on the possible execution paths through the CFG [46, 16, 5, 42, 68, 59, 61] including loop
bounds.

By definition, the second subproblem critically depends on the underlying microarchitec-
ture. Thus the underlying analysis is often called microarchitectural analysis. Traditionally,
the output of microarchitectural analysis have been bounds on the timing contributions
of the basic blocks [7, 38, 49] of the program. As modern processors employ pipelining,
the execution of successive basic blocks may overlap substantially. Thus, it is import-
ant not to “pay” for this overlap multiple times, and to analyze basic blocks within the
context of their surrounding basic blocks. Different approaches to this end have been pro-
posed [51, 77, 39, 53, 12, 22, 17, 78, 48, 65, 82]. We are unable to give a complete account of
these approaches here due to space limitations; instead we focus on a brief description of the
approach taken in llvmta.

Microarchitectural analysis in llvmta can be seen as a static cycle-by-cycle simulation
of the execution of the program on abstract microarchitectural states, accounting for any
microarchitectural component that influences the execution’s timing, such as pipelining
(including e.g. forwarding effects), branch prediction, load and store buffers, and caches.

WCET 2022

2:4 LLVMTA: An LLVM-Based WCET Analysis Tool

Program
Binary

Control-flow
Reconstruction

Control-flow
Graph

Control-flow Analysis
(incl. Loop-bound Analysis)

Value
Analysis

Annotated
CFG

Abstract
Execution

Graph

Micro-
architectural

Analysis
Path Analysis

Timing
Bound

Figure 1 Overview of the general steps in
WCET analysis.

C Code clang Intermediate
Representation

opt

llc

Assembler
Representation

llvmta
low-level analysis

Assembler
Linker

Timing
Bound

Program
Binary

Address
Mapping

&

Figure 2 Overview of the common LLVM
compilation flow (clang, opt, llc) including
the integration of our low-level analysis tool
llvmta.

Due to abstraction this static simulation may lack information, e.g. whether an access
results in a cache hit or a cache miss, or whether two memory accesses alias, the simulation
may have to “split” following multiple successor states, introducing nondeterminism. The
output of microarchitectural analysis is an abstract execution graph (AEG) [72] whose
nodes correspond to abstract microarchitectural states and whose edges correspond to
the passage of processor cycles. An important distinguishing feature of this approach is
that the AEG may capture correlations between the timing contributions of different basic
blocks, rather than computing a single bound for each basic block. The key to make this
approach successful in practice is to find abstractions that strike a good balance between
analysis complexity and precision. For caches various compact abstractions have been
developed [1, 25, 26, 27, 71, 33, 29, 11, 14, 28, 24, 54, 79, 9, 80] that offer varying degrees of
precision depending on the underlying replacement policy [40, 63].

The third and final step of WCET analysis is to combine the information gathered in the
first two steps to compute a bound on the program’s WCET. The most popular approach
to this path analysis problem is the implicit path enumeration technique (IPET) [50]. The
basic idea behind IPET is to solve the path analysis problem via an integer linear program
(ILP). Integer variables are introduced for each edge in the AEG, encoding the frequency of
taking those edges during an execution. The structure of the AEG imposes linear constraints
relating these frequencies, implicitly encoding all possible paths through the AEG. Additional
constraints are obtained from control-flow analysis; otherwise unbounded solutions would
be possible in the presence of loops. Finally the objective function captures the cost of a
given path through the AEG. Maximizing the objective function yields a safe WCET bound
provided that the previous analyses capture all possible executions of the program on the
microarchitecture. The overall WCET analysis flow is depicted in Figure 1.

For a more detailed discussion of static WCET analysis and related techniques we refer
to the survey paper by Wilhelm et al. [81]. The same techniques can be used to safely
approximate the number of occurrences of other microarchitectural events [43]. E.g. one can
similarly determine a bound on the number of cache misses in any possible execution of the
program.

S. Hahn, M. Jacobs, N. Hölscher, K.-H. Chen, J.-J. Chen, and J. Reineke 2:5

3 LLVMTA Tool Architecture

3.1 High-level Structure
We implemented a low-level analysis tool called llvmta, following the scheme sketched in
Figure 1. In this section, we provide details on this tool. llvmta is based on the LLVM
compiler infrastructure [47], and it is hooked into the common LLVM compilation flow as
depicted in Figure 2.

Overall Tool Architecture. Given a C program, the compiler frontend clang (https:
//clang.llvm.org) translates the program into the LLVM intermediate representation. After
an optional optimization phase (opt), the program is further translated to the assembler code
(llc) which results in the final binary after the linking step. Our analyses are implemented
on the final assembler representation in the LLVM backend which is the representation closest
to the machine level. The timing bound determined by llvmta is valid for the resulting
binary, i.e., it will change accordingly if the binary changes, e.g. due to different compiler
optimizations.

The integration of low-level timing analysis and compilation offers several advantages.
First, no control-flow reconstruction of the binary is required because control-flow elements
such as functions, basic blocks, and loops are provided by the prior compilation step. Second,
the low-level analysis in the backend can make use of (high-level) information obtained at
earlier stages and maintained during compilation. On the downside, the analysis requires
as input the program to be analyzed in LLVM intermediate representation, and provides
timing estimates only for the binary produced by the specific compiler. Commonly, this
representation can be obtained using the compiler frontend from the high-level source program,
for example given in C. It is conceivable, but it has not been experimentally validated, to
apply binary lifters [4, 2, 18] to obtain an intermediate representation directly from binaries.
The analysis results would then be valid for binaries obtained by recompiling the intermediate
representation. Furthermore, the addresses of the instructions and the static data are only
known after the linking step and would have to be fed back to the low-level analysis for
sound analysis results. This is currently not implemented, but there are no major technical
obstacles to doing so.

LLVMTA low-level analysis. To obtain precise results, we have implemented context-
sensitive analysis [70], i.e. the analysis distinguishes different contexts that influence the
execution behaviour. As an example, the execution behaviour of the first iteration of a loop
usually differs from the behaviour of later iterations because the caches are being filled during
the first iteration [55]. To establish a context-sensitive analysis framework, we implemented
trace partitioning [56] on the final assembler representation in the LLVM backend. Context
sensitivity is achieved by partitioning the set of execution traces according to some predicate
on traces. We implemented predicates to discriminate different iterations of a loop, as well
as different call sites of a function. The degree of context sensitivity, i.e. the number and size
of these predicates, is an analysis parameter.

Based on our context-sensitive analysis framework, we have implemented a value analysis
that tracks constant values of registers and memory cells. This value information is used to
derive address information for data accesses. Despite the simplicity of the analysis domain,
it is sufficient to precisely analyse stack-relative accesses. For accesses to globally defined
objects such as global arrays, our tool uses information provided by the compiler to determine
the range of possible addresses.

WCET 2022

https://clang.llvm.org
https://clang.llvm.org

2:6 LLVMTA: An LLVM-Based WCET Analysis Tool

In order to derive loop bounds, we use the LLVM-internal scalar evolution analysis that
provides an upper bound on the iteration count of loops in their intermediate representation.
Our tool matches loops in the assembler representation to loops in intermediate representation
in order to automatically obtain upper loop bounds on the assembler level. Manual loop
annotations can be provided by the user for loops with complex iteration patterns. The
scalar evolution analysis, originally based on [6] and extended in [10], computes a closed-form
expression to describe how the values of variables evolve within a single loop iteration. These
expressions are used to derive upper loop bounds, either in the form of numeric values or
symbolic expressions w.r.t. the function parameters.

Our tool supports the analysis of different generic hardware platforms rather than
proprietary industrial platforms for the ARM and the RISC-V instruction sets. This is
sufficient to evaluate the general concepts used in timing analysis and takes significantly
less effort to implement. We model textbook pipelines (see [41]) with in-order, strictly
in-order [35, 32, 36], and out-of-order execution. The microarchitectural analysis supports
scratchpad memories, as well as caches with least-recently-used replacement policy and both
write-through and write-back policy. We have implemented must, may, and persistence cache
analysis [1, 54, 62]. As background memory, the tool supports fixed-latency memory as well
as dynamic random-access memory with a closed-page controller and distributed refreshes.

llvmta implements the fast-forwarding technique presented in [44] to increase the
performance of the microarchitectural analysis. This optimization exploits the fact that
pipelines tend to converge while waiting for memory, i.e. the pipeline cannot advance further
until the current memory request is finished. Once converged, the (abstract) state of the
pipeline stays the same as long as the memory is busy.

The abstract execution graph produced by the microarchitectural analysis is compressed
afterwards. llvmta supports two different levels of compression. Either all start and end
nodes within a basic block are kept separate to allow for a precise path analysis [72], or the
graph is compressed into a single edge per basic block to allow for an efficient path analysis.
Our tool supports multiple solvers to solve the ILP formulation resulting from the path
analysis, including the commercial tools IBM ILOG CPLEX Optimization Studio (https:
//www.ibm.com/us-en/marketplace/ibm-ilog-cplex) and Gurobi Optimizer (https://
www.gurobi.com) that exhibit the best performance [57].

3.2 Limitations

While offering many advantages such as code reuse and flexibility, the nature of an academic
prototype and the tight coupling with a compiler infrastructure also comes with limitations.

llvmta operates on the machine-level IR rather than on the binary, which may yield
results that are not entirely faithful to the generated machine code for the following reasons.
The assembler may break down pseudo-assembly instructions used in the machine-level
IR – the level we perform the analysis on – into several machine instructions in the actual
binary (especially on RISC-V). The address mapping is only determined after linking, and
llvmta currently operates on a made-up address mapping. We note that it would be
possible to obtain a faithful address mapping from the linker. For the ARM instruction set,
predication is supported for branch instructions, but not for arbitrary machine instructions
as specified in the instruction set architecture. As mentioned earlier, there are currently no
microarchitectural models that correspond to existing commercial hardware designs. Finally,
the tool is reasonable fast on the standard WCET benchmarks, but will likely not scale to
real-world applications.

https://www.ibm.com/us-en/marketplace/ibm-ilog-cplex
https://www.ibm.com/us-en/marketplace/ibm-ilog-cplex
https://www.gurobi.com
https://www.gurobi.com

S. Hahn, M. Jacobs, N. Hölscher, K.-H. Chen, J.-J. Chen, and J. Reineke 2:7

3.3 Main Design Interfaces
To reach our goal of flexibility, we use shared interfaces. New low-level analyses can be
obtained by implementing these interfaces with new classes (possibly inheriting existing ones)
and directing the analysis framework to employ these implementations. The most important
interfaces of llvmta allow for:

static program analysis on machine-level LLVM intermediate representation,
microarchitectural analysis, in particular pipeline modeling,
cache analysis, and
additional path analysis constraints.

3.3.1 Program Analysis at Machine-level Intermediate Representation
The interface class ContextAwareAnalysisDomain enables context-sensitive analysis on a
control-flow graph with machine-level instructions.

Part of the interface specifies the basic operation on abstract domain values in the spirit
of abstract interpretation [13]:

isBottom: does the current abstract value represent the bottom element of the analysis
lattice?
lessequal compares the current abstract value with another given one w.r.t. the partial
order ⊑ of the analysis domain,
join joins a given abstract value into the current abstract value w.r.t. the partial order
of the analysis domain. The behaviour should be consistent with lessequal.

The second part of interface specifies the transfer behaviour of abstract values while
abstractly interpreting the control-flow graph of the program under analysis.

transfer takes the next instruction to analyze, the current analysis context, and, option-
ally, analysis information of preceding static analyses at this program point. It modified
the current abstract value by the effect of the instruction in the specified context.
guard can be used to sharpen the current abstract value by the knowledge of the outcome
of a branch instruction (either taken or not taken).
enterBasicBlock models the effect of entering a basic block on the analysis information.

3.3.2 Microarchitectural Analysis
The interface class MicroArchitecturalState models the abstract state of the microar-
chitecture under analysis. Microarchitectural analysis, unlike most program analysis tech-
niques operates at the granularity of processor cycles rather than program instructions.
MicroArchitecturalState has the following interface:

The constructor of the class creates the initial microarchitectural state from which the
state space exploration starts. This usually represents a state with an empty pipeline
and unknown cache contents.
cycle models the behavior of executing the machine for a single cycle. The abstract
microarchitectural state is modified in-place. It takes a configurable set of precomputed
analysis information, e.g. address information for memory-accessing instructions.
isFinal specifies whether a given instruction has just finished execution in the current
microarchitectural state. An instruction is hereby identified by its instruction address
and a context. This predicate allows use to map microarchitectural states to instructions
in the control-flow graph of the program under analysis. This is mostly a technicality, but
influences e.g. at which points during the analysis microarchitectural states can be joined.
isJoinable and join are used to test whether microarchitectural states can be joined -
and do so if it is possible.

WCET 2022

2:8 LLVMTA: An LLVM-Based WCET Analysis Tool

The interface class also features helper functions to model common functionality found in any
microarchitecture such as the program counter and its evolution during program execution.

The cycle behaviour implicitly induces an microarchitectural state graph from the initial
state up to states in which the last instruction of the program under analysis finished
execution. At cycle granularity, i.e. having one edge per single execution cycle, such graphs
are too large to be used in path analysis. In Section 3.3.4 below, we will describe how to
obtain a more compact graph where edges are collapsed to describe multiple execution cycles
at once.

3.3.3 Cache Analysis
An important part of the microarchitecture that needs attention during timing analysis are
caches. The interface class AbstractCache models the abstract cache state of the cache
under analysis and specifies the behaviour of the cache replacement policy.

update models the effect of loading from or storing to a given abstract address, usually
an address interval.
lessequal and join specify the abstract analysis domain by providing basic lattice
operations ⊑ and ⊔.

For cache analysis with local classifications [54], the following functions are also relevant:
classify tells for a given abstract address whether an access is guaranteed to hit or miss
the cache.

For persistence cache analysis [62], the following functions are also relevant:
enterScope and leaveScope model the behaviour on entering and leaving a persistence
scope.
getPersistentScopes determines for a given abstract address the scopes in which the
address is persistent.

3.3.4 Path Analysis
To perform path analysis on the results of microarchitectural analysis, there are mostly two
tasks to perform. The first is to determine a compact micorarchitectural state graph with
what we call weights for each edge – collapsing multiple execution cycles at once. Weights
can be as simple as numeric values such as the number of cycles, the number of cache misses,
etc., but also more complex things such as the set of persistent cache misses. The second
task is, to use these weights to build up the constraints of an integer linear program that
encodes the worst-case path through the microarchitectural state graph. While solutions to
the second task are rather specific to the constraints to be generated, solutions to the first
task share sufficient commonalities to be captured by an interface class.

During construction of the microarchitectural state graph, we traverse the implicit graph
at cycle granularity as described in Section 3.3.2. To keep the graph compact, llvmta joins
nodes, i.e. microarchitectural states, and edges where possible (see isJoinable) without
losing too much precision. The general interface class to construct the weights on these
collapsed edges is StateGraphEdgeWeightProvider. There is a simpler but more limited
interface class for numeric weights only, called StateGraphNumericEdgeWeightProvider.

extractWeight takes a part of a microarchitectural state called LocalMetrics and extracts
a weight (of any type) from it. The LocalMetrics can accumulate any weight within a
state during microarchitectural analysis, e.g. the number of cycles executed or the number
of cache misses since entering a basic block.
joinWeight combines weights of to-be-collapsed edges with same source and same target
node, e.g. by taking the maximum.

S. Hahn, M. Jacobs, N. Hölscher, K.-H. Chen, J.-J. Chen, and J. Reineke 2:9

Figure 3 Simple AEG visualized with yComp.

concatWeight concatenates two weights of two consecutive to-be-collapsed edges, e.g. by
adding two numeric weights.
getNeutralWeight returns the neutral element w.r.t. operation concatWeight.

4 Using LLVMTA

In this section, we shortly discuss the usage and the expected output of llvmta.
As input, a program written in C is provided to llvmta. clang translates the C program

to its machine intermediate representation that is specific to the selected target architecture
(ARM or RISC-V). The runtestcase script takes care of all necessary compilation steps
and is the main script to perform timing analysis using llvmta. llvmta can automatically
derive loop bounds using LLVM’s scalar evolution analysis in many cases. If llvmta fails
to obtain a loop bound, the user has to provide loop bounds manually in a CSV format
LoopAnnotations.csv. The file can be auto generated with placeholders to fill the bounds
using the –ta-output-unknown-loops option.

WCET 2022

2:10 LLVMTA: An LLVM-Based WCET Analysis Tool

Table 1 Output files generated by llvmta.

Compiler
Frontend

Assembler (.txt) Program in LLVM’s machine intermediate representation

Assembler (.S) Unlinked program assembly

Preanalysis AnnotatedHeuristics Contains inserted partitioning directives guiding context-
sensitive analysis

PersistenceScopes Start and end of all persistence scopes

CallGraph List of all statically known callers and callees

ConstantValueAnalysis Constant values determined for machine registers and
memory cells for each instruction

LoopBounds Contains loop bounds determined

AddressInformation Addresses of instructions and addresses of data accessed
by memory operations

Microarch.
Analysis

MicroArchAnalysis Invariant set of microarchitectural state at the beginning
and end of each basic block

StateGraph_Time (.vcg) Microarchitectural state graph

Path
Analysis

LongestPath ILP path analysis formulation

PathAnalysis_<Weight>
..._<Max|Min>

Detailed results of the path analysis including worst-case
path

Results TotalBound (.xml) Machine readable output of calculated bounds

Statistics Resource consumption of analysis

During the analysis execution, intermediate results are printed as the different analysis
stages are performed. The output files are listed in Table 1. These files help the user
understand what happens during the analysis and to inspect intermediate and final results.
One important output is the file StateGraph_Time, which contains the abstract execution
graph with microarchitectural states as nodes and edges with weights such as timing or number
of cache misses. The graph can be viewed with the yComp (https://pp.ipd.kit.edu/firm/
yComp.html) graph viewer [66], as shown in Figure 3 for the “simplewhile” example, which
is provided along with the test suite of llvmta. The example consists of a single while loop,
incrementing a single variable 50 times before terminating. The WCEP is highlighted by the
red edges. It is worth noting that multiple abstract microarchitectural states are created
for the while loop in the main function allowing for higher analysis precision than a simple
“single execution time per basic block” path analysis scheme.

5 Existing Research Applications of LLVMTA

In this section, we briefly summarize research carried out with the help of llvmta.

Cache Analysis. Classically, write-back caches have not been used in hard real-time systems
as it was not known how to model them in a sufficiently precise way during WCET analysis.
This gap has been closed by combining two perspectives: a store-focussed one, which answers
whether a store may dirtify a clean cache line, and an eviction-focussed one, which answers
whether a cache miss may evict a dirty cache line and thus cause a write back [9].

We also employed llvmta in the development and evaluation of exact cache analysis, in
particular of exact cache persistence analyses [73].

https://pp.ipd.kit.edu/firm/yComp.html
https://pp.ipd.kit.edu/firm/yComp.html

S. Hahn, M. Jacobs, N. Hölscher, K.-H. Chen, J.-J. Chen, and J. Reineke 2:11

Compositional Analysis. llvmta supports compositional analysis approaches, i.e. several
weights can be chosen for maximization such as useful cache blocks or accesses to the shared
bus. The impact of such independent maximizations of different metrics on the efficiency and
precision of WCET analysis has been explored in a master’s thesis [21]. In addition, llvmta
can sample interference response curves and calculate compositional base bounds based on
the results of a microarchitectural analysis that safely covers all possible cases of temporal
interference [34]. In this way, it bridges the gap between schedulability analyses, which
typically rely on timing compositionality, and modern microarchitectures, which typically
exhibit timing anomalies.

Calculation of Interference on Shared Resources. In the context of WCET analysis for
multi-core processors, an important quantity is the amount of shared-resource interference
that a concurrent processor core can generate while the program under WCET analysis
is executed. To safely overapproximate worst-case interference generation scenarios, we
generalized the well-known implicit path enumeration technique (IPET) [50] in a way that
takes into account arbitrary subpaths of the abstract execution graph for the concurrent
processor core [44]. As we assume that this generalized IPET does not scale to multiple
real-world programs executed on a concurrent processor core, we sketched a program-modular
calculation scheme [43] that calculates compositional base bounds per program on top of the
generalized IPET.

Cache-Related Preemption Delay. In the presence of preemptive scheduling, preempting
tasks evict cached memory blocks of preempted tasks, which have to be reloaded when
the preempted tasks resume their execution [69]. This is commonly referred to as cache-
related preemption delay (CRPD) [3]. We have experimentally evaluated the state-of-the-art
techniques used to account for CRPD during timing analysis. Our experiments used task
sets obtained by running llvmta on actual benchmarks. It turned out that the difference
in precision of different CRPD analysis techniques and the overall impact of CRPD on
schedulability are not as significant as observed for purely synthetically-generated task
sets [69].

Strictly In-order Pipeline. To enable efficient and precise microarchitectural analysis, we
introduced the strictly in-order pipeline in [35, 36]. This pipeline design enables an efficient
progress-based abstraction and allows quantification of the effect of (amplifying) timing
anomalies. The effect on WCET estimates and analysis performance have been evaluated
using llvmta.

6 Conclusions

Since the kickoff of llvmta in 2014, it has been employed and extended in various research
projects at Saarland University. It was exposed to TU Dortmund University in 2020. With
the open source release of the code base in a version control system, and steady maintenance
and integration, we foresee a great potential for llvmta to be used in research and education
on WCET analysis more globally. Our short-term plan is to release practical exercises and
tutorials for use of llvmta in education at the graduate level.

llvmta and a patched version of LLVM are available as open source for academic research
purposes at:

https://gitlab.cs.uni-saarland.de/reineke/llvmta
https://gitlab.cs.uni-saarland.de/reineke/llvm

WCET 2022

https://gitlab.cs.uni-saarland.de/reineke/llvmta
https://gitlab.cs.uni-saarland.de/reineke/llvm

2:12 LLVMTA: An LLVM-Based WCET Analysis Tool

References
1 Martin Alt, Christian Ferdinand, Florian Martin, and Reinhard Wilhelm. Cache behavior

prediction by abstract interpretation. In Proceedings of the Third International Static Analysis
Symposium, SAS 1996, Aachen, Germany, pages 52–66, 1996. doi:10.1007/3-540-61739-6_
33.

2 Anil Altinay, Joseph Nash, Taddeus Kroes, Prabhu Rajasekaran, Dixin Zhou, Adrian Dab-
rowski, David Gens, Yeoul Na, Stijn Volckaert, Cristiano Giuffrida, Herbert Bos, and Michael
Franz. BinRec: dynamic binary lifting and recompilation. In Angelos Bilas, Kostas Magoutis,
Evangelos P. Markatos, Dejan Kostic, and Margo I. Seltzer, editors, EuroSys ’20: Fifteenth
EuroSys Conference 2020, Heraklion, Greece, April 27-30, 2020, pages 36:1–36:16. ACM, 2020.
doi:10.1145/3342195.3387550.

3 Sebastian Altmeyer. Analysis of preemptively scheduled hard real-time systems. PhD thesis,
Saarland University, 2013. URL: http://scidok.sulb.uni-saarland.de/volltexte/2013/
5279/.

4 Kapil Anand, Matthew Smithson, Khaled Elwazeer, Aparna Kotha, Jim Gruen, Nathan
Giles, and Rajeev Barua. A compiler-level intermediate representation based binary analysis
and rewriting system. In Zdenek Hanzálek, Hermann Härtig, Miguel Castro, and M. Frans
Kaashoek, editors, Eighth Eurosys Conference 2013, EuroSys ’13, Prague, Czech Republic,
April 14-17, 2013, pages 295–308. ACM, 2013. doi:10.1145/2465351.2465380.

5 Mihail Asavoae, Claire Maiza, and Pascal Raymond. Program semantics in model-based
WCET analysis: A state of the art perspective. In Claire Maiza, editor, 13th International
Workshop on Worst-Case Execution Time Analysis, WCET 2013, July 9, 2013, Paris, France,
volume 30 of OASIcs, pages 32–41. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2013.
doi:10.4230/OASIcs.WCET.2013.32.

6 Olaf Bachmann, Paul S. Wang, and Eugene V. Zima. Chains of recurrences - a method
to expedite the evaluation of closed-form functions. In Proceedings of the International
Symposium on Symbolic and Algebraic Computation, ISSAC 1994, Oxford, UK, pages 242–249,
1994. doi:10.1145/190347.190423.

7 Clément Ballabriga, Hugues Cassé, Christine Rochange, and Pascal Sainrat. OTAWA: an
open toolbox for adaptive WCET analysis. In Sang Lyul Min, Robert G. Pettit IV, Peter P.
Puschner, and Theo Ungerer, editors, Software Technologies for Embedded and Ubiquitous
Systems - 8th IFIP WG 10.2 International Workshop, SEUS 2010, Waidhofen/Ybbs, Austria,
October 13-15, 2010. Proceedings, volume 6399 of Lecture Notes in Computer Science, pages
35–46. Springer, 2010. doi:10.1007/978-3-642-16256-5_6.

8 Sébastien Bardin, Philippe Herrmann, and Franck Védrine. Refinement-based CFG reconstruc-
tion from unstructured programs. In Ranjit Jhala and David A. Schmidt, editors, Verification,
Model Checking, and Abstract Interpretation - 12th International Conference, VMCAI 2011,
Austin, TX, USA, January 23-25, 2011. Proceedings, volume 6538 of Lecture Notes in Computer
Science, pages 54–69. Springer, 2011. doi:10.1007/978-3-642-18275-4_6.

9 Tobias Blaß, Sebastian Hahn, and Jan Reineke. Write-back caches in WCET analysis. In
Proceedings of the 29th Euromicro Conference on Real-Time Systems, ECRTS 2017, June
2017.

10 Silvian Calman and Jianwen Zhu. Interprocedural induction variable analysis based on
interprocedural SSA form IR. In Proceedings of the 9th ACM SIGPLAN-SIGSOFT Workshop
on Program Analysis for Software Tools and Engineering, PASTE 2010, Toronto, Ontario,
Canada, pages 37–44, 2010. doi:10.1145/1806672.1806680.

11 Sudipta Chattopadhyay and Abhik Roychoudhury. Scalable and precise refinement of cache
timing analysis via path-sensitive verification. Real Time Syst., 49(4):517–562, 2013. doi:
10.1007/s11241-013-9178-0.

12 Antoine Colin and Isabelle Puaut. A modular & retargetable framework for tree-based
WCET analysis. In 13th Euromicro Conference on Real-Time Systems (ECRTS 2001), 13-15
June 2001, Delft, The Netherlands, Proceedings, pages 37–44. IEEE Computer Society, 2001.
doi:10.1109/EMRTS.2001.933995.

https://doi.org/10.1007/3-540-61739-6_33
https://doi.org/10.1007/3-540-61739-6_33
https://doi.org/10.1145/3342195.3387550
http://scidok.sulb.uni-saarland.de/volltexte/2013/5279/
http://scidok.sulb.uni-saarland.de/volltexte/2013/5279/
https://doi.org/10.1145/2465351.2465380
https://doi.org/10.4230/OASIcs.WCET.2013.32
https://doi.org/10.1145/190347.190423
https://doi.org/10.1007/978-3-642-16256-5_6
https://doi.org/10.1007/978-3-642-18275-4_6
https://doi.org/10.1145/1806672.1806680
https://doi.org/10.1007/s11241-013-9178-0
https://doi.org/10.1007/s11241-013-9178-0
https://doi.org/10.1109/EMRTS.2001.933995

S. Hahn, M. Jacobs, N. Hölscher, K.-H. Chen, J.-J. Chen, and J. Reineke 2:13

13 Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Conference Record of
the Fourth ACM Symposium on Principles of Programming Languages, Los Angeles, California,
USA, pages 238–252, 1977. doi:10.1145/512950.512973.

14 Christoph Cullmann. Cache persistence analysis: Theory and practice. ACM Transactions on
Embedded Computing Systems, 12(1s):40:1–40:25, 2013. doi:10.1145/2435227.2435236.

15 Christoph Cullmann and Florian Martin. Data-flow based detection of loop bounds. In
Proceedings of the 7th International Workshop on Worst-Case Execution Time Analysis,
WCET 2007, Pisa, Italy, 2007. doi:10.4230/OASIcs.WCET.2007.1193.

16 Sun Ding, Hee Beng Kuan Tan, and Kaiping Liu. A survey of infeasible path detection.
In Joaquim Filipe and Leszek A. Maciaszek, editors, ENASE 2012 - Proceedings of the 7th
International Conference on Evaluation of Novel Approaches to Software Engineering, Wroclaw,
Poland, 29-30 June, 2012, pages 43–52. SciTePress, 2012.

17 Jakob Engblom. Processor Pipelines and Static Worst-Case Execution Time Analysis. PhD
thesis, Uppsala University, Sweden, 2002. URL: http://nbn-resolving.de/urn:nbn:se:uu:
diva-1832.

18 Alexis Engelke, Dominik Okwieka, and Martin Schulz. Efficient LLVM-based dynamic binary
translation. In Ben L. Titzer, Harry Xu, and Irene Zhang, editors, VEE ’21: 17th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Environments, Virtual
USA, April 16, 2021, pages 165–171. ACM, 2021. doi:10.1145/3453933.3454022.

19 Andreas Ermedahl, Christer Sandberg, Jan Gustafsson, Stefan Bygde, and Björn Lisper.
Loop bound analysis based on a combination of program slicing, abstract interpretation, and
invariant analysis. In Proceedings of the 7th International Workshop on Worst-Case Execution
Time Analysis, WCET 2007, Pisa, Italy, 2007. doi:10.4230/OASIcs.WCET.2007.1194.

20 Heiko Falk and Paul Lokuciejewski. A compiler framework for the reduction of worst-case
execution times. Real Time Syst., 46(2):251–300, 2010. doi:10.1007/s11241-010-9101-x.

21 Claus Faymonville. Evaluating compositional timing analyses. Master’s thesis, Saarland
University, 2015.

22 Christian Ferdinand, Reinhold Heckmann, Marc Langenbach, Florian Martin, Michael Schmidt,
Henrik Theiling, Stephan Thesing, and Reinhard Wilhelm. Reliable and precise WCET
determination for a real-life processor. In Thomas A. Henzinger and Christoph M. Kirsch,
editors, Embedded Software, First International Workshop, EMSOFT 2001, Tahoe City, CA,
USA, October, 8-10, 2001, Proceedings, volume 2211 of Lecture Notes in Computer Science,
pages 469–485. Springer, 2001. doi:10.1007/3-540-45449-7_32.

23 Andrea Flexeder, Bogdan Mihaila, Michael Petter, and Helmut Seidl. Interprocedural
control flow reconstruction. In Proceedings of the 8th Asian Symposium on Program-
ming Languages and Systems, APLAS 2010, Shanghai, China, pages 188–203, 2010. doi:
10.1007/978-3-642-17164-2_14.

24 David Griffin, Benjamin Lesage, Alan Burns, and Robert I. Davis. Lossy compression for
worst-case execution time analysis of PLRU caches. In Mathieu Jan, Belgacem Ben Hedia, Joël
Goossens, and Claire Maiza, editors, 22nd International Conference on Real-Time Networks
and Systems, RTNS ’14, Versailles, France, October 8-10, 2014, page 203. ACM, 2014.
doi:10.1145/2659787.2659807.

25 Daniel Grund and Jan Reineke. Abstract interpretation of FIFO replacement. In Jens Palsberg
and Zhendong Su, editors, Static Analysis, 16th International Symposium, SAS 2009, Los
Angeles, CA, USA, August 9-11, 2009. Proceedings, volume 5673, pages 120–136. Springer,
2009. doi:10.1007/978-3-642-03237-0_10.

26 Daniel Grund and Jan Reineke. Precise and efficient FIFO-replacement analysis based
on static phase detection. In 22nd Euromicro Conference on Real-Time Systems, ECRTS
2010, Brussels, Belgium, July 6-9, 2010, pages 155–164. IEEE Computer Society, 2010.
doi:10.1109/ECRTS.2010.8.

WCET 2022

https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/2435227.2435236
https://doi.org/10.4230/OASIcs.WCET.2007.1193
http://nbn-resolving.de/urn:nbn:se:uu:diva-1832
http://nbn-resolving.de/urn:nbn:se:uu:diva-1832
https://doi.org/10.1145/3453933.3454022
https://doi.org/10.4230/OASIcs.WCET.2007.1194
https://doi.org/10.1007/s11241-010-9101-x
https://doi.org/10.1007/3-540-45449-7_32
https://doi.org/10.1007/978-3-642-17164-2_14
https://doi.org/10.1007/978-3-642-17164-2_14
https://doi.org/10.1145/2659787.2659807
https://doi.org/10.1007/978-3-642-03237-0_10
https://doi.org/10.1109/ECRTS.2010.8

2:14 LLVMTA: An LLVM-Based WCET Analysis Tool

27 Daniel Grund and Jan Reineke. Toward precise PLRU cache analysis. In Björn Lisper,
editor, 10th International Workshop on Worst-Case Execution Time Analysis, WCET 2010,
July 6, 2010, Brussels, Belgium, volume 15 of OASICS, pages 23–35. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, Germany, 2010. doi:10.4230/OASIcs.WCET.2010.23.

28 Nan Guan, Mingsong Lv, Wang Yi, and Ge Yu. WCET analysis with MRU cache: Challenging
lru for predictability. ACM Trans. Embed. Comput. Syst., 13(4s):123:1–123:26, April 2014.
doi:10.1145/2584655.

29 Nan Guan, Xinping Yang, Mingsong Lv, and Wang Yi. FIFO cache analysis for WCET
estimation: a quantitative approach. In Enrico Macii, editor, Design, Automation and Test in
Europe, DATE 13, Grenoble, France, March 18-22, 2013, pages 296–301. EDA Consortium
San Jose, CA, USA / ACM DL, 2013. doi:10.7873/DATE.2013.073.

30 Jan Gustafsson, Andreas Ermedahl, Christer Sandberg, and Björn Lisper. Automatic derivation
of loop bounds and infeasible paths for WCET analysis using abstract execution. In Proceedings
of the 27th IEEE Real-Time Systems Symposium, RTSS 2006, Rio de Janeiro, Brazil, pages
57–66, 2006. doi:10.1109/RTSS.2006.12.

31 Jan Gustafsson, Björn Lisper, Christer Sandberg, and Nerina Bermudo. A tool for automatic
flow analysis of C-programs for WCET calculation. In Proceedings of the 8th IEEE International
Workshop on Object-Oriented Real-Time Dependable Systems, WORDS 2003, Guadalajara,
Mexico, pages 106–112, 2003. doi:10.1109/WORDS.2003.1218072.

32 Sebastian Hahn. On static execution-time analysis. PhD thesis, Saarland University, Saar-
brücken, Germany, 2019. URL: https://publikationen.sulb.uni-saarland.de/handle/20.
500.11880/27440.

33 Sebastian Hahn and Daniel Grund. Relational cache analysis for static timing analysis. In
Proceedings of the 24th Euromicro Conference on Real-Time Systems, ECRTS 2012, Pisa,
Italy, pages 102–111, 2012. doi:10.1109/ECRTS.2012.14.

34 Sebastian Hahn, Michael Jacobs, and Jan Reineke. Enabling compositionality for multicore
timing analysis. In Proceedings of the 24th International Conference on Real-Time Networks
and Systems, RTNS 2016, Brest, France, pages 299–308, 2016. doi:10.1145/2997465.2997471.

35 Sebastian Hahn and Jan Reineke. Design and analysis of SIC: A provably timing-predictable
pipelined processor core. In 2018 IEEE Real-Time Systems Symposium, RTSS 2018, Nashville,
TN, USA, December 11-14, 2018, pages 469–481. IEEE Computer Society, 2018. doi:10.1109/
RTSS.2018.00060.

36 Sebastian Hahn and Jan Reineke. Design and analysis of SIC: a provably timing-
predictable pipelined processor core. Real Time Syst., 56(2):207–245, 2020. doi:10.1007/
s11241-019-09341-z.

37 Sebastian Hahn, Jan Reineke, and Reinhard Wilhelm. Towards compositionality in execution
time analysis: definition and challenges. SIGBED Review, 12(1):28–36, 2015. doi:10.1145/
2752801.2752805.

38 Damien Hardy, Benjamin Rouxel, and Isabelle Puaut. The Heptane static worst-case execution
time estimation tool. In Jan Reineke, editor, 17th International Workshop on Worst-Case
Execution Time Analysis, WCET 2017, June 27, 2017, Dubrovnik, Croatia, volume 57 of
OASIcs, pages 8:1–8:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. doi:
10.4230/OASIcs.WCET.2017.8.

39 Christopher A. Healy, Robert D. Arnold, Frank Mueller, David B. Whalley, and Marion G.
Harmon. Bounding pipeline and instruction cache performance. IEEE Trans. Computers,
48(1):53–70, 1999. doi:10.1109/12.743411.

40 Reinhold Heckmann, Marc Langenbach, Stephan Thesing, and Reinhard Wilhelm. The
influence of processor architecture on the design and the results of WCET tools. Proceedings
of the IEEE, 91(7):1038–1054, 2003. doi:10.1109/JPROC.2003.814618.

41 John L. Hennessy and David A. Patterson. Computer Architecture - A Quantitative Approach
(5. ed.). Morgan Kaufmann, 2012.

https://doi.org/10.4230/OASIcs.WCET.2010.23
https://doi.org/10.1145/2584655
https://doi.org/10.7873/DATE.2013.073
https://doi.org/10.1109/RTSS.2006.12
https://doi.org/10.1109/WORDS.2003.1218072
https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/27440
https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/27440
https://doi.org/10.1109/ECRTS.2012.14
https://doi.org/10.1145/2997465.2997471
https://doi.org/10.1109/RTSS.2018.00060
https://doi.org/10.1109/RTSS.2018.00060
https://doi.org/10.1007/s11241-019-09341-z
https://doi.org/10.1007/s11241-019-09341-z
https://doi.org/10.1145/2752801.2752805
https://doi.org/10.1145/2752801.2752805
https://doi.org/10.4230/OASIcs.WCET.2017.8
https://doi.org/10.4230/OASIcs.WCET.2017.8
https://doi.org/10.1109/12.743411
https://doi.org/10.1109/JPROC.2003.814618

S. Hahn, M. Jacobs, N. Hölscher, K.-H. Chen, J.-J. Chen, and J. Reineke 2:15

42 Julien Henry, Mihail Asavoae, David Monniaux, and Claire Maiza. How to compute worst-case
execution time by optimization modulo theory and a clever encoding of program semantics. In
Youtao Zhang and Prasad Kulkarni, editors, SIGPLAN/SIGBED Conference on Languages,
Compilers and Tools for Embedded Systems 2014, LCTES ’14, Edinburgh, United Kingdom -
June 12 - 13, 2014, pages 43–52. ACM, 2014. doi:10.1145/2597809.2597817.

43 Michael Jacobs. Design and Implementation of WCET Analyses: Including a Case Study
on Multi-Core Processors with Shared Buses. PhD thesis, Saarland University, 2021. doi:
10.22028/D291-34893.

44 Michael Jacobs, Sebastian Hahn, and Sebastian Hack. WCET analysis for multi-core processors
with shared buses and event-driven bus arbitration. In Proceedings of the 23nd International
Conference on Real-Time Networks and Systems, RTNS 2015, Lille, France, 2015.

45 Johannes Kinder, Florian Zuleger, and Helmut Veith. An abstract interpretation-based
framework for control flow reconstruction from binaries. In Proceedings of the 10th International
Conference on Verification, Model Checking, and Abstract Interpretation, VMCAI 2009,
Savannah, GA, USA, pages 214–228, 2009. doi:10.1007/978-3-540-93900-9_19.

46 Jens Knoop, Laura Kovács, and Jakob Zwirchmayr. Symbolic loop bound computation
for WCET analysis. In Edmund M. Clarke, Irina B. Virbitskaite, and Andrei Voronkov,
editors, Perspectives of Systems Informatics - 8th International Andrei Ershov Memorial
Conference, PSI 2011, Novosibirsk, Russia, June 27-July 1, 2011, Revised Selected Papers,
volume 7162 of Lecture Notes in Computer Science, pages 227–242. Springer, 2011. doi:
10.1007/978-3-642-29709-0_20.

47 Chris Lattner and Vikram S. Adve. LLVM: A compilation framework for lifelong program
analysis & transformation. In Proceedings of the Second IEEE / ACM International Symposium
on Code Generation and Optimization, CGO 2004, San Jose, CA, USA, pages 75–88, 2004.
doi:10.1109/CGO.2004.1281665.

48 Xianfeng Li, Abhik Roychoudhury, and Tulika Mitra. Modeling out-of-order processors for
WCET analysis. Real-Time Systems, 34(3):195–227, 2006. doi:10.1007/s11241-006-9205-5.

49 Xianfeng Li, Liang Yun, Tulika Mitra, and Abhik Roychoudhury. Chronos: A timing analyzer
for embedded software. Sci. Comput. Program., 69(1-3):56–67, 2007. doi:10.1016/j.scico.
2007.01.014.

50 Yau-Tsun Steven Li and Sharad Malik. Performance analysis of embedded software using
implicit path enumeration. In Proceedings of the ACM SIGPLAN Workshop on Languages,
Compilers, & Tools for Real-Time Systems, LCT-RTS 1995, La Jolla, California, pages 88–98,
1995. doi:10.1145/216636.216666.

51 Sung-Soo Lim, Young Hyun Bae, Gyu Tae Jang, Byung-Do Rhee, Sang Lyul Min, Chang Yun
Park, Heonshik Shin, Kunsoo Park, Soo-Mook Moon, and Chong-Sang Kim. An accurate
worst case timing analysis for RISC processors. IEEE Trans. Software Eng., 21(7):593–604,
1995. doi:10.1109/32.392980.

52 Björn Lisper. SWEET - A tool for WCET flow analysis (extended abstract). In Tiz-
iana Margaria and Bernhard Steffen, editors, Leveraging Applications of Formal Meth-
ods, Verification and Validation. Specialized Techniques and Applications - 6th Interna-
tional Symposium, ISoLA 2014, Imperial, Corfu, Greece, October 8-11, 2014, Proceedings,
Part II, volume 8803 of Lecture Notes in Computer Science, pages 482–485. Springer, 2014.
doi:10.1007/978-3-662-45231-8_38.

53 Thomas Lundqvist and Per Stenström. Timing anomalies in dynamically scheduled micropro-
cessors. In Proceedings of the 20th IEEE Real-Time Systems Symposium, RTSS 1999, Phoenix,
AZ, USA, pages 12–21, 1999. doi:10.1109/REAL.1999.818824.

54 Mingsong Lv, Nan Guan, Jan Reineke, Reinhard Wilhelm, and Wang Yi. A survey on static
cache analysis for real-time systems. Leibniz Transactions on Embedded Systems LITES,
3(1):05:1–05:48, 2016. doi:10.4230/LITES-v003-i001-a005.

WCET 2022

https://doi.org/10.1145/2597809.2597817
https://doi.org/10.22028/D291-34893
https://doi.org/10.22028/D291-34893
https://doi.org/10.1007/978-3-540-93900-9_19
https://doi.org/10.1007/978-3-642-29709-0_20
https://doi.org/10.1007/978-3-642-29709-0_20
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1007/s11241-006-9205-5
https://doi.org/10.1016/j.scico.2007.01.014
https://doi.org/10.1016/j.scico.2007.01.014
https://doi.org/10.1145/216636.216666
https://doi.org/10.1109/32.392980
https://doi.org/10.1007/978-3-662-45231-8_38
https://doi.org/10.1109/REAL.1999.818824
https://doi.org/10.4230/LITES-v003-i001-a005

2:16 LLVMTA: An LLVM-Based WCET Analysis Tool

55 Florian Martin, Martin Helmut Alt, Reinhard Wilhelm, and Christian Ferdinand. Analysis of
loops. In Kai Koskimies, editor, Compiler Construction, 7th International Conference, CC’98,
Held as Part of the European Joint Conferences on the Theory and Practice of Software,
ETAPS’98, Lisbon, Portugal, March 28 - April 4, 1998, Proceedings, volume 1383 of Lecture
Notes in Computer Science, pages 80–94. Springer, 1998. doi:10.1007/BFb0026424.

56 Laurent Mauborgne and Xavier Rival. Trace partitioning in abstract interpretation based
static analyzers. In Proceedings of the 14th European Symposium on Programming, ESOP
2005, Edinburgh, UK, pages 5–20, 2005. doi:10.1007/978-3-540-31987-0_2.

57 Bernhard Meindl and Matthias Templ. Analysis of commercial and free and open source
solvers for linear optimization problems. Technical report, Institut für Statistik und Wahr-
scheinlichkeitstheorie, Vienna University of Technology, 2012.

58 Marianne De Michiel, Armelle Bonenfant, Hugues Cassé, and Pascal Sainrat. Static loop
bound analysis of C programs based on flow analysis and abstract interpretation. In The
Fourteenth IEEE Internationl Conference on Embedded and Real-Time Computing Systems
and Applications, RTCSA 2008, Kaohisung, Taiwan, 25-27 August 2008, Proceedings, pages
161–166. IEEE Computer Society, 2008. doi:10.1109/RTCSA.2008.53.

59 Vincent Mussot, Jordy Ruiz, Pascal Sotin, Marianne De Michiel, and Hugues Cassé. Expressing
and exploiting conflicts over paths in WCET analysis. In Martin Schoeberl, editor, 16th
International Workshop on Worst-Case Execution Time Analysis, WCET 2016, July 5, 2016,
Toulouse, France, volume 55 of OASIcs, pages 3:1–3:11. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2016. doi:10.4230/OASIcs.WCET.2016.3.

60 Peter P. Puschner, Daniel Prokesch, Benedikt Huber, Jens Knoop, Stefan Hepp, and Gernot
Gebhard. The T-CREST approach of compiler and WCET-analysis integration. In 16th
IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed
Computing, ISORC 2013, Paderborn, Germany, June 19-21, 2013, pages 1–8. IEEE Computer
Society, 2013. doi:10.1109/ISORC.2013.6913220.

61 Pascal Raymond, Claire Maiza, Catherine Parent-Vigouroux, Erwan Jahier, Nicolas Halbwachs,
Fabienne Carrier, Mihail Asavoae, and Rémy Boutonnet. Improving WCET evaluation
using linear relation analysis. Leibniz Trans. Embed. Syst., 6(1):02:1–02:28, 2019. doi:
10.4230/LITES-v006-i001-a002.

62 Jan Reineke. The semantic foundations and a landscape of cache-persistence analyses. Leibniz
Trans. Embed. Syst., 5(1):03:1–03:52, 2018. doi:10.4230/LITES-v005-i001-a003.

63 Jan Reineke, Daniel Grund, Christoph Berg, and Reinhard Wilhelm. Timing predictability
of cache replacement policies. Real-Time Systems, 37(2):99–122, November 2007. doi:
10.1007/s11241-007-9032-3.

64 Jan Reineke, Björn Wachter, Stephan Thesing, Reinhard Wilhelm, Ilia Polian, Jochen Eisinger,
and Bernd Becker. A definition and classification of timing anomalies. In Proceedings of the
6th International Workshop on Worst-Case Execution Time Analysis, WCET 2006, Dresden,
Germany, 2006. doi:10.4230/OASIcs.WCET.2006.671.

65 Christine Rochange and Pascal Sainrat. A context-parameterized model for static analysis
of execution times. Trans. High Perform. Embed. Archit. Compil., 2:222–241, 2009. doi:
10.1007/978-3-642-00904-4_12.

66 Georg Sander. Graph layout through the VCG tool. In Roberto Tamassia and Ioannis G. Tollis,
editors, Graph Drawing, pages 194–205, Berlin, Heidelberg, 1995. Springer Berlin Heidelberg.

67 Alexander Sepp, Bogdan Mihaila, and Axel Simon. Precise static analysis of binaries by
extracting relational information. In Martin Pinzger, Denys Poshyvanyk, and Jim Buckley,
editors, 18th Working Conference on Reverse Engineering, WCRE 2011, Limerick, Ireland,
pages 357–366. IEEE Computer Society, 2011. doi:10.1109/WCRE.2011.50.

68 Thomas Sewell, Felix Kam, and Gernot Heiser. Complete, high-assurance determination of
loop bounds and infeasible paths for WCET analysis. In 2016 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), Vienna, Austria, April 11-14, 2016, pages
185–195. IEEE Computer Society, 2016. doi:10.1109/RTAS.2016.7461326.

https://doi.org/10.1007/BFb0026424
https://doi.org/10.1007/978-3-540-31987-0_2
https://doi.org/10.1109/RTCSA.2008.53
https://doi.org/10.4230/OASIcs.WCET.2016.3
https://doi.org/10.1109/ISORC.2013.6913220
https://doi.org/10.4230/LITES-v006-i001-a002
https://doi.org/10.4230/LITES-v006-i001-a002
https://doi.org/10.4230/LITES-v005-i001-a003
https://doi.org/10.1007/s11241-007-9032-3
https://doi.org/10.1007/s11241-007-9032-3
https://doi.org/10.4230/OASIcs.WCET.2006.671
https://doi.org/10.1007/978-3-642-00904-4_12
https://doi.org/10.1007/978-3-642-00904-4_12
https://doi.org/10.1109/WCRE.2011.50
https://doi.org/10.1109/RTAS.2016.7461326

S. Hahn, M. Jacobs, N. Hölscher, K.-H. Chen, J.-J. Chen, and J. Reineke 2:17

69 Darshit Shah, Sebastian Hahn, and Jan Reineke. Experimental Evaluation of Cache-Related
Preemption Delay Aware Timing Analysis. In Florian Brandner, editor, 18th International
Workshop on Worst-Case Execution Time Analysis (WCET 2018), volume 63 of OpenAccess
Series in Informatics (OASIcs), pages 7:1–7:11, Dagstuhl, Germany, 2018. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik. doi:10.4230/OASIcs.WCET.2018.7.

70 Micha Sharir and Amir Pnueli. Two approaches of interprocedural data flow analysis. In
Steven S. Muchnick and Neil D. Jones, editors, Program flow analysis: theory and applications,
chapter 7, pages 189–233. Prentice Hall, Englewood Cliffs, New Jersey, 1981.

71 Tyler Sondag and Hridesh Rajan. A more precise abstract domain for multi-level caches for
tighter WCET analysis. In Proceedings of the 31st IEEE Real-Time Systems Symposium,
RTSS 2010, San Diego, California, USA, pages 395–404, 2010. doi:10.1109/RTSS.2010.8.

72 Ingmar Jendrik Stein. ILP-based Path Analysis on Abstract Pipeline State Graphs. PhD thesis,
Saarland University, 2010.

73 Gregory Stock, Sebastian Hahn, and Jan Reineke. Cache persistence analysis: Finally exact.
In IEEE Real-Time Systems Symposium, RTSS 2019, Hong Kong, SAR, China, December 3-6,
2019, pages 481–494. IEEE, 2019. doi:10.1109/RTSS46320.2019.00049.

74 Vivy Suhendra, Tulika Mitra, Abhik Roychoudhury, and Ting Chen. Efficient detection
and exploitation of infeasible paths for software timing analysis. In Ellen Sentovich, editor,
Proceedings of the 43rd Design Automation Conference, DAC 2006, San Francisco, CA, USA,
July 24-28, 2006, pages 358–363. ACM, 2006. doi:10.1145/1146909.1147002.

75 Henrik Theiling. Extracting safe and precise control flow from binaries. In 7th International
Workshop on Real-Time Computing and Applications Symposium (RTCSA 2000), 12-14
December 2000, Cheju Island, South Korea, pages 23–30. IEEE Computer Society, 2000.
doi:10.1109/RTCSA.2000.896367.

76 Henrik Theiling. Control Flow Graphs for Real-Time System Analysis - Reconstruction from
Binary Executables and Usage in ILP-based Path Analysis. PhD thesis, Saarland University,
2002.

77 Henrik Theiling and Christian Ferdinand. Combining abstract interpretation and ILP for
microarchitecture modelling and program path analysis. In Proceedings of the 19th IEEE
Real-Time Systems Symposium, Madrid, Spain, December 2-4, 1998, pages 144–153. IEEE
Computer Society, 1998. doi:10.1109/REAL.1998.739739.

78 Stephan Thesing. Safe and Precise WCET Determination by Abstract Interpretation of Pipeline
Models. PhD thesis, Saarland University, 2004.

79 Valentin Touzeau, Claire Maïza, David Monniaux, and Jan Reineke. Ascertaining uncertainty
for efficient exact cache analysis. In Rupak Majumdar and Viktor Kuncak, editors, Computer
Aided Verification - 29th International Conference, CAV 2017, Heidelberg, Germany, July
24-28, 2017, Proceedings, Part II, volume 10427 of Lecture Notes in Computer Science, pages
22–40. Springer, 2017. doi:10.1007/978-3-319-63390-9_2.

80 Valentin Touzeau, Claire Maïza, David Monniaux, and Jan Reineke. Fast and exact analysis
for LRU caches. Proc. ACM Program. Lang., 3(POPL):54:1–54:29, January 2019. doi:
10.1145/3290367.

81 Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing,
David B. Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika Mitra,
Frank Mueller, Isabelle Puaut, Peter P. Puschner, Jan Staschulat, and Per Stenström. The
worst-case execution-time problem - overview of methods and survey of tools. ACM Transac-
tions on Embedded Computing Systems, 7(3):36:1–36:53, 2008. doi:10.1145/1347375.1347389.

82 Stephan Wilhelm. Symbolic representations in WCET analysis. PhD thesis, Saarland University,
2012. URL: http://scidok.sulb.uni-saarland.de/volltexte/2012/4914/.

WCET 2022

https://doi.org/10.4230/OASIcs.WCET.2018.7
https://doi.org/10.1109/RTSS.2010.8
https://doi.org/10.1109/RTSS46320.2019.00049
https://doi.org/10.1145/1146909.1147002
https://doi.org/10.1109/RTCSA.2000.896367
https://doi.org/10.1109/REAL.1998.739739
https://doi.org/10.1007/978-3-319-63390-9_2
https://doi.org/10.1145/3290367
https://doi.org/10.1145/3290367
https://doi.org/10.1145/1347375.1347389
http://scidok.sulb.uni-saarland.de/volltexte/2012/4914/

DELOOP: Automatic Flow Facts Computation
Using Dynamic Symbolic Execution
Hazem Abaza1 #

TU Dortmund, Germany

Zain Alabedin Haj Hammadeh #

Institute for Software Technology, German Aerospace Center (DLR),
Braunschweig, Germany

Daniel Lüdtke #

Institute for Software Technology, German Aerospace Center (DLR),
Braunschweig, Germany

Abstract
Constructing a complete control-flow graph (CGF) and computing upper bounds on loops of a
computing system are essential to safely estimate the worst-case execution time (WCET) of real-
time tasks. WCETs are required for verifying the timing requirements of a real-time computing
system. Therefore, we propose an analysis using dynamic symbolic execution (DSE) that detects
and computes upper bounds on the loops, and resolves indirect jumps. The proposed analysis
constructs and initializes memory models, then it uses a satisfiability modulo theories (SMT) solver
to symbolically execute the instructions. The analysis showed higher precision in bounding loops of
the Mälardalen benchmarks comparing to SWEET and oRange. We integrated our analysis with
the OTAWA toolbox for performing a WCET analysis. Then, we used the proposed analysis for
estimating the WCET of functions in a use case inspired by an aerospace project.

2012 ACM Subject Classification Computer systems organization → Real-time system specification;
Software and its engineering → Real-time systems software

Keywords and phrases Real-Time, WCET, Symbolic execution

Digital Object Identifier 10.4230/OASIcs.WCET.2022.3

Acknowledgements The authors thank Prof. Dr. Heiko Falk for his valuable feedback. Also, they
thank Patrick Kenny for proof-reading the paper.

1 Introduction

Timing analyses aim to verify the timing constraints of a computing system. A timing
analysis should start with computing a safe upper bound on the worst-case execution time
(WCET) of each task (or sub-task in the case of directed acyclic graph (DAG) tasks) in
the computing system. Then, a response-time analysis or a schedulability test should follow
considering the scheduling policy and the deadline of each task. Estimates of the WCET of
tasks can be obtained by using measurement, static or hybrid methods. The applications
may be complex, therefore, the choice of the best method is not straightforward. However,
only the static methods can cover all corner cases and can therefore provide safe upper
bounds on the WCETs. Also, the development process is iterative, hence, setting up a static
analysis would potentially save time and effort after applying changes compared to using
measurements.

1 This author’s contribution has been conducted at the German Aerospace Center (DLR) while pursuing
his Master’s degree

© Hazem Abaza, Zain Alabedin Haj Hammadeh, and Daniel Lüdtke;
licensed under Creative Commons License CC-BY 4.0

20th International Workshop on Worst-Case Execution Time Analysis (WCET 2022).
Editor: Clément Ballabriga; Article No. 3; pp. 3:1–3:12

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hazem.abaza@tu-dortmund.de
mailto:zain.hajhammadeh@dlr.de
https://orcid.org/0000-0001-7539-2393
mailto:daniel.luedtke@dlr.de
https://orcid.org/0000-0002-6758-1562
https://doi.org/10.4230/OASIcs.WCET.2022.3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

3:2 DELOOP: Automatic Flow Facts Computation Using Dynamic Symbolic Execution

A static WCET analysis has to provide an abstract model of the micro-architecture
including, e.g., pipeline and caches, and facts on the program flow. Flow facts include
program control-flow and upper bounds on loops. The Implicit Path Enumeration technique
(IPET) computes the WCET as an objective function maximization in an integer linear
programming (ILP) problem of the abstract interpretation of the micro-architecture and
the execution paths of the program [19]. This paper presents an analysis based on dynamic
symbolic execution (DSE) to automatically 1) compute upper bounds on loops and; 2) resolve
indirect jumps to construct the control flow of the program. Automatic loop bounding and
indirect jump resolution are desirable over manual annotation, which is error-prone and
sometimes not manageable due to the amount of annotation needed [8].

DSE is a systematic approach to explore program paths and defining predicates [4]. A
satisfiability modulo theories (SMT) [7] solver checks the satisfiability of the predicates to
identify the next path. DSE has been used widely in computer security for, e.g., vulnerability
discovery and reverse-engineering [27]. We use DSE in this work to explore program paths
to identify potential jump targets and compute loop bounds. DSE reports results based
on the given input values to the program, therefore, it cannot guarantee computing a safe
upper bound on the loop bounds for applications implemented as an input-value-based state
machine. In such applications, a value analysis should support DSE. However, applications
that are implemented following the data-flow programming paradigm can use our DSE-based
analysis safely as long as the control flow is input-value independent. In this work, we have
special interest in data-flow applications, such as some on-board data processing (OBDP)
applications. Hence, a value analysis is beyond the scope of this paper.

Developing embedded software using the inversion control programming principle improves
modularity and maintainability [10]. Therefore, it is not uncommon nowadays to develop
embedded software using e.g. C++-based software frameworks. C++-based software
frameworks are the main motivation for this work. The German Aerospace Center (DLR)
has developed a C++ software framework for developing OBDP applications, called Tasking
Framework [17]. We will use it in this paper as a case study. Modularity and maintainability
come at the cost of the underlying complexity. Therefore, performing static WCET analysis
for such software is challenging. The challenges can be narrowed down to:

Control-flow reconstruction due to indirect jumps
Indirect jumps result mainly from virtual methods. They ensure that the correct function
is called for an object. Calling a virtual method is translated at the binary level to an
indirect jump instruction, in which the memory location of the target function is stored
in a register. In Listing 1, the function synchronizeStart() in the Tasking Framework is
defined as a virtual method. Listing 2 shows in Line 3 how the call is translated to an
indirect jump in assembly. Such as branching instruction is challenging for the static
analysis as it fails to fully construct the control-flow graph (CFG).

Listing 1 Indirect jump inside a simple for-loop where the bound is known at compile time.
1 void Tasking : : TaskImpl : : s y n c h r o n i z e S t a r t (void){
2 for (unsigned int i = 0 ; (i < i np u t s . s i z e ()) ; i ++){
3 static_cast<ProtectedInputAccess&>(i np u ts [i]) . s y n c h r o n i z e S t a r t () ; } }

Listing 2 Indirect jump in the assembly code.
1 00009 cca l d r r3 , [r3 , 0 x7f f000000000]
2 00009 ccc move r0 , r2
3 00009 cce blx r3

H. Abaza, Z. A. Haj Hammadeh, and D. Lüdtke 3:3

Loop Bounding
Loops that iterate over lists as shown in Listing 3 are specially challenging source-level
loop bounding tools. The information about the list’s size and its location in memory is
not always available at the source level and requires additional binary level analysis to
extract. Even simple for loops like the one presented in Listing 1 may be bounded by an
object’s value, which requires knowledge of the content of the memory location where
the object is stored. Moreover, some loops are only available at the binary level. For
example, constructing n objects from the same class sometimes is translated into loops
at the binary level. These loops are hard to detect and bound at the source level.

Listing 3 A loop iterates over a bounded list.
1 //The loop i t e r a t e s over the a s s o c i a t e d inputs to n o t i f y the t a s k .
2 void Tasking : : Channel : : push (void) {
3 for (InputImpl ∗ i = m_inputs ; i != NULL; i = i −>channelNextInput){
4 i −>n o t i f y I n p u t () ; } }

Our analysis uses a low level intermediate representation (LLIR) of the analyzed program
as input. It translates each instruction into an SMT formula and symbolically executes them.
We build a memory model, stack model, and register model to enhance the DSE such that
each SMT formula updates the memory, stack and register models accordingly. With the
help of a loop detection algorithm, namely Johnson’s Algorithm [20], we bound loops.

We evaluated our analysis on the Mälardalen benchmark and compared the results with
other tools, e.g., oRange [5]. The results showed high precision in bounding loops. We used
the proposed analysis to provide flow facts to the open-source toolbox OTAWA [2]. Then
OTAWA was used to compute the WCET of some Tasking Framework methods for the
Cortex M3 architecture.

The rest of the paper is organized as follows: Chapter 2 visits the related work. In
Chapter 3, we present our DSE-based analysis to compute loop bounds and resolve indirect
jumps. The proposed analysis is evaluated in Chapter 4. Chapter 5 concludes the paper.

2 Related Work

In the scientific literature, SMT has been used to expose the program semantics to improve
the tightness of the computed WCETs by eliminating infeasible paths. In [24], Ruiz et al.
worked on machine code where they formulated the program states as sets of predicates to
expose infeasible paths using SMT solvers. Henry et al. in [18] formulated the problem of
computing the WCET as optimization modulo theory, which extends the satisfiability modulo
theory. Neither paper addressed the problem of resolving indirect jumps. In [18], the loops
must be unrolled before applying the proposed analysis. The analysis of program semantics
is admitted to be easier at the source level [23]. However, for C++ software frameworks,
performing the analysis at LLIR level is easier than at source level due to the complexity of
the C++ language.

Gustafsson et al. presented in [16] an automated analysis to derive loop bounds using
abstract execution. However, the proposed analysis was not developed to bound loops that
iterate over a bounded list like in Listing 3. Therefore, we doubt that the polynomial
correlations from the abstract execution can comprehend such loops. Besides that, the
analysis was not developed to resolve potential indirect jumps in the CFG.

In many aerospace projects, intensive measurements are applied to estimate the WCET [12]
using commercial tools like RapiTime [22]. Applying static analysis is done on critical
functions [13]. Using aiT [11] is common to that end. Both approaches need human
interaction, e.g., manual annotation. This work aims to automate the flow facts computation
and to use the open-source toolbox OTAWA.

WCET 2022

3:4 DELOOP: Automatic Flow Facts Computation Using Dynamic Symbolic Execution

3 DSE-based Flow Fact Computation

LLIR Translate to
SMT Formula

Check
SAT

Update

Si

Memory M. µ

Stack M. σ

Register M. ρ

Engine

Figure 1 Analysis steps in DELOOP with the engine state.

In this section, we elaborate on our proposed analysis: Dynamic symbolic Execution-based
LOOP bounding (DELOOP). The analysis steps are shown in Figure 1. DELOOP takes the
executable binary of the given program as input, computes loop bounds and resolves indirect
jumps. The analysis carries out the following steps:
1. Lifting the executable binary to static single-assignment (SSA) LLIR. We use the com-

mercial tool BINARYNINJA [3] for that purpose. Performing the analysis on LLIR makes
the analysis platform-independent.

2. Detecting the loops using Johnson’s Algorithm.
3. Translating each SSA instruction in the LLIR into SMT formulas. We use Microsoft

Z3 [6] as the SMT solver.
4. Building and initializing memory, stack and register models as arrays of bit vectors. The

models will store the state of the memory, stack and registers.
5. Symbolically executing each instruction by checking the satisfiability of the equivalent

SMT formula and updating the affected model.
After lifting the executable binary of the given program, the CFG is reconstructed. DELOOP
computes an upper bound on the number of executions for each basic block. Combined with
the loop detection algorithm, DELOOP can report an upper bound on loops. The lifting
tool, BINARYNINJA, is a reverse engineering framework used mainly for binary analysis.
We used its Python API to parse the assembly code and facilitate all parts of the analysis.

3.1 Loop Detection

We implemented Johnson’s Algorithm to detect loops in the given CFG. The algorithm takes
the CFG as a directed graph G (V, E), which consists of a non-empty set of vertices V and
a set of ordered pairs of vertices called edges E. The algorithm can detect the loops, known
as elementary circuits, within a time bounded by O((n + e)(c + 1)) and space by O(n +
e), where n is the number of vertices, e the number of edges and c the elementary circuits in
the graph. A single elementary circuit is defined as a closed path where no node appears
twice, except that the first and last nodes are the same. Two elementary circuits are distinct
if they are not cyclic permutations of each other.

DELOOP groups the basic blocks in a single elementary circuit (i.e., loop). Each detected
loop, denoted by λ, is given a loop ID that is equal to theID of the last basic block in the
loop. Recursive function calls are not handled with the loop detection algorithm. However,
DELOOP can automatically bound the depth of recursion during the DSE phase.

H. Abaza, Z. A. Haj Hammadeh, and D. Lüdtke 3:5

3.2 SMT formulas and engine state
To symbolically execute the program, we compile the SSA LLIR into SMT formulae. The
SSA form of the LLIR facilitates the whole translation process as every SSA instruction is
directly mapped to one SMT formula using array and bit vector theories.

Two memory models are built based on the array theory. Data inside the arrays are
formulated as bit vectors with a size that matches the target architecture; thus, the arrays
are defined as arrays of bit vectors. The first memory is used for symbolic execution of the
load/store instructions and is initialized with the values of all the program’s data variables
in the given executable binary. The second memory, the stack, is dedicated for the push/pop
instructions. Both memory models grow and are updated dynamically along the DSE of the
program.

Besides the models for memory and stack, we have a third model for representing the
registers and flags. This model is also updated dynamically. Together, the memory model µ,
the stack model σ and the register model ρ represent the engine state S. SSA instructions are
translated to formulas in a form that implies the mathematical effect of the SSA instruction
on the engine state. For example, the SSA instruction R2 = R3 + 1 is translated as shown in
Equation 1 where bit vector variables are defined for R2, R3 and the immediate value.

R2 = R3 + 1 =⇒ BitV ec(R2, size) = BitV ec(R3, size) + BitV ec(1, size) (1)

Memory instructions are also interpreted in the same way. For example, the SSA instruction
shown in Equation 2 is computed as select(mem,0x8080) where mem is the memory model
and 0x8080 is the load address. The translator performs the previous steps for all kinds of
LLIR operations.

R2 = [data_0x8080] =⇒ BitV ec(R2, size) = select(mem, 0x8080) (2)

3.3 Dynamic symbolic execution
DSE is used in a number of industrial tools to explore the CFG of a sequential program P
for identifying test inputs that can lead the execution to new paths [7]. A path Π in the
program P is said to be feasible if there is a non-empty set of inputs I such that ∀i ∈ I the
execution of P follows the path Π. If I = ∅, then the path is not feasible.

Inspired by that concept, we try to explore loop bounds. For a program P starting at an
initial path Πin with a set of initial inputs Iin, we aim to deduce the set of outputs at the
end of the path Πin: Iout. Our approach uses Iout as the new Iin to reach the next path.
Following this concept, we dynamically execute all the feasible paths in the given CFG.

DELOOP checks the satisfiability of every SMT formula and updates the engine state
S with the effect of execution. The SMT formulas are categorized into four main types:
memory-related, stack-related, register-related and director formulas. Director formulas
represent the branching instructions and are responsible for setting the execution path for the
solver. Memory-related formulas update the memory model µ in the engine state. Similarly,
stack and registers-related formulas update the stack σ and register ρ models respectively.

The concept of states transformed our execution from a static to a dynamic symbolic
execution. For example, during the translation of R2 = R3 + 1, the translator first checks
whether there are previous variables in the engine state for R3 and R2. In the case of already
existing variables, the value of R3 is fetched from ρ and increased by one and then assigned
to R2. If R3 has a previous value of 100, then the translation process is done as follows:

R2 = R3 + 1 =⇒ BitV ec(R2, size) = BitV ec(100, size) + BitV ec(1, size) (3)

The same is true for the memory instruction in Equation 2. If the address 0x8080 has a
value, let it be 0xa080, then R2 will be updated as follows: R2 = [data_0x8080] =⇒ 0xa080.

WCET 2022

3:6 DELOOP: Automatic Flow Facts Computation Using Dynamic Symbolic Execution

3.3.1 Bounding loops
The execution starts from the program entry point and continues to the CFG’s exit function,
or to the synthetically inserted exit point, which can be defined by the person who performs
the analysis to stop the analysis at a designated point. DELOOP symbolically executes each
SSA instruction and updates the engine state. Also, for each basic block Bi, DELOOP stores
the number of executions EXi of Bi. After finishing executing, the loops that are detected
by Johnson’s Algorithm, are visited and the bound is computed as the maximum number of
executions for each basic block in loop λ. Let β̄ be a function that returns an upper bound
for a given loop λ:

β̄(λ) = max
∀Bi∈λ

{EXi} (4)

In the case of nested loops, Equation 4 returns the total number of executions of the inner
loop, which is a non-necessary over-approximation. Therefore, before reporting the loop
bounds we check if there are nested loops and update the loop bounds of inner loops as
follows: β̄(λinner) = β̄(λinner)/β̄(λouter)

3.3.2 Indirect jumps
Symbolic execution builds correlations between basic blocks for the program under analysis.
It generates equations depending on an input variable to describe the jump target and the
execution sequence of the program. These correlations can be used to resolve indirect jumps
and anticipate the next basic block to be executed. However, the static symbolic execution
generates multiple equations, based on the input and CFG path, that may satisfy the jump
target resolution. These equations can be represented as first-degree-polynomial equations in
the form of a + x ∗ C where a is the base of the jump table and x ∗ C is an offset. In each
SMT formulated equation, C will depend on the input and the CFG path. The dynamic
symbolic execution narrows the search space for these equations as it defines the execution
path based on the given inputs for every solution iteration. In our generated engine model,
the value of the indirect jump register is being updated based on the SAT formulations from
state i till the indirect jump call instruction. That implicitly resolves the generated SAT
inter-basic block formulations.

During the execution in our execution model, the indirect jump target is correlated to
the CFG and the input through the forward propagation of the data. The result correlation
is an SMT formulation of bit vectors and memory arrays. To resolve the formulation into
meaningful targets, a reversed data-flow analysis with defined stop conditions needs to be
run. However, this solution will lead to multiple resolutions for the formulation with no SAT
guarantees. The dynamic symbolic solution solves this problem through the forward update
of the engine states.

call(R3) =⇒ BitV ec(R3, size) = BitV ec(select(mem, 0x8080), size)+
BitV ec(select(mem, BitV ec(R1, size)), size) (5)

The update of the state after each execution implicitly preserves forward propagation of
the memory arrays and bit vector values that will correctly resolve the jump target. For
example, an indirect jump call formulation as in Equation 5 can be resolved to the jump
target address by substituting the propagated values of the memory address and R1 at the
engine state executing the indirect call instruction.

H. Abaza, Z. A. Haj Hammadeh, and D. Lüdtke 3:7

Table 1 Benchmark results where L: loops; E: exact bounding.

Program #L E Program #L E Program #L E
adpcm 27 27 bs 1 1 cnt 4 4
cover 3 3 crc 6 6 duff 2 2
edn 12 12 expint 3 3 fac 1 1
fdct 2 2 fft1 30 30 fibcal 1 1
fir 2 2 inssort 2 2 jcomplex 2 2
ludcmp 11 11 matmult 7 7 ndes 12 12
ns 4 4 nsichneu 1 0 prime 2 2
qsort-exam 6 6 qurt 3 3 select 4 4
ud 11 11

Table 2 Loop-bounding tools comparison where BLT: bounded loop total.

Tool BLT % BLT E % E
DELOOP 158 99% 158 99%
oRange [5] 134 84% 117 73.5%
SWEET [9] 100 63% 81 51%

4 Evaluation

4.1 Mälardalen WCET benchmarks
The Mälardalen WCET benchmarks [15] are open-source test programs for WCET analysis.
Although the Mälardalen WCET benchmarks are ANSI-C code, they can be used to verify
our tool and compare its results against the state-of-the art tools. For validating our tool,
we use Tasking Framework in the next section.

We used 25 programs from the Mälardalen WCET benchmark suite to test our tool. The
results are presented in Table 1. E represents the number of loops which could be exactly
bounded. For all programs except one, DELOOP can exactly bound the loops. For the
very large function nischneu, the lifter, BINARYNINJA, failed to restore the CFG of the
main function. It might not be surprising to exactly bound all the detected loops because
we symbolically execute the program using the SMT formulas. In Table 2, we compare our
results with oRange [5] and SWEET [9]. For oRange and SWEET, we recall the results from
the cited papers. BLT and %BLT represent the number of bounded loops and percentage
out of 159 loops respectively.

4.2 A use case developed using Tasking Framework
Tasking Framework [17] is an open-source [14] software development library. Also, it is a
multithreading event-driven execution platform for embedded software. It provides abstract
classes with virtual methods to realize an application by a directed graph of connected tasks
and channels, where each computation block of a software component is realized by the
class task, and the data exchanged between tasks is an object of the class channel. Periodic
tasks are connected to a source of events as shown in Figure 3. Tasks can start executing
as soon as their input data is available, thus, some of them can work concurrently. A task
forwards the data to the next task by pushing it to the associated channel, which represents
an interface between two tasks, and activating the next task. This data-driven activation
mechanism is implemented in Tasking Framework with different activation semantics, e.g.,
and, or semantics.

WCET 2022

3:8 DELOOP: Automatic Flow Facts Computation Using Dynamic Symbolic Execution

Camera1 Crater
Mapping10Hz

Camera2 Feature
Tracking

IMU 100Hz

Navigation
Filter

100Hz

Logger

Flight
Controller

100Hz

Figure 2 Use case inspired from the optical navigation sub-system in the ATON project [25].

camTask1 imgChannel10 craterTask craterChannel

timer
10Hz

camTask2 imgChannel45 featureTask featureChannel

timer
100Hz

navTask outChannel

logTask

flightTask

Input Task Channel

Figure 3 The use case in Figure 2 as realized by the Tasking Framework.

Tasking Framework has been used for many real-world aerospace applications such as
Autonomous Terrain-based Optical Navigation (ATON)[25] and Scalable On-Board Comput-
ing for Space Avionics (ScOSA)[21]. ScOSA is an ongoing project in 2022.

We evaluated our analysis on a use case inspired from the optical navigation sub-system in
the ATON project [25], and implemented using the Tasking Framework. In this sub-system,
two camera drivers, camTask1 and camTask2, run periodically and transfer the images to 1)
a crater navigation component craterTask and 2) a feature tracking component featureTask
respectively. The output of these components feeds the navigation filter navTask to estimate
the position. The output is logged by logTask and forwarded to the flight controller flightTask.

4.2.1 Results
SWEET: Its input is an IR based on the ARTIST2 Language for Flow Analysis (ALF).
To apply SWEET, we built the binary code, then lifted it to LLVM using RetDec [1],
which is a retargetable machine code decompiler based on LLVM. We translate the LLVM
IR to ALF using the translator introduced in [26]. SWEET failed to build its abstract
execution model.
oRange: We generated the binary code and lifted it back to C code using RetDec.
oRange reports NOCOMP for all loops in the use case.
DELOOP: We integrated DELOOP with OTAWA as shown in Figure 4 to compute the
WCET.

The results are presented here:
Loops: Unlike the loops in the benchmark, Tasking Framework does not contain any
simple loop like the one in Listing 4. The loops in Tasking Framework are either bounded
by an object’s attribute, see Listing 1, or iterates over a list, see Listing 3. However, the
code of the user-developed tasks may contain different types of loops.

Listing 4 Simple ANSI-C loop.
1 for (int i =0; i <20 ; i ++){}

DELOOP provides more than one bound for loops, one bound per instance. For example,
each channel in our case study will run its own copy of the push() function; thus, the
loop in Listing 1 will be executed by different tasks in the case study. DELOOP will
compute an upper bound for each copy of the loop. The loop is bounded by the number
of associated inputs and is thus bounded by two for the navTask while it is bounded by
one for all other tasks.

H. Abaza, Z. A. Haj Hammadeh, and D. Lüdtke 3:9

OTAWA

HW
description

file

Architecture Abstraction

Program Representation

Annotations

WCET Computation

Results

Analysis

Binary
file

LifterLLIR

DELOOP

Flow
Facts

Indirect
Jump

Targets

Figure 4 DELOOP integrated with OTAWA.

Also, DELOOP detected an implicit loop, which does not appear in the source code, as
shown in Listing 5. navTask has three input objects, thus, the bound of this loop is three.

Listing 5 A constructor template translated into a loop in assembly code.
1 template<s i z e _ t n>
2 InputArrayProvider<n >:: InputArrayProvider (void) :
3 InputArray (inputMemory , n) {}

Indirect jumps: The indirect jumps in Tasking Framework are mainly due to virtual
methods. Virtual methods are there to support, for instance, three scheduling policies.
After compilation, each indirect jump has only one target. Therefore, resolving the
indirect jumps using DSE is safe. All the indirect jumps in our case study were resolved.
WCET Computation: As mentioned earlier in this paper, we use OTAWA as a static
analyzer and DELOOP as a flow facts generator as shown in Figure 4. This setup
expands the capabilities of OTAWA in estimating WCET for C++ code. After given
OTAWA a hardware description file for armv-7m, the WCET estimation starts with
reconstructing the CFG. Then, the results of the loop analysis performed by DELOOP
are passed to OTAWA for the WCET analysis. The analysis is performed for a bare-metal
implementation.
In OBDP applications based on a data-flow programming paradigm, ideally, each task
pushes to the associated channel to activate the next task. This data-driven activation
mechanism is implemented in Tasking Framework via the push() method. push() starts a
chain of method calls, which ends with queue() that queues the next connected task in the
ready queue. The chain contains two loops and one indirect jump. Bounding the WCET
of push(), i.e., the chain of function calls, helps in estimating the overhead imposed by
Tasking Framework. The implementation of push()2 contains two loops: Loop1 is the
outer loop that iterates over the tasks associated with the considered channel; Loop2 is
executed for each iteration on Loop1 and it iterates over the inputs of each associated
task with the considered channel. The WCET of push() executed by the task camTask1
is 2435 cycles. Note that the channel imgChannel10 is associated with only one input
object, i.e. task craterTask. The same result is valid for the push() executed by the task

2 https://github.com/DLR-SC/tasking-framework/commit/349ce3ddd98cd1fe69daf08318e1b8cbf9c01e9b

WCET 2022

https://github.com/DLR-SC/tasking-framework/commit/349ce3ddd98cd1fe69daf08318e1b8cbf9c01e9b

3:10 DELOOP: Automatic Flow Facts Computation Using Dynamic Symbolic Execution

camTask2 because it has the same flow facts. The WCET of push() executed by the task
featureTask and craterTask is 3635 cycles. Finally, the WCET of push() executed by the
task navTask is 4800 cycles. Table 3 summarizes the results. As the results show, push()
has different WCET values for different tasks, but it is bounded and fixed for each task.

Table 3 Results of the WCET analysis for the push function in the use case in Figure 3.

Task Loop1 Loop2 WCET (cycles)
camTask1 1 1 2435
camTask2 1 1 2435
craterTask 1 3 3635
featureTask 1 3 3635

navTask 2 1 4800

Performance: The analysis was executed on a workstation with Linux, i7-9750H
processor and 16Gbyte RAM. The use case has a binary size = 664 kbyte. The analysis
used 25% of the CPU capacity and 640 Mbyte of memory. The analysis took about 81
seconds to compute the flow facts.

5 Conclusions

The complexity of modern architectures, software development practices and compilers often
leads to executable code which is difficult to match to its source code. Additionally, manual
computation of flow facts and manual annotation are error-prone especially for software
developed using object-oriented practices, in which one loop can be executed many times by
different objects for different number of iterations. This provides motivation to compute the
flow facts at the binary level.

In this work, we proposed an analysis to bounding loops and resolving indirect jumps
using DSE. The proposed analysis lifts the executable binary to SSA LLIR, then each SSA
instruction is translated into an SMT formula. Using the Z3 SMT solver, the satisfiability is
checked and memory, stack and register custom models are updated accordingly. We showed
that the proposed analysis can safely compute upper bounds on loops in the Mälardalen
benchmarks. Also, we used the proposed analysis together with OTAWA to compute the
WCETs for a use case developed using the Tasking Framework.

Although successful in computing loop bounds and resolving indirect jumps, the proposed
analysis has two main limitations: 1) the need for value analysis for some applications to
guarantee that the computed bounds are safe; 2) using a memory model, which might be very
complex for large applications and therefore increase the analysis time. We will investigate
in the future development the scalability of DELOOP to larger applications in our ScOSA
project. Also, we are interested in verifying whether DELOOP yields any improvement in
terms of WCET estimation by conducting more case studies for which oRange and SWEET
can compute the flow facts.

References
1 Avast. RetDec. https://github.com/avast/retdec. [accessed May 03, 2022].
2 Clément Ballabriga, Hugues Cassé, Christine Rochange, and Pascal Sainrat. OTAWA: an open

toolbox for adaptive WCET analysis. In IFIP International Workshop on Software Technolgies
for Embedded and Ubiquitous Systems, pages 35–46. Springer, 2010.

3 BINARYNINJA. Binary Ninja. https://binary.ninja/. [accessed May 03, 2022].

https://github.com/avast/retdec
https://binary.ninja/

H. Abaza, Z. A. Haj Hammadeh, and D. Lüdtke 3:11

4 Robin David, Sébastien Bardin, Thanh Dinh Ta, Laurent Mounier, Josselin Feist, Marie-Laure
Potet, and Jean-Yves Marion. Binsec/se: A dynamic symbolic execution toolkit for binary-level
analysis. In 2016 IEEE 23rd International Conference on Software Analysis, Evolution, and
Reengineering (SANER), volume 1, pages 653–656, 2016. doi:10.1109/SANER.2016.43.

5 Marianne de Michiel, Armelle Bonenfant, Hugues Casse, and Pascal Sainrat. Static loop bound
analysis of C programs based on flow analysis and abstract interpretation. In 2008 14th IEEE
International Conference on Embedded and Real-Time Computing Systems and Applications,
pages 161–166, 2008. doi:10.1109/RTCSA.2008.53.

6 Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In International
conference on Tools and Algorithms for the Construction and Analysis of Systems, pages
337–340. Springer, 2008.

7 Leonardo De Moura and Nikolaj Bjørner. Satisfiability modulo theories: Introduction and
applications. Commun. ACM, 54(9):69–77, September 2011. doi:10.1145/1995376.1995394.

8 Andreas Ermedahl and Jakob Engblom. Execution time analysis for embedded real-time
systems. International Journal on Software Tools for Technology Transfer, 4:437–455, 2007.

9 Andreas Ermedahl, Christer Sandberg, Jan Gustafsson, Stefan Bygde, and Björn Lisper.
Loop bound analysis based on a combination of program slicing, abstract interpretation, and
invariant analysis. In Christine Rochange, editor, 7th International Workshop on Worst-
Case Execution Time Analysis (WCET’07), volume 6 of OpenAccess Series in Informatics
(OASIcs), Dagstuhl, Germany, 2007. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
doi:10.4230/OASIcs.WCET.2007.1194.

10 Mohamed Fayad and Douglas C. Schmidt. Object-oriented application frameworks. Commun.
ACM, 40(10):32–38, October 1997. doi:10.1145/262793.262798.

11 Christian Ferdinand and Reinhold Heckmann. aiT: Worst-case execution time prediction by
static program analysis. In Renè Jacquart, editor, Building the Information Society, pages
377–383, Boston, MA, 2004. Springer US.

12 Jorge Garrido, Daniel Brosnan, Juan A. de la Puente, Alejandro Alonso, and Juan Zamorano.
Analysis of WCET in an experimental satellite software development. In Tullio Vardanega,
editor, 12th International Workshop on Worst-Case Execution Time Analysis, volume 23 of
OpenAccess Series in Informatics (OASIcs), pages 81–90, Dagstuhl, Germany, 2012. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/OASIcs.WCET.2012.81.

13 Jorge Garrido, Juan Zamorano, and Juan A. de la Puente. Static analysis of WCET in a
satellite software subsystem. In Claire Maiza, editor, 13th International Workshop on Worst-
Case Execution Time Analysis, volume 30 of OpenAccess Series in Informatics (OASIcs),
pages 87–96, Dagstuhl, Germany, 2013. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
doi:10.4230/OASIcs.WCET.2013.87.

14 German Aerospace Center (DLR). Tasking Framework. https://github.com/DLR-SC/
tasking-framework. [accessed May 03, 2022].

15 Jan Gustafsson, Adam Betts, Andreas Ermedahl, and Björn Lisper. The Mälardalen WCET
Benchmarks: Past, Present And Future. In Björn Lisper, editor, 10th International Workshop
on Worst-Case Execution Time Analysis (WCET 2010), volume 15 of OpenAccess Series in
Informatics (OASIcs), pages 136–146, Dagstuhl, Germany, 2010. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik. The printed version of the WCET’10 proceedings are published by
OCG (www.ocg.at) - ISBN 978-3-85403-268-7. doi:10.4230/OASIcs.WCET.2010.136.

16 Jan Gustafsson, Andreas Ermedahl, Christer Sandberg, and Bjorn Lisper. Automatic derivation
of loop bounds and infeasible paths for WCET analysis using abstract execution. In 2006
27th IEEE International Real-Time Systems Symposium (RTSS’06), pages 57–66, 2006. doi:
10.1109/RTSS.2006.12.

17 Zain Alabedin Haj Hammadeh, Tobias Franz, Olaf Maibaum, Andreas Gerndt, and Daniel
Lüdtke. Event-driven multithreading execution platform for real-time on-board software
systems. In Proceedings of the 15th Annual Workshop on Operating Systems Platforms for
Embedded Real-time Applications, pages 29–34, 2019.

WCET 2022

https://doi.org/10.1109/SANER.2016.43
https://doi.org/10.1109/RTCSA.2008.53
https://doi.org/10.1145/1995376.1995394
https://doi.org/10.4230/OASIcs.WCET.2007.1194
https://doi.org/10.1145/262793.262798
https://doi.org/10.4230/OASIcs.WCET.2012.81
https://doi.org/10.4230/OASIcs.WCET.2013.87
https://github.com/DLR-SC/tasking-framework
https://github.com/DLR-SC/tasking-framework
https://doi.org/10.4230/OASIcs.WCET.2010.136
https://doi.org/10.1109/RTSS.2006.12
https://doi.org/10.1109/RTSS.2006.12

3:12 DELOOP: Automatic Flow Facts Computation Using Dynamic Symbolic Execution

18 Julien Henry, Mihail Asavoae, David Monniaux, and Claire Maïza. How to compute worst-case
execution time by optimization modulo theory and a clever encoding of program semantics.
SIGPLAN Not., 49(5):43–52, June 2014. doi:10.1145/2666357.2597817.

19 Hajer Herbegue, Hugues Cassé, Mamoun Filali, and Christine Rochange. Hardware architecture
specification and constraint-based WCET computation. In 2013 8th IEEE International
Symposium on Industrial Embedded Systems (SIES), pages 259–268. IEEE, 2013.

20 Donald B Johnson. Finding all the elementary circuits of a directed graph. SIAM Journal on
Computing, 4(1):77–84, 1975.

21 Andreas Lund, Zain Alabedin Haj Hammadeh, Patrick Kenny, Vishav Vishav, Andrii Kovalov,
Hannes Watolla, Andreas Gerndt, and Daniel Lüdtke. ScOSA system software: the reliable
and scalable middleware for a heterogeneous and distributed on-board computer architecture.
CEAS Space Journal, May 2021. doi:10.1007/s12567-021-00371-7.

22 RAPITASytems. RapiTime. https://www.rapitasystems.com/products/rapitime. [ac-
cessed May 03, 2022].

23 Pascal Raymond, Claire Maiza, Catherine Parent-Vigouroux, Erwan Jahier, Nicolas Halbwachs,
Fabienne Carrier, Mihail Asavoae, and Rémy Boutonnet. Improving WCET evaluation using
linear relation analysis. Leibniz Transactions on Embedded Systems, 6(1):02:1–02:28, February
2019. doi:10.4230/LITES-v006-i001-a002.

24 Jordy Ruiz and Hugues Cassé. Using SMT solving for the lookup of infeasible paths in
binary programs. In Francisco J. Cazorla, editor, 15th International Workshop on Worst-Case
Execution Time Analysis (WCET 2015), volume 47 of OpenAccess Series in Informatics
(OASIcs), pages 95–104, Dagstuhl, Germany, 2015. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik. doi:10.4230/OASIcs.WCET.2015.95.

25 Stephan Theil, N Ammann, Franz Andert, Tobias Franz, Hans Krüger, Hannah Lehner, Martin
Lingenauber, Daniel Lüdtke, Bolko Maass, Carsten Paproth, et al. ATON (autonomous terrain-
based optical navigation) for exploration missions: recent flight test results. CEAS Space
Journal, 10(3):325–341, 2018.

26 Rick Veens. Adding support for static WCET analysis to LLVM, 2018. Master’s thesis. URL:
https://research.tue.nl/en/studentTheses/adding-support-for-static-wcet-
analysis-to-llvm.

27 Alexey Vishnyakov, Andrey Fedotov, Daniil Kuts, Alexander Novikov, Darya Parygina, Eli
Kobrin, Vlada Logunova, Pavel Belecky, and Shamil Kurmangaleev. Sydr: Cutting edge
dynamic symbolic execution. In 2020 Ivannikov Ispras Open Conference (ISPRAS), pages
46–54, 2020. doi:10.1109/ISPRAS51486.2020.00014.

https://doi.org/10.1145/2666357.2597817
https://doi.org/10.1007/s12567-021-00371-7
https://www.rapitasystems.com/products/rapitime
https://doi.org/10.4230/LITES-v006-i001-a002
https://doi.org/10.4230/OASIcs.WCET.2015.95
https://research.tue.nl/en/studentTheses/adding-support-for-static-wcet-analysis-to-llvm
https://research.tue.nl/en/studentTheses/adding-support-for-static-wcet-analysis-to-llvm
https://doi.org/10.1109/ISPRAS51486.2020.00014

	p000-Frontmatter
	Preface
	Committees

	p001-Degioanni
	1 Introduction
	2 Estimation of memory access profiles with StAMP
	2.1 System model and problem statement
	2.2 Code intervals
	2.3 SESE regions
	2.4 Computing code interval covers
	2.5 Computing memory access profiles

	3 Experimental evaluation
	3.1 Implementation of StAMP and experimental setup
	3.2 Memory access profile results
	3.3 Granularity using edge-centric versus node-centric SESE regions
	3.4 Controlling the granularity of memory access profiles
	3.5 Limitation of code interval cover computation

	4 Related work
	5 Conclusion

	p002-Hahn
	1 Introduction
	2 Standard Architecture of Static WCET Analysis Tools
	3 LLVMTA Tool Architecture
	3.1 High-level Structure
	3.2 Limitations
	3.3 Main Design Interfaces
	3.3.1 Program Analysis at Machine-level Intermediate Representation
	3.3.2 Microarchitectural Analysis
	3.3.3 Cache Analysis
	3.3.4 Path Analysis

	4 Using LLVMTA
	5 Existing Research Applications of LLVMTA
	6 Conclusions

	p003-Abaza
	1 Introduction
	2 Related Work
	3 DSE-based Flow Fact Computation
	3.1 Loop Detection
	3.2 SMT formulas and engine state
	3.3 Dynamic symbolic execution
	3.3.1 Bounding loops
	3.3.2 Indirect jumps

	4 Evaluation
	4.1 Mälardalen WCET benchmarks
	4.2 A use case developed using Tasking Framework
	4.2.1 Results

	5 Conclusions

