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Abstract
Line planning, i.e. choosing paths which are operated by one vehicle end-to-end, is an important
aspect of public transport planning. While there exist heuristic procedures for generating lines from
scratch, most theoretical observations consider the problem of choosing lines from a predefined line
pool. In this paper, we consider the complexity of the line planning problem when all simple paths
can be used as lines. Depending on the cost structure, we show that the problem can be NP-hard
even for paths and stars, and that no polynomial time approximation of sub-linear performance is
possible. Additionally, we identify polynomially solvable cases and present a pseudo-polynomial
solution approach for trees.

2012 ACM Subject Classification Applied computing → Transportation; Mathematics of computing
→ Discrete optimization; Theory of computation → Problems, reductions and completeness; Theory
of computation → Discrete optimization; Theory of computation → Design and analysis of algorithms

Keywords and phrases line planning, public transport, discrete optimization, complexity, algorithm
design

Digital Object Identifier 10.4230/OASIcs.ATMOS.2022.8

Funding The research leading to these results has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation programme
(EngageS: grant agreement No. 820148) and by DFG under SCHO 1140/8-2.

1 Introduction

In public transport planning, lines are crucial building blocks. As lines are (simple) paths in
the public transport network that have to be covered by one vehicle end-to-end, they highly
influence the subsequent steps like timetabling and vehicle scheduling, see [14] and Figure 1.
On the one hand, lines influence the passengers by providing routes and transfers and on the
other hand, they determine the majority of the operating costs. Thus, line planning is an
important foundation for building a public transport supply. From a set of lines, the line
pool, a subset of lines and their frequencies, called line concept, is chosen for operation. The
frequency of a line determines how often it is operated per planning period. While there
is ample literature on line planning for a given fixed line pool, see [22], the construction of
line pools is often neglected. In this paper, we focus on designing line concepts without a
given line pool. Instead, we consider the set of all simple paths as candidates thus extending
the solution space in the line planning on all lines problem LPAL. We show that, assuming
P ̸= NP , polynomial time approximations cannot give a performance guarantee that is
better than linear and that depending on the cost-structure, the problem is NP-hard even
for simple graph classes. Additionally, we identify polynomially solvable cases and develop a
pseudo-polynomial algorithm for trees.
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Figure 1 Sequential approach for public transport planning, adapted from [14] and integrated
version considered here.

Literature review. Traditionally, the process of line planning is split into two stages, see
Figure 1. For a given passenger assignment, a line pool is constructed and for this fixed pool,
a line concept is determined. Many (meta-)heuristic approaches exist for the transit network
design problem, where lines and often also passenger routes are generated [17, 9]. Usually,
lines are supposed to not deviate too much from shortest paths [1, 6], or a set of lines to
choose from is precomputed [26].

There is ample literature on line planning for a given line pool, i.e. a set from which
lines are chosen for operation, see [22]. The most important objectives for passengers are to
maximize the number of direct travelers [5] or to minimize the travel time [23, 4]. Here, it is
especially difficult to model passenger behavior realistically, see [13, 21].

In this paper we focus on minimizing the costs of a line concept as originally introduced
in [7]. By assigning passenger routes in a previous step, see Figure 1, it is guaranteed that
passengers can travel on favorable routes, see e.g. [5]. As in [27, 24, 25], we distinguish
between frequency-dependent and frequency-independent costs. Frequency-dependent costs
can include costs for the distance covered by the lines and for the number of vehicles needed
to operate the given line plan while frequency-independent costs can e.g. be used to reduce
the number of different lines operated.

When solving the line planning problem for a fixed line pool, the line pool has a large
influence on the complexity of the problem and the quality of solutions. One approach
is to handle the generation of a suitable pool as an optimization problem itself, see [12].
Another possibility is to solve the line planning problem on the set of all possible lines.
This idea has been studied using a column-generation approach in [3] where lines are only
allowed to start and end at terminal stations. For this case, the line planning problem was
shown to be NP-hard on planar graphs. See [2, 25] for further results on the complexity of
the problem using terminal stations in path networks representing Istanbul Metrobüs and
trees representing the Quito Trolebús. In [19], an integer programming formulation which
includes line planning on all lines is presented and applied to small instances while in [18],
line planning on all circular lines in a specific class of graphs is considered.

Our contribution. We focus on the line planning problem on all simple paths depending on
the cost structure and show that the problem is hard to solve approximately in polynomial
time: a sub-linear approximation ratio would imply P = NP , and even with another
simplification of the problem, no constant approximation ratio is possible unless P = NP .
We show that this problem is NP-hard even on planar graphs both when considering
only frequency-dependent costs and when considering frequency-independent costs. The
inclusion of frequency-independent costs makes the problem NP-hard even on paths and
stars. Considering only frequency-dependent costs, we identify both polynomially solvable
and NP-hard cases. Additionally, we present a pseudo-polynomial algorithm for trees and a
polynomial one for special cases. An overview of these results is presented in Table 1.
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Table 1 Approximation hardness and complexity of LPAL assuming P ̸= NP .

graph
class

no frequency-independent costs
(dfix = 0)

with frequency-independent costs
(dfix > 0)

general no polynomial-time n1−ϵ approximation (Theorem 2)
no polynomial-time constant factor approximation, even for fmax ≡ ∞ (Theorem 3)

planar NP-hard, even for {0, 1} input (Corollary 5)

paths polynomial for fmax ≡ ∞ (see [11]) NP-hard (Theorem 7)

stars polynomial (Theorem 11) NP-hard (Theorem 8)

trees pseudo-polynomial (Theorem 12)
polynomial for fmin = fmax (Theorem 14) NP-hard (Theorems 7 and 8)

Outline. In Section 2 we formally introduce the line planning on all lines problem. We
discuss the hardness of approximation in Section 3 and prove new NP-hardness results in
Section 4. Section 5 contains a polynomial algorithm for stars and in Section 6 we develop a
pseudo-polynomial solution approach for trees as well as a polynomial version for a special
case.

2 Preliminaries

Graph theory. All graphs in this paper are undirected, finite, simple and non-empty.
Whenever we consider a graph G = (V, E), we use n := |V | to denote its number of
vertices. We measure the complexity of graph problems dependent on n. The degree deg(v)
of a vertex v is the number of its neighbors. A graph (V, E) with V = {v1, . . . , vm} and
E = {{v1, v2}, . . . , {vm−1, vm}} where all the vi are distinct is a simple v1-vm-path (or just
path). Paths can be specified as a sequence of vertices or as a sequence of edges. A complete
bipartite graph of the form K1,k is a star. A graph is traceable if it has a Hamiltonian path.

Line planning. A public transport network (PTN) is a graph G = (V, E) whose vertices
represent stations while its edges represent direct connections between the stations, e.g.,
streets or tracks. A line planning instance is a tuple (G, dfix, cfix, c, fmin, fmax), where

G = (V, E) is a PTN,
dfix ∈ R≥0 represents frequency-independent fixed costs,
cfix ∈ R≥0 represents frequency-dependent fixed costs,
c : E → R≥0, e 7→ ce is a map representing the edge-dependent costs, and
fmin and fmax : E → N are integer frequency restrictions on E, e 7→ fmin

e (respectively
e 7→ fmax

e ) such that fmin
e ≤ fmax

e for all edges e ∈ E. Note that the lower frequency
restrictions fmin

e allow for passengers traveling on favorable routes while the upper
frequency restrictions fmax

e represent safety constraints.
A line ℓ is a simple path in G and a line concept (L, f) is a set of lines L with a frequency
vector f = (fℓ)ℓ∈L ∈ N|L|, i.e. fℓ is the frequency of line ℓ. At each edge e ∈ E, the lines sum
up to a total frequency

F (L,f)
e =

∑
ℓ∈L : e∈E(ℓ)

fℓ,

where E(ℓ) denotes the edge set of ℓ. We say that an edge e is covered by a line ℓ if e ∈ E(ℓ).
A line concept is feasible if for each edge e ∈ E the frequency restrictions are satisfied, i.e.
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fmin
e ≤ F

(L,f)
e ≤ fmax

e . The set of feasible line concepts is F(G, fmin, fmax) which we may
abbreviate by writing F(G).

We use frequency-dependent line costs costℓ = cfix +
∑

e∈E(ℓ) ce which consist of fixed
costs cfix and edge-dependent costs ce, e ∈ E. Additionally, we use frequency-independent
costs dfix per line. We define the costs of a line concept (L, f) as

cost((L, f)) = dfix · |L| +
∑
ℓ∈L

costℓ ·fℓ.

With this notation, we can formally define the line planning on all lines problem.

▶ Definition 1 (LPAL). Given a line planning instance, the line planning on all lines problem
LPAL is to find a feasible line concept with minimal costs.

3 Hardness of approximation

In this section we show that even in the case dfix = 0, no polynomial time approximation
algorithm for LPAL has a sub-linear performance ratio. Even when additionally fmax ≡ ∞,
no constant-factor polynomial time approximation is possible.

▶ Theorem 2. Assuming P ̸= NP , the problem LPAL cannot be approximated within a
factor of n1−ϵ by a polynomial-time algorithm, even in the case dfix = 0.

Proof. We prove this using a gap-producing reduction from the NP-complete problem
Hamiltonian Path (see [10]).

Consider a directed graph G on n vertices. We claim that a line planning instance
I = (G′, dfix, cfix, c, fmin, fmax) with dfix = 0, cfix = 1 and c ≡ 0 can be constructed from G

in polynomial time, where two special vertices v1 and v2 are marked, and it holds:
If G is traceable: I can be solved using a single line with endings v1 and v2.
If G is not traceable: I requires at least two lines.

To construct I, we first apply the reduction from [12] to G, creating an LPAL instance that
can be solved using a single line if and only if G is traceable. Then we join two new vertices
u1 and u2 to all other vertices with edges having fmin

e = 0. To u1 we join a new vertex v1,
likewise we join a new vertex v2 to u2 using edges having fmin

e = 1. This forces a line from
v1 to v2, but otherwise preserves the reduction equivalence.

Starting from G′, for every k ∈ N≥1, we construct a graph Gk as follows: create k copies
of G′, and for all i ∈ [1, k − 1], add an edge between v2 of copy i and v1 of copy i + 1. Call
these k − 1 new edges connectors. Then Gk consists of kn vertices. Consider a new line
planning instance Ik on Gk, where we also copied the weights from I onto Gk, and have
fmax

e = 1 on the connectors. If G is traceable, then Ik can be solved using a single line,
which we get by concatenating the lines for each copy of G′, with help of the connectors.

We say a line ℓ visits copy i if the vertices of ℓ and the i-th copy of G′ intersect. If G

is not traceable, then each copy of G′ is visited by at least two different lines, totaling at
least 2k visits. A single line can visit multiple copies of G′ and crosses a connector for each
additional visit. Since fmax

e = 1, every connector can only be crossed once. This affords us
k − 1 visits. The remaining k + 1 visits are paid by different lines, i.e. every line concept L
solving Ik needs |L| ≥ k + 1.

Now assume that for some ϵ ∈ (0, 1] we can approximate LPAL within n1−ϵ using an
algorithm A in polynomial time. We set k := ⌊1 + n(1−ϵ)/ϵ⌋, i.e. k is the smallest integer
larger than n(1−ϵ)/ϵ. Given a graph G as input to Hamiltonian Path, we construct Ik,
which has size kn, which is bounded by a polynomial in n. Then apply algorithm A, to get



I. Heinrich, P. Schiewe, and C. Seebach 8:5

an approximate solution of cost a. If G is traceable, then the optimal solution to Ik has
value 1. Hence a ≤ 1 · (kn)1−ϵ and a/k ≤ n1−ϵk−ϵ < n1−ϵ · (n(1−ϵ)/ϵ)−ϵ = 1. Thus a < k.
If G is not traceable, then the optimal solution to Ik has value at least k, hence also a ≥ k.
By comparing a to k, we can determine whether G is traceable in polynomial time, implying
P = NP . ◀

Since an n-approximation (or worse) for LPAL is useless in practice, we want to weaken
the lower bound by putting more restrictions on the considered instances. In the preceding
hardness proof, it was essential that we can use fmax to bound the frequencies.

In contrast we now consider instances, where fmax ≡ ∞.

▶ Theorem 3. Assuming P ̸= NP , the problem LPAL cannot be approximated within a
constant factor by a polynomial-time algorithm, even in the case dfix = 0 and fmax ≡ ∞.

Proof. In this proof we assume all LPAL instances (G = (V, E), dfix, cfix, c, fmin, fmax) to
have fmax ≡ ∞, dfix = 0, cfix = 1, c ≡ 0, and fmin

e ∈ {0, 1} for all e ∈ E.
Let I = (G = (V, E), dfix, cfix, c, fmin, fmax) be an LPAL instance. An edge e = {v1, v2} ∈

E with fmin
e = 1 and deg(v1) = 1 is an antenna of I and v1 is the tip of the antenna. We

call I nice if it has exactly two antennae. Let p be a path on G and V ′ ⊆ V . The restriction
of p to V ′ is the subgraph of p induced by V ′ ∩ V (p). The restriction is proper if it is a path.

If we add a new antenna to an instance I, then an optimal solution for the resulting
instance needs at least as many lines as for I. If I can be solved using a single line, then it
has at most two antennae. If I has exactly two antennae, then the single line has its ends at
the antenna tips. However, if I has fewer than two antennae, we may attach new antennae
until we have two, such that the resulting instance can still be solved using a single line.

Let I and J be nice instances. By abuse of notation, we define I × J to be an instance
constructed in the following manner: replace every edge e = {u, v} of J with fmin

e = 1 by a
copy of I and identify u and v with the antenna tips of that copy. For an example of I × J ,
see Figure 2. We claim that I × J is also nice. In particular, the antennae of I × J are part

× =

Figure 2 Example construction of I × J . Edges with fmin
e = 1 are red, other edges are dashed.

of two different copies of I. Denote these copies by A1
I×J and A2

I×J , respectively. Let ℓ be a
path on I × J and C be some copy of I which is part of I × J . There are only two vertices
where ℓ can enter or leave C. If ℓ starts outside C, it can enter C at most once. In that case,
the restriction of ℓ to C is proper. If ℓ starts inside C, it may leave and enter again, which
makes the restriction improper.

▷ Claim 4. I × I can be solved by a single line if and only if I can be solved by a single line.
If an optimal solution for I requires k ≥ 2 lines, then an optimal solution for I × I requires
at least k + 1 lines.

Proof of Claim 4. First assume that I can be solved by the single line ℓI . Since I is nice the
line ℓI ends in its antennae. By replacing every edge e of ℓI with fmin

e = 1 by a copy of ℓI

we obtain a line that solves I × I.

ATMOS 2022
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Now assume that I requires k ≥ 2 lines for an optimal solution. Suppose towards a
contradiction that there are k′ ≤ k lines ℓ1, . . . , ℓk′ that solve I × I. Let d ∈ {1, 2}. Observe
that Ad

I×I has the following property: one of its antennae is an antenna of I × I, the other
antenna is a bridge (or 1-edge-cut) of the underlying graph of I × I. In particular, every line
on I × I can be restricted properly to Ad

I×I and, hence, restricting all k′ lines to Ad
I×I yields

a feasible solution for Ad
I×I . As Ad

I×I is a copy of I, k = k′ and every line ℓi has one end
in A1

I×I and the other in A2
I×I . Let I ′ be a copy of I which is inserted in the construction

process of I × I and is neither A1
I×I nor A2

I×I . Every line on I × I can be restricted properly
to I ′ since the two antennae of I ′ form a 2-edge-cut of I × I and the line neither starts nor
ends in I ′ by the above considerations. Since an optimal solution for I ′ requires k lines by
assumption we obtain that every line ℓi for i ∈ [1, k] intersects I ′. Let i ∈ [1, k]. Since ℓi

visits every copy of I which corresponds to an edge e of I with fmin
e = 1, we can restrict ℓi

to the vertices of I and obtain a path r on I, which visits all edges e with fmin
e = 1. This

implies that r solves I, which contradicts our assumption. ◁

For an LPAL instance I and a number k ∈ N≥1 we define Ik as the repeated product
((I × I) × ...) × I of k factors. If I can be solved using a single line, Ik can as well by Claim 1.
Otherwise Ik requires at least k + 1 lines. The product Ik contains at most n2k vertices.

Now assume that for some α ∈ [1, ∞), LPAL can be α-approximated using a polynomial
time algorithm A. Set k := ⌊α⌋. We show how to decide Hamiltonian Path in polynomial
time, implying P = NP .

Let G be a directed graph. Apply the reduction from [12] to G to obtain an LPAL
instance I0 that is solvable using a single line if and only if G is traceable. If I0 has more than
two antennae, then G is not traceable (each antenna corresponds to an end of a Hamiltonian
path if one exists). If I0 has two or fewer antennae, we consider all possible ways to attach
antennae such that the constructed instance has exactly two antennae. This results in a
list L of at most n2 nice instances. If I0 is solvable using a single line, then some instance
I ∈ L is, too. We repeat the following for every I ∈ L:

First construct Ik. This is possible in polynomial time since k does not depend on n.
Apply A to Ik to obtain an approximately optimal line concept that has cost x. If I can
be solved using one path, the minimal cost of solving Ik is 1. Hence x ≤ α. Otherwise the
minimal cost of solving Ik is k + 1, hence x ≥ k + 1 > α. It follows that by comparing x

to α, we can determine whether I can be solved using one path.
There is an I ∈ L which can be solved using just one path if and only if G is traceable. ◀

As this hardness result is weaker, we could hope to find an approximation algorithm
where the error grows only very slightly in n. This is an interesting open problem.

4 NP-hard cases

For general graphs and general cost structures, the problem of finding a cost-optimal line
concept is known to be NP-hard, even if

dfix = 1, cfix = 0, c ≡ 0, fmin
e ∈ {0, 1} for all e ∈ E, fmax ≡ ∞ or fmax ≡ 1 [12] or

dfix = 0, fmin
e ∈ {0, 1} for all e ∈ E, fmax ≡ ∞ or fmax ≡ 1 [11].

We can strengthen theses results and show that LPAL is NP-hard even for subcubic
planar graphs.

▶ Corollary 5. The problem LPAL is NP-hard, even if G is a planar graph with maximum
vertex degree at most three and
(a) dfix = 1, cfix = 0, c ≡ 0, fmin

e ∈ {0, 1} for all e ∈ E, fmax ≡ ∞ or fmax ≡ 1 or
(b) dfix = 0, fmin

e ∈ {0, 1} for all e ∈ E, fmax ≡ ∞ or fmax ≡ 1.
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Proof sketch. We combine the following two results:
1. In [11, 12] a reduction technique of Hamiltonian Path to a problem equivalent to LPAL

with restrictions (a) and (b), respectively, is presented. In general, this reduction does
not preserve planarity.

2. Plesník [20] shows that Hamiltonian Path is NP-hard even for planar digraphs where
each vertex has in- and out-degree at most two and either in- or out-degree one.

By modifying the reductions of [11, 12] for these graphs, the constructed line planning
instance consists of a planar graph with vertex degree at most three. ◀

In the remainder of this section we show that if frequency-independent costs dfix are considered,
then LPAL remains NP-hard even for paths and stars. To this end we formulate reductions
that utilize fmax. Lemma 6 can be applied to transfer the hardness results even if fmax ≡ ∞.

▶ Lemma 6 (Lifting fmax). Let I = ((V, E), dfix, cfix, c, fmin, fmax) be an instance to LPAL
where cfix = 0, c ≡ 0 and fmin = fmax. Let K ∈ N. Define I ′ := ((V, E), dfix, cfix, c′, fmin, ∞)
with c′ :≡ K + 1 and K ′ := K + (K + 1)

∑
e∈E fmin

e .
Then I has a feasible line concept with cost at most K if and only if I ′ has a feasible line

concept with cost at most K ′. Both I ′ and K ′ can be computed in polynomial time.

Proof. We show that we can transfer a solution (L, f) from one instance to the other, such
that it is still feasible and within the cost bound. We add a superscript to cost, to distinguish
for which instance we view the costs.

I → I ′: Clearly, (L, f) remains feasible for I ′. Since c ≡ 0 and cfix = 0, we have
costI((L, f)) = dfix · |L|, which is less or equal to K. Since fmin = fmax, the frequency-
dependent line costs of I ′ are predetermined:

∑
ℓ∈L

fℓ · costI′

ℓ =
∑
ℓ∈L

fℓ ·

cfix +
∑

e∈E(ℓ)

c′
e


=

∑
ℓ∈L

fℓ

∑
e∈E(ℓ)

c′
e =

∑
e∈E

c′
e

∑
ℓ∈L:

e∈E(ℓ)

fℓ =
∑
e∈E

(K + 1)fmin
e

Then costI′((L, f)) = dfix · |L| +
∑

e∈E(K + 1)fmin
e ≤ K +

∑
e∈E(K + 1)fmin

e = K ′.
I ′ → I: Towards a contradiction, assume fmin

e + 1 ≤
∑

ℓ∈L : e∈E(ℓ) fℓ for some e ∈ E.
Then we derive in a similar fashion:

costI′
((L, f)) = dfix · |L| +

∑
e∈E

(K + 1)
∑
ℓ∈L:

e∈E(ℓ)

fℓ ≥ dfix · |L| + (K + 1) +
∑
e∈E

(K + 1)fmin
e

> K + (K + 1)
∑
e∈E

fmin
e = K ′

This contradicts costI′((L, f)) ≤ K ′ and, hence, fmin
e =

∑
ℓ∈L : e∈E(ℓ) fℓ for all e ∈ E,

implying that (L, f) is a feasible line concept for I. Subtracting the now fixed frequency-
dependent line costs yields costI((L, f)) = dfix · |L| ≤ K. ◀

First, we show that LPAL is NP-hard on paths.

▶ Theorem 7. The problem LPAL is NP-hard, even if G is a path and fmin = fmax or
fmax ≡ ∞.

ATMOS 2022
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v−1 v0 v1 v2 v3 v4 v5 v6
10 20 19 17 15 11 6

1 2 2 4 5 6

Figure 3 Example for the construction from Theorem 7, along with feasible line concept. Here
S = {1, 2, 2, 4, 5, 6}.

Proof. We show a reduction of the NP-hard problem 3-Partition [10] to the decision
version of LPAL, first for the case fmin = fmax. Let S = {x1, . . . , x3p} be a multiset
of positive integers. The idea of our construction is to have a path with one subpath of
monotonically increasing frequency constraints and another subpath with monotonically
decreasing frequency constraints. We call these subpaths intervals in reference to the interval
of corresponding vertex indices. The first interval represents partitions S1, . . . , Sp while the
second interval represents the elements of S. By choosing the frequency restrictions, we force
the multiset of line frequencies to be exactly S. Then we can construct lines to have one end
in the first interval and the other end in the second interval, representing to which set Sk

an element xi ∈ S is assigned. In the first interval, lines can overlap in different ways, each
representing a different way to partition S.

Define h := 1
p

∑
S. We may assume that h is integer and that every subset of S which

sums to h contains exactly 3 elements as 3-Partition remains NP-hard in this case. Now
define a sequence of integers, used for constructing the frequency restrictions:

ai :=
{

h if i ≤ 0
−xi if i > 0

for i ∈ [1 − p, 3p]. (Note that indices may be negative.)

We construct our instance I = (G, dfix, cfix, c, fmin, fmax) with decision parameter K as
follows:

dfix := 1 cfix := 0 c :≡ 0 K := 3p.

The graph G is a path on 4p vertices, which we call v1−p, . . . , v3p. The edges are ei :=
{vi, vi+1} for i ∈ [1 − p, 3p − 1]. For all i ∈ [1 − p, 3p − 1], we set fmin

ei
:= fmax

ei
:=

∑i
j=1−p aj .

The construction is illustrated in Figure 3.
Consider a feasible solution (L, f) for I with cost((L, f)) ≤ K. From dfix = 1 follows that

|L| ≤ 3p. Since G is a path, we can say that every line of (L, f) has a left and a right end.
We first argue the case where the left end of each line (vi, . . . , vj) is in the first interval, i.e.
vi satisfies i ∈ [1 − p, 0], and the right end is in the second interval, i.e. vj satisfies j ∈ [1, 3p].

For every i ∈ [0, 3p − 2] we have F
(L,f)
ei > F

(L,f)
ei+1 , implying that at least one line has

a right end at vi+1. Also some line ends at v3p since F
(L,f)
e3p−1 = ph −

∑3p−1
j=1 xi = x3p > 0.

Hence L consists of exactly 3p lines, each having the right end at a different vi for i ∈ [1, 3p].
Let ℓi be the unique line ending at vi. To make up the difference F

(L,f)
ei − F

(L,f)
ei−1 = xi

in G, we obtain fℓi
= xi. For every j ∈ [1 − p, 0] consider the subset L̂j of lines which have

their left end at vj . Their frequencies sum up to F
(L,f)
ej − F

(L,f)
ej−1 = aj = h. Since all lines

have their left ends at some vj with j ∈ [1 − p, 0], the sets L̂1−p, . . . , L̂0 partition L and
correspond to a partition of S where each subset has sum h. This solves 3-Partition.

If there is a line whose left and right end are in the second interval, then it is no longer
guaranteed that fℓi

= xi for the line ℓi with right end at vi. Instead, fℓi
exceeds xi by the

total frequency of lines whose left ends are at vi. Now, we can elongate all lines with left end
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v0 v1

v2

v3

v4

G

5
3

4

2

(L, f)

3

2
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→ v1

v2

v3

v4

HL
3

2

2

=⇒ 3 + 4 = 2 + 5

Figure 4 Example of the relationship between line concepts on stars and number partitions.

at vi to the left end of ℓi and reduce the frequency of ℓi to xi without introducing new lines
or changing the total frequency of an edge. As there are no lines whose left end is v3p and
the right end of ℓ1 has to be in the first interval, this allow us to construct a solution in the
desired form in linear time.

Consider a solution S1 ∪ · · · ∪ Sp = S to 3-Partition with
∑

Sk = h for all k. We
construct a feasible line concept: for every i ∈ [1, 3p], create a line ℓi with frequency xi,
having its right end at vi. If xi ∈ Sk, then ℓi has its left end at v1−k. It is easy to check that
these lines sum up exactly to the frequency profile of G, and the cost K is not exceeded.

To show hardness for the case fmax ≡ ∞, we can apply Lemma 6. ◀

Additionally, LPAL is NP-hard on stars.

▶ Theorem 8. LPAL is NP-hard, even if G is a star and fmin ≡ fmax or fmax ≡ ∞.

In order to prove Theorem 8 we introduce the problem Partition into many Partitions.
First we prove that it is an NP-hard problem (Lemma 10) and then we reduce Partition
into many Partitions to the decision version of LPAL with the above assumptions.

▶ Definition 9. Partition into many Partitions is the following decision problem:
Input: A set of positive integers S and a number K.
Question: Can a subset S′ ⊆ S be partitioned into at least K nonempty sets, such that
each in turn is a yes-instance to Partition [16]?

▶ Lemma 10. Partition into many Partitions is strongly NP-hard.

The proof of Lemma 10 is an reduction of Partial Latin Square Completion (which
is shown to be NP-hard in [8]) to Partition into many Partitions. It is an adaptation
of the reduction described in [15] and can be found in Appendix A.

Before we present the full proof of Theorem 8 we provide a sketch of it in the following:
consider a feasible line concept (L, f) on a star G where fmin = fmax and the cost only
includes the number of lines. We observe that whenever a one-edge line ℓ1 ∈ L shares an
edge with some other line ℓ2 ∈ L, we may obtain an equivalent line concept L′ without
edge-sharing by shortening ℓ2 and increasing the frequency of ℓ1 which may only reduce the
cost. Hence, we may assume that only two-edge lines share an edge. We can visualize the edge
intersection between lines as a graph HL where each two-edge line (vi, v0, vj) is represented
by an edge {vi, vj}. If the resulting graph HL has a cycle, then k edges are covered by k

two-edge lines. We can therefore construct an equivalent line concept by covering each of
the edges with a one-edge line and removing the corresponding edges from HL. Thus, we
may assume that HL is a forest, and we can use each tree component to obtain a number
partition on some subset of the edge frequencies (see Figure 4). This makes the equivalence
to Partition into many Partitions apparent.
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Proof of Theorem 8. We show a reduction of Partition into many Partitions to the
decision version of LPAL. Let a set of positive integers S = {x1, . . . , xm} and the lower
bound K be given as an input to Partition into many Partitions.

We construct an instance I = (G = (V, E), dfix, cfix, c, fmin, fmax) with G and fmin = fmax

as in Figure 5 and decision parameter K ′ as follows: dfix := 1, cfix := 0, c :≡ 0, and
K ′ := m − K.

v0v1

v2

v3

vm

. . .

x1

x2
x3

xm

Figure 5 Line planning instance constructed in Theorem 8.

Let a solution Sol = ((A1, B1), . . . , (AK , BK)) to Partition into many Partitions be
given, i.e. the sets A1, . . . , AK , B1, . . . , BK are nonempty and form a partition of a subset of
S with

∑
Ai =

∑
Bi for all i ∈ [1, K]. We construct a solution to LPAL using Algorithm 1.

After each iteration of the for-loop starting in line 2, all edges {vi, v0} corresponding to
elements xi ∈ A ∪ B are covered exactly fmin

{vi,v0} times. In each iteration of the while-loop
starting in line 5, at least one element of A or B is removed and a new line is created. Note
that

∑
A =

∑
B is invariant as (A, B) is a partition such that the case in line 16 is reached.

Thus, at most |A| + |B| − 1 lines are created and each edge is covered according to fmin.
When entering the for-loop in line 23, all edges {vi, v0} corresponding to elements

xi ∈ S′ :=
⋃K

k=1(Ak ∪Bk) are covered according to fmin and at most
∑K

i=1(|Ai|+ |Bi|−1) =
|S′| − K lines are created. In the for-loop, the remaining edges corresponding to xi ∈ S \ S′

are covered by one one-edge line with appropriate frequency each. Thus, the corresponding
line concept (L, f) is feasible.

The costs of the line concept correspond to the number of created line, and we get

cost((L, f)) ≤ |S′| − K + |S \ S′| = |S| − K = m − K = K ′,

such that (L, f) is feasible for the decision version of LPAL.
For the other direction, consider a solution (L, f) to I with cost at most K ′, i.e. with at

most m − K lines. As discussed above, we may assume that one-edge lines do not overlap
with other lines. We construct an auxiliary graph HL with the vertices v1, . . . , vm. For each
two-edge line (vi, v0, vj), we create an edge {vi, vj} in HL. As discussed above, we can adapt
(L, f) such that HL has no cycles. For each one-edge line (vi, v0), we delete the vertex vi.
Note that we do not need to delete edges since we assumed that one-edge lines do not overlap.
Let m1 be the number of one-edge lines, and m2 the number of two-edge lines in L. Now
HL has m − m1 vertices and m2 ≤ K ′ − m1 = m − m1 − K edges.

As argued above, HL is a forest and contains at least K components. We call these trees
T1, . . . , TK . As we deleted all vertices belonging to one-edge lines, every vertex of HL has at
least one incident edge and thus each tree Ti contains at least two vertices.

Since every tree is bipartite, we may choose a bipartition (P1 := {vj : j ∈ J1}, P2 :=
{vj : j ∈ J2}) for every Ti. By construction, every line ℓ ∈ L is either disjoint from Ti = P1∪P2
or connects P1 with P2, i.e. ∅ ≠ V (ℓ) ∩ P1 if and only if ∅ ≠ V (ℓ) ∩ P2. We obtain:∑

j∈J1

xj =
∑
j∈J1

∑
ℓ∈L:

{vj ,v0}∈E(ℓ)

fℓ =
∑
ℓ∈L:

∅̸=V (ℓ)∩P1

fℓ =
∑
ℓ∈L:

∅̸=V (ℓ)∩P2

fℓ =
∑
j∈J2

∑
ℓ∈L:

{vj ,v0}∈E(ℓ)

fℓ =
∑
j∈J2

xj
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Algorithm 1 Constructing a line concept from a Partition into many Partitions solution.
Input: a solution Sol = ((A1, B1), . . . , (AK , BK)) to a Partition into many Partitions
instance S = {x1, . . . , xm}

1: L = ∅
2: for (A, B) ∈ Sol do
3: treat the numbers in A and B as mutable data structures, which can store a value

and an index
4: assign to each y in A and B an index i such that xi = y

5: while |A| > 0 and |B| > 0 do
6: a = min(A)
7: b = min(B)
8: if a < b then
9: add to L a line from va.index to vb.index with frequency a

10: A.remove(a)
11: b -= a
12: else if a > b then
13: add to L a line from va.index to vb.index with frequency b

14: B.remove(b)
15: a -= b
16: else
17: add to L a line from va.index to vb.index with frequency a

18: A.remove(a)
19: B.remove(b)
20: end if
21: end while
22: end for
23: for i ∈ [1, n] where {vi, v0} is not covered yet do
24: add to L a line from vi to v0 with frequency xi

25: end for
26: return (L, f)

and, hence, ({xj : j ∈ J1}, {xj : j ∈ J2}) is a nonempty solution to Partition. We repeat
this for every tree Ti to get K disjoint number partitions, solving Partition into many
Partitions.

The hardness for the case fmax ≡ ∞ follows with Lemma 6. ◀

The presented hardness results in this section actually show strong NP-hardness, i.e. even
when we restrict the numerical parameters of LPAL instances to be (polynomially) small
compared to the graph, the problem remains NP-hard.

5 Optimal line planning for stars

While LPAL is NP-hard for paths if dfix > 0, the problem is easier when no frequency-
independent costs are considered, i.e., for dfix = 0. Here, the costs do not increase if edges are
covered by multiple lines, ending at different terminals. We can show that optimal solutions
have a special structure by rewriting the cost function

cost((L, f)) = dfix︸︷︷︸
=0

·|L| +
∑
ℓ∈L

costℓ ·fℓ =
∑
e∈E

ce · F (L,f)
e + cfix ·

∑
ℓ∈L

fℓ. (1)
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As all edges in a star are incident to a central vertex, there is an optimal solution where
each edge e ∈ E is covered exactly fmin

e times, i.e. F
(L,f)
e = fmin

e . Thus, it remains only
to minimize the frequency-dependent fixed costs cfix ·

∑
ℓ∈L fℓ in (1). As each line contains

either one or two edges and two-edge lines reduce the costs by cfix, this is equivalent to
minimizing the total frequency of one-edge lines.

It is easy to see that each of the following conditions guarantees optimality of the line
concept as in each case as many edges as possible are “paired up” to two-edge lines:
1. There is no one-edge line.
2. There is one one-edge line with frequency one.
3. There is an edge with ē ∈ E with fmin

ē >
∑

e∈E\{ē} fmin
e and

∑
ℓ∈L fℓ = fmin

ē .

Algorithm 2 Finding an optimal solution to LPAL for stars.

Input: An instance (G, dfix, cfix, c, fmin, fmax) where dfix = 0 and G = (V, E) is a star.
1: Elist = [e1, . . . , em] list of edges in E, sorted decreasingly by fmin

e , Ē = ∅, f̄min = fmin

2: f(e) = 0, f(ei,ej) = 0 for all e, ei, ej ∈ E, i > j

3: for ek ∈ Elist do
4: if there is ē ∈ Ē then
5: a = min{f(ē), fmin

ek
}

6: f(ē) −= a, f(ek,ē) = a

7: f̄min
ek

−= a

8: if f(ē) = 0 then
9: Ē = ∅

10: end if
11: end if
12: for ei, ej ∈ {e1, . . . , ek−1} with i > j, f(ei,ej) > 0 and f̄min

ek
> 1 do

13: b = min
{

f(ei,ej),
⌊

f̄min
ek

2

⌋}
14: f(ei,ej) −= b, f(ek,ei) += b, f(ek,ej) += b

15: f̄min
ek

−= 2 · b

16: end for
17: if f̄min

ek
> 0 then

18: f(ek) = f̄min
ek

, Ē = {ek}
19: end if
20: end for
21: L = {(ei, ej) : f(ei,ej) > 0} ∪ {(e) : f(e) > 0}, f = f |L
22: return (L, f)

In Algorithm 2, we present a polynomial time algorithm that finds an optimal solution to
LPAL. Starting with a list of edges sorted by decreasing fmin

e , LPAL is iteratively solved
for the first k edges, k ∈ {1, . . . , |E|} such that one of the optimality conditions 1, 2 or 3 is
satisfied at the end of each iteration for the already considered edges. The one-edge lines
with positive frequency are stored in the set Ē which never contains more than one edge.

After iteration 1, Ē = {e1} and condition 3 is satisfied. In iteration k, the edge ek is
paired up with edge ē ∈ Ē creating a new two-edge line if Ē is not empty. If f(ē) > fmin

ek
,

f̄min
ek

is reduced to zero, Ē = {ē} and condition 3 is satisfied. If f(ē) = fmin
ek

, f̄min
ek

and f(ē)
are reduced to zero, Ē = ∅ and condition 1 is satisfied. If f(ē) < fmin

ek
or Ē = ∅ in line 4,

Ē = ∅ in the for-loop starting in line 12 and we have to show that at the end of the iteration
either condition 1 or 2 is satisfied. As the list of edges is sorted by decreasing fmin

e , we know
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that the total frequency of all already constructed lines is at least fmin
ek

2 such that we can
split already existing lines and create two new ones containing ek. Thus, in line 17 f̄min

ek
is

either zero or one, such that optimality condition 1 or 2 is satisfied and we get the following
theorem, proven in Appendix B.

▶ Theorem 11. Algorithm 2 finds an optimal solution to LPAL for stars with dfix = 0
in O(n3).

6 Optimal line planning for trees

Since paths are special instances of trees, LPAL is NP-hard on trees by Theorem 7. If we
assume that dfix = 0 and that fmax is bounded by a constant b, then we can provide a
pseudo-linear time algorithm for finding the optimal objective value of LPAL on trees.

▶ Theorem 12. If T is a tree, dfix = 0, and fmax is bounded by a constant b, then the
minimal cost for LPAL can be computed in O(nb3). An optimal line concept can be computed
in O(n3b3).

Intuition. It is well known that a rooted tree (T, r) can be constructed from the set
S := {(({v}, ∅), v) : v is a leaf of T} of rooted singleton trees by iteratively introducing
parents and merging subtrees. For our dynamic program it is crucial that we restrict the
operations further. We iteratively modify S by the following two operations:

introduce a parent: extend (T ′, r′) by p ∈ V (T ) \ V (T ′) if p is the only neighbor of r′

in T that is not contained in V (T ′). Replace (T ′, r′) in S by the extended tree.
merge: (T1, r′) and (T2, r′) can be merged at r′ if r′ has only one child in T1 or in T2.
Replace the two trees in S by the merged tree.

If none of the above two operations can be applied, then S = {(T, r)}. We exploit that
there exists an optimal solution for LPAL with the following property: the restriction of this
solution to a rooted tree (T ′, r′) arising in the above construction satisfies that at most b

lines end in r′ (otherwise a merge of two such lines would give a solution of lower costs). We
compute the optimal value for LPAL using the above construction where each subtree has a
table which stores its optimal solutions, considering any possible number of lines ending in
its root. If (L, f) is a line concept for T , then for each v ∈ V (T ) we define the number of
lines ending at v as

ηv((L, f)) :=
∑

ℓ∈L : v is
an end of ℓ

fℓ

where we allow zero-edge lines. The cost of an optimal solution satisfying ηv ≥ k is

cost(T | ηv ≥ k) := min{cost((L, f)) | (L, f) ∈ F(T ), ηv((L, f)) ≥ k}.

We compute the cost vector

cost(T ′, r′) := (cost(T ′ | ηr′ ≥ 0), cost(T ′ | ηr′ ≥ 1), . . . , cost(T ′ | ηr′ ≥ b))

for each rooted subtree (T ′, r′) appearing in the above construction. The recursive computa-
tion stores intermediate results in a table to avoid re-computation. Finally, the cost of an
optimal line concept for T is cost(T | ηr ≥ 0).
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▶ Lemma 13 (Dynamic programming for trees). Let (T ′, r′) be a rooted tree and k ∈ {1, . . . , b}.
1. Singletons: If |V (T ′)| = 1, then cost(T ′ | ηr′ ≥ k) = k · cfix. The time required to compute

cost(T ′ | ηr′ ≥ k) is O(1) and, hence, the time required to compute cost(T ′, r′) is O(b).
2. Introduce a parent: If degT ′(r′) = 1 and u denotes the child of r′ in T ′, then cost(T ′ |

ηr′ ≥ k) equals

min
0≤m≤max{k,fmin

{u,r′}
}
{cost(T ′ − r′ | ηu ≥ m) + max

{
k, fmin

{u,r′}

}
· (cfix + c{u,r′}) − m · cfix}.

If the values cost(T ′ − r′ | ηu ≥ m) are pre-computed for all m ∈ {1, . . . , b}, then the time
required to compute cost(T ′ | ηr′ ≥ k) is O(b) and, hence, cost(T ′, r′) can be computed in
O(b2) time.

3. Merge: If (T ′, r′) is the union of two rooted trees (T1, r′), (T2, r′) where degT1(r′) = 1,
then

cost(T ′ | ηr′ ≥ k) = min
0≤m,k1,k2≤b,
k1+k2−2m=k

{cost(T1 | ηr′ ≥ k1) + cost(T2 | ηr′ ≥ k2) − m · cfix}.

If the values cost(T2 | ηr′ ≥ k2) and cost(T2 | ηr′ ≥ k2) are pre-computed for all
k1, k2 ∈ {1, . . . , b}, then the time required to compute cost(T ′ | ηr′ ≥ k) is O(b2) and,
hence, it requires O(b3) time to compute cost(T ′, r′).
For a proof of Lemma 13, see Appendix C.

Total runtime. A depth-first search algorithm yields a decomposition of T such that the
dynamic programming approach can be executed in the corresponding order. Since T is
a tree DFS has a running time of O(n). The running time to compute the cost vector
for all leaves in the initial set S is in O(nb) since there are at most n − 1 leaves in T and
by Lemma 13.(1). In the construction of T we introduce a parent |E(T )| = n − 1 times.
Together with Lemma 13.(2) this yields that computing the respective cost vectors has a total
running time of O(nb2). The merge operation is performed O(

∑
v∈V (T ) degT (v)) = O(n)

times which gives a total running time of O(nb3). Altogether, the dynamic programming
has a running time of O(nb3).

Constructing a line concept. We showed how to compute the minimal cost among all
feasible line concepts. To construct a line concept of that cost we store in each cost vector
entry additionally a line concept of that cost. These line concepts can be computed recursively,
according to the decisions made (i.e. creating zero-edge line, extending lines by a single edge,
joining lines). This increases the algorithm runtime, depending on the line concept sizes.
On a tree there are O(n2) different paths. It is then possible to compute all cost vectors
augmented with line concepts in time O(n3b3). Altogether, this proves Theorem 12.

Since the runtime of the algorithm depends on b, it is pseudo-polynomial. For the special
case where for all e ∈ E it holds fmin

e = fmax
e , we provide a true polynomial time algorithm,

which does not depend on a frequency bound b.

▶ Theorem 14. If G is a tree, dfix = 0, and fmin
e = fmax

e for all e ∈ E, then Algorithm 3
computes an optimal solution to LPAL in O(n3).

The key idea of Algorithm 3 is to apply Algorithm 2 iteratively at every vertex. As
fmin = fmax, we can handle lines ending at vertex v ∈ V in the same way we handle edges
in stars: creating a two-edge line in a star corresponds to concatenating two lines in a tree.
A formal proof can be found in Appendix D.
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Algorithm 3 Finding an optimal solution of LPAL on trees with fmin = fmax.

Input: An instance (G, dfix, cfix, c, fmin, fmax) where dfix = 0, fmin = fmax and G = (V, E)
is a tree.

1: L = {(e) : e ∈ E}
2: f(e) = fmin

e for all e ∈ E; for all other paths ℓ set fℓ = 0
3: for v ∈ V do
4: let S be the star formed by v and its neighbors
5: let (LS , fS) be the result of Algorithm 2 applied to the sub-instance on S

6: Lv = {ℓ ∈ L : ℓ ends in v}
7: for ℓ1, ℓ2 ∈ Lv do
8: let e1 be the edge of ℓ1 incident to v

9: let e2 be the edge of ℓ2 incident to v

10: if e1 = e2 then
11: continue
12: end if
13: d = min{fS

(e1,e2), fℓ1 , fℓ2}
14: ℓ+ = ℓ1 ∪ ℓ2
15: L = L ∪ {ℓ+}
16: fS

(e1,e2) −= d, fℓ1 −= d, fℓ2 −= d, fℓ+ += d

17: end for
18: end for
19: L = {ℓ ∈ L : fℓ > 0}, f = f |L
20: return (L, f)

7 Conclusion and outlook

Line planning on all lines LPAL means allowing all simple paths as possible lines in a public
transport supply. This large search space yields more options and, hence, better solutions
for optimal public transport planning. In this paper, we illuminated the algorithmic aspects
of LPAL. Frequency-independent line costs result in an NP-hard problem even for paths
and stars. Without these costs LPAL remains NP-hard on planar graphs but can be solved
in polynomial time on trees when fmin ≡ fmax, and in pseudo-polynomial time otherwise.
Assuming P ̸= NP , no useful approximation algorithm can exist, unless we further restrict
the problem inputs. Even when fmax ≡ ∞, no constant-factor approximation is possible.
The following are the most pressing open questions:

Is LPAL in NP? It is not clear that, especially when fmin is very large, the size of an
optimal line concept can be bounded by a polynomial in the input size.
Is there a polynomial time algorithm for LPAL with dfix = 0 on trees?
Is there a (pseudo-)polynomial time algorithm for LPAL with dfix = 0 on graphs with
treewidth 2 (or generally bounded treewidth)?
Under which restrictions exists a constant-factor approximation algorithm for LPAL?

When moving from trees to graphs of higher treewidth, an additional degree of freedom
can be considered: while for trees we can assume that passenger paths are fixed, this is no
longer true in general graphs. Thus, replacing the lower frequency bounds fmin by a flow
formulation for the passengers as in [3] can lead to even better solutions from a passenger’s
point of view. This presents an interesting extension of the problem, where it is especially
important to understand the structure of optimal solutions.
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A Proof of Lemma 10

▶ Lemma 10. Partition into many Partitions is strongly NP-hard.

Proof. This proof is an adaptation of the reduction described in [15]. We reduce Partial
Latin Square Completion (cf. [15]) to Partition into many Partitions.

Consider a partial Latin square L of dimension p × p with m missing entries. Define
q := 6p − 2. We construct a Partition into many Partitions instance from the Latin
square by defining K := m and putting the following numbers into the set S:

If color c does not occur in row k, put x(k, c) := q(2k − 1) − (2c − 1) into S.
If color c does not occur in column ℓ, put y(ℓ, c) := q2(2ℓ − 1) + (2c − 1) into S.
If the cell in row k and column ℓ is empty, put z(k, ℓ) := q2(2ℓ − 1) + q(2k − 1) into S.

Partition into many Partitions requires that S only contains positive numbers. A quick
check of the x-numbers shows that they are positive: x(k, c) ≥ q − (2c − 1) ≥ q − (2p − 1) =
4p − 1 > 0. The y- and z-numbers are positive since ℓ, c and k each are positive.

We check that these numbers indeed form a set of size 3m, i.e. they are pairwise different:
Assume x(k1, c1) = x(k2, c2) holds for some k1, c1, k2, c2 ∈ [1, p]. Considering this equation
modulo q, we find (2c1−1) ≡ (2c2−1) mod q. Since q > 2p−1, it follows: c1 = c2. Hence the
equation simplifies to q(2k1 −1) = q(2k2 −1), so also k1 = k2. This shows that the x-numbers
are created by an injective map. The same arguments work for pairs of y-numbers and pairs of
z-numbers. Now assume x(k1, c1) = y(ℓ2, c2). It follows that (2c1 − 1) + (2c2 − 1) ≡ 0 mod q.
This is a contradiction since 4p − 2 < q. Assume x(k1, c1) = z(k2, ℓ2) or y(ℓ1, c1) = z(k2, ℓ2).
In both cases (2c1 − 1) ≡ 0 mod q would follow, which is a contradiction.
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Now we consider all the ways 3 or fewer of these numbers can be a yes-instance to
Partition. A single number cannot be a yes-instance. Two numbers also cannot be a
yes-instance, since S is a set and all numbers are pairwise distinct. Here, we work out only
some of the possible three-number combinations. The rest can be calculated similarly.

z(k1, ℓ1) = x(k2, c2) + y(ℓ3, c3). Considering this equation modulo q, we find that c2 = c3.
Then, dividing by q and again applying modulo, we get k1 = k2 and finally ℓ1 = ℓ3.
z(k1, ℓ1) + x(k2, c2) = y(ℓ3, c3). It would follow: (2c2 − 1) + (2c3 − 1) ≡ 0 mod q, which
is not possible, as we have seen before.
x(k1, c1) = y(ℓ2, c2) + y(ℓ3, c3). It would follow: (2c1 − 1) + (2c2 − 1) + (2c3 − 1) ≡ 0
mod q. This is not possible, since 0 < (2c1 − 1) + (2c2 − 1) + (2c3 − 1) ≤ 6p − 3 < q.
x(k1, c1) = x(k2, c2) + x(k3, c3). Consider this equation modulo 2. Since q is even, we
would obtain −1 ≡ −2 mod 2, which is a contradiction. The case of three y-numbers is
dealt with in the same way. In the case of three z-numbers, first divide by q.

After considering all combinations, we find that the only way three numbers can be a yes-
instance to Partition, is by choosing one number from each family x,y and z; importantly
these numbers have matching choices for row, column and color.

Now let B1, . . . , Bm be a solution to Partition into many Partitions, i.e. the Bi are
nonempty yes-instances to Partition, are pairwise disjoint and their union is a subset of S.
As we have shown, each Bi contains at least three elements. Since |S| = 3m, every element
of S is used and no Bi can contain more than three elements. Then each Bi corresponds
to a triple of x-,y- and z-numbers, which in turn corresponds to a row k, a column ℓ and a
color c. We then fill our partial Latin square, by coloring the cell at row k and column ℓ

with c, repeating this for every Bi. Since every z-number was used, the Latin square is filled.
It is also a valid coloring, since for every row/column each missing color appears only in one
x-number/y-number.

For the other direction, consider a valid completion of the partial Latin square. Then
for each of the m new colorings ci in the cell at row ki and column ℓi, we create Bi :=
{z(ki, ℓi), x(ki, ci), y(ℓi, ci)}. Then each Bi is a yes-instance to Partition, and is contained
in S. The created sets are pairwise disjoint, since the Latin square would otherwise have a
collision.

This reduction proves strong NP-hardness: we may assume without loss of generality
that the input Latin square has at least p missing entries, because otherwise it would have
a completely filled row, from which we could remove an arbitrary cell without affecting its
ability to be completed. Then |S| ≥ 3p and the numbers in S are bounded by a polynomial
in p, hence also by a polynomial in |S|. ◀

B Proof of Theorem 11

▶ Theorem 11. Algorithm 2 finds an optimal solution to LPAL for stars with dfix = 0
in O(n3).

Proof. Note that Algorithm 2 computes a line concept that covers each edge e ∈ E ex-
actly fmin

e times, i.e. F
(L,f)
e = fmin

e . To prove optimality for dfix = 0, we therefore only have
to show that the total frequency of one-edge lines is minimized.

At the start of each for loop in line 3, the set Ē contains the edges for which a one-edge
line with positive frequency exists. Note that there is always at most one edge ē ∈ Ē, as by
the choice of a in line 5, fmin

e can only be positive if f(ē) is set to zero. Thus the line concept
(L, f) created in line 22 contains at most one one-edge line with positive frequency.

If there is no one-edge line, the line concept is optimal as in condition 1.
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If there is a one-edge line containing the first edge e1 of Elist, i.e. the edge with the highest
fmin, then in line 5 the minimum a is always chosen as fmin

e for e ̸= e1, i.e. fmin
e1

>
∑

e ̸=e1
fmin

e .
In this case, all lines contain edge e1 and thus

∑
ℓ∈L fℓ = fmin

e1
such that (L, f) is optimal,

see condition 3.
Otherwise, there is a one-edge line that does not contain the first edge. Here, we show

that for every ek ≠ e1 in the outer-loop (lines 3 to 20) with f̄min
ek

> 0 in line 17 also f̄min
ek

= 1
holds. Then, we have one one-edge line with frequency one and the line concept is optimal
according to condition 2.

As f̄min
ek

is only reduced in the algorithm, f̄min
ek

> 0 can only hold in line 17 if it already
holds before the for-loop starting in line 12. Note that in this case, k > 2 holds. We want to
show that f̄min

ek
is reduced in the for-loop (lines 12 to 16) until f̄min

ek
∈ {0, 1}. Suppose to the

contrary, that f̄min
ek

> 1 in line 17. Then the minimum b chosen in line 13 always has been
chosen as f(ei,ej) and we get∑

(ei,ej):
i,j<k

f(ei,ej) < α

where α is the value of f̄min
ek

before starting the for-loop in line 12. We know that α = fmin
ek

if Ē = ∅ in line 4 and α = fmin
ek

− f(ek,ē) if Ē = {ē} in line 4. To simplify the notation in the
following we set f(ek,ē) = 0 if Ē = ∅. As at the beginning of the for-loop in line 4 for ek all
edges ei, i ∈ {1, . . . , k − 1}, are covered fmin

ei
-times we get

∑
(ei,ej):
i,j<k

f(ei,ej) + f(ek,ē) ≥ 1
2

k−1∑
i=1

fmin
ei

≥ 1
2 · 2 · fmin

ek
= fmin

ek

and thus∑
(ei,ej):
i,j<k

f(ei,ej) ≥ fmin
ek

− f(ek,ē) = α

which is the desired contradiction.
The runtime of Algorithm 2 can be estimated in the following way: there are |E| =

|V | − 1 = n − 1 iterations of the outer for-loop starting in line 3 and O(n2) iterations of the
inner for-loop starting in line 12. As sorting Elist in line 1, initializing the frequencies in
line 2 and reconstructing the line concept in line 22 are also in O(n3), the total runtime of
Algorithm 2 is O(n3). ◀

C Proof of Lemma 13

▶ Lemma 13 (Dynamic programming for trees). Let (T ′, r′) be a rooted tree and k ∈ {1, . . . , b}.
1. Singletons: If |V (T ′)| = 1, then cost(T ′ | ηr′ ≥ k) = k · cfix. The time required to compute

cost(T ′ | ηr′ ≥ k) is O(1) and, hence, the time required to compute cost(T ′, r′) is O(b).
2. Introduce a parent: If degT ′(r′) = 1 and u denotes the child of r′ in T ′, then cost(T ′ |

ηr′ ≥ k) equals

min
0≤m≤max{k,fmin

{u,r′}
}
{cost(T ′ − r′ | ηu ≥ m) + max

{
k, fmin

{u,r′}

}
· (cfix + c{u,r′}) − m · cfix}.

If the values cost(T ′ − r′ | ηu ≥ m) are pre-computed for all m ∈ {1, . . . , b}, then the time
required to compute cost(T ′ | ηr′ ≥ k) is O(b) and, hence, cost(T ′, r′) can be computed in
O(b2) time.

ATMOS 2022
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3. Merge: If (T ′, r′) is the union of two rooted trees (T1, r′), (T2, r′) where degT1(r′) = 1,
then

cost(T ′ | ηr′ ≥ k) = min
0≤m,k1,k2≤b,
k1+k2−2m=k

{cost(T1 | ηr′ ≥ k1) + cost(T2 | ηr′ ≥ k2) − m · cfix}.

If the values cost(T2 | ηr′ ≥ k2) and cost(T2 | ηr′ ≥ k2) are pre-computed for all
k1, k2 ∈ {1, . . . , b}, then the time required to compute cost(T ′ | ηr′ ≥ k) is O(b2) and,
hence, it requires O(b3) time to compute cost(T ′, r′).

Proof. If (T ′, r′) has only one vertex, then clearly the optimal line concept which satisfies
that k lines end in r′ consists of k zero-edge lines. This implies (1).

We prove (2). Since degT ′(r′) = 1 every line ℓ in T ′ is either contained in T ′ − r′ or
it has one end in T ′ − r′ and the other end is r′. In a line concept (L, f) of T ′, a line ℓ

with one end in T ′ − r′, the other end being r′ and frequency fℓ can be split into two lines
ℓ1 = (r′, u) and ℓ2 = ℓ − r′ with frequency fℓ without changing the feasibility. The line ℓ2 is
contained in T ′ − r′ and the cost of the line concept is increased by cfix · fℓ. This process can
be reversed, merging some line from T ′ − r′ that ends at u with the line (u, r′), decreasing
the cost accordingly. Assuming k ≤ fmax

{u,r′}, this allows us to rewrite cost(T ′ | ηr′ ≥ k):

cost(T ′ | ηr′ ≥ k) = min{cost((L, f)) : (L, f) ∈ F(T ′), ηr′((L, f)) ≥ k}
(a)= min{cost((L′, f ′)) + a · (cfix + c{u,r′}) − m · cfix : (L′, f ′) ∈ F(T ′ − r′),

fmin
{u,r′} ≤ a ≤ fmax

{u,r′}, m ≤ ηu((L′, f ′)), m ≤ a, a ≥ k}
(b)= min{cost((L′, f ′)) + max{k, fmin

{u,r′}} · (cfix + c{u,r′}) − m · cfix : (L′, f ′) ∈ F(T ′ − r′),

max{k, fmin
{u,r′}} ≤ fmax

{u,r′}, m ≤ ηu((L′, f ′)), m ≤ max{k, fmin
{u,r′}}}

(c)= min
0≤m≤max{k,fmin

{u,r′}
}
{cost(T ′ − r′ | ηu ≥ m) + max{k, fmin

{u,r′}} · (cfix + c{u,r′}) − mcfix}

(a) We split the lines in T ′ into some set of lines L′ on T ′ − r′, and a copies of the line (u, r′)
of which m are merged with lines from L′. Then the number of ends at r′ is exactly a

and, hence a ≥ k. Furthermore a ∈ [fmin
{u,r′}, fmax

{u,r′}]. Each merge reduces the cost by cfix.
(b) To minimize the cost, we have to minimize a: the only benefit of increasing a is that m

can be increased but the factor of a outweighs m. Hence we replace a by its minimum
possible value max{k, fmin

e }.
(c) Since m ≤ ηu((L′, f ′)) we can replace cost((L′, f ′)) by cost(T ′ − r′ | ηu ≥ m). The

condition max{k, fmin
{u,r′}} ≤ fmax

{u,r′} is fulfilled by the assumption on k. The remaining
constraints are written as a subscript.
If k > fmax

{u,r′}, then cost(T ′ | ηr′ ≥ k) = ∞ since no feasible line concept with ηr′ ≥ k

exists.
The time to compute cost(T ′ | ηr′ ≥ k) for some k is O(b), since max{k, fmin

{u,r′}} ≤ b. Hence
cost(T ′, r′) can be computed in O(b2).

Finally, we prove (3). Every line in T ′ that traverses r′ can be split into two lines, one
contained in T1 and the other contained in T2. In reverse, we can join lines from different
subtrees together at r′. Then

cost(T ′ | ηr′ ≥ k) = min
0≤m,k1,k2≤b,
k1+k2−2m=k

{cost(T1 | ηr′ ≥ k1) + cost(T2 | ηr′ ≥ k2) − m · cfix}
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Note that at most b lines of T1 end at r′ by the degree condition. The time required to
compute cost(T ′ | ηr′ ≥ k) for some k is O(b2) since we have two degrees of freedom in the
minimum expression. Hence cost(T ′, r′) can be computed in O(b3). ◀

D Proof of Theorem 14

▶ Theorem 14. If G is a tree, dfix = 0, and fmin
e = fmax

e for all e ∈ E, then Algorithm 3
computes an optimal solution to LPAL in O(n3).

Proof. We first show that Algorithm 3 computes an optimal feasible solution: after line 2, a
feasible line concept is constructed. The operations in line 16 merge lines and, hence, the
feasibility of (L, f) remains.

For showing optimality, we note that since the total frequencies F
(L,f)
e are fixed for every

e ∈ E, obtaining an optimal line concept (L, f) is equivalent to minimizing
∑

ℓ∈L fℓ. Since
every line has two ends, another equivalent quantity to minimize is the total number of line
ends, weighted by f , i.e. 2

∑
ℓ∈L fℓ.

Define Lv,e := {ℓ ∈ L : ℓ ends in v and traverses e}. We need an invariant (I1) that holds
before every iteration of the outer for-loop: for every vertex v ∈ V that has not yet been
chosen in the outer for-loop, we have fmin

e =
∑

ℓ∈Lv,e
fℓ. Clearly (I1) holds directly after

executing line 2. The operations during an iteration only affect the local line ends, i.e. the
number of ends at yet unvisited vertices is unchanged. Hence (I1) is maintained.

Another invariant (I2), that holds before every iteration of the inner loop, for every
edge e incident to v, is

∑
ℓ∈Lv,e

fℓ = fS
(e) +

∑
e′ ̸=e fS

(e,e′). It holds initially, since Algorithm 2
produces a feasible line concept, and we have fmin

e = fS
(e) +

∑
e′ ̸=e fS

(e,e′); combine this with
(I1) to obtain (I2). Let e1 and e2 be chosen during an iteration, after line 9. The operations
inside the loop only affect lines that contain e1 or e2, hence for every e /∈ {e1, e2} (I2) is
maintained. (I2) is also maintained for e1, since fS

(e1,e2) and fℓ1 are changed by equal amounts.
The same holds true for e2.

We claim that after the inner for-loop finishes, we have fS
ℓ = 0 for all two-edge lines

ℓ = (e1, e2) of LS . Suppose towards a contradiction that fS
(e1,e2) > 0 for some e1 ̸= e2. By (I2),∑

ℓ∈Lv,e1
fℓ = fS

(e1) +
∑

e′ ̸=e1
fS

(e1,e′) > 0, and similarly
∑

ℓ∈Lv,e2
fℓ > 0. Hence there exist

ℓ1 ∈ Lv,e1 and ℓ2 ∈ Lv,e2 with fℓ1 > 0 and fℓ2 > 0. This is a contradiction since the inner
for-loop would have chosen ℓ1 and ℓ2 at some point, after which min{fℓ1 , fℓ2 , fS

(e1,e2)} = 0.
Using (I2) again, we have

∑
ℓ∈Lv,e

fℓ = fS
(e) after the inner for-loop. This means that

we have
∑

e incident to v fS
(e) =: xv line ends, with multiplicity, at vertex v. The algorithm’s

locality implies that this number does not change in further iterations of the outer loop.
In total Algorithm 3 produces a line concept with

∑
v∈V xv line ends. Suppose that there

is a better solution, i.e. a feasible line concept (L′, f ′) that has fewer than xv line ends at
some vertex v. Then we could restrict (L′, f ′) onto the star S around v and would obtain a
solution for S which has fewer ends, i.e. is better, than what Algorithm 2 computed, which
contradicts the optimality of Algorithm 2.

On the runtime: we represent lines by their end vertices. On a tree, this is enough to
unambiguously define them. The invocation of Algorithm 2 can be done in O(deg(v)3).
Since Lv has at most n elements, the for-loop in line 7 iterates at most n2 times. Every
operation inside the for-loop takes constant time and we can bound the total loop runtime
by O(n2). Overall, an iteration of the outer for-loop on a vertex v takes O(deg(v)n2).
Using the fact that on a tree

∑
v∈V deg(v) = 2n − 2, the total runtime of the algorithm is

O
(∑

v∈V deg(v)3 + n2 ∑
v∈V deg(v)

)
= O(n3). ◀
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