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—— Abstract

Delays and disruptions are commonplace in public transportation. An important tool to limit the
impact of severely delayed vehicles is the use of short turns, where a planned trip is shortened in
order to be able to resume the following trip in the opposite direction as close to the schedule as
possible. Short turns have different effects on passengers: some suffer additional delays and have
to reschedule their route, while others can benefit from them. Dispatchers therefore need decision
support in order to use short turns only if the overall delay of all affected passengers is positively
influenced. In this paper, we study the planning of short turns based on passenger flows. We
propose a simulation framework which can be used to decide upon single short turns in real time.
An experimental study with a scientific model (LinTim) of an entire public transport system for the
German city of Stuttgart including busses, trams, and local trains shows that we can solve these
problems on average within few milliseconds. Based on features of the current delay scenario and the
passenger flow we use machine learning to classify cases where short turns are beneficial. Depending
on how many features are used, we reach a correct classification rate of more than 93% (full feature
set) and 90% (partial feature set) using random forests. Since precise passenger flows are often not
available in urban public transportation, our machine learning approach has the great advantage of
working with significantly less detailed passenger information.
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1 Introduction

Public transport is used by millions of people every day. It is of great importance for meeting
mobility needs and achieving sustainability goals. However, its attractiveness suffers from
disruptions and delays that increase travel times for passengers and lead to their frustration.
The task of real-time dispatching is therefore to minimize the effects of disruptions. In
general, there are a couple of control actions which can be used to mitigate delays.

In this paper, however, we will focus specifically on scenarios where single vehicles are
excessively delayed. Such delays may be due to many kinds of problems, for example technical
problems with the engine or the signaling system, temporarily blocked track or road sections,
and the like. If such a heavily delayed vehicle is planned for subsequent (return) trips on the
same line, the delay may propagate over quite some time. In such a scenario it might be
advisable to consider the possibility of introducing a short turn to reduce the vehicle delay.
Executing a short turn means that the current trip of the vehicle is prematurely terminated
at some stop. Afterwards, the same vehicle reverses direction and resumes with the follow-up
trip from this stop. That means, all intermediate stops till the terminus of the line are
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Figure 1 Sketch of both possibilities of a short turn scenario. A vehicle has a delay at its
second stop. The left part shows the regular scenario without short turn. In this case, the delay
is propagated to the following ten stops. On the right side is the scenario where a short turn is
executed at the fifth stop of the line. Some passengers must use alternate routes to their target
during a short turn (green) while other passengers (blue) benefit.

skipped in both directions. Ideally, the planned vehicle schedule can be restored in this way.
Clearly, a short turn negatively affects all passengers currently using the vehicle, and those
who wanted to board at some of the skipped stops. On the other hand, other passengers
take advantage if the delay is reduced for subsequent trips. Figure 1 provides a systematic
sketch of such a scenario. For a passenger-aware control strategy, dispatchers therefore need
decision support in order to use short turns only if the overall delay of all affected passengers
is reduced. Formally, we would like to support solving the following decision problem:

Short turn dispatching problem. Given a timetable T', a corresponding vehicle schedule S,
a passenger flow pf, a delay scenario with delay predictions delay and a heavily delayed
trip tr (i.e. with a delay exceeding some threshold parameter), decide whether there is a
suitable opportunity to introduce a short turn in order to reduce overall vehicle and passenger
delays (and select the one with best utility).

We consider the following general workflow (Figure 2): There is a central dispatching
centre monitoring the delay scenario in real-time, i.e., the current delay status of every vehicle
in the public transport system. Based on this delay information, a propagation model is used
which predicts how the delay of each vehicle will evolve over time. Whenever some vehicle
is heavily delayed, possible candidate stops for executing a short turn are identified and
checked for their feasibility, i.e. technical requirements on the infrastructure like necessary
switches for trains or turning options for busses have to be fulfilled. All potentially suitable
candidates then have to be evaluated. In each case, the two alternatives of executing or not
executing a short turn must be simulated with their consequences on all affected passengers.
Finally, the best alternative is chosen.

Contribution. We propose a simulation framework for solving the short turn dispatching
problem. An essential component of our framework are passenger flows. While high quality
estimations of passenger flows based on ticket data are available in long-distance train traffic,
data availability is much worse in local public transport for trams, busses, and local trains.
More and more, automated fare collection data and automated passenger count systems can
be used to infer passenger flows. However, it is still challenging to infer correct passenger
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Figure 2 Steps in an online framework recommending short turns.

destinations from these data. We go a step further by assuming that sufficiently precise
passenger flow data is available. That means, for each passenger we know exactly the intended
route, i.e. the sequence of planned trips. In particular, we know the planned arrival time at
the destination according to schedule. The main advantage of considering precise passenger
routes is that we can take care of each individual passenger in case of disruptions. Thus, when
solving the short turn dispatching problem, we can calculate the effect on the passenger’s
delay for both scenarios (executing a short turn or not). Moreover, based on the decision, we
can recommend alternative routes that will get the passenger to the desired destination on a

route minimizing a cost function, for example, reaching the destination as quickly as possible.

Within our simulation, the bulk of the work is therefore the computation of optimal routes
in an online scenario for all affected passengers. Though we have to solve many shortest path
routing queries, we still achieve an excellent performance. In computational experiments
with a public transport network for the German city of Stuttgart we can solve the short turn
decision problem on average within few milliseconds, i.e. fast enough for real-time use.

We further analysed in which cases short turns are beneficial. We observe a clear
correlation between beneficial short turns and multiple indicators that we can compute before
the rerouting process of the simulation starts. Since our assumptions on the availability
of precise passenger flows may be way too strong for urban public transportation, we try
to relax them and work with significantly less detailed passenger information. Our second
contribution uses machine learning (ML) techniques in order to classify cases where short
turns are advantageous. To this end, we carefully selected a few features of the current delay
scenario and the passenger flow to train an ML model. The best classification rate could be
achieved with random forests. For the full feature set we obtain correct predictions in more
than 93% of all cases. We also experimented with a smaller feature set using only partial
information. Here we still get a success rate of more than 90%.

Related work. The importance of taking the passenger perspective into account has been
stressed by Parbo et al. [18]. Our simulation framework for the real-time decision support
of short turns is inspired by the PANDA framework for wait-depart decisions in delay
management for long distance trains [14, 21]. The optimal capacity-aware rerouting of
passengers after train cancellations has been considered in [13].

Ge et al. [4] provide a survey on disturbances in public transport and approaches to cope
with them in planning and operations. Likewise, the review by Gkiotsalitis et al. [5] discusses
several real-time control measures, including vehicle holding, stop-skipping, speed control,
rescheduling, interlining, rerouting, and boarding limits. Wang et al. [26], for example, study
the adjustment of dwell times and running trains on different speed levels as control actions.

The use of short-turning within real-time optimization has first been studied in Shen
and Wilson [25]. They provide a non-linear mixed integer programming formulation that
simultaneously tries to optimize holding times, stop skipping and short turns. They report
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experimental results with a single line (Boston, MA). Similarly, Nesheli et al. [16] combine
mixed integer programming with a simulation framework. A case study for Auckland, New
Zealand, based on three bus routes shows quite promising results. Our approach differs in
several respects. First, Nesheli et al. allow short turns only if the vehicle has passed the
last transfer point in the current direction. In contrast, we do not impose such a restriction.
Second, Nesheli et al. assume that passengers disadvantaged by short turning may either
walk to their intended destination or wait for the next vehicle on the line. We are more
flexible by assuming that stranded passengers switch to an optimal alternative route to
reach their final destination. This, of course, requires a much higher computational effort for
finding these routes. Finally, our analysis is based on much larger networks. Liu et al. [10]
study a short turn strategy for bus operations based on origin-destination (OD) data, but
without taking actual delays into account. Note that short turning does not apply to each
public transport line. In particular, ring or circle lines require other control actions [8].

To deal with both spatial and temporal peak periods of demand, the planning of short
turns has also been considered as part of the strategic planning phase as a means to balance
capacity and demand and so to mitigate crowding [1, 12].

Passenger flow prediction is an area of active research. For example, Kang et al. [6] study
how to use automated fare collection data for generating OD matrices. Liu and Chen [9],
Luo et al. [11], and Nagaraj et al. [15] present deep learning approaches for passenger flow
prediction in bus transit systems. We therefore expect the quality of the available passenger
flows for real-time dispatching to improve continuously.

Overview. The remainder of this paper is structured as follows. In Section 2, we describe
in detail our simulation framework for the short turn dispatching problem. Results of our
experimental study with the public transport network of the city of Stuttgart are presented
in Section 3. Afterwards, in Section 4 we explain our machine learning approach for deciding
upon short turns and present corresponding computational results. Finally, in Section 5, we
conclude with a short summary and an outlook.

2  Short Turns During Daily Operation

In this section, we first provide the basic background for our simulation framework and then
describe in detail how the short turn dispatching problem is solved.

2.1 Basic Model

Public transport infrastructure. The public transport infrastructure consists of stops and
direct connections between them. These can be roads in bus transportation or the tracks in
rail, tram or underground transportation. This network is usually called public transportation
network (PTN). A line is a path in this network, i.e. a sequence of stops and direct connections
between them.

Timetables and event-activity networks. A public transport timetable can be modeled as
an event-activity network N' = (&, A) [24, 14] which contains nodes (events e € &) for every
arrival or departure of a vehicle at a stop and directed edges (activities a € A) between them.
For every major relationship between events there is a special type of activity. Every type of
activity is directed and goes either from departure to arrival dep — arr or arr — dep. The
relevant types of activities are:

drive (dep — arr) an activity of a vehicle driving from one stop to another,
wait (arr — dep) a dwelling activity of a vehicle,
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transfer (arr — dep) an activity for passengers representing a possible interchange between

vehicles (usually including a footpath),
turnaround (arr — dep) an activity of a vehicle to reach its next trip.

A trip is a path of drive and wait activities that needs to be operated by a single vehicle.
The vehicle schedule assigns to each trip a vehicle with a certain capacity, specifying the
maximum number of passengers who can use it simultaneously. The vehicle schedule implies
the turnaround activities in the event-activity-network.

Each event is equipped with several timestamps, specifying the planned time according
to the timetable and the realized or estimated time with respect to the real situation. The
time difference of events connected by activities yields the planned or actual duration for the
activity. Under optimal conditions some activities may be performed faster. For activity a,
the lower bound L, specifies the minimum execution time of the activity. A delayed vehicle
can reduce its delay if the scheduled duration of an activity is larger than its lower bound.
The difference in time is called slack or buffer.

Delay propagation. For real-time dispatching decisions it is necessary to maintain an up-to-
date and consistent internal model of the current delay scenario and estimated timestamps
for future events. Hence, in a live system vehicles will regularly send their GPS coordinates.
From these data, current status information and delays can be inferred. For our simulation
framework, we can simulate such a stream of messages as well as artificial delay scenarios.
Delays are propagated along the activities in the network. In the basic model, delays are
transferred along drive, wait and turnaround activities, but available slack is used to reduce
positive delays. It is assumed that vehicles never depart before their planned departure
time. Delays may also be propagated along transfer activities if delay management uses
waiting time rules between trips. More sophisticated propagation algorithms may also use
the available free vehicle capacity and the number of boarding and leaving passengers to
estimate actual dwell times and to model phenomena like bus bunching.

Passenger Model. After the event-activity network is constructed passenger flows are
generated. For our networks there is an origin-destination matrix specifying demand. Every
passenger has a starting location, target location, and a preferred time of departure. A
route (or journey) of a passenger is a directed path in the event-activity network which
starts at the starting location and has to end at the target. Before the online simulation is
started passengers will select an initial route based on their demand and a utility function.
For simplicity, the utility function is here taken as a weighted sum of the travel time and
the number of transfers used, but can be customized within our framework. During the
simulation we use the following model how passengers behave, depending on their knowledge
about the current delay situation. In an online scenario source delays are revealed only step
by step, namely soon after they have occurred. An exception to this are changes of the
timetable caused by dispatching decisions that can be communicated once a decision is made.
In our model, passengers are informed about delays and change their routes according to
their utility function and certain rules:

1. Passengers are assumed to arrive at the very first stop of their route as planned. At that
point of time, they check the validity of the planned route and choose an optimal route
with respect to their utility function.

2. Once a passenger has entered a vehicle, he or she will stay on board of this trip till the
planned exit stop where they either reach their final destination or transfer to another
trip. That means, passengers are assumed not to change their route before they reach a
natural decision point, usually a transfer stop.
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3. If a planned transfer is missed, the passenger selects a new route subject to the current
delay scenario.

4. If the current trip on the planned route is on time, a passenger will not switch to another
route that has become possible because of delays of other trips.

Note that rule (2) and (4) may result in sub-optimal passenger routes but such a behavior
seems natural for most passengers. One important aspect of this model is that in networks
where good alternatives are available rule (1) results in scenarios where delayed vehicles are
less occupied than initially planned.

2.2 Deciding Short Turns

Short turn model. Let ¢, = (s1,82,...,8,-1,8n) and to = (Sp, Sn—1,.--,S2,51) be two
consecutive trips of the same vehicle, where the sequence of stops in t; appears in reversed
order. A short turn st is a turnaround activity from an arrival event from(st) of ¢; to
a departure event to(st) of ty at some non-terminal stops of ¢t;. Every activity between
from(st) and the end of ¢; and between the start of t5 and to(st) would be cancelled. A short
turn is thus a premature turnaround edge that is not part of the planned schedule, but rather
decided at short notice. Every passenger whose planned route includes a cancelled event has
to be rerouted, while other passengers benefit from the reduced delay. The following sections
explain how the (possible) benefit of a short turn is evaluated.

Detecting and filtering short turns. A short turn from an arrival event of trip #; to a
departure event of trip to will be considered as a candidate if the departure event of trip to
is sufficiently delayed, i.e. by more than a certain threshold §, say, for example by at least 10
minutes. In order to recognize a potential short turn, we keep a list of trips exceeding this
threshold with respect to the current delay status. Entries in this list are sorted increasingly
by the time when the trip delay exceeds ¢ for the first time and processed in this order. The
simulation proceeds in discrete time steps of one minute. The current time of the simulation
is called simulation time. Some potential short turns are discarded before being evaluated.
First of all, they have to be technically feasible. In addition, a short turn between two trips
t1 and t5 is only relevant if no later short turn exists for which ¢35 can depart according to
schedule. In other words, the first relevant short turn candidate sty is the latest short turn
possibility for which t5 can depart according to schedule. Short turns at earlier stops of trip
t1 would be suboptimal, since more stops have to be cancelled and more passengers rerouted.
Later short turns, however, can not be prematurely excluded: while t5 would not be able
to depart according to schedule, they are less disruptive for the passengers and may be the
preferable option, especially if a large number of passengers want to enter or exit at a later
stop.

Note that due to the definition of a circulation edge all simulations of a short turn meet
requirements of the vehicle schedule (rolling stock), but do not contain any information about
the crew schedule. In practice, a short turn can not occur when necessary crew changes are
skipped.

Computation of scenarios. For every trip in the list of heavily delayed trips, the first
relevant short turn sty to this trip is calculated or updated after a delay has been recorded and
propagated. The event from(sty) is kept in a simple array of lists mapping the simulation
time to these departure events. This array is checked when the simulation time is updated. For
every event in the list corresponding to the current time, the following “decision” subroutine
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is called. This subroutine, formally described in Algorithm 1 (see Appendix A), recommends
whether trip ¢ should execute a short turn. Since multiple short turns are in competition,
all of them have to be evaluated. Starting with the stop of the first relevant short turn sty,
we evaluate the short turn at each stop of the trip. As a cost measure for a scenario we use
the total arrival delay of all passengers in the network, including a penalty of 300 seconds
for each transfer. Alternatively and without extra effort, we could also use the sum of the
squared arrival delays. To find the short turn with the largest reduction of the cost function,
an evaluation subroutine is called for every possible short turn of ¢, starting with st(¢). This
second subroutine will be explained in the following paragraph. New routes are calculated
for the affected passengers of a short turn. The decision subroutine saves these routes for
the best currently found short turn. At the end of the decision subroutine, the best found
short turn will be executed if the reduction of the cost function is larger than or equal to
some threshold 6y,.. The routes of the affected passengers and the changed times of the
affected trips are updated. For the efficient computation of optimal passenger routes, we
use a modified version of the connection scan algorithm (CSA)[2]. The algorithm has been
modified in order to calculate routes based on composite cost functions.

Evaluation of scenarios with distinct types of affected passengers. The evaluation
subroutine, described in Algorithm 2 (for a detailed pseudocode see Appendix A), calculates
the difference of cost function for executing and not executing the specific short turn st,
based on the state of the network at the time the decision subroutine is called. First, we
determine the sets of passengers affected by the potential short turn st. We differentiate four
different types of passengers. Table 4 in Appendix A provides a compact reference describing
these types and how they can be determined.

The first type contains passengers which would have part of their current route canceled
if the short turn is executed. Finding these passenger groups is simple: we trace the activity
edges of the current vehicle from from(st) to to(st) and put every passenger on these edges
in a set P_ 4. These passengers would have to be rerouted if the short turn is executed. It is
also possible that these passengers have a broken transfer between from(st) and to(st), in
which case a rerouting is required in both scenarios. The second type of passenger groups are
passengers whose routes are only possible because the current trip is delayed. This is only
possible for passengers who searched for their routes after the delay was announced. For
these groups the short turn might be detrimental: a transfer into a vehicle with improved
punctuality might become impossible if the transfer slack is too small. To find these passengers
we trace the vehicle starting with to(st). For every scanned event, we calculate the time
improvement of this event resulting from the short turn. We then iterate over the transfer
edges into the current event. If the slack of the transfer is zero or positive and smaller than
the time improvement at the event, we add the corresponding passengers to a set P_p.

The third type of passengers are those who currently have a broken transfer because of a
delay, but the broken transfer becomes possible again if the short turn is executed. Finding
these passengers is similar to finding the second type: we again trace the vehicle starting
with to(st) and calculate the time improvement at the current event. We then iterate over
the transfer edges out of the event. We only consider transfer edges of passengers which are
not in P_, or P_p. If the slack of the transfer edge is negative, meaning the transfer is not
possible in the current state of the network, we add the passengers corresponding to the
transfer edge to a set P if the absolute value of the transfer slack is smaller than or equal
to the time improvement of the current event. This is the case if the transfer is possible if
short turn is executed. These passengers would have to be rerouted if the short turn is not
executed.
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Parallel to this, we consider the fourth type Py p of affected passengers: passengers whose
final arrival gets directly improved because of the short turn. This is the case if an event
is the final destination of a passenger. In this case, we directly add the time improvement
to a variable direct_cost_improvements. If a trip is delayed, passengers may search for
a better alternative route. In case the short turn is executed, a better alternative route
may still exist if the short turn doesn’t remove the entire delay. To calculate the direct
improvement, we first find the best alternative route according to current circumstances. We
then compare these alternative costs to the costs of the current route for both scenarios and
save the minimum of the two routes. For the scenario of executing the short turn, the time
improvement at the final arrival is subtracted from the costs of the current route. The direct
improvement of the short turn for the current passenger is the difference between these two
minima. This is described in Algorithm 2 (Appendix A).

Computing the benefit. In order to calculate the total difference of the cost function, we
compare both scenarios for each passenger found in the previous step. First, we calculate the
cost for every group for the case that the short turn is not executed. For this case, we have
to reroute the passengers in P, ¢ and the passengers in P_ 4 with broken transfers. For the
other passengers, we take the costs of their current routes. Only the remaining costs of the
routes are taken into account, starting at the current simulation time. After this step, we
undo the reroutings and execute the short turn. The skipped edges are marked as canceled
and the times of the subsequent trips are updated. In this scenario, P_4 and P_p have to
be rerouted. The calculated routes for P_4 are saved and returned. These will be applied
in case the current short turn is the best short turn of the decision subroutine. The new
routes for the other types of passenger groups are not saved because they lie in the future
and will be rerouted in a different subroutine of the simulation. Before returning the total
improvement of the network costs and the new routes, the network is reset.

3 Experiments

In this section, we describe our computational evaluation of the simulation framework for
short turns.

Experimental setup. The simulation is written in C++ and compiled with gcc 9.4.0, using

full compiler optimization, on Ubuntu 20.04. The experiments are run on an AMD Ryzen 7
5800X, clocked at 4.7 GHz during program execution, and 32 GB of 3600 MHz DDR4 RAM.

Public transportation network. We use realistic data for the public transportation network
of Stuttgart, provided in the LinTim format [22, 23], including passenger demand. The
Stuttgart instance [3] is a mixed network, consisting of train and bus lines. The network has
769 stops (or stations) and a passenger demand of 54 626 passengers per hour. During peak
traffic 780 vehicles start their trips per hour across 111 unique used lines. Their maximum
capacities reach from 70 passengers for busses up to 400 passengers for trams and up to
1000 for regional trains. Of the 780 trips per hour 556 are busses and 224 trains/trams. A
specific timetable and vehicle schedule with respect to the given passenger demand has been
optimized by the LinTim software.

Experiments 1 (single artificial delays). In order to evaluate the usefulness of short turns,
we have to generate delay scenarios. In the first experiment, we generate an artificial starting
delay for a single vehicle in the network. The delay is propagated along the trips of the
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vehicle. Each time the vehicle has a planned buffer time, the propagated delay is reduced
by that amount. We delay only one vehicle because we want to guarantee that passengers

are not influenced by other changes in the network unrelated to the evaluated short turn.

We simulate four hours of passenger travel. This simulation is repeated for each trip in the
network.

In order to capture how profitable a short turn is for a certain delay, we simulate a delay
in the range of 10 to 30 minutes, in steps of five. We only consider delays that do not result
in the delayed trip overtaking the next scheduled trip of the same line. We evaluate possible
short turns as described in Section 2. Because this experiment only features independent
delays, the resulting short turn recommendations guaranteed an optimum for the system.

For this and the following experiment, the penalty for a transfer was set to 300 seconds.

We assume a short turn takes 180 seconds to execute. In total, we simulated 6786 vehicle
delays for Stuttgart. We found 3343 short turns, 2232 of which reduce the accumulated cost
function when the acceptance threshold 8y, is set to 0.

Experiment 2 (more realistic random delays). While the first experiment is deterministic
and has only one isolated source delay, the second experiment generates more realistic
scenarios featuring multiple simultaneous, but independent delays. We would like to point
out that our assumption of independent delays is clearly a simplification. In reality, there are
frequent cases where delays are correlated because of an underlying reason. Our simulation
framework would also work for more sophisticated delay scenarios. In this experiment, we
simulate four hours of traffic. Each trip receives a random start delay according to a discrete
delay distribution within a range of 0 to 10 minutes. Likewise, each driving activity receives
an extra delay with respect to a second delay distribution. Figure 6 shows the cumulative
distribution functions we used. The function is chosen so that 82% of starting events are not
delayed, and 97.1% of driving activities do not get an additional source delay. With these
probabilities, we used 10 independent runs to create a bigger data set of possible short turns
than in the deterministic experiment. The number of short turn candidates generated was
33,159.

In contrast to the first experiment, there is no guarantee that a recommended short turn
produces an optimal solution for the system. This is inherent to all online systems where
future delays are not known beforehand. Moreover, we ignore complex cases where several
heavily delayed vehicles should be considered in combination.

Results. General information about Experiment 1 is presented in Table 1. Note that delay
here means the delay of a vehicle at the start of the simulations. The actual delay at the
time of the short turn may be lower because of planned buffer times in the network. Note
that more than one trip might be evaluated in one simulation. If the starting delay is high,
it may propagate along multiple trips of a vehicle. The number of candidates decreases with
higher starting delays because we only consider delays that do not result in the delayed trip
overtaking the next scheduled trip of the same line.

It is expected that the average improvement increases as the starting delays increase.

The average improvement and the percentage of trips with positive short turns is rather high
for all starting delays. This can be explained by the fact that many trips are almost empty
near to the end of the line, if the terminal stop is not a hub for transfers to other lines.
For simulations with ten minutes of starting delay, the average number of passengers on
activities that would be cancelled by a short turn (with positive or negative improvement)
is 70.5, but the median is only 14. For 22.2% of all trips with short turns, the cancelled
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Table 1 For different starting delays (in minutes), this table presents how many trips were delayed
(#trips), how many short turns were evaluated (#st evaluated), how many delayed trips with short
turn candidates exist (#trips with st candidates), how many of them are beneficial (#beneficial
st), and the average total improvement of costs for all passengers (avg improvement). The last two
columns only consider the best short turn of a trip.

delay  #trips #st evaluated #trips with st candidates  #beneficial st avg improvement

10 2518 1999 1214 784 152m 36s
15 1780 1856 801 536 187m Os
20 1411 1309 481 312 187m 43s
25 1609 1868 574 405 336m 55s
30 954 982 273 195 464m 56s

activities were completely empty. One explanation for such a high number is that during
morning peak hours, most passengers travel to the city centre, while outbound trips in the
suburbs are not heavily loaded near to their terminus stop. Another main reason for so
many empty trip segments is that whenever a vehicle has a substantial delay and other lines
drive in the same direction, affected passengers take an alternative before the short turn is
considered.

The time-critical operation is the finding of new routes for passengers. Across both
experiments, each evaluation of a short turn takes 323.81 CSA queries on average, while the
average total runtime for a short turn evaluation is 143.25 ms. The average runtime for each
CSA query is 0.44 ms. This would enable a quick real-time evaluation of short turns, but in
praxis, the limiting factor is usually the available data.

Features correlating with short turn recommendations. Figures 3a and 3b show how
features of the scenarios correlate with the improvement in passenger utility if the short turn
is executed. The recovery time of a delayed vehicle is defined as the time it would take the
vehicle to completely eliminate its delay by utilizing buffer times within the timetable if no
short turn is performed. Figure 3a plots the recovery time against the benefit in minutes,
while in Figure 3b the known feature is the remaining delay of the vehicle at the stop before
a short turn is executed. Both figures show a certain correlation between the value of the
feature and the likelihood that the resulting short turn is beneficial. Figure 4a shows how
the difference in the number of passengers belonging to groups that will benefit from a short
turn and the non-beneficiaries correlating to the improvement in costs. Figure 4b shows that
the difference in the number of reroutings is also correlated with the improvement. When
multiple features indicate the affiliation of a scenario to the classes “recommend a short turn”
and “do not recommend a short turn” we may not need further expensive computational
effort to decide.

Further Evaluations. Figure 5 shows the fraction of beneficial short turns depending on the
threshold imposed for accepting a short turn. Since dissatisfaction of passengers who have to
suffer from short turns might outweigh the gain in punctuality for others, a threshold above
zero seems preferable in practice.

4 Machine Learning Short Turn Decisions

For our simulations, we assumed perfect knowledge of the passenger flow. This is unrealistic
for a practical scenario and we thus explore methods for the prediction of beneficial short
turns with less information. In particular, we no longer want to assume that we know
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Figure 5 In our definition a short turn is beneficial if there is any improvement in passenger
utility. When dispatchers have a threshold for the minimum gained utility to execute a short turn

the fraction of beneficial short turn declines sharply.
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passengers’ destinations. When we have easily computable features as input and their
simulated recommendation as output we can apply methods from supervised machine
learning to generate a model that predicts the recommendation without the computation of
the scenario. Here we continue our work with the data sets from the previous section to see
whether we can make predictions with a sufficiently high accuracy.

Defining features. The first step in this process of defining and producing features during
the regular analysis of a short turn scenario is the creation of a vector of those features for all
scenarios of our study. We selected 16 features that could be beneficial for machine learning
algorithms to predict whether a short turn should be executed. Features that might be useful
for the ML algorithms are the recovery time, the delay without the short turn, the number
of passengers on canceled events, and the number of passengers on events that will have a
smaller delay once the short turn is executed. For the machine learning of short turns, we
use the following set of features:

. time difference until delay is recovered because of buffer times

. current time of day

. current delay of the vehicle when short turn is considered

. time saved if short turn is executed

. number of passengers inside vehicle when short turn is considered

. planned number of passengers in the subsequent reversed trip at the current stop if short
turn is not executed

7. planned number of passengers in the subsequent reversed trip at the current stop if short

turn is executed

SO WN =

8. number of remaining stops of the trip until the regular turnaround edge
9. predicted number of delayed trips of the current vehicle
10. difference in number of rerouting operations when simulating both scenarios
11. number of passengers in P_4 U P_p with valid routes before short turn
12. number of passengers in P_4 U P_pg with invalid routes before short turn
13. number of passengers in P, ¢
14. number of passengers in Py p
15. number of (unique) passengers on the subsequent reversed trip until delay is recovered
because of buffer times
16. number of (unique) passengers on the current vehicle until delay is recovered because of
buffer times (can be higher than the previous feature if multiple trips are affected by the
delay)

Note that the destination of passengers is not included in this data. This has the benefit
that when dispatchers have knowledge of the number of passengers inside their vehicles but
not their destinations, the predictions will still produce reliable results. The assumption
that we know everything about the passenger flow becomes less important from this point
forward. The set of 16 features is still more than the data a typical dispatcher would have at
their disposal.

To this end, we produced a restricted set of features that a dispatcher might generate
with little effort. These features are (1) the current delay of the vehicle before the short turn
is executed, (2) the duration how long it would take to recover the delay by only consuming
planned buffer times, (3) the number of minutes the delay is reduced by the short turn, (4)
how many stops until the trip is over, (5) how many passengers are inside the vehicle when
executing the short turn and (6) the estimated passenger demand of stops where the delay is
decreased by the short turn.
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Choosing platform and model. The process of creating a machine learning model has
become easier during the last few years. Once the input (features) and output (recommend-
ations) are stored in comma separate value files, a simple python script that uses a small
number of open-source libraries can create good classifications. For our purposes we only
needed NumPy [17] and the library scikit-learn [19]. There are many methods for creating a
machine learning model for the purpose of classification of the input vector in only two classes.
Nearest neighbor classification, support vector machines, and decision trees are examples of
well-known methods. We tested ten different methods from the scikit-learn library [20] for
creating a model and selected the model with the highest number of correct classifications
within 100 trails where we split our data into 80 percent training- and 20 percent testing
data. The data we used are all short turns simulated in Experiment 1 and 2.

The method that produced the best prediction on our data was the RandomForestClassifier
(93.73% correct classifications on average) of scikit-learn. This evaluation includes parameter
tuning as an alternative to using default parameters. However, the best parameters only
improved the quality of estimation by an insignificant margin of .2%

Other relatively good methods were DecisionTreeClassifier (2% gap to RandomForest-
Classifier) and the AdaBoostClassifier (4% gap to RandomPForestClassifier). All other tested
methods did not consistently produce a classification rate above 90%.

Evaluating models for Experiment 1. To have sufficient data for the machine learning
process we combined experiments with different initial delays to one data set. We created
two models ’all features’ and ’'partial features’ and trained the RandomForestClassifier with
the training data. It is important to consider how many scenarios in the training data belong
to the execute and do not execute-case. A classification data where 99% of all entries belong
to one class must have a different prediction quality (usually much higher than 99%) than a
classifier for data that has 50% of the training data belonging to one class. In our experiments,
we test with different initial delays from 10 to 30 minutes. In these scenarios, short turns are
beneficial in 66.52% of all cases. As mentioned earlier a short turn is beneficial as soon as
there is one second of utility gained from the short turn. In practice, a short turn may only
be executed if there is a sufficient gain (above some thresholds) in utility. The fraction of
beneficial short turns drops significantly when a threshold is applied (see Figure 5).

The median prediction quality of the combined model with “all features” is 93.73%.
This means that the process of predicting the right outcome of a short turn simulation
can be predicted by machine learning if detailed data about the situation, passengers and
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Table 2 Distribution of recommended short
turn execution by simulation and classification

by random forest classifier.

Table 3 Distribution of recommended short
turn execution by simulation and classification

by random forest classifier.

. simulation | simulation . simulation | simulation
Experiment 1 . Experiment 2 .
execute no execution execute no execution
dicti dicti
prediciion 63.75% 3.50% precichion 47.95% 2.61%
execute execute
edictio edictio
preciction 2.77% 29.98% precichion 3.64% 45.80%
no execution no execution

their routes are available. In comparison, the median prediction quality of the combined
model with ‘ fpartial features’ is 93.22%. This means predicting the right outcome is still
relatively good, even when the amount of information is only limited to a correct delay
propagation/estimation, the number of counted passengers in the vehicle and knowledge
about the demand of the next line. Table 2 shows the confusion matrix for this classification.
We have 63.75% true positives and 29.98% true negatives, and only 3.50% false positives and
2.77% false negatives. The conclusion of this experiment is that for systems where delays are
rare, short turns are often beneficial and this fact can be predicted with high accuracy.

We would like to point out that our classifiers can only predict whether a short turn
candidate is beneficial, but not select the optimal short turn if several options exist. Choosing
the optimal short turn candidate is much harder for machine learning since it has to predict
the benefit using regression, and the essential comparison for a recommendation concerns
cases that share a significant number of features. The first attempt for this method produced
a prediction that could only determine the best of multiple beneficial short turns in 75.8% of
all cases using the XGBRegressor from scikit-learn.

Evaluating models for Experiment 2. Before looking at the results of Experiment 2 we
want to point out that it is harder to estimate the correct outcome than in Experiment 1 for
one particular reason. In Experiment 1 we had more large isolated delays which made short
turns more likely, namely in more than 66.52% of cases short turns were beneficial. Because
of the buffer included in the schedule, a fraction of the delays is made up when the vehicle
reaches stops where a short turn is possible. This can be seen in Figure 3b, where delays are
very often less than the initial 10 to 30 minutes. Experiment 2 has more mid-sized delays
(in the range 5 < z < 15), but the delays are generated anywhere during the journey. This
leads to a similar distribution of delays at possible short turns. The fraction of cases where
short turns are beneficial is 51.59% and lower than in Experiment 1. The median prediction
quality for the model with all features was 93.75% and thus as good as in Experiment 1
where delays were deterministic and isolated. Table 3 shows the confusion matrix for this
classification. With reduced features, the estimation quality drops to 90.50%. So even in
more realistic delay scenarios, the estimator predicts the correct short turn strategy with
good accuracy, when all features are used. The reduced features produce an estimation such
that it is likely that only 9 of 10 cases receive the correct prediction. For practical purposes,
this might not be enough for automation, but it is certainly helpful for a first indication of
whether a short turn is highly likely or unlikely to benefit passengers.

5 Conclusions and Outlook

We have presented a simulation framework for decision support of dispatchers in public
transport focusing on the planning of short turns for heavily delayed vehicles. Our experiments
have been conducted on a mid-size regional public transport network. Computation times
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turned out to be in the range of few milliseconds to decide whether a short turn would
be beneficial and for computing alternative routes for all passengers affected by such an
operation. For larger public transport systems and more dense passenger flows we expect that
our approach will scale quite well. This is due to the fact that vehicle capacities are bounded
and that the computational effort is more or less proportional to the number of rerouting
queries which have to be done. A similar study could also be carried out for long-distance
traffic. Again, we are confident that our findings can be transferred.

A reasonable extension of our model would be to include within the delay propagation
that dwell times depend on the number of boarding and alighting passengers. Our current
paradigm is that given circulation edges are binding because of a strict vehicle schedule.
Without this restriction, a short turn could also feature more complex scenarios where a
follow-up trip or other available vehicle resume the delayed future trip instead. More precisely,
instead of short-turning the heavily delayed vehicle, one could consider short-turning the
next vehicle on the line. The advantage could be that the first delayed vehicle is likely to be
crowded, while the following vehicle might carry by far less passengers. Such an operation is
slightly more complicated, but could be incorporated into our simulation framework, too.
However, it should be noted that these operations have a larger impact on the staff schedule.

For machine learning models for detailed heterogeneous networks with many different
types of vehicles and corresponding costs, capacities and possibilities for short turns, the
feature sets should also include those. The current machine learning model only separates
trains/tram and buses implicitly by the capacity of the vehicles.

Since we can make real-time decision support for waiting decisions and short turns it
would be interesting to include stop skipping and dispatching additional vehicles when delays
during peak traffic cause major problems concerning vehicle capacities. Supporting all of
these control actions jointly is also an intriguing challenge. The prediction of favorable short
turns succeeds satisfyingly well with the help of machine learning even if we exploit only
simple countable or previously collected passenger data. As information on passenger flows
and current delays is in practice always noisy and partially incomplete, the sensitivity of
short turn recommendations is worth studying in more detail in the future. A similar analysis
has been done for wait-depart decisions in PANDA[7]. Moreover, we could explore further
which features are required to have a robust classifier for recommending short turns.
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A Algorithms

Algorithm 1 Decision Subroutine.

input : first possible short turn st_f of trip current_trip
best_st < nil;
(best__cost__improvement, new_routes) < (0, nil);
for shortturn st of current_trip starting with st_f do
(cost__improvement, temp_new_routes) «+ evaluate(st);
if cost__improvement > best_cost__improvement then
best_st < st;
(best__cost__improvement, new_routes) <« (cost_ improvement,
temp_new_routes);
if best_cost_improvement > 0y, then
execute best_st and update times;
for (group, new_route) in new_routes do

‘ set route of group to new_route;
return

Table 4 Distinct types of passenger groups affected in short turn scenarios.

Type | Description Selection
P current route is canceled when put every passenger from canceled
~* | short turn is executed event by short turn in this set
P passengers that take advantage select groups changing into the delayed
Bl of delayed vehicle with no short turn vehicle with slack smaller than the delay
P groups suffering a broken transfer groups changing into delayed vehicle
+C | Wwhen the short-turn is not executed but without groups from (P-4) and (P-p)
.. . . L. any group with a final arrival event
groups arriving earlier at their destination | .
Pip . . improved by short-turn,
with the vehicle after the short turn .
without (P-4) and (P-pg)
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Algorithm 2 Evaluation Subroutine.

input : potential short turn st
initial_network_state < snapshot of current network state;
init P_4, P_p, P.c as 0;
new_routes < (;
init direct_cost_improvements, costs_without_st, costs_with_st as 0;
deptime_improvement <—
to(st).currentTime - max(to(st).regularTime, from(st).currentTime + 04y, );

for edge between from(st) and to(st) do
| insert groups on edge into P_4

for event on vehicle starting with to(st) do
for group with valid ingoing transfer at event do
if transfer.slack < min(deptime_improvement, event.currentDelay) then
‘ insert group into P_p;
negative_groups < P_4 U P_p;
for event on vehicle starting with to(st) do
for group ¢ negative_groups with event as final arrival event do
// group is of type Pip
arrival_improvement < min(deptime_improvement, event.currentDelay);
find alternative route and save cost as alt_costs;
current_costs < group.getCurrentRoute().getRemainingCosts();
min_no_st + min(current_costs, alt_costs);
min_st < min(current_costs - arrival_improvement, alt_costs);
direct_cost_improvements += (min_no_st - min_st);
for group ¢ negative_groups with invalid outgoing transfer at event do
if abs(transfer.slack) < min(deptime_improvement, event.currentDelay)
then
‘ insert group into P c;

all_affected_groups = negative_groups U P,¢;

for group in P, ¢ do

‘ reroute group;

for group € P_ 4 with invalid transfer do

‘ reroute group;

for group in all_affected_groups do

‘ costs_without_st += group.getCurrentRoute().getRemainingCosts();
reset network to initial_network_state;

execute short turn and update times;

for group in P_4 do

reroute group and save calculated route as new_route;
insert (group, new_route) into new_routes

for group in P_p do

‘ reroute group;

for group in all_affected_groups do

‘ costs_with_st += group.getCurrentRoute().getRemainingCosts();
reset network to initial_network_state;
total_cost_improvement =

direct_cost_improvements + costs_without_st - costs_with_st;

return (total_cost_improvement, new_routes)
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