
Greedy Algorithms for the Freight Consolidation
Problem
Zuguang Gao1 !

The University of Chicago Booth School of Business, Chicago, IL, USA

John R. Birge !

The University of Chicago Booth School of Business, Chicago, IL, USA

Richard Li-Yang Chen !

Flexport, Inc., San Francisco, CA, USA

Maurice Cheung !

Flexport, Inc., San Francisco, CA, USA

Abstract
We define and study the (ocean) freight consolidation problem (FCP), which plays a crucial role in
solving today’s supply chain crisis. Roughly speaking, every day and every hour, a freight forwarder
sees a set of shipments and a set of containers at the origin port. There is a shipment cost associated
with assigning each shipment to each container. If a container is assigned any shipment, there is
also a procurement cost for that container. The FCP aims to minimize the total cost of fulfilling all
the shipments, subject to capacity constraints of the containers. In this paper, we show that no
constant factor approximation exists for FCP, and propose a series of greedy based heuristics for
solving the problem. We also test our heuristics with simulated data and show that our heuristics
achieve small optimality gaps.
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1 Introduction

The spiking high container prices since the COVID-19 pandemic has caused significant issues
in global supply chains. In this paper, we consider the (ocean) freight consolidation problem
(FCP) - a combinatorial optimization problem that is being solved every day and every hour
by some of the world leading freight forwarders. In a nutshell, the freight consolidation
problem aims to optimize the assignments of shipments to containers at the origin ports, such
as Yantian Port (Shenzhen) and Port of Shanghai. In the FCP, there are a set of shipments
and a set of candidate containers that can be used. The origin/destinations of each shipment
and each container, as well as the estimated departure/arrival dates of each container, are
predetermined as the shipment/container becomes available at the port. There are two major
costs: cost of assigning a shipment to a container (shipment cost), and cost of procuring a
container (container cost). We further explain these costs in slightly more detail:

The shipment cost takes into account everything related to sending the shipment boxes to
their final destinations. Starting from the origin port, the remaining cycle of a shipment
includes arriving at a destination port, being sorted and loaded to rail or truck, and
delivering to their destinations. If a shipment is assigned to two containers that arrive
at different ports, the remaining rail and/or trucking costs will be different. Further
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4:2 Greedy Algorithms for the Freight Consolidation Problem

more, many shipments also have time window requirements, and based on the arrival
time of different containers, there may be different lateness costs. Therefore, we have a
shipment cost associated with assigning each shipment to each container. If a container
is not feasible for a shipment due to time window or destination ports, the corresponding
shipment cost (of assigning that shipment to that container) is assigned ∞.
The container cost is the cost of using a container. There is a set of containers available
at the origin port, each with its own destination, departure time, and cost of procurement.
If we decide to assign any shipment to a container, then we have to pay the procurement
cost for that container.

Moreover, if we find there is no proper container to assign a shipment, there is always an
option to “coload” that shipment, i.e., use a third-party shipper, e.g., Shipco, to fulfill that
shipment. The cost associated with assigning the shipment to a third-party shipper is called
the “coloading” cost. In our formulation, the “coloading” option can be viewed as a container
with unlimited capacity, and the coloading costs are equivalently viewed as the shipment
cost of assigning a shipment to this “coloading” container.

The freight forwarder aims to fulfill all shipments at hand while minimizing the total
cost, which includes both shipment costs and container costs, subject to certain constraints.
Specifically, each container has its own size in three-dimensions, as does each shipment. A
container also has a maximum weight limit. In reality, we need to ensure that the total
weight of all shipments assigned to a container does not exceed the weight limit of that
container, and the center of mass (of a loading plan of these shipments) is not too far away
from the center of the container. Moreover, these shipments should be able to fit into the
container in three dimensions. Assuming a shipment is packed in a three-dimensional box,
there are six possible rotations (orientations) of a box when being loaded to the container.
Some boxes do not allow all six rotations, and some boxes are not stackable (which means
they have to be put on the top). Given all these practical constraints, the problem of loading
any given set of shipments to a container is a separate NP-hard problem, which is called
the container loading problem in literature (see [5] for a comprehensive review). It would
be too complicated to consider all container-loading constraints in our freight consolidation
model. Therefore, we simplify the constraints by just having a weight capacity constraint
and a volume capacity constraint for each container, ignoring the actual three-dimensional
packing feasibility constraint. Despite that FCP does not reflect all practical constraints, we
believe it is the simplest model to capture the most important features of the problem.

Up till now, a keen reader would recognize that our FCP can be viewed as a combination
of the generalized assignment problem (GAP) and the bin packing problem (BPP), in a more
complicated version. The shipment costs mimic the costs of assigning jobs in GAP, while
in FCP we have two sets of capacity constraints (both weight and volume). The container
cost is the cost of using each container (bin), while we have different costs for each container
(bin). Therefore, FCP is already complicated in its nature and is expected to be difficult
to solve. In this paper, we prove the non-approximability result of FCP, i.e., there is no
constant factor approximation to FCP in polynomial time, unless P = NP . As a remedy, we
propose a series of heuristics. With simulated data that aims to reflect the actual practice,
we show that our heuristics return solutions with small optimality gaps.

The remaining of the paper is organized as follows. In Section 2, we provide a compre-
hensive literature review on the Bin Packing and related problems. In Section 3 we formally
introduce the FCP and provide the non-approximability result. In Section 4, we provide
main greedy heuristics for solving the FCP. Due to page limits, some of the discussions in
Section 2 are delayed to Appendix A.
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2 Literature Review of the Bin Packing and Related Problems

2.1 Classical Bin Packing Problem

We first review the classical (one-dimensional) bin packing problem (BPP). In the classical
bin packing problem, we are given a set of items, each with a one-dimensional size, and an
unlimited number of containers (bins) with the same sizes. The BPP asks to minimize the
total number of bins used, subject to the constraints that the total size of items added to
each bin does not exceed the size of the bin. BPP is strongly NP-hard [14], meaning that no
full polynomial time approximation scheme (FPTAS) exists. Over the years, many heuristics
have been developed to provide high-quality solutions for practical purposes. The traditional
heuristics are all for the “online” version of BPP, meaning that the list of items are shown
one by one, and a decision for each item is made final as soon as the item is shown. Classical
heuristics include the following.

First Fit (FF) [16]: Upon seeing an item, it is inserted to the first bin (according to the
indices of the bins) that has room for it. A new bin is opened if the item does not fit into
any existing bin.
Next Fit (NF) [16]: Upon seeing an item, it is inserted to the last existing bin (according
to the indices of the bins) that has room for it. A new bin is opened if the item does not
fit into any existing bin.
Best Fit (BF) [20]: Upon seeing an item, it is inserted to the fullest bin that has room
for it. A new bin is opened if the item does not fit into any existing bin.
Worst Fit (WF) [11]: Upon seeing an item, it is inserted to the emptiest bin (among
those existing ones) that has room for it. A new bin is opened if the item does not fit
into any existing bin.
Almost Worst Fit (AWF) [11]: Upon seeing an item, it is inserted to the second emptiest
bin that has room for it. A new bin is opened if the item does not fit into any existing
bin.

For the “offline” problem, on the other hand, we are given access to the full list of items from
the beginning (before making any decisions). The above heuristics may also be used, but
combined with some sorting of the items. For example, FF-Decreasing uses the First Fit
heuristic on the presorted list of items, where the items are listed in decreasing order of their
sizes. Other heuristics such as BF-Decreasing, NF-Decreasing, FF-Increasing are defined
similarly. We refer to [12] for a survey on the worst-case analysis of the above algorithms.

There are also algorithms that have both online and offline flavor for BPP. One example
is the Better-Fit heuristic algorithm (BFH) [10]. In BFH, an existing item from a bin is
removed and replaced with the current item if the current item better fills the bin. If the
packing of the current item results in a smaller remaining space than the packing of the
existing item, then the existing item is removed from the bin it is in. The replaced item is
then packed again using BFH. Such procedure continues for all items until better-fit cannot
pack a replaced item, in which case it is packed with BF heuristic.

In recent years, there are also developments of more complicated metaheuristic approaches
for solving the BPP. Examples include the Whale Optimization Algorithm (WOA) [17] (may
be improved with Lévy Flights [1]), (Adaptive) Cuckoo Search (may also incorporate with Lévy
Flights) [21], Squirrel Search Algorithm [15], the Fitness-Dependent Optimizer (FDO) [3, 2],
and so on. Since BPP is still not so close to our FCP, we do not extend our discussions
on these metaheuristics. We refer to [18] for a comprehensive survey of the aforementioned
algorithms.

ATMOS 2022
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2.2 Variations of BPP
One major restriction of the classical BPP is that the objective is simply minimizing the
number of bins used, and these bins are assumed to be identical. In our FCP, however,
containers may differ in their size/dimensions, and the costs of containers are different from
each other. Luckily, a number of variations of the classical BPP have also been studied in
the literature.

2.2.1 Bin Packing Problem with General Cost Structures (GCBP)
In GCBP, the cost of a bin is not one, but depends on the number of items actually inserted
into this bin. Specifically, the cost of a bin is given by a function f : {0, 1, 2, . . . , n} → R+,
where f is a monotonically non-decreasing concave function, and f(0) = 0. In words, if
the bin has been inserted k items, the cost of that bin would be f(k). GCBP was first
proposed in [4], where the worst-case performance of some BPP heuristics was analyzed.
Specifically, it was shown that many common heuristics for BPP, such as FF, BF, and NF
as described in Section 2.1 do not have a finite asymptotic approximation ratio, while NF-
Decreasing was shown to have an asymptotic approximation ratio of exactly 2. Moreover, the
BF-Increasing, FF-Increasing and NF-Increasing achieve a better asymptotic approximation
ratio of approximately 1.691. It was also shown in [4] that any heuristic that is independent
of f has an asymptotic approximation ratio of at least 4

3 . Later, [13] developed an asymptotic
fully polynomial time approximation scheme (AFPTAS) and proved the tight bound of 1.5
asymptotic approximation ratio.

2.2.2 Generalized Bin Packing Problem (GBPP)
GBPP was first introduced in [7]. In GBPP, a set of items I with volume and profit has to
be loaded into proper bins. Items can be either compulsory or non-compulsory, i.e., the item
set is partitioned into two subsets: items in IC are mandatory to load into any bin, and
items in INC are optional. Bins are also classified in bin types, where bins belonging to the
same type have the same capacity and cost. Moreover, for each bin type, there is a maximum
number of bins that can be used. The objective is to accommodate all compulsory items and
possibly non-compulsory items into appropriate bins in order to minimize the overall cost,
which is the total cost of all used bins deducted by the total profit earned from the items.

GBPP differs from FCP in two ways: first, only one set of capacity constraints are
considered; second, in GBPP, each item has the same profit (or cost) if inserted into different
bins, while in FCP, items would cost differently if inserted into different containers. Even
though GBPP is a still a much simplified version of the FCP, it was shown in [8] and [6] that
GBPP cannot be approximated by any constant, unless P = NP .

2.2.3 Generalized Bin Packing Problem with Bin-Dependent Item
Profits (GBPPI)

GBPPI extends GBPP by allowing that when an item is inserted into different bins, the
profit earned from that item may be different. In this sense, GBPPI is the closest model to
FCP, with the only difference being the absence of an additional set of capacity constraints
on containers. GBPPI was introduced in [9], and to the best of our knowledge, there has
been no further studies on the same problem since then. Since this is closely relevant to our
problem, we provide a more detailed discussion of this problem in Appendix A.
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3 Problem Formulation and Non-Approximability Result

In this section, we first define what we call the Freight Consolidation Problem (FCP). Then,
we present the non-approximability result of the FCP. An instance of the FCP is given by a
set of shipments and a set of containers. Each shipment has a weight and a volume, and each
container has its own weight limit (capacity) and volume limit. There is a cost associated
with assigning each shipment to each container (shipment cost), and, if any container is used
(been assigned any shipment), there will be a procurement cost of that container (container
cost). The goal is to assign all shipments to some containers to minimize the overall cost
(total of shipment costs and container costs), subject to the volume and weight capacity
constraints of these containers. In the following, we formulate the FCP as an integer linear
program (ILP).
Sets:

S = {1, 2, . . . , |S|} - set of shipments (indexed by s)
C = {1, 2, . . . , |C|} - set of containers (indexed by c)

Parameters:
ξsc - cost of packing shipment piece s into container c, assigned ∞ if cannot ship s with c

pc - procurement cost of container c

ϕs - weight of shipment s

Φc - weight limit of container c

vs - volume of shipment s

Vc - volume limit of container c

Binary decision variables:
µsc = 1 if s is assigned to container c

µc = 1 if container c is used
The optimization problem (FCP):

min
µsc,µc

∑
c∈C

∑
s∈S

ξscµsc +
∑
c∈C

pcµc (1a)

s.t.
∑
c∈C

µsc = 1, ∀s ∈ S, (1b)∑
s∈S

ϕsµsc ≤ Φc, ∀c ∈ C, (1c)∑
s∈S

vsµsc ≤ Vc, ∀c ∈ C, (1d)

µc ≥ µsc, ∀s ∈ S, ∀c ∈ C, (1e)
µsc, µc ∈ {0, 1}, ∀s ∈ S, c ∈ C.

The objective (1a) is to minimize the total cost, which includes both the cost of shipping
and the cost of containers. (1b) implies that each shipment must be assigned to one of the
containers. (1c) and (1d) ensure that the total weight (resp. volume) of shipments assigned
to each container does not exceed the weight (resp. volume) limit of that container. Lastly,
(1e) forces us to pay the cost of a container as long as at least one of the shipments is assigned
to that container.

The approximation ratio of any algorithm that solves FCP is defined as follows.

ATMOS 2022
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▶ Definition 1. Given the minimization problem (1), an instance π of the problem, an
algorithm ALG, the optimum OPT(π) ≥ 0, and value ALG(π) of the solution computed by
the algorithm, the approximation ratio of the algorithm ALG is the infimum α ≥ 1 such that

ALG(π) ≤ α · OPT(π), ∀π, (2)

i.e., for all instances, the output of the algorithm incurs a total cost that is at most α times
the optimal value.

We next have the following non-approximability result for FCP.

▶ Proposition 2. For any constant α, there is no polynomial-time algorithm for the Freight
Consolidation Problem (FCP) (1) with approximation ratio α, unless P = NP .

Proof. We prove by reduction from the decision version of the Bin Packing Problem (BPP).
Consider an instance π̂ of the BPP, which consists of n items, each with a volume vi

for i = 1, . . . , n, and unlimited number of bins, each with a capacity V , where V ≥ vi for
all i = 1, . . . , n. The decision version of the BPP asks if it is feasible to assign all items to the
bins such that at most k bins are used. This instance π̂ of BPP can be transformed into an
instance π of the FCP as follows. The instance π of the FCP would include n shipments, each
with volume vi for i = 1, . . . , n. The weight of these shipments are all 0. There are also k + n

containers with volume capacity V and weight capacity one. The cost of procuring each of
the containers 1, . . . , k is one, and the cost of procuring each of the containers k +1, . . . , k +n

are kα. All shipment costs ξ are zero. We note that, if π̂ for BPP has a solution, then the
optimal value of the FCP is at most k; otherwise if π̂ does not have a solution, then the
optimal value of the FCP must be greater than kα since at least one container with cost kα

must be used.
Suppose that to the contrary a polynomial time algorithm approximating the FCP with

a constant α > 1 exists, then through such an algorithm we would be able to determine
if an instance of the BPP has a solution: the algorithm would return value ≤ kα for the
instances of the FCP corresponding to the instances of the BPP which have a solution, and
the algorithm would return value > kα for those corresponding to the instances of BPP
without a solution. Unless P = NP , this is impossible since the decision version of the BPP
is NP -complete. ◀

Since there is no constant factor approximation for the FCP (assuming P ̸= NP ), we
propose in the next section some intuitive greedy heuristics for the problem.

4 Proposed Heuristics

In this section, we propose a series of greedy-type heuristics that find solutions that are
(hopefully) close to optimal.

4.1 Greedy Cost-Feasibility Algorithm (GR)
4.1.1 Overview
In this subsection, we propose a greedy heuristic for the FCP, which we call the Greedy
Cost-Feasibility algorithm. In this algorithm, we first assign all shipments to the containers
such that the shipping cost is the lowest, i.e., for each shipment s, we find one container c′

such that ξsc′ = minc ξsc, and assign shipment s to container c′. This assignment provides a
lower bound on the total shipping costs. The assignment, however, may not be feasible as
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some of the capacity constraints of the containers may be violated. In each of the following
steps, the algorithm moves one shipment at a time, from one container to another, to make
the assignment move towards feasibility, while keeping the increment of the shipping cost at
a minimum.

4.1.2 Overflow Score
We define an “overflow score” on each container for any given assignment, and use this
overflow score together with the shipping costs to determine which shipment to be moved to
which container. For any assignment µ, the overflow score for container c is defined as

Oc(µ) := β1 ·

[∑
{s|µsc=1} vs − Vc

]+

Vc
+ β2 ·

[∑
{s|µsc=1} ϕs − Φc

]+

Φc
, (3)

where β1, β2 are some adjustable parameters that satisfy β1, β2, β1 + β2 ∈ [0, 1]. The first
term of the overflow score measures the percentage volume overflow of container c, and the
second term measures the percentage weight overflow of container c. These two terms are
summed together with weights β1, β2 to obtain the overflow score of container c.

The total overflow score of an assignment is then defined as

O(µ) :=
∑

c

Oc(µ). (4)

4.1.3 Moving Towards Feasibility
After computing the overflow score of each container given the initial assignment, we find
those containers with Oc(µ) > 0, i.e., containers that are not feasible. For each shipment
in these containers, we try to move the shipment out of its current container to another
container, and compute the new overflow score O′. Let µ denote the current assignment,
and µsc′ denote the new assignment that moves shipment s from its current container to
container c′. If we move the shipment s from its current container c to container c′, we will
have the following cost-feasibility ratio:

R(s, c′) := ξsc′ − ξsc

O(µ) − O(µsc′) . (5)

The algorithm decides to move the shipment s from c to c′ that minimizes the above ratio. In
other words, in deciding which move to take, we choose the move that incurs least incremental
shipping cost per unit reduction of the overflow score.

Since there are always coloading options for those shipments in the overflowed containers,
at each round after the move, the overflow score is guaranteed to decrease. We repeat this
process until the overflow score decreases to zero, at which time we have a feasible solution.

In the end, we also perform a post-adjustment procedure by looking at each used container
(containers with µc = 1)2 and the shipments assigned to it. We will remove that container
and coload all shipments assigned to it if it is more profitable to do so.

4.1.4 Algorithm Summary
The complete Greedy Cost-Feasibility (GR) algorithm is given as Algorithm 1.

2 In the rest of this paper, we also say a container c is “opened” if µc = 1, and “closed” if µc = 0.

ATMOS 2022
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Algorithm 1 Greedy Cost-Feasibility (GR).

Input: shipment info, container info, β1, β2 ▷ β1, β2 are adjustable parameters
Output: Assignment of each shipment to a container
Greedy Procedure

1: Assign each shipment to its shipment cost-minimizing container, i.e., assign s to a c′

such that ξsc′ ≤ ξsc, ∀c. Denote the current assignment by µ.
2: Compute the overflow score of the current assignment O(µ).
3: while O(µ) > 0 do
4: For each shipment-container pair (s, c), compute the cost-feasibility ratio R(s, c) if s

is reassigned to c.
5: Find the pair (s, c) with the minimum R(s, c). Reassign s to c.
6: Compute the new overflow score.
7: end while

Post-Adjustment Procedure
8: for each container c with µc = 1 do
9: Find all shipments s that has been assigned to c.

10: if pc +
∑

s assigned to c ξsc >
∑

s assigned to c ξs1 then
11: µc = 0, coload all these shipments. ▷ Coload all shipments in c if more profitable
12: end if
13: end for

4.2 Greedy + Local Search (GRL)
The next heuristic we introduce is Greedy with Local Search (GRL).

4.2.1 Overview
From the solution of GR, we perform local movements of shipments. Specifically, we search
in two neighborhoods of a solution: the “shift” neighborhood, which consists of all solutions
obtained by reassigning one shipment from the current solution, and the “swap” neighborhood,
which consists of all solutions obtained by swapping the assignment of two shipments from the
current solution. In searching each neighborhood, there are two standard ways of performing
movements: first-admissible (FA) and best-admissible (BA).

In the first-admissible scheme, we randomly search the neighborhood and take the move
as soon as we find a better solution.
In the best-admissible scheme, we search all possible moves and thus all solutions in
the neighborhood, and choose to take the move that leads to the most reduction in the
shipment cost.

It has been shown in [19] that for the generalized assignment problem (GAP), BA returns a
slightly better solution, but takes much longer time to generate the solution. We therefore
choose FA in our implementations for two reasons: first, the (potentially) slightly better
solution from BA may not be worth the extra time; second, our problem size is much larger
than those that have been experimented upon in the GAP literature.

4.2.2 Searching the “Shift” Neighborhood
The search of the “shift” neighborhood is performed in cycles. In each cycle, we first randomly
sort the list of all shipments. Then, starting from the first shipment s in the list, we sort
the set of opened containers (those with µc = 1 in the GR solution) in increasing order
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of µsc, and try to reassign this shipment to each container in the container list. If the
reassignment is feasible, the shipment is reassigned permanently, and a new cycle is started.
Otherwise, we move to the next container in the sorted container list. If no container before
the current assigned container is feasible, i.e., no reassignment of the current shipment
can lead to reduction in cost while keeping feasibility, we skip this shipment and move
to the next shipment. This process is repeated until we reach a cycle where no feasible
improvement relocation can be made, at which time the solution is locally optimal in its
“shift” neighborhood.

4.2.3 Searching the “Swap” Neighborhood
The search of the “swap” neighborhood is also performed in cycles. We first generate a list
of all pairs of shipments. In each cycle, we sort this list randomly. Then, starting from the
first shipment pair in the list, we try to swap the assignment of the two shipments. If the
assignment after the swap is feasible for both containers, and the swap leads to a reduction in
the total shipment cost, the swap is made permanent and a new cycle will start. Otherwise,
we move to the next pair of shipments. This process is repeated until we reach a cycle where
no swaps are made after visiting all shipment pairs, at which time the solution is locally
optimal in its “swap” neighborhood.

4.2.4 Local Optimal Solution in Both Neighborhoods
Given any input solution, we first repeatedly search the “shift” neighborhood. We always
keep the best solution found so far, and the search is repeated until no better solution
is found after Max_Nonimprove_S consecutive number of searches. Next, we search
the “swap” neighborhood of the best solution found so far (locally optimal within the
“shift” neighborhood), after which we reach a locally optimal solution within the “swap”
neighborhood. If the new solution is better than the solution before searching the “swap”
neighborhood, we will again repeatedly search the “shift” neighborhood and then the
“swap” neighborhood. The whole process is repeated until no better solution is found after
Max_Nonimprove consecutive number repetitions, at which point the solution is locally
optimal within both neighborhoods.

4.2.5 Algorithm Summary
The complete Greedy + Local Search (GRL) algorithm is given as Algorithm 2.

4.3 Greedy + Local Search + Varying Containers (GRLV)
We now introduce the heuristic that is based on GRL, but tries to vary the set of used
(opened) containers.

4.3.1 Overview
This heuristic consists of two layers. In the first layer, we generate a set of “seed” solutions.
In the second layer, we try to vary the set of used containers on each “seed” solution, and
finally return the best solution found throughout the process.

There are several intuitions behind this heuristic. First, the local search can be combined
with the post-adjustment: Every time after running local search and finding a locally optimal
solution, we can check again if deleting some containers and coloading all shipments in

ATMOS 2022



4:10 Greedy Algorithms for the Freight Consolidation Problem

Algorithm 2 Greedy + Local Search (GRL).

Input: shipment info, container info, β1, β2, Max_Nonimprove_S, Max_Nonimprove

Output: Assignment of each shipment to a container
1: Run Greedy Procedure (as in Algorithm 1).
2: Run Post-Adjustment Procedure (as in Algorithm 1), save as “initial solution”.

Local-Search Procedure
3: “best solution” = “initial solution”
4: Outer_counter = 0
5: while Outer_counter < Max_Nonimprove do
6: Inner_counter = 0
7: “best shift solution” = “initial solution”
8: while Inner_counter < Max_Nonimprove_S do
9: Search the “shift” neighborhood of the “initial solution”, save as “shift solution”

10: if “shift solution” has lower total cost than “best shift solution” then
11: “best shift solution” = “shift solution”
12: Inner_counter = 0
13: else
14: Inner_counter = Inner_counter + 1
15: end if
16: end while
17: Search the “swap” neighborhood of the “best shift solution”, save as “swap solution”
18: while “swap solution” has lower cost than “best shift solution” do
19: Inner_counter = 0
20: “best shift solution” = “swap solution”
21: while Inner_counter < Max_Nonimprove_S do
22: Search the “shift” neighborhood of the “swap solution”, save as “shift solution”
23: if “shift solution” has lower total cost than “best shift solution” then
24: “best shift solution” = “shift solution”
25: Inner_counter = 0
26: else
27: Inner_counter = Inner_counter + 1
28: end if
29: end while
30: Search the “swap” neighborhood of the “best shift solution”, save as “swap

solution”
31: end while
32: if “swap solution” has lower cost than the “best solution” then
33: “best solution” = “swap solution”
34: Outer_counter = 0
35: else
36: Outer_counter = Outer_counter + 1
37: end if
38: end while
39: Return “best solution”

those containers can be more profitable. If such containers exist, we proceed to delete these
containers. Then we can redo the local search and the post-adjustment, and repeat this
process till the post-adjustment does not delete any more containers. Second, every time we
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perform some procedure that might change the set of used (opened) containers, we might
do further local search based on the current solution, or we can also build a new solution
from scratch, again using the Greedy Procedure, but this time fixing the set of unopened
containers , i.e., set ξsc = ∞ for all containers that are not open before applying the Greedy
Procedure. Third, every time we try to vary the set of containers, we can either add/delete
one container at a time, or we can add/delete a number of containers altogether. In the
following, we describe the procedures/subroutines that are used in this heuristic.

4.3.2 Adjusted Local Search
We may combine the Post-Adjustment Procedure with the Local-Search Procedure,
then iterate both procedures repeatedly until the set of opened containers no longer changes
so that we obtain a local optimum within both neighborhoods. We define the Adjust-Local
Procedure as Algorithm 3.

Algorithm 3 Adjust-Local Procedure.

Input: initial solution
Output: updated solution

1: “updated solution” = “initial solution”
2: Num_del_master = 1
3: while Num_del_master > 0 do
4: Run Local-Search Procedure on “updated solution”, save as “updated solution”
5: Run Post-Adjustment Procedure on “updated solution”, save as “upsated

solution”
6: Save the number of deleted containers in the Post-Adjustment Procedure as

Num_del_master

7: end while
8: Return “updated solution”

4.3.3 Adding One of the Deleted Containers Back
Since the Post-Adjustment Procedure deletes some containers, we try to add one of
those deleted containers back to the solution and then perform Adjust-Local Procedure.
In the end, we save the best solution found during this process. The Add-One Procedure
is defined as Algorithm 4.

4.3.4 Deleting a Chain of Containers
We observe that the GR solution, even after the Post-Adjustment Procedure, uses more
containers than the optimal solution returned by the solver. Based on an initial solution, we
try to delete a chain of containers. Specifically, we sort the containers in increasing order of
their profit, i.e., for each container c, we compute:

Profit of using container c :=
∑

s:µsc=1
ξs1 −

(
pc +

∑
s:µsc=1

ξsc

)
, (6)

which is the total coloading cost of the shipments assigned to container c deducted by the
total shipping cost of those shipments and the procurement cost of the container. This is
the actual “saving” from using container c for these shipments, compared with the cost of
coloading all these shipments.
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Algorithm 4 Add-One Procedure.

Input: initial solution
Output: updated solution

1: “updated solution” = “initial solution”
2: Run Adjust-Local Procedure on “initial solution”, save as “cand solution”, save the

set of deleted containers as S

3: Run Adjust-Local Procedure on “initial solution”, save as “updated solution”
4: for each container in set S do
5: Reopen the container in the “cand solution”, and add the shipments what were

assigned to this container in the “initial solution” to this container, save as “current
solution”

6: if “current solution” has lower total cost than “updated solution” then
7: “updated solution” = “current solution”
8: end if
9: Close this container in the “cand solution”

10: end for
11: Return “updated solution”

We delete the top k containers in the list from the initial solution and perform the
Adjust-Local Procedure, where k ranges from 0 to num_cont_del (a preset parameter).
In the end, we output the best solution among these (k + 1) solutions. The Del-Chain
Procedure is defined as Algorithm 5.

Algorithm 5 Del-Chain Procedure.

Input: initial solution, num_cont_del

Output: updated solution
1: “updated solution” = “initial solution”
2: “current solution” = “initial solution”
3: Sort the containers used in the “initial solution” in increasing order of their total profit (6).

Save as “sorted list”
4: for j ∈ {0, 1, 2, . . . , num_cont_del} do
5: Delete the jth container from the “current solution”, coload all shipments previously

assigned to that container, save as “current solution”
6: Run Adjust-Local Procedure on “current solution”, save as “new solution”
7: if “new solution” has lower total cost than “updated solution” then
8: “updated solution” = “new solution”
9: end if

10: end for
11: Return “updated solution”

4.3.5 Deleting One More Container

Given an initial solution, we may again sort the containers in increasing order of their
profits (6), and try to delete one container from the top num_cont_del containers in the
sorted list. The best solution is saved in the end. We define the Del-One Procedure as
Algorihtm 6.
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Algorithm 6 Del-One Procedure.

Input: initial solution, num_cont_del

Output: updated solution
1: “updated solution” = “initial solution”
2: Sort the containers used in the “initial solution” in increasing order of their total profit (6).

Save as “sorted list”
3: for j ∈ {0, 1, 2, . . . , num_cont_del} do
4: Delete the jth container from the “initial solution”, coload all shipments previously

assigned to that container, save as “current solution”
5: Run Adjust-Local Procedure on “current solution”, save as “current solution”
6: if “current solution” has lower total cost than “updated solution” then
7: “updated solution” = “current solution”
8: end if
9: end for

10: Return “updated solution”

4.3.6 Deleting Containers One by One
Starting from some initial solution, we can repeatedly perform Del-One Procedure, until
further deleting any containers leads to no improvement in the solution. The Del-ObO
Procedure is defined as Algorithm 7.

Algorithm 7 Del-ObO Procedure.

Input: initial solution, num_cont_del

Output: updated solution
1: “updated solution” = “initial solution”
2: Run Del-One Procedure on “initial solution”, save as “current solution”
3: if “current solution” has lower total cost than the “updated solution” then
4: “updated solution” = “current solution”
5: while “current solution” has lower total cost than the “updated solution” do
6: “updated solution” = “current solution”
7: Run Del-One Procedure on “current solution”, save as “current solution”
8: end while
9: end if

10: Return “updated solution”

4.3.7 Algorithm Summary
The complete Greedy + Local Search + Varying Containers (GRLV) algorithm is given as
Algorithm 8.
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Algorithm 8 Greedy + Local Search + Varying Containers (GRLV).

Input: shipment info, container info, β1, β2, Max_Nonimprove_S,
Max_Nonimprove, num_cont_del

Output: Assignment of each shipment to a container
1: Run Greedy Procedure (as in Algorithm 1), save as “GR solution”
2: Run Post-Adjustment Procedure (as in Algorithm 1) on “GR solution”, save as

“PA solution”
3: Run Adjust-Local Procedure on “GR solution”, save as “LC solution”
4: Run Greedy Procedure on “PA” solution, i.e., first set ξsc = ∞ for all containers

that are not open (used) in the “PA solution”, then run Greedy Procedure. Save the
solution as “PA_GR solution”

5: Run Greedy Procedure on “LC” solution, i.e., first set ξsc = ∞ for all containers
that are not open (used) in the “LC solution”, then run Greedy Procedure. Save the
solution as “LC_GR solution”

6: Run Add-One Procedure on “PA solution”, save as “PA_one solution”
7: Run Add-One Procedure on “LC solution”, save as “LC_one solution”
8: Run Add-One Procedure on “PA_GR solution”, save as “PA_GR_one solution”
9: Run Add-One Procedure on “LC_GR solution”, save as “LC_GR_one solution”

10: Run Del-Chain Procedure on “PA solution”, save as “CHAIN_PA solution”
11: Run Del-Chain Procedure on “LC solution”, save as “CHAIN_LC solution”
12: Run Del-Chain Procedure on “PA_GR solution”, save as “CHAIN_PA_GR solution”
13: Run Del-Chain Procedure on “LC_GR solution”, save as “CHAIN_LC_GR solution”
14: Run Del-Chain Procedure on “PA_one solution”, save as “CHAIN_PA_one solution”
15: Run Del-Chain Procedure on “LC_one solution”, save as “CHAIN_LC_one solution”
16: Run Del-Chain Procedure on “PA_GR_one solution”, save as

“CHAIN_PA_GR_one solution”
17: Run Del-Chain Procedure on “LC_GR_one solution”, save as

“CHAIN_LC_GR_one solution”
18: Run Del-ObO Procedure on “PA solution”, save as “OBO_PA solution”
19: Run Del-ObO Procedure on “LC solution”, save as “OBO_LC solution”
20: Run Del-ObO Procedure on “PA_GR solution”, save as “OBO_PA_GR solution”
21: Run Del-ObO Procedure on “LC_GR solution”, save as “OBO_LC_GR solution”
22: Run Del-ObO Procedure on “PA_one solution”, save as “OBO_PA_one solution”
23: Run Del-ObO Procedure on “LC_one solution”, save as “OBO_LC_one solution”
24: Run Del-ObO Procedure on “PA_GR_one solution”, save as “OBO_PA_GR_one

solution”
25: Run Del-ObO Procedure on “LC_GR_one solution”, save as “OBO_LC_GR_one

solution”
26: Return the best solution among {“CHAIN_PA solution”, “CHAIN_LC solution”,

“CHAIN_PA_GR solution”, “CHAIN_LC_GR solution”, “CHAIN_PA_one solution”,
“CHAIN_LC_one solution”, “CHAIN_PA_GR_one solution”, “CHAIN_LC_GR_one
solution”, “OBO_PA solution”, “OBO_LC solution”, “OBO_PA_GR solution”,
“OBO_LC_GR solution”, “OBO_PA_one solution”, “OBO_LC_one solution”,
“OBO_PA_GR_one solution”, “OBO_LC_GR_one solution”}.
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5 Experiments

In this section, we provide experimental results on our proposed heuristics, including GR,
GRL, and GRLV. We first generate a set of instances that hopefully reflects part of the
reality. Each of these instances are generated as the following:

Containers: We have 150 containers in an instance (not including the “coloading”
container), each with a weight capacity Φc = 28, 000 (kg) and a volume capacity Vc =
76 (m3), which reflects the capacities of the most used containers (40’ high-cube container).
The container cost pc is sampled from a truncated Normal distribution (lower bounded
at 0) with the mean 9000 and the standard deviation 4000. The “coloading” container,
however, has a cost 0, and infinite weight and volume capacities.
Shipments: We have 1000 shipments in an instance, each with its weight and volume
sample from the truncated bivariate Normal distribution (lower bounded at 0) with the

means (2000, 10) and the covariance matrix
[
250, 000, 000 1, 000, 000
1, 000, 000 4, 500

]
.

Shipment costs: Each shipment has a limited number of feasible non-coloading contain-
ers. For each shipment, the number of feasible containers is sampled from the truncated
Normal distribution (lower bounded at 0) with the mean 10 and the standard deviation 10.
Then, if shipment s has k number of feasible containers, we randomly select k containers
from the container set, plus the “coloading” container. The shipment costs ξsc are sampled
from a truncated Normal distribution (lower bounded at 0) with the mean 3500 and the
standard deviation 10, 000.

The experiments were run on 20 simulated instances generated as above. These instances
have much larger sizes than any of those tested in the Bin Packing or Generalized Assignment
Problem literature. In GR, we set the parameters β1 = β2 = 0.5. In GRL, we further set the
parameters Max_Nonimprove_S = 1 and Max_Nonimprove = 10. In GRLV, we start
with generating different GR solutions by setting different parameters of β1, β2 (β1 ranging
from 1 to 5 and β2 ranging from 1 to 5). We then fix the set of β1, β2 that gives the best GR
solution, and the parameter num_cont_del is set to 5. The benchmark is the solution of
the integer linear program (1) returned by the Gurobi solver whose default optimality gap
is 0.01%, and the solving time limit is set to 60 seconds. The setups of the experiments are
described as follows.

Program used for implementation: Julia Version 1.7.2.
Solver used for solving the ILP: Gurobi Version 9.5.1 (academic license).
Machine used for running: Surface Book 2 with Intel Core i7-8650 CPU @ (1.90 GHz
2.11 GHz) and 16 GB RAM.

The results of the experiments, including the optimality gaps (compared with the optimal
solutions returned by the solver) and the runtimes (in seconds) of all heuristics, averaged
over the 20 instances, are summarized as Table 1.

Table 1 Summary of experimental results.

Metric Solver GR GRL GRLV

Average Optimality Gap 0.01% 8.36% 4.56% 3.73%
Average Runtime (s) 26.18 7.99 72.43 3056.92

Finally, we remark that while the solver is able to solve these instances to a smaller
optimality gap with shorter runtime, the problem size is expected to grow significantly in
the near future. It is likely that the solver will not be able to solve the problem when its
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size grows larger in the next few years. Given this expectation, a freight forwarder should
be prepared to not rely on the integer linear program solver for the FCP. Therefore, our
proposed heuristics will still be practically relevant.

6 Conclusion and Future Direction

In this paper, we have properly defined the freight consolidation problem (FCP) - a proven
important and practically relevant problem faced by freight forwarders every day and every
hour at the origin ports. We proved the non-approximability result of the FCP, and proposed
a series of greedy based heuristics to solve the problem. Our solutions are shown to perform
well in the numerical experiments with simulated data. For future improvement of this work,
we may consider more generalized definitions of the neighborhood in the local search. We
may also generate the set of used (opened) containers by some types of genetic algorithms.
Furthermore, it might be helpful to use Tabu list and Tabu search to avoid repeated search
of candidate solutions.
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A Review of GBPPI

In this section, we discuss the algorithms in [9] in more detail. The overall approach can be
described in three steps.
1. Constructive Heuristics. Items are given in a presorted list, and are visited one by one. All

containers are closed initially. Let pij be the profit of inserting i to bin j, and let Φres(j)
be the remaining space of bin j after inserting i. Upon seeing an item i, compute a
weighted profit of inserting item i to bin j for all bins that are opened and has enough
capacity for item i. The weighted profit is calculated as

α · pij + (1 − α) · Φres(j), (7)

where α is some parameter that can be configured. We then insert i to the bin j that
results in a maximum weighted profit.
This insertion process may be generalized by looking at N items each time, where N

is another parameter to be configured, rather than just one item. Specifically, we look
at item i and the succeeding N − 1 items in the list. For each item, we find the best
bin according to (7), and then select the best item-bin pair that maximizes the weighted
profit.
If no bin is feasible, there are two different heuristics to choose a new bin to open:

Best Profitable (BP). BP heuristics considers item i and the remaining succeeding
items in the item list, and selects the bin that maximizes the overall profit, which is
the sum of profits of the items that can be inserted into the bin deducted by the cost
of that bin. If the overall profit is negative and item i is non-compulsory, then item i

is discarded.
Best Assignment (BA). BA heuristics selects the bin that maximizes the profit for
item i.
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At the end when all items are inserted to some bins, a post-optimization procedure is
performed, which consists of two parts. First, for each bin used in the solution, we try to
perform (if possible) the best swap with a bin that has not been used. Second, we remove
bins from the solution that are not profitable and do not contain compulsory items.

2. Greedy Adaptive Search Procedure (GASP). GASP, shown as Algorithm 9, is a metaheur-
istic that uses BA or BP as a subroutine. The multi-start initialization generates
some initial solution and sets the initial parameters of α, N that will be used in the BP or
BA constructive heuristics. Before reaching some preset time limit, the algorithm at each
round first sort the items uniformly randomly. The BP or BA heuristic is then performed,
and if the resulting solution is better than the best one found so far, we replace the best
solution as the current one, and perform “1 to 1” swaps to search the neighborhood of the
current solution. A swap consists on unloading one item to create sufficient room to insert
another item that was not part of the solution. If the heuristic solution is not better than
the best one, the counter numConsecutive is incremented. If no better solution is found
after performing MAXCONSECUTIV E number of constructive heuristics, we jump
to the long-term initialization procedure which will reset different parameters
for α, N .

Algorithm 9 The GASP [9].

1: IS : Initial solution provided by the multi-start initialization procedure
2: BS : best solution
3: BS := IS

4: numConsecutive : number of consecutive non-improving solutions
5: numConsecutive := 0
6: while time limit has not been reached do
7: sort the items
8: perform either the BP or the BA constructive heuristic
9: store the resulting solution as CS

10: if CS < BS then
11: BS := CS

12: perform “1 to 1” swaps
13: numConsecutive := 0
14: else
15: numConsecutive := numConsecutive + 1
16: end if
17: score update procedure
18: if numConsecutive = MAXCONSECUTIV E then
19: long-term reinitialization procedure
20: numConsecutive := 0
21: end if
22: end while

3. Model-Based Matheuristic (MBM). MBM is a parallel matheuristic for the GBPPI. During
each iteration we feed the MBM a solution from GASP. Then, the set of bins used in the
solution is randomly partitioned into P subsets, where P is the total number of threads
available for the parallel computing. Each thread then solves the GBPPI problem using
a solver with some time limit, e.g. 1 second, where the problem instance only uses a
subset of bins, the items loaded to those bins, and the items not loaded in the solution.
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The partial solutions returned by the solver are then merged to create a new current
solution, and if the current solution is better, we save it as the best solution. This process
is repeated until some time limit is reached.

In [9], the above algorithms were also tested using both artificial instances and some instances
from the parcel delivery in last-mile logistics.
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