
Generation of Document Type Exercises for
Automated Assessment
José Paulo Leal #Ñ

CRACS – INESC-TEC, Porto, Portugal
Department of Computer Science, Faculty of Science, University of Porto, Portugal

Ricardo Queirós #

CRACS – INESC-TEC, Porto, Portugal
uniMAD, ESMAD/P.PORTO, Portugal

Marco Primo #

Faculty of Sciences, University of Porto, Portugal

Abstract
This paper describes ongoing research to develop a system to automatically generate exercises on
document type validation. It aims to support multiple text-based document formalisms, currently
including JSON and XML. Validation of JSON documents uses JSON Schema and validation of XML
uses both XML Schema and DTD. The exercise generator receives as input a document type and
produces two sets of documents: valid and invalid instances. Document types written by students
must validate the former and invalidate the latter. Exercises produced by this generator can be
automatically accessed in a state-of-the-art assessment system. This paper details the proposed
approach and describes the design of the system currently being implemented.

2012 ACM Subject Classification Applied computing → Computer-assisted instruction; Information
systems → Information storage systems; Information systems → Web data description languages;
Information systems → Extensible Markup Language (XML)

Keywords and phrases exercise generation, automated assessment, document type assessment

Digital Object Identifier 10.4230/OASIcs.SLATE.2022.4

Funding This paper is based on the work done within the Automatic Assessment Of Computing
Exercises project supported by the European Union’s Erasmus Plus programme (agreement no.
72020-1-ES01-KA226-VET-096004).

1 Introduction

The motivation for this research comes from the JuezLTI, a project that aims at the integration
of automated assessment in Learning Management Systems (LMS) using the Learning Tool
Interoperability (LTI) specification. Different assessment domains are in development as part
of this project, ranging from programming languages to database query languages, including
languages for serialization formalisms such as XML and JSON. This paper focuses on the
automated assessment of document type definitions using languages such as JSON Schema,
XML Schema, and Document Type Definition (DTD).

To support a wide range of domains JuezLTI follows a simple but effective assessment
strategy. Exercises are assessed using a set of test cases, each including an input and an
expected output. In the case of document type definitions, the inputs are instance documents,
each with an expected validation result (“output”), either valid or invalid.

One of the drawbacks of this assessment strategy is the toil of producing good exercises.
Each exercise should have a solution and a comprehensive set of tests covering all corner
cases. Small and incomplete test sets may accept wrong solutions and preclude the use
of automated feedback. The proposed approach is to generate test sets from solutions -
document type definitions in this case. For example, from a JSON schema definitions two sets

© José Paulo Leal, Ricardo Queirós, and Marco Primo;
licensed under Creative Commons License CC-BY 4.0

11th Symposium on Languages, Applications and Technologies (SLATE 2022).
Editors: João Cordeiro, Maria João Pereira, Nuno F. Rodrigues, and Sebastião Pais; Article No. 4; pp. 4:1–4:6

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:zp@dcc.fc.up.pt
https://www.dcc.fc.up.pt/~zp/about/
https://orcid.org/0000-0002-8409-0300
mailto:ricardoqueiros@esmad.ipp.pt
https://orcid.org/0000-0002-1985-6285
mailto:up201800388@edu.fc.up.pt
https://orcid.org/0000-0002-5736-0299
https://doi.org/10.4230/OASIcs.SLATE.2022.4
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


4:2 Generation of Document Type Exercises for Automated Assessment

are generated: one with instances, valid JSON documents according to the definition; and
another with non-instances, invalid JSON documents according to the definition. Although
instance generators are available for document type definition languages, the authors are
not aware of non-instance generators. Moreover, both instances and non-instances must be
generated for the purpose of automated assessment: with documents as small as possible,
covering all corner cases, and providing explanations for what is being tested to be used in
automated feedback.

The following sections provide background on this research. Section 2 introduces serializ-
ation formalisms, document type definitions, and validation exercises. Section 3 reviews the
concepts of automated assessment. Section 4 describes the proposed approach. Section 5
summarizes the current results and describes future work.

2 Serialization formalisms

Text-based document formalisms such as XML and JSON play an important role in software
development. They are both human and machine-readable and thus are widely used in tasks
that require data serialization. These formalisms prescribe a set of well-formedness rules that
documents must follow. For example, in XML documents close tags must end the previous
open tag, and attribute values must be delimited by either single or double quotes; in JSON
documents property name-value pairs must be separated using commas, and property names
must be delimited with double-quotes. This kind of basic rule allows the creation of a wide
range of documents for different domains. Nevertheless, on a certain domain, or on specific
software, only very specific types of documents are allowed.

{
"name": "Jill Doe",
"height": 173,
"hobbies": [

"skating",
"reading"

]
}

(a) Instance describing a person.

{
"type": "object",
"properties": {

"name": { "type": "string" },
"height": { "type": "number" },
"hobbies": {

"type": "array",
"items": { "type": "string" }

}
}

}

(b) Schema to validate persons.

Figure 1 Valid JSON instance according to JSON Schema.

Document type definitions describe documents beyond well-formedness rules. The most
popular document type definition languages, such as JSON Schema and XML Schema,
describe the structure of documents. Documents can be seen as trees and document types
in these languages specify the relationships among neighbouring nodes (parent-children
and siblings nodes), and the basic types of leaf nodes. For example, Figure 1a presents a
JSON document with information on a person, her name, height, and a list of hobbies; and
Figure 1b presents a JSON Schema document that accepts an object with properties “name”
(a string), “height” (a number) and “hobbies” (an array of strings).



J. P. Leal, R. Queirós, and M. Primo 4:3

Document types are instrumental to validate document instances. A validator is a
program that verifies if a given document is valid according to a given document type. They
are typically used when documents are generated or before processing them, to check if they
are according to the specification. Validators can also be used to access document types
produced as exercises.

To solve an exercise on document types a student must produce a schema in a certain
language such as JSON Schema. The exercise statement describes the kind of document
and may give examples of a valid document, such as that on the Figure 1a. The schema
produced by the student must be equivalent to a reference solution. This assessment can be
easily automated using two sets of instances: one with valid documents and another with
invalid ones. Using a validator and the schema produced by the student, the documents in
the first set must be all valid and those on the second set must be all invalid.

This approach to schemata assessment is comparable to what the traditional black-box
model used on programming exercises assessment. In this model, the student’s program is
executed with a set of test cases. Each test provides an input file that is fed to the program
and the obtained output is compared with the test’s output file. If they all coincide then the
program is considered correct. Due to the complexity of programming languages, test cases
can be produced automatically from the solution just for simple cases, using programming
properties [2]. But this strategy can be systematically used for document schemata. This
paper presents an approach to generate both instances and non-instances of a given schema.
Two formalisms are supported - JSON and XML. For the former is used JSON Schema, and
for the latter, both XML Schema and DTD are used.

3 Automated assessment

Automated assessment is a widely used approach in many domains, particularly in computer
programming [4]. In this context, special tools called automatic judge systems are responsible
for grading programming assignments, by comparing the obtained output with the expected
output [3]. Most of these tools grade a submission according to a set of rules, following a
black-box approach and produce an evaluation report. The validation process has two phases:
static analysis, which tests the consistency of the source code; and dynamic analysis, which
includes running the program with each test case loaded with the problem and comparing
its output to the expected output.

In order to automate the assessment process, programming exercises are assembled in
packages with their resources described specialized metadata [5]. Most of the existent
metadata formats support only assessment of blank-sheet coding questions. However, the
different phases of a student’s learning path may demand distinct types of exercises (e.g.,
bug fix and block sorting) to foster new competencies such as debugging programs and
understanding unknown source code or, otherwise, to break the routine and keep engagement.
YAPExIL [5] is format to describe programming exercises supporting different types of
activities.

Property-based testing can also be used for assessment [2]. Instead of fixed test cases,
test data are generated randomly from properties of a functions by a test script. There are
several advantages in this approach: 1) it is easier to conduct more tests covering the scope
of all possible inputs (thus find more mistakes), 2) in case of failure, shrinking heuristics can
be used to automatically simplify failing cases.

A domain closer to this research is web services assessment. Petrova-Anonova [6] proposed
an automatic generator of test data for XML Schema-based testing of Web Services. The
tool automatically extracts an XML Schema from WSDL or WS-BPEL documents and

SLATE 2022



4:4 Generation of Document Type Exercises for Automated Assessment

generates both correct and incorrect XML instances needed for web service interactions.
This way, the tool can be used both for testing web services at the functional and robustness
levels. Other contributions were made to generate XML documents with data both valid
and invalid depending on the type of testing performed. Other works [7, 1] focus on the
generation of random values for the invocation parameters providing automatic derivation of
data instances from WSDL descriptions.

4 Test case generation

The cornerstone of the proposed approach is the generation of instances and non-instances
of a given schema. These documents, the given schema and an exercise statement are then
assembled in a programming exercise in the YAPExIL format. Although this strategy is used
both for JSON and XML, (non)-instance generation is based on JSON and JSON Schema.
XML type definition languages are converted to JSON Schema for (non)-instance generation,
and the generated JSON documents are then converted to XML.

<<component>>

JsonSchemaGenerator

<<component>>

XMLSchemaGenerator

<<component>>

DTDGenerator

<<component>>

XMLinJSON

Figure 2 System architecture.

Figure 2 depicts a UML component diagram of the generator’s architecture. It has four
main components, three of which are generators for document type definition languages.
These components have similar interfaces, with methods for generating both instances and
non-instances, and validating instances against definitions. The core component is the
JsonShemaGenerator. The XML type definition languages generators, namely for DTD and
XMLSchema, use the previous generator and convert documents between XML into JSON
using the XMLinJSON component.

The following subsections detail the generation of JSON documents from JSON schema,
performed by the JsonSchemaGenerator, and conversion between XML and JSON, performed
by the XMLinJSON component.

4.1 Document generation from JSON Schema
The JsonSchemaGenerator component was designed having in mind the creation of test sets
for exercises on document type definitions. It generates both instances and non-instances -
documents that are invalid according to a given type definition. These two sets of documents
are generated having in mind they will be used for automated assessment and feedback.
Hence, it produces instances of different sizes, covering different kinds of possible mistakes,
and also short hints that can be used as feedback.



J. P. Leal, R. Queirós, and M. Primo 4:5

To ensure the creation of sets of instances as large as needed, the instance generator
produces either an infinite cyclical sequence of instances or an empty set. For example, a
schema that validates booleans produces the infinite sequence alternating true and false;
and a schema that validates no instance (such as the schema false) produces the empty set.
With this approach, the generation can be tailored to test sets of any size. Instances are
generated with increasing size, starting with the smallest possible instances. For example,
in a schema of an array, the first generated instance has the smallest size allowed, zero if
a minimum size is not defined. This approach improves the quality of the feedback when
instances are presented to students to explain the error since smaller examples are easier to
understand.

An important feature of the instance generator is the ability to generate non-instances.
Two kinds of non-instances are generated: with a different type and of the same type but
with invalid constraints. For example, in the case of a schema for an even number, a non-
instance is either be a non-number (an instance generated by any type different from the
type number) or an odd number (a number with an invalid constraint). The sequence of
generated non-instances is varied, as well as incremental in size. In the same example, the
first generated non-instance is an odd number (1) - followed by an empty list, an empty
object, an empty string, a boolean, etc. The subsequent instances include larger numbers,
longer strings, lists with more elements, and objects with more properties.

4.2 Conversion between JSON and XML
The JsonSchemaGenerator described in the previous subsection is the core of the document
type generator. To handle XML document types these need to be converted into JSON
Schema, and JSON (non-)instances converted to back XML. For that purpose, a representation
of XML in JSON - or XIJ - was developed, implemented by the XMLinJSON component.

The goal of XIJ is to support all XML features in JSON, rather than to produce concise
documents. It supports mixed content, i.e. text mixed with annotations, namespaces, and all
types of XML nodes, such as comments and processing instructions. The module developed
for XIJ includes a parser and a serializer. The overall strategy to convert generate XML
instances and non-instances for definitions is as follows. Document type definitions in DTD
or XML Schema are converted in JSON Schema definitions. This JSON Schema validates a
document in XIJ equivalent to an XML document in the original definition. Then, the JSON
Schema generator described in the previous section is used to create sets of (non)-instances,
and these are finally converted to XML. However, the creation of a JSON Schema equivalent
to a DTD or an XML Schema posed a few challenges.

The features of type definition languages are not equivalent. The most obvious difference
relates to basic types: DTDs have only text (#PCDATA or CDATA), XML Schema has a
comprehensive library, and JSON schema has JSON basic types plus integer. A not-so-
obvious difference is how repetitions are handled: XML Schema provides fine-grain control
over repetitions, DTDs control with regular expression operations, and JSON Schema cannot
control repetitions. In fact, JSON Schema uses regular expressions but only for strings, either
as values or as property names.

JSON schema had to be extended to make it compatible with DTD and XML Schema.
Fortunately, the required extensions are within the scope of JSON Schema itself [8]. The
creation of a library of basic types compatible with that XML Schema is straightforward
by referencing an external schema document containing those definitions. The support for
repetition control was obtained by introducing the minOccurs and maxOccurs properties in
schema definitions, with a syntax and semantics equivalent to the attributes with the same
name in XML Schema; these new properties are only effective when schemata are used to
validate array items.

SLATE 2022



4:6 Generation of Document Type Exercises for Automated Assessment

5 Current status and future work

The goal of project JuezLTI is to integrate several assessment domains in Learning Manage-
ment Systems (LMS). One of these assessment domains supports the automated assessment of
exercises on type definitions to validate JSON and XML documents. The research presented
in this paper proposes an approach to automatically generate exercises from solutions; that
is, from type definitions in JSON Schema, for JSON documents, or DTD and XML Schema
for XML documents.

The distinctive feature of this approach is the generation of both valid and invalid
instances to check students attempts. The core of the system is a document generator for
JSON Schema definitions. To handle XML documents, DTDs and XSDs are converted to
JSON Schema that validates documents in XIJ, a representation of XML in JSON. The
generated documents in this representation are then serialized to XML.

The advantage of the proposed approach is twofold. Firstly, it saves time since it generates
test cases directly from solutions. Secondly, the generated tests thoroughly cover all corner
cases, unlike those produced manually, resulting in a more effective assessment.

The proposed approach is a work in progress. The core JSON generator is already
developed and tested, as well as the representation of XML in JSON. The DTD converter is
almost completed and the XML Schema converter is still in the design stage. In the next
stage, the set of instances will be packaged as exercises using the YAPeXIL format and
stored in a learning object repository.

The results obtained so far with the JSON version are very promising. The generator
produces a large number of varied instances of incremental sizes, adapted to the intended
use. To validate the proposed system, students will solve generated exercises as part of a
Learning Management System activity.

References
1 Cesare Bartolini, Antonia Bertolino, Eda Marchetti, and Andrea Polini. Ws-taxi: A wsdl-based

testing tool for web services. In 2009 International Conference on Software Testing Verification
and Validation, pages 326–335. IEEE, 2009.

2 Clara Benac Earle, Lars-Åke Fredlund, and John Hughes. Automatic grading of programming
exercises using property-based testing. In Proceedings of the 2016 ACM Conference on
Innovation and Technology in Computer Science Education, pages 47–52, 2016.

3 Katerina Georgouli and Pedro Guerreiro. Incorporating an automatic judge into blended
learning programming activities. In International Conference on Web-Based Learning, pages
81–90. Springer, 2010.

4 José Carlos Paiva, José Paulo Leal, and Álvaro Figueira. Automated assessment in computer
science education: A state-of-the-art review. ACM Transactions on Computing Education
(TOCE), 2022.

5 José Carlos Paiva, Ricardo Queirós, José Paulo Leal, and Jakub Swacha. Yet another
programming exercises interoperability language (short paper). In 9th Symposium on Languages,
Applications and Technologies (SLATE 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik,
2020.

6 Dessislava Petrova-Antonova, Kunka Kuncheva, and Sylvia Ilieva. Automatic generation of
test data for xml schema-based testing of web services. In 2015 10th International Joint
Conference on Software Technologies (ICSOFT), volume 1, pages 1–8. IEEE, 2015.

7 Harry M Sneed and Shihong Huang. The design and use of wsdl-test: a tool for testing web
services. Journal of Software Maintenance and Evolution: Research and Practice, 19(5):297–
314, 2007.

8 Austin Wright, Henry Andrews, and G Dennis. Json schema: A media type for describing
json documents. In IETF, Internet-Draft draft. IETF - Internet Engineering Task Force, 2020.


	1 Introduction
	2 Serialization formalisms
	3 Automated assessment
	4 Test case generation
	4.1 Document generation from JSON Schema
	4.2 Conversion between JSON and XML

	5 Current status and future work

