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Abstract
Blockchains are maintained by a network of participants, miner nodes, that run algorithms designed
to maintain collectively a distributed machine tolerant to Byzantine attacks. From the point of view
of users, blockchains provide the illusion of centralized computers that perform trustable verifiable
computations, where all computations are deterministic and the results cannot be manipulated or
undone.

Every blockchain is equipped with a crypto-currency. Programs running on blockchains are
called smart-contracts and are written in a special-purpose programming language with deterministic
semantics1. Each transaction begins with an invocation from an external user to a smart contract.
Smart contracts have local storage and can call other contracts, and more importantly, they store,
send and receive cryptocurrency.

Once installed in a blockchain, the code of the smart-contract cannot be modified. Therefore, it
is very important to guarantee that contracts are correct before deployment. However, the resulting
ecosystem makes it very difficult to reason about program correctness, since smart-contracts can be
executed by malicious users or malicious smart-contracts can be designed to exploit other contracts
that call them. Many attacks and bugs are caused by unexpected interactions between multiple
contracts, the attacked contract and unknown code that performs the exploit.

Moreover, there is a very aggressive competition between different blockchains to expand their
user base. Ideas are implemented fast and blockchains compete to offer and adopt new features
quickly.

In this paper, we propose a formal playground that allows reasoning about multi-contract
interactions and is extensible to incorporate new features, study their behaviour and ultimately
prove properties before features are incorporated into the real blockchain. We implemented a model
of computation that models the execution platform, abstracts the internal code of each individual
contract and focuses on contract interactions. Even though our Coq implementation is still a
work in progress, we show how many features, existing or proposed, can be used to reason about
multi-contract interactions.
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1 Introduction

Smart-contract manipulate cryptocurrency, which has a corresponding value as money. Since
smart-contracts cannot be modified once installed and their computations cannot be undone
(“the contract is the law”), all interactions with the contract are considered valid. Therefore,
there is an incentive for malicious users to take advantage from unexpected behaviors and
interactions. Also, errors in contracts can result in losses and cryptocurrency being locked
indefinitely, even when used but by well-intentioned users. We focus in this paper on
the computational notion of correctness, and not on the real legal implications resulting
from interactions in the blockchain or the use of smart-contracts to enforce legally binding
contracts [8].

One important reason why it is very difficult to reason about smart contracts is that
they live in an open universe. Even though the code of a given smart-contract C cannot be
modified once installed, other contracts that call and are called from C can be programmed
and deployed after malicious users study C. Therefore, programmers and auditors of contract
C did not have to analyze all possible code that can invoke or be invoked from C.

At the same time, users demand blockchains to implement new features. Since there is
a big competition between blockchains, this puts pressure on architects of blockchains on
the time to market of new features. And each new feature potentially increases the attack
surface of smart contracts.

There are different kinds of errors found in smart-contracts.
Logical problems are related to errors in the logic of the smart-contract. Usually, attackers
detect a corner case that can be exploited to generate an unwanted behaviour.
Low-level execution problems that arise from a misunderstanding on details of the low-
level execution platform. Examples include underflow, overflow or exploiting unexpected
behavior after the stack limit is reached.
Programmer can also employ bad idioms that they are familiar with from other areas
of software applications, but which may be dangerous in interactive platforms like
blockchains, where all data (including the state of the contracts) is public and verifiable.

Most bugs are related to multi-contract interactions. For example, the infamous DAO attack
where malicious code legally exploited the machinery of the Ethereum blockchain creating
unexpected re-entrant calls from remote contracts led to the loss of $60 million [14].

In this article, we present a formalization in Coq of a general blockchain model of
computation that allows us to study new multi-contract interactions as well as new features.
We aim to develop a formal and rigorous way to analyze the possible interactions between
contracts and also to study how new features affect contracts before they are implemented and
deployed. Our Coq library allows simulating the execution of smart-contracts, abstracting
away the internal code of the contract. Our abstraction is based on the Tezos blockchain,
but it is general enough to cover other blockchains like Ethereum. We model smart-contract
(almost) as pure functions from the current storage and state of the blockchain into (possibly)
a list of operations to do next plus changes in the storage.

2 Motivation

After successful attacks like DAO [14] there is a growing interest in formal methods for
smart-contracts. First, there is an interest in verifying that a contract satisfies a specification
so certain properties can be guaranteed, e.g. the owner will be able to fetch all funds or that
a bidder will either gain the bidding or recover the funds. Second, it is also important to
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formally study different mechanisms and features proposed for a given blockchain before
they are offered so new attacks can be prevented. Some of these mechanisms are proposed to
allow users to use more effective defensive programming idioms.

For example, by analyzing the DAO attack [9] proposed a property called effectively
callback free which restricts the interactions within smart-contracts disabling these attacks.
Later on, the Tezos blockchain [1] implements such property by construction: smart-contracts
are functions that either fail or returning a list of operations to be executed plus a new
storage. Therefore, the storage is updated before the operations are executed, which prevents
attacks like the DAO using this programming style.

In order to prevent these attacks, the Tezos blockchain followed a conservative scheduling
strategy. In Tezos, as is the general case, every transaction begins with a request by an
external user indicating the smart-contract to invoke, method and arguments, and balance
of the initial operation. Assume user Alice starts a transaction invoking method f of
smart-contract C, and that, after executing C.f we have a list of operations [o0, . . . , on]. To
compute the result of the transaction, the blockchain will execute each operation oi in order,
until the gas is exhausted or the list of pending operations is empty. The order in which the
operations are executed affects the outcome of the transaction. Two conventional strategies
are: (1) to insert the new list of operations at the beginning of the list of pending operations
(DFS) (2) to insert the new list of operations at the end (BFS). The first one, DFS, allows
us to implement a call-and-return flow of computation and it is the more conventional in
most blockchains. The second one, BFS, prevents call injection attacks by construction
as one can guarantee that two operations are executed back-to-back and was used until
version 8 of Tezos (Protocol Edo) [5]. In our example, assuming that executing o1 generates
bs operations, the result of the previous execution would be [o2, . . . , on] · bs. While in DFS,
the result would be bs · [o2, . . . , on], and thus, the instructions in bs will be executed before
o2, . . . , on. However, BFS suffers from other classes of problems.

Assume a bank contract that holds money for a customer and the bank contract is willing
to send money as long as the balance stays above threshold threshold. In a solidity like
language, the contract could be as follows:

contract Bank {
uint threshold;
address owner;
constructor(uint _threshold, address _owner) public {

threshold = _threshold;
owner = _owner;

}
function deposit() payable public{

return([]);
}
function withdraw(uint ret) public {

if (sender = owner) then
if (balance - ret > threshold) then

return ([transfer(owner.Receive, ret)])
else

fail("breaking invariant")
else

fail("not owner")
}

}
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Normal usage of a such a bank contract can be:

contract GoodClient{
address bank;
// ...
function askMoney(uint m){ // Requests m from the vault

return([bank.withdraw(m)]);
}

}

On the other hand, the following is a simple attack exploiting the bank contract:

contract Bad{
address bank;
//...
function rob(uint n, uint m){ // BFS attack to the vault!

return(ntimes n [bank.withdraw(m)])
}

}

The new method called rob generates a list of invocations to the vault. Assume the vault
contract has a threshold of 9 and that is in a state in which it stores 15 units of cryptocurrency.
A simple examination suggests that the vault will send money back to its owner whenever
its balance is greater than 9, effectively allowing only one withdrawal. However, consider the
following execution starting from [rob(3,5))]. After executing the operations, we would
have the following pending queue:

[(Bad, vault.withdraw(5)), (Bad, vault.withdraw(5)), (Bad, vault.withdraw(5))]

Then the BFS sequence of executions leads to the following sequence of pending operations:

[(Bad, vault.withdraw(5)), (Bad, vault.withdraw(5)), (Bad, vault.withdraw(5))] ⇝
[(Bad, vault.withdraw(5)), (Bad, vault.withdraw(5)), (Vault, Bad.Receive())] ⇝
[(Bad, vault.withdraw(5)), (Vault, Bad.Receive()), (Vault, Bad.Receive())] ⇝
[(Vault, Bad.Receive()), (Vault, Bad.Receive()), (Vault, Bad.Receive())] ⇝
[(Vault, Bad.Receive()), (Vault, Bad.Receive())] ⇝
[(Vault, Bad.Receive()) ] ⇝
[]

First, the operation sending the money back to contract Bad is added at the end, as
dictated by BFS. Second, according to the semantics of feature “transfer” in the Tezos
blockchain, funds are subtracted from the sending contract Vault after the transfer is
executed. Therefore, the second withdraw request does not see the effect of attending the
first one. The combined effect is that all three requests are attended resulting in a total
extraction of 15 units leaving 0 in contract Vault without noticing the attack. The attack
is based on the separation between the creation of a transfer and its execution. The lesson
is that even though a BFS order prevents injection attacks, it allows attacks based on the
delayed effect of emitted operation. The contract Vault can be easily fixed by encoding in
a variable in the storage the balance that has been compromised with a future transfer. If
necessary, withdraw can create two operations (1) the transfer, and (2) an invocation to
a new private method in Vault whose purpose is to note that the compromised balance
created by a withdraw has been effectively arrived.
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Another lesson is that relying on the balance of contracts is considered a bad smart-
contract programming practice. Assume now that programmers would like the architects of
the blockchain to implement not only balance but also pending_balance, which accounts for
transfers sent but not executed. Moreover, assume also that the blockchain also implements
the feature of views, an apparently innocent feature that simply returns information about
the storage of a contract without any effect. We illustrate that these two features combined
can lead to undesirable effects. For example, if we would like to maintain the invariant that
at every moment the amount of combined funds between a collection of contracts is constant,
the combination of pending_balance and views can break such an invariant.

For example, consider three smart-contract A, B, C, and the following pending queue of
operations:

[A1, . . . , Ao︸ ︷︷ ︸
A

, C1, . . . , Cm︸ ︷︷ ︸
C

, B1, . . . , Bn︸ ︷︷ ︸
B

]

where A sends money to B – in operations that are going to be executed after C but that
update A pending balance. This leaves C in a difficult position. If C observes (using views)
the balances of A and B there is going to be a mismatch with their real balances, because C

will see the pending compromised balance but not the pending receives, which may induce
bad behaviour in C. If C depends on A.balance + B.balance, for example, to buy some NFT
it may incorrectly fail to take the right decision. A possible solution is to introduce yet
another feature that captures pending receives.

In our line of work, we aim to build a formal playground where different features and
mechanisms can be encoded and reasoned about easily and formally, while also simulating
the execution of multiple contracts.

3 Previous Work

In our work, we follow a static verification approach where contracts and features are analyzed
before deployment. The idea is to encode how blockchains are implemented and study the
behavior of contracts and features by formally proving properties. Several approaches have
been suggested for testing, model checking and functional and temporal verification of
smart-contracts. We review the most relevant.

Mi-Cho-Coq. Mi-Cho-Coq is the first verification tool implemented in Coq for the Tezos
blockchain ecosystem [4]. The main difference between Mi-Cho-Coq and our effort (Multi) is
that Mi-Cho-Coq focuses on the analysis of the code of a single contract (or collection of
calling contracts for which the code is available). We say that Mi-Cho-Coq implements small-
step semantics to prove functional properties, which requires to have a concrete specification
of a smart-contract and either its code or a higher level specification.

The main difference with Mi-Cho-Coq is that our goal is to prove properties emerging
from interactions between smart-contracts. Our tool is a complementary effort to lower-level
verification tools as Mi-Cho-Coq.

Concert. Concert [3] is another framework written in Coq to prove formal properties of
smart-contracts, and in this case, they accept multi-contract interaction [11]. The fundamental
idea of Concert is to model of smart-contracts as agents and computation as interaction
(message passing) between these agents. They also implement specific mechanisms, for
example, they implement delegation primitives in the Tezos blockchain. Moreover, Concert
has an extraction mechanism to extract high-level smart-contracts written in Ligo [10].

FMBC 2022



5:6 Multi: A Formal Playground for Multi-Smart Contract Interaction

Our main difference is that we implement a very flexible framework with the idea of
encoding new potential blockchain features and prove properties of how different features
interact with each other. Including BFS and DFS scheduling in the Tezos blockchain, but
there may be other scheduling strategies.

Concert implements blockchains in a generic way using specific features of Coq (class
system) and meta-programming features to easily embed blockchain smart-contract languages.
Concert also builds proofs by inspecting the trace representing the evolution of the blockchain
observed by a small step relation.

Implementing new blockchain features relating to how smart-contracts are executed is
an important feature in our framework, and moreover, we want to be able to reason and
prove properties about such features. For example, what would happen if smart-contracts
can inspect runtime information as the stack call (what the next operations or pending
operations are). Another difference is that (so far) we observe the state of the blockchain
comparing just the state of the blockchain before a transaction begins and after a transaction
ends. We are also able to inspect intermediate transition steps, but we are not exploiting
that feature yet.

Scilla. Scilla is a smart-contract language embedded in Coq [16] that allows some temporal
reasoning (see [17]). Scilla is an embedded domain-specific language in Coq which also
abstracts smart contracts as functions returning a list of operations. The main difference
between Multi and Scilla is that we do not present a language to write smart-contract but use
Coq functions directly. We share the point where the effects of executing smart-contracts are
simple a list of operations that are propagated by the executer. As Concert, we have a clean
separation between the language of smart-contracts and the machinery required to execute
smart-contracts. However, in our case, we decoupled the scheduler from the execution of
single instructions, and thus, we can implement different scheduling strategies independently
of the set of operations.

VerX. VerX is an automatic software verification tool that checks custom functional
properties of smart-contract entrypoints. VerX works on a similar level to Mi-Cho-Coq,
in the sense that they prove functional properties of smart-contracts, but it is built to be
completely automatic and also to handle some multi-contract interactions. The interaction
between smart-contracts comes from performing analysis on the possible onchain behaviours
of a set of smart-contracts. VerX restricts the analysis to a set of smart-contracts, S, that
have a condition called effectively external callback free contracts, which states that any
behaviour generated by an interaction between smart-contracts in set S that has an external
call is equivalent to a one without external calls [13]. This follows the lines of [9]. Because of
that restriction, they can reason about smart-contract, proving PastLTL specifications, but
it also restricts them to work in a close universe.

SmartPulse. SmartPulse [18] is another automatic verification tool for smart-contracts.
The main goal is to verify temporal properties including some simple liveness properties. This
tool is similar to VerX but it is focused on proving liveness properties of a single contract in
a closed universe. They do not support multi-contract interaction.
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4 Model of Computations

Blockchain Model. We ignore the internals of the infrastructure of blockchain implementa-
tions (like cryptographic primitives, consensus algorithms or mempools) and focus exclusively
on the model of computation that blockchains offer to external users. The blockchain is
then abstracted by a partial map from addresses to smart-contracts. Smart-contracts are
programs with some structure:

Storage: a segment of memory that can only be modified by the smart-contract.
Balance: an attribute of contracts that indicates the amount of cryptocurrency stored in
the contract.
The program code: a well-formed program that represents the implementation of the
smart-contract.

The state of a smart-contract is a proper value of its storage plus the balance its stores.
The model of computation consists of the sequential execution of transactions, each of which
is started by the invocation of an operation. In the current version, we ignore how gas or fees
are paid or how new currency is created during the evolution of the blockchain to pay the
bakers. Smart-contracts can be executed upon request from an external user that initiates a
transaction or by the invocation from a running contract. Upon invocation, the blockchain
evaluates the result of executing the smart-contracts program following a given semantics
producing effects on the blockchain (further invocations) and changes on the smart-contracts’
storage or they may fail.

Open Universe. We introduce now the concept of universe of computation. Once a smart-
contract has been installed on a blockchain, every other entity in the blockchain can interact
with it. The smart-contract itself can invoke or be invoked by older or newer contracts. The
case of smart-contracts invoking just older and well known contracts can be useful sometimes
but in general smart-contracts may not know a priori who they are going to interact with.
This differs from conventional software where components are built from well-known trustable
components and the surface of interaction with potentially malicious usage is small and
well defined. The classical way of programming exposes the internals of complex software
and leaves open attack vectors. For example, to guarantee certain behaviour high-level
smart-contracts invoke low-level smart-contracts following a protocol to logically guarantee
a result. However, malicious software may not follow such protocols possibly breaking
or leaving low-level smart-contracts in an incorrect state. This open universe model of
computation forces smart-contracts to implement defensive mechanisms to prevent undesired
executions.

Most verification techniques and frameworks mentioned previously do not take into care
such assumption. They operate under the idea that smart-contracts behave the way they
are supposed to, in the sense, that either they avoid external call invocations by removing
interactions or by assuming they are interacting with good smart-contracts. However, this is
not the case, the blockchain is an aggressive environment, a so called dark forest [15]. In
this paper, we study this problem attempting to formalize properties of smart-contracts
operating under a more realistic (and pessimistic) view of the world and also to develop new
mechanisms or features to explicitly guarantee that we are working under a safe environment.
Such mechanisms could be implemented inside smart-contracts, but not every mechanism
can be implemented using current blockchain technologies, like transaction monitors [6, 7].

FMBC 2022
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5 Formalization

In this section, we describe the building blocks of our Coq library implementation that allows
us to reason about different blockchain execution mechanisms. Our goal is to study how
smart-contracts interact with other smart-contracts, and thus, we abstract away the internal
execution of the instructions of the smart-contract. Moreover, we need a framework flexible
enough to implement new features (i.e. different execution models, scheduling strategies, etc)
and, additionally, a formal system to prove and verify properties of interactions between
smart-contracts implementing and using such features. In short, we implemented a formal
playground simulating the model of computation of blockchains.

We abstracted blockchains following the model described in Section 4 in the proof-assistant
Coq. We interpret smart-contracts as pure functions in the host language Coq and every
additional feature is implemented on top of pure functions.

Smart-contracts are implemented as a structure with three fields (Listing 1): a storage, a
balance, and a pure function implementing the smart-contracts code.

Structure SmartContract (Ctx Param Storage Error Result : Type) : Type :=
mkSmartContract {

(* Storage *) _Sst : Storage ;
(* Balance *) _Sbalance : N ;
(* Computation that result in an element of type Result *)
_Sbody : Ctx → Param → Storage → Error + (Result * Storage)

}.

Listing 1 Smart contract Definition.

Note that structure SmartContract is highly parametric:

Parameter Ctx represents what smart-contracts can observe about the blockchain and
the execution model as: current block level, the total balance of the transaction, who the
sender and source are, etc.

Parameter Param represents the parameters the body of the smart-contract expects to
receive; using Param we model the different entrypoints of a contract.

Parameter Storage represents the storage of the smart-contract.

Parameter Error represents the type of errors that can result from the execution of the
smart-contract.

Parameter Result represents the resulting type of smart contracts, which in the Tezos
model is a list of further operations.

The type SmartContract represents the most basic structure of a smart-contract. It is simply
a structure with some storage, balance and a body.

The Smart-contracts body is modeled as a pure functions from the current state of the
blockchain and its storage to a sequence of operations. In this way, we abstract away concrete
blockchain programming languages or implementations. Even though our formalization is
based on the semantics of method invocations in the Tezos blockchain, different programming
language can be modeled in this paradigm using standard compiler techniques (essentially
dividing a complex function with effects into its basic blocks that are pure functions as
modeled here).
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5.1 Execution

The execution of a smart-contracts, aside from changes in the storage, also produces a
sequence of operations to be executed. Therefore, we have to take care of two things: how to
execute these operations, and how to order the execution. We split the execution model into
two main pieces: a scheduler and an executor.

Scheduler. The scheduler is in charge of the order of execution, adding new operations
the pending queue (either at the beginning or the end, etc). The scheduler is also in charge
of creating new contexts. Finally, it is in charge of building the graph/tree of transactions,
every information that descendants of an operation may share is kept and organized by the
scheduler.

Executer. The executer is in charge of executing an operation in a given context, and
it is the same independently of the evaluation order. The most basic operation of an
executor is smart-contract invocation, which requires that the executor collects and builds
the environment in which such invocation should be executed. The context is the blockchain
state from the point of view of the contract execution. Another operation is smart-contract
creation, which in this case it is going to generate a modification to the blockchain, and
communicate it to the scheduler.

Operations. We assume the blockchain has a simple set of operations. We start from a
minimal set of operations that is simple enough to enable smart-contracts interaction, and
later add new operations as needed afterward.

We begin our implementation with two operations: Transfer and Create_Contract.
Operation Transfer performs an invocation to a given address while also sending money.
Operation Create_Contract installs a new smart-contract at an indicated address with
an initial amount of balance and storage.

Inductive EnvOps : Type :=
| Transfer : forall (T : Mich_Type),

(* Parameter *) (Type_Interpret T) →
(* Amount to transfer *) Mutez →
(* Contract address to invoke *) (Type_Interpret (ContractT T)) →
EnvOps

| Create_Contract : forall (PTy StTy : Mich_Type),
(* Pre-computed Address *) Address →
(* Initial amount *) Mutez →
(* Initial Storage *) (Type_Interpret StTy) →
(* Body *) MichBodyTy PTy StTy (list EnvOps) →
EnvOps.

Where Mich_Type is an enumeration type of the different data structures supported by the
blockchain, i.e. natural numbers, strings, etc. In our case, since we are working close to
the implementation of the Tezos blockchain, we implement most of its data structures, and
we represent them as an inductive type Mich_Type. Using the previous operations, we can
define smart-contracts simply as the following structure:

FMBC 2022
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Structure MichContract : Type := mkMich {
(* Contract parameter type *) _Param : Mich_Type ;
(* Storage type *) _Storage : Mich_Type;
(* Contract body*)
_Soul : SmartContract

(TzCtxt _Param)
(Type_Interpret _Param)
(Type_Interpret _Storage)
OError
WritingContext;

}.

Essentially, we capture smart-contracts as their body plus information about their types.
Hiding away the type information forces us to implement a lot of type matching clauses when
it comes to the execution of smart-contracts. However, it enables us to represent the state of
the blockchain simply as a (partial) map of addresses to smart-contract.

Definition TezosEnvironment := string → option MichContract.

Given an operation, the executer is in charge of building the required information to execute.
In the case of an invocation to an address addr, the executer looks up the address addr into
the current environment to see if there is a smart-contract matching the expected type at
that address, and in that case, executes its body to obtain either a new storage and further
operations or a fail. In the case of a smart-contract creation operation, the executer is in
charge of checking that the address is actually free and updating the environment adding
such smart-contract. Finally, the executer is also in charge of checking that smart-contracts
have enough balance to perform transactions and update the current environment with the
new balances.

We can characterize our executer as follows:

Definition ExecuterTy : Type :=
(* Input context information *) (ctx : ExecutionContext)

→ (* Operation to execute *) (o : EnvOps)
→ (* Current state *) (env : BCEnvironment)
→ MFail (* possibly returning: *)

(option(
(* Address emitting new operations, next sender *) Address *
(* Effects generated ( new operations ) *) WritingContext)
* (* Updates to the environment *)
(list (Address * MichContract))).

Different executers exercising type ExecuterTy can interpret operations in different ways.
Executers receive two arguments, ctx and env, representing the execution context and the
environment of the blockchain, respectively, and in return, provide the modifications to the
environment and possibly a list of new operations. Note that ExecuterTy leaves some proofs
obligations if we want to simulate current blockchains, i.e. we need to show that ExecuterTy
does not modifies or upgrades exiting smart-contracts’ code (see Section 5.2).

Schedulers are in charge of gluing together the effects generated by the execution of
operations in the current blockchain. We model them in Coq as a type listed in Listing 2
where SchedulingStrategy implements the execution order to follow. In other words,
schedulers keep track of the evolution of the state of the blockchain while managing the
pending queue of operations. Schedulers take the first operation on the pending queue,
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build the information required by the executor, and pass everything to an executer. When
executers return, schedulers take the resulting operations and updates to the current state of
the blockchain.

Definition Scheduler : Type
:= (* Strategy *) SchedulingStrategy
→ (* External user *) Address
→ (* Executor *) ExecuterTy
→ (* Current environment *) BCEnvironment
→ (* Time *) Timestamp
→ (* Pending Execution list *) list (list EnvOps * ExecutionContext)
→ (MFail BCEnvironment * Timestamp).

Listing 2 Schedulers type.

The computation of a transaction begins with an external user (outside the blockchain)
posting one or more operations to be executed, defined in Listing 3. The initial transaction

Structure SignedTrans : Type := mkSignedTrans {
_author : Address; _trans : list EnvOps

}.

Listing 3 Signed transactions definition.

is given to the scheduler, which also receives a scheduler strategy, an executer, and a context
to compute the transaction and its descendants operations. The result is a pair composed of
a possible new environment and the next timestamp. We need timestamps to represent the
passage of time, and thus, time progresses even in the case that a transaction is reverted. In
practice, the scheduler strategy is fixed for a given blockchain.

Since blocks in the blockchain are just sequences of signed transactions, SignedTrans,
we can generate arbitrary traces with systems like QuickChick [12]. Given a logical program
(reflected in a set of smart-contracts), we can codify the possible logical operations in an
inductive type in Coq. Therefore, we can generate a sequence of actions translating the
logical steps into transactions in the blockchain and verify that the smart-contracts do not
reach an invalid state.

5.2 Proof of Correctness

We can define a specification of how a proper blockchain should behave and check that
our implementation follows the specification. For example, a basic property is no-double
spending which states that transfers (remote contract invocations) are paid once, i.e. the
sender is not charged twice for the same operation. We can go even further and prove that
executing a transfer does exactly what it is supposed to do (Listing 4), i.e. invokes another
smart-contract, executes its code, deduce the expected amount from the sender’s account,
and adds it to the destination’s account, or fail (in which case the transfer has no effect).

An alternative approach would be to define a small step inductive relation defining
how blockchains should behave and prove that the scheduler follows it step by step. The
framework Concert [3] follows that approach.

FMBC 2022
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Lemma SimpleTransferCheck :
forall callerContract calleeContract parameterTy BCCtxt send

(parameter : Type_Interpret parameterTy)
(storage storage' : Type_Interpret (_Storage calleeContract))
(contractContext : TzCtxt parameterTy),
successWith (ops, (caller', callee'))

(SimpleTransfer callerContract send calleeContract)
→ _st calleeContract ≡ storage
→ successWith (ops, storage') (exec calleContract BCCtxt parameter)
∧ ((_balance callerContract) - send) ≡ _balance caller'
∧ ((_balance calleeContract) + send) ≡ _balance callee'
∧ _st callee' ≡ storage'.

Listing 4 Transfer is correct.

5.3 Multi-Contract Interaction Proofs
The most important part of our framework is that we can simulate executions of smart-
contracts and inspect the effects generated by smart-contract interactions. In other words, we
have a big-step semantics of blockchain operations where we can study how smart-contracts
using different mechanisms (i.e. BFS/DFS, etc) interact with each other. We can build proofs
either by observing the evolution of the transaction execution operation by operation, or
analyzing its final state after the transaction terminates. In other words, we have a definition
of observational equivalence of smart contracts modulo the particular blockchain employed
as evaluator.

This is extremely useful because we can abstract away entire smart-contracts and event
simulate the more realistic scenario: a demonic environment. Either we know the code
of smart-contract and we can predicate over these code during the proof, or we do not
have these code, which requires reasoning with universal quantification over all possible
smart-contracts. In other words, to prove that smart-contracts are prepared to operate
properly in the open universe of the blockchain requires to reason about the interactions
with all possible contracts.

We can model angelic computations by expanding our known universe of smart-contracts
simply by implementing smart-contract on our framework and having them installed in the
blockchain inside a simulation.

6 Conclusion

In this paper, we present Multi, a formal playground to reason about smart multi-contract
interaction and to study features of the blockchain before deployment. Additional features
and mechanisms are described in Appendix C and Appendix B where we introduce the idea
of Bundles of operations: semantic restrictions on the execution of a sequence of operations.
Our framework, based on the Tezos blockchain, is very general and allows us to reason about
different execution orders, abstracting away each operation on a contract by a pure function
whose output is either a failure or the changes in the local storage plus further operations.

Future work includes:
Examples and study cases: implement and study complex use cases.
Integrate Multi to the Tezos formal ecosystem and study interactions with Concert and
Mi-Cho-Coq.
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Implement additional features, e.g. transaction monitors, views, etc, and study how they
interact between each other.
Design and implement a DSL to easily encode specific smart-contracts easing the transla-
tion from existing languages into Coq functions.
Write more expressive smart contract types following the steps of Concert since Coq
functions are more general than the contracts accepted by most blockchains (like Tezos).
Implement complex features as tickets/NFT using some mechanisms (like monads) to
better capture the space of functions that represent smart-contracts.

Finally, we aspire to implement a richer specification language using ATL [2] to describe
the interaction between smart-contracts and fully verify their specification in Coq. The idea
consists in describing programs as interactions between agents (i.e. smart-contracts) where
agents cooperatively guarantee certain properties or exercise certain rights. At the semantic
level, we would connect the evaluation of smart-contracts in a blockchain with their semantic
given by ATL and concurrent games. In other words, with Multi, we can interact between a
rich specification language of smart-contracts and their behaviour defined by the execution
of blokchains.
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A Angelic/Demonic

Given the open universe nature of blockchains, smart-contracts are forced to identify who are
they interacting with. Programmers when they are designing complex software do not think
that they are in a dangerous and aggressive environment, as it is now, and simply think that
smart-contracts will interact with good pieces of software doing what they are supposed to
do. However, as we saw before, this may not be true.

In this section, we present a new characterization when it comes to classifying the
interaction between multiple smart-contracts. We call this characterization Angelic/Demonic
where we mark smart-contracts as angelic when they do what they are supposed to do, or
as demonic when we cannot assume anything about their behaviour, and thus, we cannot
predict nor predicate about their behaviour. Note that this is not a property enforced by
blockchains, but it is more of a mindset at the moment of designing complex software that is
going to run on the blockchain.

There are essentially two basic models to reason about multi-contract interaction:
Closed World Assumption: every smart-contract knows and trusts the smart-contracts that

it is invoking (directly and transitively). In particular, every smart-contract C only
invokes contracts that are older than C and whose properties are known.

Open World Assumption: every contract C runs in an adversarial environment and smart-
contracts should protect against possible evil smart-contracts.

A closed world assumption is feasible on many occasions because of the public and
immutable2 character of the blockchain. Since everything is public and smart-contracts
do not change, as smart-contract developers, we can observe the state and code of smart-
contracts that we are going to interact with and decide if they are angelic, i.e. if they do
what they are supposed to do.

Note that “the angelic state” is fragile and it may change. For example, assume we invoke
a smart-contract B that in turn invokes another smart-contract whose address addr is stored
in B’s storage. As we are about to submit our smart-contracts to the blockchain, we can

2 Although it is possible to implement mutable and upgradable smart-contracts, this is not the general
case, and even if the nature of the smart-contract was to mutate this would be known by the invoker.
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explore and decide that B and the current addr are angelic. However, eventually, B may
change it to another smart-contract addr′ that may also be angelic to B, or B is protected
towards possible attacks from addr′, but it may open an attack on our smart-contract.

The second option, an open world assumption, is a more real situation and sometimes the
only possible case for certain smart-contracts. One of the most prominent cases is exchange
houses: let Dex be a smart-contract that is always willing to exchange token A for token
B for a certain fee in behave of a set of investors. In this case, the smart-contract Dex is
doomed to interact with unknown addresses.

Another example is that we can implement a call-and-return model using continuation
passing style between smart-contracts in BFS blockchains. However, implementing such
interactions between smart-contracts requires to assume that every smart-contracts is going
to behave accordingly, and thus, we are under an angelic assumption. Therefore, we need a
framework that can handle angelic and demonic assumptions.

B Bundles of Operations

In this section, we introduce the concept of bundles of operations high level restrictions on
how we want a sequence of operations to be executed. For example, we can abstract away
what is important about a scheduler following a BFS strategy: atomicity of a sequence of
operations. In other words, the operations generated by a smart-contract are going to be
executed one after another without other smart-contracts injecting operations between them.

A bundle is a semantic condition (or restriction) on the execution of a sequence of
operations. Instead of forcing the whole blockchain to use a particular execution order, we
theorize on having a domain-specific language (DSL) describing how we would want to
execute a set of operations. In other words, we would like to predicate on how operations
are to be executed explicitly, either by assuming a BFS/DFS or other mechanisms.

B.1 Atomic Sequence
Given a sequence of operations ⟨s0, s1, . . . , sn⟩, we want them to be executed atomically
without interleaving operations independently of the execution order followed by the scheduler.
BFS schedulers respect such bundle by definition, while DFS schedulers should check that
the effects generated by each si with i ≤ n does not affect the rest of the smart-contracts.

B.2 Contexts
The call and return pattern enables us to reason about units of functionality, in the sense, that
when we invoke a method in a smart-contract is because we expect a result independently of
how many other functions that method is invoking. When we program smart-contracts under
the demonic assumption, where giving control to other (possibly unknown) smart-contract
may result in an attack, we want to encapsulate their behaviour while still interacting with
them to obtain some functionality.

Independently of the execution order, we can devise an encapsulation mechanism enabling
us to reason about the functionality of external invocations in a context. The general idea
is to encapsulate the execution of smart-contracts and all of its descendant operations in
a context. Instead of having a pending queue of operations, we would have a sequence of
pending queues, each one representing an encapsulated context. Operationally, each context
is completely executed before passing to the next. Contexts give us the ability to invoke
functions and execute them as if they were the only procedures being executed in the machine,
i.e. in a completely isolated context.
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▶ Example 1. Let A and B be two smart-contracts such that the result of executing A is
two operations [A1, A2], while the result of executing B is just [B1]. Moreover, operations
A1, A2 do not generate new operations.

Assuming we have a pending queue formed by a context invocation to A followed by a
normal invocation to B, we will have the following execution sequence:

[[A], B]⇝ [[A1, A2], B]⇝ [[A2], B]⇝ [[], B] ≡ [B]⇝ . . .

Implementing contexts is easy and very useful to encapsulate functionality. However, this
brings some questions: how are contexts created? who creates them? From the point of view
of defense programming, we have two possible answers:
Caller contextual call: upon invoking a remote procedure, the caller can specify the execution

to be encapsulated in a context. This mechanism protects the callee since the new
procedure cannot inject operations interleaving the ones already on the pending queue
(as a DFS blockchain would do).

Callee contextual call: when invoked, the callee internally decides if its functions are to be
executed in a context. This mechanism enables the function being called to assume that
the pending execution queue is empty and nothing is going to modify it aside from itself
or the invoked smart-contracts.

C Restricting Smart-Contracts Interaction

We implemented two kinds of restrictions: one where the blockchain enters into a mode
where the smart-contract interactions are not allowed, and another where we can reduce the
set of addresses that can be invoked.

End of Interactions. The executor only accepts transactions from and to the same smart-
contract.

Address Universe. We can dynamically restrict the universe of addresses that smart-
contracts (and their descendants) can invoke, either by restricting the known universe of
addresses or by specifying addresses that cannot be invoked. In other words, we would have
two sets of addresses:
Allow addresses: the set of addresses that can be invoked during execution. Invoking an

address outside this set will force the transaction to fail.
Block addresses: the set of addresses that cannot be invoked during execution. Invoking

one of these addresses will force the transaction to fail.

Both mechanisms suggest the addition of a shared state between a smart-contract and
its descendants during the execution of smart-contracts. If we see transaction executions as
trees, we can add restrictions to such tree. Moreover, we can analyze transaction trees to
restrict or predict the behaviour of smart-contracts.
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