
22nd Symposium on Algorithmic
Approaches for Transportation
Modelling, Optimization, and
Systems

ATMOS 2022, September 8–9, 2022, Potsdam, Germany

Edited by

Mattia D’Emidio
Niels Lindner

OASIcs – Vo l . 106 – ATMOS 2022 www.dagstuh l .de/oas i c s

Editors

Mattia D’Emidio
University of L’Aquila, Italy
mattia.demidio@univaq.it

Niels Lindner
Zuse Institute Berlin, Germany
lindner@zib.de

ACM Classification 2012
Theory of computation → Design and analysis of algorithms; Mathematics of computing → Discrete
mathematics; Mathematics of computing → Combinatorics; Mathematics of computing → Mathematical
optimization; Mathematics of computing → Graph theory; Applied computing → Transportation

ISBN 978-3-95977-259-4

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-259-4.

Publication date
September, 2022

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/OASIcs.ATMOS.2022.0

ISBN 978-3-95977-259-4 ISSN 1868-8969 https://www.dagstuhl.de/oasics

mailto:mattia.demidio@univaq.it
mailto:lindner@zib.de
https://www.dagstuhl.de/dagpub/978-3-95977-259-4
https://www.dagstuhl.de/dagpub/978-3-95977-259-4
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/OASIcs.ATMOS.2022.0
https://www.dagstuhl.de/dagpub/978-3-95977-259-4
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/oasics

0:iii

OASIcs – OpenAccess Series in Informatics

OASIcs is a series of high-quality conference proceedings across all fields in informatics. OASIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Daniel Cremers (TU München, Germany)
Barbara Hammer (Universität Bielefeld, Germany)
Marc Langheinrich (Università della Svizzera Italiana – Lugano, Switzerland)
Dorothea Wagner (Editor-in-Chief, Karlsruher Institut für Technologie, Germany)

ISSN 1868-8969

https://www.dagstuhl.de/oasics

ATMOS 2022

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/oasics

Contents

Preface
Mattia D’Emidio and Niels Lindner . 0:vii–0:viii

Committees
. 0:ix–0:x

Regular Papers

An A* Algorithm for Flight Planning Based on Idealized Vertical Profiles
Marco Blanco, Ralf Borndörfer, and Pedro Maristany de las Casas 1:1–1:15

A Discrete-Continuous Algorithm for Globally Optimal Free Flight Trajectory
Optimization

Ralf Borndörfer, Fabian Danecker, and Martin Weiser . 2:1–2:13

Tropical Neighbourhood Search: A New Heuristic for Periodic Timetabling
Enrico Bortoletto, Niels Lindner, and Berenike Masing . 3:1–3:19

Greedy Algorithms for the Freight Consolidation Problem
Zuguang Gao, John R. Birge, Richard Li-Yang Chen, and Maurice Cheung 4:1–4:19

A Bilevel Model for the Frequency Setting Problem
Hector Gatt, Jean-Marie Freche, Arnaud Laurent, and Fabien Lehuédé 5:1–5:8

Dynamic Traffic Assignment for Electric Vehicles
Lukas Graf, Tobias Harks, and Prashant Palkar . 6:1–6:15

Delay Management with Integrated Decisions on the Vehicle Circulations
Vera Grafe, Alexander Schiewe, and Anita Schöbel . 7:1–7:18

Algorithms and Hardness for Non-Pool-Based Line Planning
Irene Heinrich, Philine Schiewe, and Constantin Seebach . 8:1–8:21

The Edge Investment Problem: Upgrading Transit Line Segments with Multiple
Investing Parties

Rowan Hoogervorst, Evelien van der Hurk, Philine Schiewe,
Anita Schöbel, and Reena Urban . 9:1–9:19

A Formulation of MIP Train Rescheduling at Terminals in Bidirectional
Double-Track Lines with a Moving Block and ATO

Kosuke Kawazoe, Takuto Yamauchi, and Kenji Tei . 10:1–10:18

Does Laziness Pay Off? - A Lazy-Constraint Approach to Timetabling
Torsten Klug, Markus Reuther, and Thomas Schlechte . 11:1–11:8

REX: A Realistic Time-Dependent Model for Multimodal Public Transport
Spyros Kontogiannis, Paraskevi-Maria-Malevi Machaira,
Andreas Paraskevopoulos, and Christos Zaroliagis . 12:1–12:16

22nd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2022).
Editors: Mattia D’Emidio and Niels Lindner

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

0:vi Contents

Passenger-Aware Real-Time Planning of Short Turns to Reduce Delays in Public
Transport

Julian Patzner, Ralf Rückert, and Matthias Müller-Hannemann 13:1–13:18

Efficient Algorithms for Fully Multimodal Journey Planning
Moritz Potthoff and Jonas Sauer . 14:1–14:15

Preface

Designing, deploying and managing effectively modern transportation systems require careful
mathematical modeling and give rise to a corresponding wide set of complex, and possibly
large-scale, optimization problems. Tackling such problems necessitates, from a computational
viewpoint, the definition of innovative, scalable solution techniques and the continuos search
for new ideas from mathematical optimization, theoretical computer science, algorithmics, and
operations research. Since the 2000s, the series of Algorithmic Approaches for Transportation
Modelling, Optimization, and Systems (ATMOS) workshops, now symposia, represents a
well established series of meetings that brings together researchers and practitioners who are
interested in all aspects of algorithmic methods and models for transportation optimization,
providing a forum for the exchange and dissemination of new ideas and techniques to handle
all modes of transportation.

The 22th Symposium on Algorithmic Approaches for Transportation Modelling, Optimiz-
ation, and Systems (ATMOS 2022) has been held, as usual, as part of ALGO 2022, the major
annual european event for researchers, students and practitioners in algorithms, hosted by
University of Potsdam and it Hasso Plattner Institute in Potsdam, Germany, on September 8-
9, 2022. Topics of interest were all optimization problems, models and algorithmic techniques
related to transportation systems including, but not limited to, congestion modelling and re-
duction, crew and duty scheduling, demand forecasting, delay management, design of pricing
systems, electromobility, infrastructure planning, intelligent transportation systems, models
for user behaviour, line planning, mobile applications for transport, mobility-as-a-service,
multi-modal transport optimization, routing, platform assignment, route planning in road
and public transit networks, rostering, timetable generation, tourist tour planning, traffic
guidance, vehicle scheduling. Of particular interest were papers applying and advancing
the following techniques: algorithmic game theory, algorithm engineering, approximation
algorithms, combinatorial optimization, graph and network algorithms, heuristics and meta-
heuristics, mathematical programming, methods for the integration of planning stages, online
algorithms, simulation tools, stochastic and robust optimization.

We received in total 23 submissions from all over the world, 21 of them being regular
submissions, the other 2 being of short paper type. All manuscripts were reviewed by at
least three PC members, and evaluated on originality, technical quality, and relevance to
the topics of the symposium: the unanimous impression was the excellent quality of the 14
papers that have been eventually accepted for publication and that appear in this volume
(12 regular papers, 2 short papers). Together, they quite remarkably demonstrate the wide
applicability of algorithmic optimization to transportation problems. In addition, Christian
Sommer kindly agreed to complement the program with an invited talk titled “On Map
Matching GPS Traces” that was presented as a global keynote talk of ALGO 2022.

We would like to thank the members of the Steering Committee of ATMOS for giving us
the opportunity to serve as Program Chairs of ATMOS 2022, all the authors who submitted
papers, the members of the Program Committee and the additional reviewers for their
valuable work in selecting the papers appearing in this volume, Christian Sommer for
accepting our invitation to present an invited talk, as well as Tobias Friedrich (Chair of the
ALGO 2022 Organizing Committee) and his team at Hasso Plattner Institute for hosting the
symposium as part of ALGO 2022. We also acknowledge the use of the EasyChair system
for the great help in managing the submission and review processes, and Schloss Dagstuhl
for publishing the proceedings of ATMOS 2022 in its OASIcs series.
22nd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2022).
Editors: Mattia D’Emidio and Niels Lindner

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

0:viii Preface

Finally, we are pleased to announce that, based on the program committee’s reviews
and decisions, authors Enrico Bortoletto, Niels Lindner and Berenike Masing have been
awarded this year’s “Best Paper Award of ATMOS 2022” with their paper titled “Tropical
Neighbourhood Search: A New Heuristic for Periodic Timetabling”.

August 2022

Mattia D’Emidio
Niels Lindner

Committees

Program Committee Chairs

Mattia D’Emidio University of L’Aquila, Italy
Niels Lindner Zuse Institute Berlin, Germany

Program Committee Members

Bastian Amberg FU Berlin, Germany
Moritz Baum Apple Inc., USA
Valentina Cacchiani University of Bologna, Italy
Serafino Cicerone University of L’Aquila, Italy
David Coudert INRIA and Université Cóté d’Azur, France
Gianlorenzo D’Angelo Gran Sasso Science Institute, Italy
Yann Disser TU Darmstadt, Germany
Stefan Funke University of Stuttgart, Germany
Christian Liebchen TH Wildau, Germany
Matúš Mihalák Maastricht University, Netherlands
Joseph S. B. Mitchell Stony Brook University, USA
Matthias Müller-Hannemann MLU Halle-Wittenberg, Germany
Philine Schiewe TU Kaiserslautern, Germany
Pieter Vansteenwegen KU Leuven, Belgium
Christos Zaroliagis CTI and University of Patras, Greece

Steering Committee

Alberto Marchetti-Spaccamela Sapienza University of Rome, Italy
Marie Schmidt Erasmus University Rotterdam, Netherlands
Anita Schöbel Georg-August-Universität Göttingen, Germany
Christos Zaroliagis (chair) University of Patras, Greece

Organizing Committee

Tobias Friedrich (OC chair) University of Potsdam, Germany
Grzegorz Herman (Proceedings chair) Jagiellonian University Kraków, Poland
Simon Krogmann University of Potsdam, Germany
Timo Kötzing University of Potsdam, Germany
Gregor Lagodzinski University of Potsdam, Germany
Pascal Lenzner University of Potsdam, Germany

22nd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2022).
Editors: Mattia D’Emidio and Niels Lindner

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

0:x Committees

List of Subreviewers
Julia Baligacs
Francesco Corman
Andrea D’Ascenzo
Esmaeil Delfaraz
Twan Dollevoet
Arnaud Labourel
Marco Locatelli
Spyros Kontogiannis
Alfredo Navarra
Martin Olsen
Andreas Paraskevopoulos
Pavan Poudel
Kevin Schewior
Marie Schmidt
Rolf van Lieshout
Yihui Wang

An A* Algorithm for Flight Planning Based on
Idealized Vertical Profiles
Marco Blanco1 #

Lufthansa Systems GmbH & Co. KG, Raunheim, Germany
Zuse Institute, Berlin, Germany

Ralf Borndörfer #

Zuse Institute, Berlin, Germany

Pedro Maristany de las Casas #

Zuse Institute, Berlin, Germany

Abstract
The Flight Planning Problem is to find a minimum fuel trajectory between two airports in a 3D
airway network under consideration of the wind. We show that this problem is NP-hard, even in
its most basic version. We then present a novel A∗ heuristic, whose potential function is derived
from an idealized vertical profile over the remaining flight distance. This potential is, under rather
general assumptions, both admissible and consistent and it can be computed efficiently. The method
outperforms the state-of-the-art heuristic on real-life instances.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms; Mathematics
of computing → Paths and connectivity problems; Mathematics of computing → Combinatorial
optimization; Mathematics of computing → Discrete optimization

Keywords and phrases shortest path problem, a-star algorithm, flight trajectory optimization, flight
planning, heuristics

Digital Object Identifier 10.4230/OASIcs.ATMOS.2022.1

1 Introduction

The Flight Planning Problem (FPP) seeks to compute a flight trajectory between two airports
that minimizes fuel consumption. In this paper we consider a basic version subject to weather
conditions, aircraft performance, and an airway network.

Weather forecasts for flight planning are usually provided on a 4D grid, which specifies a
wind vector for each coordinate, altitude, and time. These data can be interpolated on all
4 dimensions to obtain a single wind vector acting on each flight segment, see [4] for more
details. For the purposes of this paper, it suffices to think of wind as a function that maps
time to an effective air distance that is needed to traverse a given segment.

Aircraft performance specifies how the state of the aircraft changes as a function of the
flight phase and various parameters. Namely, for the current weight, the current altitude, the
target distance, and the local wind condition, the performance function computes the weight
after a cruise, climb, or descent phase along a flight segment. For cruise phases, the influence
of the wind can be subsumed into the distance to the cruise target. The fuel consumption
is then the weight difference, while the cruise time can be easily calculated from the speed
(which we assume here to be constant) and the distance. For climbs and descents, distance,
consumption, and time are more difficult to compute, since they depend on the vertical
angle, which in turn depends on the aircraft weight. In accordance with the literature, see,
e.g., [15], we assume that, ceteris paribus, a higher weight results in a higher consumption,

1 Corresponding author

© Marco Blanco, Ralf Borndörfer, and Pedro Maristany de las Casas;
licensed under Creative Commons License CC-BY 4.0

22nd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2022).
Editors: Mattia D’Emidio and Niels Lindner; Article No. 1; pp. 1:1–1:15

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:blanco@zib.de
mailto:borndoerfer@zib.de
mailto:maristany@zib.de
https://doi.org/10.4230/OASIcs.ATMOS.2022.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

1:2 An A* Algorithm for Flight Planning Based on Idealized Vertical Profiles

Figure 1 Vertical profile on a flight from Amsterdam to Santiago. The blue graph represents the
aircraft’s altitude over time. Image obtained from FlightRadar24.com on the 9th of July 2021.

that cruising is in general more efficient as the altitude increases, until an optimal cruise
altitude is reached, and that a smaller aircraft weight results in a steeper climb/descent angle.
Moreover, a climb between two given altitudes might not be possible if the aircraft weight
exceeds a certain threshold. These properties produce a vertical profile shape that is known
as step-climb. Namely, to fly efficiently, an aircraft climbs from the departure airport to the
highest altitude reachable in a single climb. Then, it cruises on this altitude until it has
burned enough fuel and is light enough to climb further. This is repeated until the optimal
cruise level is reached. Finally, the aircraft needs to start the final descent. See Figure 1 for
a real-life example.

The Airway Network is a directed graph with a three-dimensional embedding covering
the airspace around the Earth. It arises from a set of waypoints (2D coordinates) connected
by airway segments (straight lines) on a set of discrete flight levels (altitudes); airports
are a modeled as a particular type of waypoints. The horizontal profile of a legal flight
trajectory must consist of a contiguous sequence of airway segments connecting the two
airports. Vertically, cruise phases are only allowed on one of the flight levels, while a climb
or descent phase must be started at a waypoint (it cannot be started from the interior of a
segment, but can and usually does end in the interior).b

The literature on the FPP varies greatly in the extent and depth at which the technical
aspects of the problem are treated. [6] is an extensive work that goes into great detail. To
the best of our knowledge, it presented the first dynamic programming algorithm which runs
on a 3D graph. [9] uses a dynamic programming approach to minimize fuel consumption
during the cruise phase for a fixed horizontal route. [18] computes a trajectory on a search
space where the horizontal route is not restricted by waypoints and segments by splitting
the problem into a horizontal and a vertical component, which are solved sequentially using
dynamic programming approaches. [12] gives a realistic and detailed survey of the most
relevant cost components and restrictions, as well as an excellent review of previous work.
The authors sketch some possible ways of solving the problem, such as decomposition into
horizontal and vertical optimization (2D+2D) or 4D search, all on a high level.

The FPP can be seen as a special route planning problem. In this domain, A* algorithms
achieve excellent running times. The main idea of these algorithms is to guide a Dijkstra-like
search towards the potential function which is built in a preprocessing stage. Potential
functions map the nodes of the graph onto estimates that bound the cost of a shortest path

b In practice, the final descent to the destination airport is an exception, since it can be started everywhere.
In this work, we ignore this exception for the sake of simplicity and without a significant impact on the
results.

M. Blanco, R. Borndörfer, and P. Maristany de las Casas 1:3

to the target node from below. There is extensive literature that focuses on the task of
computing such heuristic functions and thus designing A* algorithms for routing on (time
dependent) road networks [7, 1, 22], routing for electric vehicles [2], or in multiobjective
scenarios [16, 17].

A* algorithms have also been considered for the FPP. A series of papers by a group from
the University of Southern Denmark studies the problem in a very realistic way, presents new
algorithms, and tests them on real-world data: [13] optimizes the vertical profile of a given
2D-route by a simple A* algorithm whose lower bounds are calculated from the minimum
consumption on each arc. It also shows that even though the FIFO propertyc does not
hold due to the unpredictable nature of weather, the Dijkstra algorithm in practice nearly
always finds an optimal solution. [14] provides an algorithm to solve flight planning under
consideration of traffic restrictions, for the case of a constant flight altitude. It is based on
storing multiple labels per node/altitude pair. [11] discusses the free-route case, where the
flight area is not limited by an Airway Network. The most relevant article for our work is
[15]. It considers the same setting as ours plus flight restrictions, which are handled by the
algorithm from [15]. The main contribution of the paper are two variants of an A∗-type
algorithm on a three-dimensional graph, called All Descents and Single Descent. The first
one uses very conservative lower bounds on the arc lengths, which are used for a backwards
search that defines the potentials; these are both admissible and consistent under the FIFO
assumption. The Single Descent algorithm calculates the potentials partially before the start
of the search and partially during the expansion of the labels. It is much faster than the
All Descents variant, but the potentials are neither admissible nor consistent. However, the
computational results testify a very small error on real-world instances. We will use the
Single Descent algorithm as a benchmark in our computations.

This paper builds on our previous work [4], which investigates the FPP restricted to a
constant altitude. It presents a method for calculating lower bounds on travel-time on arcs
by using a concept called super-optimal wind. This in turn is used to construct potentials for
an A* algorithm.

While the addition of altitudes requires a much more sophisticated approach, the distance
underestimation techniques of [4] are a critical component of our new algorithm. [3] presents
a heuristic that handles complex overflight costs by reducing them to classical costs on arcs
by solving a Linear Program. This approach can be trivially combined with most others,
including the one we present. Finally, [21] also investigates a horizontal variant of the FPP,
which considers both weather and overflight costs. It introduces efficient pruning techniques
that reduce the graph before the start of the search algorithm. These techniques can also be
easily incorporated in a step preceding an A* search.

The FPP is a time-dependent shortest path problem on the Airway Network subject to
weather conditions and aircraft performance. We show that it is NP hard, a basic fact that,
as far as we know, has hitherto not been noted. As such, the FPP cannot be solved by a
Dijkstra-type label setting algorithm. However, as this approach is efficient and produces
excellent results, it is commonly used in practice and also as our benchmark in this paper.
In this vein, we present an A*-algorithm that improves on Dijkstra’s algorithm. Its potential
function is the cost of an idealized vertical trajectory over a lower bound of the total remaining
flight distance. The construction of this idealized trajectory is based on the above mentioned
assumptions about optimal vertical profiles. We show that it can be calculated efficiently
on-the-fly, during the label expansion, and further sped-up by a pre-calculation of parts of

c The FIFO property states that early arrival is always beneficial.

ATMOS 2022

1:4 An A* Algorithm for Flight Planning Based on Idealized Vertical Profiles

the climb phase that depends only on the aircraft type, i.e., the aircraft performance function.
This leads to a fast algorithm, which is essential in order to account for the latest weather
forecast and the newest flight restrictions. On a set of real-world instances, our approach is
on average 7-10 times faster than Dijkstra’s algorithm and 30-40% faster than the Single
Descent algorithm of [15].

The paper is structured as follows. In Section 2 we present a mathematical model of the
Flight Planning Problem (FPP) that generalizes the Time-Dependent Shortest-Path-Problem
(TDSPP). We also present the first NP-hardness proof for the FPP; this proof extends to
a large family of TDSPPs. Section 3 presents an A*-algorithm for the FPP. Its potential
function computes the cost of an idealized vertical profile over a lower bound of the total
remaining flight distance. Under certain assumptions on aircraft performance, this potential
is admissible and consistent, and it can be computed efficiently. In Section 4, we compare
our implementations of the new A*-algorithm, Dijkstra’s algorithm, and the Single Descent
algorithm. The results show that the potential calculation pays off by drastically reducing
the number of expanded labels and the runtime. They also show that our consistency
assumptions are satisfied to a reasonable degree.

2 The Flight Planning Problem

We represent the Airway Network by a directed graph G = (V, A). Each waypoint gives rise
to multiple nodes, corresponding to the different flight levels H; denote by h(v) ∈ H the
flight level of node v. We assume that the departure and the arrival airport are located not
on the ground but on the lowest flight level h0

d. Likewise, each segment gives rise to multiple
arcs: One cruise arc for each flight level and one climb or descent arc for each combination of
two flight levels. We assume that the highest flight level is the optimal cruise level, since it
does not make sense to fly higher. Both aircraft performance functions and wind are handled
by a propagation function τ : W ×T ×A→ (W ∪{∞})×T ; here, W ⊂ R is a set of weights,
∞ represents an infeasible state, and T ⊂ R a set of times. Then, the propagation function
maps the state of the aircraft at the tail of an arc to its state after traversing the arc. We
assume the following propagation properties.

▶ Assumption 1. Let τ : W × T × A → (W ∪ {∞}) × T be a propagation function. For
w1, w2 ∈W , t ∈ T , a1, a2 ∈ A, τ (w1, t, a) = (w1, t1), and τ (w2, t, a) = (w2, t2), it holds:
i) w1 > w1 and t < t1,
ii) w1 < w2, a1 = a2 =⇒ (w1 − w1) < (w2 − w2),
iii) w1 = w2, a1, a2 cruise arcs with a2 on a higher level =⇒ (w1 − w1) > (w2 − w2),
iv) ceteris paribus, a descent burns less fuel than a cruise, which burns less than a climb,

and a direct descent, if possible, is the most economic way to reach the destination.
v) For fixed a ∈ A, t ∈ T , the air distance along a at time t (i.e. the effectively traversed

distance, after consideration of wind) is proportional to w1 − w1.
i) states that traversing an arc decreases the weight (by burning fuel) and increases time.
ii) means that fuel consumption increases with weight. iii) says that fuel consumption on a
cruise phase decreases with altitudee, iv) is clear. v) states that consumption increases with
air distance, which is very intuitive. With these definitions, the FPP can be stated as follows.

d In our data, this corresponds to an altitude of 300m; the final descent ends on FL h0.
e Recall that we assume that the highest flight level is the optimal one.

M. Blanco, R. Borndörfer, and P. Maristany de las Casas 1:5

▶ Definition 1. Let G = (V, A) be a an Airway Network and vDEP , vDEST ∈ V be the nodes
corresponding to the departure and destination airports, respectively. Let t0 ∈ T and w0 ∈W

be the weight and time at departure, and τ : W ×T ×A→W ×T a propagation function. The
Flight Planning Problem (FPP) seeks to find a path ((v0, v1), (v1, v2), . . . , (vn−1, vn)) ⊂ A, n ∈
N, and corresponding sequences of weights (w0, w1, . . . , wn) ⊂W and times (t0, t1, . . . , tn) ⊂
T . It must hold that v0 = vDEP , vn = vDEST , w0 = w0, t0 = t0, and τ (wi, ti, (vi, vi+1) =
(wi+1, ti+1)) ∈ W × T for each arc (vi, vi+1) in the path. The objective is to minimize
w0 − wn.f

While some variants of the FPP investigated in the literature are solvable in polynomial
time [4] under certain assumptions, others are clearly NP-hard ([14], [5]). [13] notes that the
FIFO property does not hold under the presence of wind, but that by itself does not have
any implications on the computational complexity of the problem.

In this section, we show that the version of the FPP considered in this paper is NP-hard,
even without consideration of wind. We first note that the weight parameter in the FPP is
equivalent to the time parameter in the classical Time-Dependent Shortest Path Problem
(TDSPP), such that we can think of fuel propagation functions as traversal-time functions.
It is well known that the FIFO property is a sufficient but not a necessary condition for the
TDSPP to be solvable in polynomial time, while [20] gave the most widely cited proof that
the TDSPP can be NP-hard in non-FIFO networks. They construct travel time functions
on a finite domain that have a constant value except for one point. As our fuel propagation
functions do not have this structure, [20]’s argument cannot be applied. The same holds for
the proof in [23]. To the best of our knowledge, no other published proofs would apply to the
FPP. We therefore give a new simple NP-hardness proof based on a more general argument.

Consider the situation in Figure 2. Essentially, an arc representing a climb can sometimes
only be flown if the aircraft’s weight is small enough, as otherwise the higher level cannot
be reached before the end of the segment represented by the arc. In other words, the
consumption given by τ on this arc is finite for weights up to a certain value and jumps to
infinity for weights above that value. The phenomenon in Figure 2 is not as contrived as
it may seem. To give the reader an idea of the variability of the climb angle: An Airbus
A340 with a typical weight of 200t needs roughly 150km of horizontal flight to climb from
5000m altitude to 10000m altitude. Around this weight, an increase of 1kg roughly leads to
an increase of 1m in horizontal distance. The FPP is thus a generalization of the TDSPP
that allows at most one jump discontinuity in each travel time function, while the proof in
[20] assumes two.

▶ Theorem 2. If traversal time functions are allowed to have at most one jump discontinuity,
the TDSPP is NP-Hard.

Proof. Inspired by [10], we do a reduction from the Exact Path Length (EPL) problem, which
is NP-hard according to [19]. Consider a directed graph G = (V, A) with non-negative lengths
on the arcs c : A → [0,∞), two nodes s, t, and L > 0. The EPL consists of determining
whether an (s, t)-path of length L exists. For the reduction, we define travel time functions
on G as follows. Let M ≫ 0 be a very large number. Without loss of generality we assume
that the departure time is 0. For each a ∈ A and τ ∈ [0,∞), and using h(a) to denote the

f Of course, since w0 is constant, this is equivalent to maximizing wn.

ATMOS 2022

1:6 An A* Algorithm for Flight Planning Based on Idealized Vertical Profiles

v1
1 v1

2

v2
1 v2

2

Figure 2 The green profile represents a climb along a segment and between two levels. The climb
is steep enough that the higher level is reached before the end of the segment, and the aircraft can
cruise until reaching node v2

2 . This climb is represented in the graph by the blue arc (v1
1 , v2

2). The red
profile shows a climb started with a higher weight. This leads to a flatter climb, making it impossible
to reach v2

2 . Thus, when starting with this weight, the blue arc has an infinite consumption.

head of a, we define g

T (a, τ) =
{

M if a = (v, t), τ < L− c(a)
c(a) else.

If the last arc a = (v, t) of any (s, t)-path is entered at time τ < L− c(a), the objective
value will be larger than M . Thus, L is the smallest possible arrival time, and if a path with
this arrival time exists, the TDSPP will find it. Clearly, any path with travel time L also has
length L, and vice-versa. Consequently, feasible solutions of the EPL problem correspond to
optimal solutions for the TDSPP constructed above. This completes the reduction. ◀

3 An A* Algorithm based on Idealized Vertical Profiles

3.1 The state of the art
Recall that an A* algorithm is based on a potential function π : V → R ∪ {∞}. π is said
to be admissible if π(v) is a lower bound on the costs from v to the target for v ∈ V . It is
consistent if π(u) − π(v) ≤ c(u, v) for (u, v) ∈ A, where c is the cost function. Given that
π(t) = 0 for the target t, which we can and henceforth will assume w.l.o.g., consistency implies
admissibility, and a consistent and admissible potential guarantees that an A∗ algorithm
finds the same solution as Dijkstra’s algorithm. Tight, consistent potentials lead to a faster
A∗ algorithm. The Single Descent (SD) algorithm of [15] pursues such an idea for the FPP:
For each segment, a lower bound on the fuel consumption over it is computed as a cruise on
the optimal flight level, with the optimal wind conditions, and the minimum possible aircraft
weight. On a 2D projection, a backwards Dijkstra search from the destination airport is
done w.r.t. these arc costs. The resulting distances are used as initial potentials. In the
forward search during the expansion of each label, a descent from that label to the ground
is calculated and the corresponding consumption is added to the initial potential. Since
the distance traversed by that descent is now covered both by a cruise (initial potential)
and a descent (first correction), a second and final correction step is made: The distance of
that descent is traversed from the label in cruise mode, and this consumption is subtracted
from the preliminary potential, thus defining the final potential.h Despite the resulting
potentials being neither admissible nor consistent, the ensuing, label-setting, SD algorithm

g Note that this step function does not satisfy the FIFO property, despite similar functions in the literature
preserving it, such as [8].

h This is how we interpret the algorithm. Unfortunately, the paper is not very detailed, in particular,
w.r.t. the construction of the lower bounds.

M. Blanco, R. Borndörfer, and P. Maristany de las Casas 1:7

is very effective in practice and marks the current state-of-the-art. Our motivation for
improvement is that the initial potentials can be very loose for labels that are far away from
the destination, since SD assumes a very low weight and no climbs. This can lead to a
significant underestimation of the consumption. The on-the fly correction in the forward
search mitigates this problem, but does not resolve it completely.

3.2 Basic framework

We propose an A* algorithm based on a simple ideai. In practice, flight routes are constrained
by the airway network and by wind conditions. If neither of these existed, but cruise phases
were still constrained to flight levels, and the routes would always follow the step-climb
pattern, see again Figure 1. Namely, the horizontal route component would be the great-circle
line connecting both airports, while the vertical route component would consist of a series of
climb-cruise-climb sequences up to the optimal flight level. There, the aircraft would cruise
until the final descent is started, which would take it straight to the destination airport.
The consumption arising from this idealized vertical profile (IVP) on a lower bound on the
flight distance is an admissible (and, as it will turn out, also consistent) potential for an
A∗ algorithm. Calculating the IVP during the search is too costly, as the decrease in the
number of labels would be offset by the effort to compute the potentials. However, it will
turn out that this problem can be overcome by a combination of preprocessing and on-the-fly
calculations. A formal description is as follows.

A crucial element is the distance underestimation. The results in this section are
of a general nature and the specific type of underestimation is not important. In our
implementation, we will obtain using the technique introduced in [4] (“super-optimal” wind
calculations combined with a backwards search).

▶ Definition 3. Let cIVP(w, h, d, hT) be the minimum amount of fuel that is needed to fly,
assuming no wind influence, the distance d by doing some combination of climb/cruise/descent
phases, starting at altitude h with weight w, and finishing at altitude hT ; if the distance
is too short to reach the target altitude, it is the amount of fuel that is needed to make an
immediate descent to the target altitude; if the target cannot be reached, it is infinity. In
the first two cases, the vertical profile pIVP(w, h, d, hT) of the associated trajectory is called
idealized vertical profile (IVP).

▶ Assumption 2. Every IVP consists of a finite and alternating series of climb and cruise
phases followed by a single descent phase.

▶ Assumption 3. cIVP(w, h, d1, hT) ≤ cIVP(w, h, d2, hT) for distances d1 ≤ d2.

In other words, Assumption 2 means that the IVP looks like the one in Figure 1. It also
implies that the highest level reached by the IVP is at most the aircraft’s optimal cruise
altitude.j Assumption 3 means that, ceteris paribus, longer trajectories are more expensive.

▶ Proposition 4. For an FPP and v ∈ V , consider a (vDEP , v)-path in G that reaches v

with weight w at time t. Let h(v) be the flight level at v. Let d be a lower bound on the
distance from v to vDEST obtained by a backwards search from vDEST using lower bounds

i The algorithm is label-setting and necessarily heuristic, as the FPP is NP hard.
j See Section 2 for the definition of the optimal cruise altitude.

ATMOS 2022

1:8 An A* Algorithm for Flight Planning Based on Idealized Vertical Profiles

on the (time-dependent) arc distances as costs; recall that h0 is the lowest flight level. Then
the function

c : V ×W → [0,∞], (v, w) 7→ cIVP(w, h(v), d, h0)

is admissible and consistent. k

Proof. Admissibility follows from Assumptions 2 and 3, as well as part v) of Assumption 1.
Indeed, the air distance traversed by the best possible trajectory following any (v, vDEST)-
path in G is at least d, and its vertical profile is constrained by starting climbs only over
waypoints. Hence, it burns more fuel than the IVP pIVP(v, w, d, h0).

For consistency, consider an arc (u, v) ∈ A, a weight wu, and a time tu. Traversing
the arc with the initial state (wu, tu) leads to the state τ (wu, tu, (u, v)) = (wv, tv), so the
consumption on the arc is wu − wv. We must thus prove c(u, wu)− c(v, wv) < wu − wv.

Let du and dv be the lower bounds used to calculate the potentials c(u, wu) and c(v, wv)
from IVPs pIVP(wu, h(u), du, h0) and pIVP(wv, h(v), dv, h0) and let d(u, v, wu, tu) be the
actual air distance traversed on (u, v). We now distinguish three cases; Case 1 is the standard
“en route” case, Cases 2 and 3 come up close to the destination, when the lower bound on
the remaining distance becomes small.
Case 1: Neither pIVP(wu, h(u), du, h0) nor p(wv, h(v), dv, h0) are immediate descents. Then

c(u, wu) = cIVP(wu, hu, du, h0) ≤ cIVP(wu, hu, d(u, v, wu, tu) + dv, h0)
≤ wu − wv + cIVP(wv, hv, dv, h0)
= wu − wv + c(v, wv),

where the first inequality follows from the triangle inequality du ≤ d(u, v, wu, tu) + dv for
distance lower bounds and Assumption 3, and the second from the optimality of the IVP
pIVP(wu, hu, d(u, v, wu, tu) + dv, h0), which burns at most the same amount of fuel as the
concatenation of (u, v) and the IVP pIVP(wv, h(v), dv, h0).

Case 2: Only pIVP(wv, h(v), dv, h0) is an immediate descent. The same argument as in Case
1 applies, since the total distance traversed on (u, v) and then on the descent from v will
be longer than the distance traversed by the IVP starting at u.

Case 3: pIVP(wu, h(u), du, h0) is an immediate descent. Now the relative lengths of lower
bounds on the traversed air distances are unclear, because a descent is steeper with a
lower weight, possibly causing the profile via v to end up with a smaller distance bound.
However, we can use Assumption 1 iv) on aircraft performance which implies that a direct
descent burns less fuel than any other combination of flight phases leading to the same
altitude. ◀

3.3 Calculation of the Idealized Vertical Profile
In the previous section, we proved that the A∗ potentials calculated using the IVP method
are admissible and consistent under consideration of two assumptions. Now, we sketch how
these potentials can be computed in practice.

Assumption 2 states that an IVP follows a step-climb procedure until reaching the highest
level that allows a direct descent to the ground. Each cruise in this profile is just long enough
to burn enough fuel to reach a weight that allows a further climb. Once the highest level is
reached, the aircraft cruises until the point where it starts the final descent.

k We define admissibility and consistency for a function with domain V × W in the canonically extended
way. It is easy to see that all known properties still hold.

M. Blanco, R. Borndörfer, and P. Maristany de las Casas 1:9

To speed-up the first part of the calculation we observe that the weight at the end of
a cruise and at the start of a subsequent climb is constant for a fixed flight level. This is
because, by definition, this is the largest weight that allows starting a climb from that level.
Similarly, the distances of each such phase are constant. This allows us to pre-compute, for
each pair of levels, the total consumption and total distance corresponding to a step climb
between these levels, as well as the weight at the start of this step-climb.

The second phase of the calculation, consisting of a single cruise followed by a descent,
is trickier. The reason is that the cruise distance plus the descent distance must equal the
remaining distance, but the descent distance depends on the weight at its start, which in
turn depends on the length of the cruise. In practice, the top of descent is computed by an
iterative procedure that progressively adjusts the cruise distance until a total cruise+descent
distance is reached that is close enough to the target distance. This procedure can be very
time-consuming, which makes it another good candidate for pre-computation. The difficulty
is that more parameters are involved than in the step-climb case: Both the weight before the
cruise-descent and the remaining distance are unclear.

We solve this problem in the following pre-processing step: For each flight level, we
calculate the maximum descent distance from that level to the ground. We then consider a
discretization of the complete weight range (that is, from the aircraft’s dry operating weight
to its maximum take-off weight). For each weight in this discretization, we compute the
(time-consuming) IVP on the remaining distance.

The complete calculation of the potentials is described in Algorithm 1 for a weight w, a
flight level h, and a remaining distance d. In a nutshell, we compute the IVP as described
above. Step-climbs are not calculated on-the-fly, instead we use the pre-calculated data.
Near the destination airport, we use the second batch of pre-calculated data and interpolate
the weight; of course the potential is only admissible and consistent if this discretization is
fine enough. The step in line 3 is the most expensive part of the algorithm, but it needs to
be calculated only for nodes that are very close to the destination airport.

4 Computational Results

In this section, we benchmark the performance of our A* algorithm using potentials from
Idealized Vertical Profiles (IVP) against Dijkstra’s algorithm (D) and the Single Descent
algorithm (SD). In case of Single Descent, our implementation tries to follow the description
in [15] as far as we could, filling in some gaps using our best judgement. To make the
comparison fair, all algorithms use the same data structures, in particular, the same priority
queue, such that the only difference is in the calculation of the potentials; for Dijkstra’s
algorithm, there are of course none. The programming language is C++, compiled with
GCC 7.5.0. All computations were performed on a machine with 95 GB of RAM and an
Intel(R) Xeon(R) Gold 5122 processor with 3.60GHz and 16.5 MB cache.

4.1 Instances
The airway network, the weather, and the aircraft performance data were provided by our
industrial partner Lufthansa Systems. The airway network consists of 410387 waypoints,
878884 airway segments, and 232 flight levels. A naive construction would result in a
graph with over 95 million (410387×232) nodes and over 47 billion (878884×232×231)
arcs. However, a large majority of those nodes and arcs are not flyable, for example due
to the waypoints and segments not available on the corresponding altitudes, or because

ATMOS 2022

1:10 An A* Algorithm for Flight Planning Based on Idealized Vertical Profiles

Algorithm 1 Potential calculation.

Require: w, h, d, max. descent distance function dmax(·), preprocessed step-climb- and final
descent data.

1: w0 = w

2: if d < dmax(h) then
3: Calculate the IVP from this point by evaluating all possible step climbs followed by

on-the-fly final descent iterations. If the distance is too short, do a simple descent.
4: w ← w−IVP consumption
5: else
6: Climb to the highest level h1 that is reachable and satisfies

d− climb distance ≤ dmax(h1)

7: w ← w−climb consumption
8: d← d−climb distance
9: h← h1

10: if it’s not possible to climb further then
11: Read from the precalculated results what is the maximal weight on this level that

allows a climb. Cruise until that weight is reached.
12: w ← w−cruise consumption
13: d← d−cruise distance
14: There is a set of pre-calculated step-climbs starting at the h with weight w.
15: Choose the maximal h2 such that the step-climb to h2 satisfies

d− step-climb distance ≤ dmax(h2)

16: w ← w−step climb consumption
17: d← d−step climb distance
18: h← h2
19: end if
20: Cruise until d−cruise distance = dmax(h)
21: w ← w−cruise weight
22: d← d−cruise distance
23: In the weight discretization, find the closest weights w1, w2 s.t. w1 ≤ w ≤ w2
24: Let c1 be the pre-computed consumption for w1, h and c2 the pre-computed

consumption for w2, h.
25: w ← w − w−w1

w2−w1
c2 + w2−w

w2−w1
c1

26: end if
27: return w0 − w

the segment is too short for a given climb. Furthermore, the availability of certain arcs
depends on the current weight, further complicating things. In our implementation, we
generate the graph dynamically, therefore it is difficult to give an absolute graph size. We
use propagation functions for two aircraft models, an Airbus A320 (suitable for short-haul
flights) and an Airbus A340 (used for middle- to long-haul flights), derived by interpolation
from corresponding tables. Unfortunately, this data, which consists of tables with millions
of entries, is only an approximation of the real performance functions. It turns out that
Assumption 2 is prevalent, but not always satisfied. This breaks consistency of the IVP

M. Blanco, R. Borndörfer, and P. Maristany de las Casas 1:11

algorithm such that it does not necessarily find the same solution as Dijkstra’s. However,
our computational results show that the resulting gap between Dijkstra’s and the IVP
A*-algorithm is mostly extremely small or non-existent, i.e., this data problem is marginal.

The OD-pairs were defined in the same way as in [15]. For the long-haul test set, we
chose a set of 20 major airports evenly distributed around the globe. All pairs with great-
circle-distances between 4000km and 11000km were considered, resulting in 202 ordered pairs.
For the short-haul test set we did the same thing on the basis of a set of 19 major airports
in Europe, using 500km and 4000km as distance bounds. This results in 294 ordered pairs.
We calculate the short-haul flights with the A320 and the long-haul ones with the A340.

To define the take-off weight, we run Dijkstra’s algorithm once on each instance, starting
with the maximum possible amount of fuel. We multiply the resulting consumption by 1.2
and fix this number as the amount of fuel at take-off.

4.2 Methodology
As is customary in the shortest-path literature, we separate runtimes into two categories:
Those in a preprocessing phase, which is instance-independent, and those in a query phase,
which includes the shortest path calculation and all instance-dependent preprocessing stages.
We ignore the runtime of procedures that are identical across all variants. This includes the
construction of the graph, the initialization of the search algorithm, etc. More precisely:
Dijkstra’s algorithm (D) does not need any preprocessing. For Single Descent (SD), we
consider the calculation of the minimum cruise consumption on each arc as a preprocessing
operation, as dependent only on the aircraft and the weather forecast, but not on the OD-pair.
The backwards search to determine the potentials is included in the query time. Idealized
Vertical Profiles (IVP) require a substantial preprocessing phase for the pre-calculation of
step-climbs and final-descent stages, for which we choose a weight discretization with steps
of 1000kg. This preprocessing effort depends only on the aircraft, but not on the weather
forecast, and not on the OD-pair. It therefore can be done once for each aircraft, which makes
the associated preprocessing time irrelevant. For the sake of completeness, we nevertheless
report it. As with SD, the backwards search to determine the minimum distance from
each node to the destination is included in the query time. Both SD and IVP require the
calculation of lower bounds on the air distance for which we use the super-optimal wind
technique from [4]. Since these computations are identical for both algorithms, we omit them.
We run each calculation thrice and report the smallest time.

4.3 Results
Figures 3 and 4 show the query times of all three algorithms. The results are summarized in
Tables 1 and 2 (short-haul and long-haul instance sets, respectively). For each statistic, we
list both the arithmetic mean (ar mean) and the geometric mean (geo mean). The names
used for the statistics are self-explanatory with the possible exception of nr. labels. This is
the total count of labels that were expanded during the search.

The query times of both SD and IVP are far superior to Dijkstra’s algorithm. Furthermore,
IVP outperforms SD by roughly 5-12% on the short-haul instances and by 33-40% on the
long-haul instances. As one would expect, the number of labels expanded by IVP is much
smaller than that of the other two algorithms. This reduction is so significant that the
expensive potential calculations are compensated. The cost of these calculations can best be
seen by observing the number of labels expanded in the long-haul instances. IVP expands
around 243k labels on average (geometric mean), which is less than half of those expanded
by SD, while the speedup is 1.76 (geometric mean).

ATMOS 2022

1:12 An A* Algorithm for Flight Planning Based on Idealized Vertical Profiles

Figure 3 Short-haul runtimes. Figure 4 Long-haul runtimes.

Table 1 Computational results on the short-haul instances.

D SD IVP
preprocessing (s) - 0.19 11.16

ar mean geo mean ar mean geo mean ar mean geo mean
query (s) 11.11 8.71 1.56 1.20 1.47 1.05
cost (kg) 4096.26 3698.07 4107.08 3709.44 4096.27 3698.07
nr. labels 472528.44 379276.36 50298.22 33548.52 41580.47 19310.30

query speedup w.r.t. D (s) - - 9.55 7.33 9.64 7.44
query speedup w.r.t. D (×) - - 8.06 7.24 9.72 8.33

cost gap (kg) - - 10.81 0.00 0.01 0.00
cost gap (%) - - 0.31 0.00 0.00 0.00

labels (% of D) - - 10.09 8.85 7.11 5.09

As can be seen in Figures 3 and 4, but also in the tables, the speedup of IVP w.r.t SD is
much more pronounced in the long-haul instances. This is to be expected for various reasons:
One is that in SD, both the cruise consumption estimation and the descent consumption are
much nearer to the actual consumptions when flying close to the destination airport, which
is the case for a big part of the search on short-haul flights. Another reason is that IVP does
more expensive calculations in the area close to the destination airport – the proportion of
this area to the whole search space is much larger in the short-haul case.

The preprocessing time of IVP (72s in the long-haul case) is definitely longer than that of
SD but still very manageable, especially considering that it needs to be done only once per
aircraft model. In practice, airlines acquire new aircraft so seldom that even a preprocessing
time of several days would be acceptable.

Concerning the quality of the solutions: As expected (see Section 4.1), the gapl between
the values returned by IVP and Dijkstra is not always zero, meaning that, for the data
available to us, the IVP potentials are not consistent. Nevertheless, both IVP and SD yield

l We do not say optimality gap since Dijkstra is not guaranteed to be optimal due to the NP-hardness of
the problem.

M. Blanco, R. Borndörfer, and P. Maristany de las Casas 1:13

Table 2 Computational results on the long-haul instances.

D SD IVP
preprocessing (s) - 0.20 71.86

ar mean geo mean ar mean geo mean ar mean geo mean
query (s) 65.78 57.03 18.52 12.87 12.33 7.30
cost (kg) 57086.24 55678.96 57100.34 55693.62 57099.54 55690.96
nr. labels 2637588.37 2340711.69 686281.66 504259.75 418759.61 243834.10

query speedup w.r.t. D (s) - - 47.26 41.08 53.45 46.77
query speedup w.r.t. D (×) - - 5.36 4.43 11.36 7.81

cost gap (kg) - - 14.09 0.00 13.30 0.00
cost gap (%) - - 0.03 0.00 0.02 0.00

labels (% of D) - - 24.84 21.54 14.56 10.42

results of a very good quality. For both variants and both test cases, the geometric mean of
the gap w.r.t. Dijkstra is 0.00%, meaning that the gap is extremely small except for a few
outliers. Finally, the arithmetic mean shows a small improvement of IVP over SD, especially
on short-haul instances.

Another possible reason is the weight discretization used for calculating the consumption
in the last section of the IVPs. However, a discretization of 1kg instead of the 1000kg used
in our calculations did not yield a noticeable improvement in the solutions’ quality, while
slightly increasing the runtime of both queries and preprocessing. Thus, it is not included in
the presented results.

5 Conclusion

In this paper, we investigated the Flight Planning Problem (FPP), which is a generalization
of the Time-Dependent Shortest-Path Problem (TDSPP). We presented the first proof of its
NP-hardness, which extends to a more general family of TDSPP variants.

We also introduced an A∗ algorithm based on potentials derived from Idealized Vertical
Profiles (IVPs). We showed that, under reasonable theoretical assumptions on the aircraft
performance functions, IVP potentials are both admissible and consistent, such that a
corresponding A* algorithm finds the same solution as Dijkstra’s algorithm. We show that
IVP potentials can be calculated efficiently by a combination of preprocessing and on-the-fly
computations.

Our computational results on real-world instances show that the effort to calculate IVP
potentials pays off and results in a significant improvement of the overall query time as
compared to the state-of-the-art Single Descent algorithm introduced in [15]. Indeed, we
obtain a speed-up of up to 40% and a smaller consistency gap.

References
1 Hannah Bast, Daniel Delling, Andrew Goldberg, Matthias Müller-Hannemann, Thomas Pajor,

Peter Sanders, Dorothea Wagner, and Renato F. Werneck. Route planning in transportation
networks, 2015. doi:10.48550/ARXIV.1504.05140.

2 Moritz Baum, Julian Dibbelt, Dorothea Wagner, and Tobias Zündorf. Modeling and engineering
constrained shortest path algorithms for battery electric vehicles. Transportation Science,
54:1571–1600, November 2020. doi:10.1287/trsc.2020.0981.

3 Marco Blanco, Ralf Borndörfer, Nam Dung Hoang, Anton Kaier, Pedro Maristany de las
Casas, Thomas Schlechte, and Swen Schlobach. Cost projection methods for the shortest
path problem with crossing costs. In Gianlorenzo D’Angelo and Twan Dollevoet, editors,

ATMOS 2022

https://doi.org/10.48550/ARXIV.1504.05140
https://doi.org/10.1287/trsc.2020.0981

1:14 An A* Algorithm for Flight Planning Based on Idealized Vertical Profiles

17th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and
Systems (ATMOS 2017), volume 59, 2017.

4 Marco Blanco, Ralf Borndörfer, Nam Dũng Hoàng, Anton Kaier, Adam Schienle, Thomas
Schlechte, and Swen Schlobach. Solving time dependent shortest path problems on airway
networks using super-optimal wind. In 16th Workshop on Algorithmic Approaches for Trans-
portation Modelling, Optimization, and Systems (ATMOS 2016), volume 54, 2016. in press.
doi:10.4230/OASIcs.ATMOS.2016.12.

5 Marco Blanco, Ralf Borndörfer, Nam Dũng Hoàng, Anton Kaier, Thomas Schlechte, and Swen
Schlobach. The shortest path problem with crossing costs. techreport 16-70, ZIB, 2016.

6 H.M. de Jong. Optimal track selection and 3-dimensional flight planning. techreport, Royal
Netherlands Meteorological Institute, 1974.

7 Daniel Delling and Giacomo Nannicini. Core routing on dynamic time-dependent road networks.
INFORMS Journal on Computing, 24(2):187–201, May 2012. doi:10.1287/ijoc.1110.0448.

8 Jochen Eisner, Stefan Funke, and Sabine Storandt. Optimal route planning for electric
vehicles in large networks. In Proceedings of the Twenty-Fifth AAAI Conference on Artificial
Intelligence, AAAI’11, pages 1108–1113. AAAI Press, 2011.

9 Patrick Hagelauer and Felix Antonio Claudio Mora-Camino. A soft dynamic programming
approach for on-line aircraft 4D-trajectory optimization. European Journal of Operational
Research, 107(1):87–95, May 1998. doi:10.1016/S0377-2217(97)00221-X.

10 Edward He, Natashia Boland, George Nemhauser, and Martin Savelsbergh. Time-dependent
shortest path problems with penalties and limits on waiting. INFORMS Journal on Computing,
2020.

11 Casper Kehlet Jensen, Marco Chiarandini, and Kim S. Larsen. Flight Planning in Free
Route Airspaces. In Gianlorenzo D’Angelo and Twan Dollevoet, editors, 17th Workshop on
Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2017), volume 59 of OpenAccess Series in Informatics (OASIcs), pages 1–14, Dagstuhl,
Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/OASIcs.
ATMOS.2017.14.

12 Stefan E. Karisch, Stephen S. Altus, Goran Stojković, and Mirela Stojković. Operations. In
Cynthia Barnhart and Barry Smith, editors, Quantitative Problem Solving Methods in the
Airline Industry, volume 169 of International Series in Operations Research & Management
Science, pages 283–383. Springer US, 2012.

13 Anders Nicolai Knudsen, Marco Chiarandini, and Kim S. Larsen. Vertical optimization of
resource dependent flight paths. In ECAI 2016 - 22nd European Conference on Artificial
Intelligence, 29 August-2 September 2016, The Hague, The Netherlands - Including Prestigious
Applications of Artificial Intelligence (PAIS 2016), pages 639–645, 2016. doi:10.3233/
978-1-61499-672-9-639.

14 Anders Nicolai Knudsen, Marco Chiarandini, and Kim S. Larsen. Constraint Handling in
Flight Planning. In Principles and Practice of Constraint Programming - 23rd International
Conference, CP 2017, Melbourne, VIC, Australia, August 28 - September 1, 2017, Proceedings,
pages 354–369, 2017. doi:10.1007/978-3-319-66158-2_23.

15 Anders Nicolai Knudsen, Marco Chiarandini, and Kim S. Larsen. Heuristic Variants
of A* Search for 3D Flight Planning. In Integration of Constraint Programming, Ar-
tificial Intelligence, and Operations Research - 15th International Conference, CPAIOR
2018, Delft, The Netherlands, June 26-29, 2018, Proceedings, pages 361–376, 2018. doi:
10.1007/978-3-319-93031-2_26.

16 P. Maristany de las Casas, A. Sedeño-Noda, and R. Borndörfer. An improved multiobjective
shortest path algorithm. Computers & Operations Research, page 105424, June 2021. doi:
10.1016/j.cor.2021.105424.

17 Pedro Maristany de las Casas, Luitgard Kraus, Antonio Sedeño-Noda, and Ralf Borndörfer.
Targeted multiobjective dijkstra algorithm, 2021. doi:10.48550/ARXIV.2110.10978.

https://doi.org/10.4230/OASIcs.ATMOS.2016.12
https://doi.org/10.1287/ijoc.1110.0448
https://doi.org/10.1016/S0377-2217(97)00221-X
https://doi.org/10.4230/OASIcs.ATMOS.2017.14
https://doi.org/10.4230/OASIcs.ATMOS.2017.14
https://doi.org/10.3233/978-1-61499-672-9-639
https://doi.org/10.3233/978-1-61499-672-9-639
https://doi.org/10.1007/978-3-319-66158-2_23
https://doi.org/10.1007/978-3-319-93031-2_26
https://doi.org/10.1007/978-3-319-93031-2_26
https://doi.org/10.1016/j.cor.2021.105424
https://doi.org/10.1016/j.cor.2021.105424
https://doi.org/10.48550/ARXIV.2110.10978

M. Blanco, R. Borndörfer, and P. Maristany de las Casas 1:15

18 Hok K. Ng, Banavar Sridhar, and Shon Grabbe. Optimizing aircraft trajectories with multiple
cruise altitudes in the presence of winds. Journal of Aerospace Information Systems, 11(1):35–
47, 2014.

19 Matti Nykänen and Esko Ukkonen. The exact path length problem. Journal of Algorithms,
42(1):41–53, 2002. doi:10.1006/jagm.2001.1201.

20 Ariel Orda and Raphael Rom. Traveling without waiting in time-dependent networks is
np-hard. Technical report, Department Electrical Engineering, Technion-Israel Institute of
Technology, 1989.

21 Adam Schienle, Pedro Maristany, and Marco Blanco. A Priori Search Space Pruning in the
Flight Planning Problem. In Valentina Cacchiani and Alberto Marchetti-Spaccamela, editors,
19th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization,
and Systems (ATMOS 2019), volume 75 of OpenAccess Series in Informatics (OASIcs),
pages 8:1–8:14, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
doi:10.4230/OASIcs.ATMOS.2019.8.

22 Ben Strasser and Tim Zeitz. A fast and tight heuristic for a* in road networks, 2019.
doi:10.48550/ARXIV.1910.12526.

23 Tim Zeitz. Np-hardness of shortest path problems in networks with non-fifo time-dependent
travel times. Information Processing Letters, 179:106287, 2023. doi:10.1016/j.ipl.2022.
106287.

ATMOS 2022

https://doi.org/10.1006/jagm.2001.1201
https://doi.org/10.4230/OASIcs.ATMOS.2019.8
https://doi.org/10.48550/ARXIV.1910.12526
https://doi.org/10.1016/j.ipl.2022.106287
https://doi.org/10.1016/j.ipl.2022.106287

A Discrete-Continuous Algorithm for Globally
Optimal Free Flight Trajectory Optimization
Ralf Borndörfer #

Zuse Institute, Berlin, Germany
Freie Universität Berlin, Germany

Fabian Danecker1 #

Zuse Institute, Berlin, Germany

Martin Weiser #

Zuse Institute, Berlin, Germany

Abstract
We present an efficient algorithm that finds a globally optimal solution to the 2D Free Flight
Trajectory Optimization Problem (aka Zermelo Navigation Problem) up to arbitrary precision in
finite time. The algorithm combines a discrete and a continuous optimization phase. In the discrete
phase, a set of candidate paths that densely covers the trajectory space is created on a directed
auxiliary graph. Then Yen’s algorithm provides a promising set of discrete candidate paths which
subsequently undergo a locally convergent refinement stage. Provided that the auxiliary graph is
sufficiently dense, the method finds a path that lies within the convex domain around the global
minimizer. From this starting point, the second stage will converge rapidly to the optimum. The
density of the auxiliary graph depends solely on the wind field, and not on the accuracy of the
solution, such that the method inherits the superior asymptotic convergence properties of the optimal
control stage.

2012 ACM Subject Classification Mathematics of computing → Continuous functions; Mathematics
of computing → Discretization; Mathematics of computing → Discrete optimization; Mathematics
of computing → Continuous optimization; Mathematics of computing → Nonconvex optimization;
Mathematics of computing → Graph algorithms

Keywords and phrases shortest path, flight planning, free flight, discretization error bounds, optimal
control, discrete optimization, global optimization

Digital Object Identifier 10.4230/OASIcs.ATMOS.2022.2

Funding This research was funded by the DFG Research Center of Excellence MATH+ – Berlin
Mathematics Research Center, Project TrU 4.

Acknowledgements We thank three anonymous referees for helpful comments that improved the
presentation of this paper.

1 Introduction

Flight planning deals with finding the shortest flight path between two airports for an aircraft
subject to a number of constraints, in particular, to wind conditions. The problem can be
addressed from a discrete and from a continuous point of view and both approaches have
received significant attention in the literature. Today’s flight planning system follow the
discrete approach, which treats the problem as a time-dependent shortest path problem in
a world-wide 3D Airway Network, see [19] for a comprehensive survey, and a number of
algorithms have been developed that address different aspects of the problem. For the most
basic version, [11] and [28] suggested dynamic programming methods, [29] discusses graph

1 corresponding author

© Ralf Borndörfer, Fabian Danecker, and Martin Weiser;
licensed under Creative Commons License CC-BY 4.0

22nd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2022).
Editors: Mattia D’Emidio and Niels Lindner; Article No. 2; pp. 2:1–2:13

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:borndoerfer@zib.de
https://orcid.org/0000-0001-7223-9174
mailto:danecker@zib.de
https://orcid.org/0000-0002-8953-808X
mailto:weiser@zib.de
https://orcid.org/0000-0002-1071-0044
https://doi.org/10.4230/OASIcs.ATMOS.2022.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

2:2 Discrete-Continuous Globally Optimal Trajectory Optimization

preprocessing, and [5] and [21] present A*-type algorithms. [4] integrates overflight costs and
[22] traffic restrictions. [16] investigates the free route case, in which the Airway Network
can be enriched by additional, artificial waypoints and segments. This setting blends into
the Free Flight Trajectory Optimization Problem, aka Zermelo Navigation problem, to find
the (globally) time-optimal route from A to B with respect to wind conditions. This classic
of continuous optimization is usually solved using direct or indirect methods from Optimal
Control [7]. These are highly efficient, but suffer from one key drawback, namely, they only
converge locally. Such methods therefore depend on a sufficiently good starting point, which
makes them, used as a standalone tool, incapable of meeting airlines’ high expectations
regarding the global optimality of routes. In other words, what is called an “optimal solution”
in Control theory is only locally optimal, and not globally optimal in the sense of Discrete
optimization.

As far as we know, Global Optimization has received little attention in this context so far,
but inspiration can be drawn from related fields such as interstellar space mission design [10],
robot motion planning [18, 26, 30], or even molecular structure optimization [15]. In all these
cases, the central challenge is always to find the right balance between sufficient exploration
of the search space on the one hand and accurate exploitation of promising regions on the
other hand [20]. Two main types of approaches have been used to provide this balance,
namely, stochastic and deterministic algorithms. In both cases, finding solutions takes at
least exponential time, the runtime increasing with the required accuracy.

Stochastic methods scan the search space with some sort of Multistart approach, i.e., a
set of starting points is chosen from the search space more or less at random, and these are
explored. The exploration may be enhanced by allowing the candidates (then called agents)
to wander around with a certain (decreasing) probability (e.g. Simulated Annealing [25, 10]).
The deeper investigation of promising areas can be implemented as a local optimization
step (e.g. Monotonic Basin Hopping [1]) or via interaction of the candidates attracting each
other to the best known solution (e.g., Particle Swarm Optimization [6]). Even though these
methods have received a lot of attention over the last decades and show promising results
in a variety of applications, they are generally not able to guarantee global optimality in
finite time. At best, they will asymptotically converge to a global optimizer (e.g., PRM∗ or
RRT∗ [18]).

Deterministic approaches are usually based on the principle of Branch and Bound and
converge to the global optimizer up to arbitrary precision in finite time [3, 14, 12, 17]. The
complexity is generally exponential in the number of problem dimensions and the actual
performance depends strongly on the quality of the lower bound.

We propose in this paper a efficient deterministic algorithm that finds the global optimizer
of the Free Flight Trajectory Optimization Problem in finite time. It is not based on
the Branch-and-Bound paradigm. Instead, a two-stage approach combines discrete and
continuous optimization methods in a refinement of the concept of the hybrid algorithm
DisCOptER [7]. In the first stage, the search space is sampled by calculating discrete paths
on a sufficiently dense artificial digraph. In the second stage, the candidate solutions are
refined using efficient techniques from optimal control. Under mild assumptions, namely, the
existence of an isolated global minimizer and bounded wind speeds and wind derivatives, the
problem is convex in a certain neighborhood of the minimizer. A sufficiently dense graph
then contains a path within this neighborhood. This path can be determined by means of
Yen’s algorithm, and standard nonlinear programming methods will then efficiently produce
the global optimizer up to any requested accuracy. In this way, our approach focuses on the
exploration of the relevant parts of the search space. Moreover, the density of the auxiliary

R. Borndörfer, F. Danecker, and M. Weiser 2:3

graph depends solely on the convexity properties of the problem, i.e., on the wind field, and
not on the required accuracy. Hence, the method inherits, on the one hand, the superior
asymptotic convergence properties of the second stage, which, in turn, is the key to its
efficiency. Typically, only a handful of paths have to be enumerated and investigated. On
the other hand, the method also benefits from all advancements in the area of Discrete Flight
Planning, e.g. [5, 29].

2 The Free Flight Trajectory Optimization Problem

As the Free Flight Trajectory Optimization Problem is ultimately looking for a smooth
trajectory, we start our discussion from the Optimal Control point of View.

2.1 Continuous Point of View: Optimal Control
The Free Flight Trajectory Optimization Problem can be formally described as follows. Let
a spatially heterogeneous, twice continuously differentiable wind field w : R2 → R2 with a
bounded magnitude ∥w∥L∞(R2) < v be given. A valid trajectory is any Lipschitz-continuous
path x : [0, T]→ R2 with ∥xt −w∥ = v almost everywhere, connecting the origin xO and the
destination xD. Among those, we want to find one of minimal flight duration T ∈ R (flight
duration is essentially proportional to fuel consumption [31]). This classic of optimal control
is also known as Zermelo’s navigation problem [33].

It can easily be shown that in case of bounded wind speed, the optimal trajectory cannot
be arbitrarily longer than the straight connection of origin and destination. Hence every
global minimizer is contained in an ellipse Ω ⊂ R2 with focal points xO and xD.

Assume the flight trajectory x ∈ H1([0, 1]) : [0, T]→ R2 is given by a strictly monotonu-
ously increasing parametrization t(τ) on [0, 1] as x(t(τ)) = ξ(τ), such that ξ : [0, 1]→ R2 is
a Lipschitz continuous path. Due to Rademacher’s theorem, its derivative with respect to
the time ξτ exists almost everywhere, and we assume it not to vanish. Then, t(τ) is defined
by the state equation xt = v + w ̸= 0 and the airspeed constraint ∥v∥ = v, with v ∈ L2([0, 1])
being the airspeed vector. Indeed,

v = ∥xt − w∥ and xttτ = ξτ ̸= 0

imply

(t−1
τ ξτ − w)T (t−1

τ ξτ − w) = v2

⇔ t−2
τ ξT

τ ξτ − 2t−1
τ ξT

τ w + wT w − v2 = 0
⇔ (v2 − wT w)t2

τ + 2ξT
τ wtτ − ξT

τ ξτ = 0

⇔ tτ = −ξT
τ w +

√
(ξT

τ w)2 + (v2 − wT w)(ξT
τ ξτ)

v2 − wT w
=: f(t, ξ, ξτ) (1)

due to tτ > 0. The flight duration T is then given by integrating the ODE (1) from 0 to
1 as T = t(1). Let us assume for ease of presentation that the wind w is stationary, i.e.,
independent of t, and thus f(t, ξ, ξτ) = f(ξ, ξτ). Doing so, we obtain the simple integral

T (ξ) =
∫ 1

0
f

(
ξ(τ), ξτ (τ)

)
dτ. (2)

Since the flight duration T as defined in (2) is based on a reparametrization x(t) = ξ(τ(t))
of the path such that ∥xt(t) − w(x(t))∥ = v, the actual parametrization of ξ is irrelevant
for the value of T . Calling two paths ξ, ξ̃ equivalent if there exists a Lipschitz-continuous

ATMOS 2022

2:4 Discrete-Continuous Globally Optimal Trajectory Optimization

bijection r : [0, 1] → [0, 1] such that ξ(r(τ)) = ξ̃(τ), we can restrict the optimization to
equivalence classes. Every equivalence class contains a representative with constant ground
speed ∥ξτ (τ)∥ = L, that can be obtained from any ξ̃ with ∥ξ̃τ (τ)∥ ̸= 0 ∀τ via

ξ(τ) := L

∫ τ

0

ξ̃τ (t)
∥ξ̃τ (t)∥

dt, (3)

where L :=
∫ 1

0 ∥ξ̃τ (τ)∥dτ . Hence we will subsequently consider the following equivalent
constrained minimization problem:

min
ξ∈X, L∈R

T (ξ), s.t. ∥ξτ (τ)∥2 = L2 ∀τ ∈ [0, 1]; (4)

here, the admissible set is the affine space

X = {ξ ∈ H1([0, 1],R2) | ξ(0) = xO, ξ(1) = xD}. (5)

Note that L also represents the path length of a solution, since∫ 1

0
∥ξτ∥dτ = L. (6)

We finally express the constant ground speed requirement by means of a constraint
h(z) = 0, where z := (L, ξ) ∈ Z := R×X and

h : Z → Λ := L2(]0, 1[), z 7→ ξT
τ ξτ − L2 (7)

for L ≤ Lmax, with an arbitrary continuation for L > Lmax that is linear in ∥ξτ∥. In order
to take the boundary constraints ξ(0) = xO, ξ(1) = xD into account, we restrict deviations
δξ from the trajectory ξ to the space

δX := {H1([0, 1],R2) | δξ(0) = δξ(1) = 0}. (8)

The goal of the present paper is to find a isolated globally optimal solution ξ⋆⋆ to (4) that
satisfies T (ξ⋆⋆) < T (ξ) ∀ξ ∈ X, contrary to a local optimizer ξ⋆ that is only superior to
trajectories in a certain neighborhood, T (ξ⋆) ≤ T (ξ) ∀ξ ∈ N (ξ⋆) ⊆ X. A isolated global
minimizer satisfies the necessary Karush-Kuhn-Tucker (KKT) optimality conditions [23]
given that it is a regular point, which is always the case since

h′(z) : δZ 7→ Λ ∀z ∈ Z, δz 7→ ξT
τ δξτ − LδL. (9)

The KKT-conditions result from the variation of the Lagrangian

L(z, λ) := T (ξ) + ⟨λ, h(z)⟩ (10)

with respect to z and λ:

0 = T ′(ξ⋆⋆)[δξ, δξτ] +
∫ 1

0
λ⋆⋆(ξτ

⋆⋆T δξτ)dτ − L⋆⋆δL

∫ 1

0
λ⋆⋆dτ ∀ δz ∈ δZ, (11a)

0 =
∫ 1

0
δλ(ξτ

⋆⋆T ξτ
⋆⋆ − L⋆⋆2) dτ ∀ δλ ∈ Λ, (11b)

where δz := (δL, δξ) and δZ := R× δX. Consider the unconstrained problem minξ∈X T (ξ)
and a global minimizer ξ̃⋆⋆. As discussed before, there is an equivalent route ξ⋆⋆ that satisfies
the constraint and hence – together with L from (6) – is a global minimizer of the constrained
problem.

R. Borndörfer, F. Danecker, and M. Weiser 2:5

▶ Lemma 1. Let (z⋆⋆, L⋆⋆) be a global minimizer of (4). Then, this solution together with

λ⋆⋆ = 0 (12)

satisfies the necessary conditions (11).

Proof. Since ξ⋆⋆ is also a global minimizer of the unconstrained problem, the necessary
condition states that T ′(ξ⋆⋆)[δξ, δξτ] = 0. The terms

∫ 1
0 λ⋆⋆(ξτ

⋆⋆T δξτ) dτ and
∫ 1

0 λ⋆⋆ dτ

of (11a) both vanish for λ⋆⋆ = 0. (11b) is satisfied because ∥ξτ
⋆⋆∥ = L⋆⋆ ∀τ ∈ [0, 1]. ◀

Now we turn to the second order sufficient conditions for optimality. In general, a
stationary point (z⋆, λ⋆) is a minimizer, iff the well known Ladyzhenskaya–Babuška–Brezzi
(LBB) conditions (e.g. [9]) are satisfied, which comprise a) the so called inf-sup-condition

inf
δλ∈Λ
δλ̸=0

sup
δz∈δZ
δz ̸=0

⟨δλ, h′(z)[δz]⟩
∥δz∥H1∥δλ∥Λ

≥ C > 0 (13)

and b) the requirement that the Lagrangian’s Hessian regarding z, Lzz, need be positive
definite on the kernel of h′. Formally speaking, there must be a B > 0 such that

Lzz(z⋆)[δz]2 ≥ B ∥δz∥2
L2

for any δz ∈ δZ that satisfies

⟨δλ, h′(z⋆)[δz]⟩ = 0 ∀ δλ ∈ Λ.

In our case, the second order sufficient condition is

T ′′(ξ⋆)[δξ, δξτ]2 + 2
∫ 1

0
λ⋆(δξT

τ δξτ − δL2)dτ ≥ B(δL2 + ∥δξ∥2
L2 + ∥δξτ∥2

L2)

for any (δL, δξ) ∈ R× δX such that∫ 1

0
δλ(ξτ

⋆T δξτ − L⋆δL)dτ = 0 ∀ δλ ∈ L2([0, 1]).

In case of a global minimizer z⋆⋆, this can be simplified using ⟨λ⋆⋆, h′′⟩ = 0 from Lemma 1.
Moreover, the constraint is equivalent to requiring that ξτ

⋆⋆T δξτ = L⋆⋆δL ∀ τ ∈ [0, 1].
With this, we conclude that for any isolated global minimizer (z⋆⋆, L⋆) of (4) there exists a
B > 0 such that

T ′′(ξ⋆⋆)[δξ, δξτ]2 ≥ B
(
δL2 + ∥δξ∥2

L2 + ∥δξτ∥2
L2

)
(14)

for any δz ∈ δZ such that ξτ
⋆⋆T δξτ = L⋆⋆δL ∀ τ ∈ [0, 1].

2.2 Discrete Point of View: Shortest Paths
If flight trajectories are restricted to airway segments connecting given waypoints, flight
planning is a special kind of shortest path problem on a graph. It can be described as
follows. Let V ⊂ R2 be a finite set of waypoints including xO and xD, and A ⊂ V × V a
set of segments such that G = (V, A) is a connected directed graph. A discrete flight path
is a finite sequence (xi)0≤i≤n of waypoints with (xi−1, xi) ∈ E for i = 1, . . . , n, connecting
x0 = xO with xn = xD. Shortest path problems on static graphs with non-negative weights
are usually solved with the A∗ variant of Dijkstra’s algorithm [27].

ATMOS 2022

2:6 Discrete-Continuous Globally Optimal Trajectory Optimization

Define a mapping Ξ : (xi)0≤i≤n 7→ ξ ∈ X of discrete flight paths to continuous paths by
piecewise linear interpolation

ξ(τ) = x⌊nτ⌋ + (nτ − ⌊nτ⌋)(x⌈nτ⌉ − x⌊nτ⌋), (15)

resulting in polygonal chains, which are Lipschitz-continuous with piecewise constant deriv-
ative. Denote the image by XG := im Ξ ⊂ X, i.e., XG is the set of flight trajectories with
constant ground speed in the Euclidean plane that can be realized by adhering to the airway
network. The discrete flight planning problem then reads

min
ξ∈XG

T (ξ). (16)

With any ξ ∈ XG satisfying the constraint for constant ground speed, this differs from
its continuous counterpart (4) essentially by the admissible set, which effectively acts as a
particular discretization. The class of (h, l)-dense graphs used in this work was introduced
in [7] and is defined as follows.

▶ Definition 2. A digraph G = (V, A) is said to be (h, l)-dense in a convex set Ω ⊂ R2 for
h, l ≥ 0, if it satisfies the following conditions:
1. containment: V ⊂ Ω,
2. vertex density: ∀p ∈ Ω : ∃v ∈ V : ∥p− v∥ ≤ h,
3. local connectivity: ∀u, v ∈ V, ∥u− v∥ ≤ l + 2h : (u, v) ∈ E.

▶ Definition 3. We call an (h, l)-dense digraph rectangular, if the vertex positions can be
described by,

xij = x0 +
√

2h[i, j]T for i ∈M ⊆ Z, j ∈ N ⊆ Z (17)

with xij ∈ Ω and M, N being connected subsets of the integers.

An example for such a rectangular (h, l)-dense airway digraph is shown in Figure 1 a).
Note that, even for l → 0, the minimum local connectivity length of 2h guarantees that a
vertex is connected to all its direct neighbors. It is easy to show that any (h, l)-dense digraph
is connected, such that a path from origin to destination exists.

2.3 Discrete-Continuous Point of View: Hybrid Algorithm DisCOptER
In [7] a hybrid algorithm was proposed that combines the strengths of the discrete and
the continuous approach to flight planning. In a nutshell, it works as follows: First, an
artificial locally connected digraph of defined density is created, as in Definition 2 (blue dots
in Figure 1 b), arcs omitted). The shortest path on this graph (red) serves as an initial guess
for a subsequent refinement stage in which a suitable nonlinear programming formulation
of the same problem is solved, leading to a continuous locally optimal solution (green). As
follows from this paper, this solution is also globally optimal, provided that the graph is
sufficiently dense.

In numerical experiments, we observed that even for scenarios that are far more challenging
than any real world situation, a very sparse graph is already sufficient to find the globally
optimal solution, rendering the hybrid approach highly efficient. In case of the example
illustrated in Figure 1 b), the global optimum was found using any graph with node spacing
h ≤ 1

15
√

2 , which corresponds to 16 or more nodes between origin and destination. Note that
in similar scenarios with n vortices one can expect O(2n) local minima.

R. Borndörfer, F. Danecker, and M. Weiser 2:7

h

2h
l

a)

0.0 0.2 0.5 0.8 1.0
-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

b)

Figure 1 a) A rectangular (h, l)-dense digraph. The center vertex (dark blue) is connected to
all vertices in a circular neighborhood of radius 2h + l (light blue) with edges in both directions.
b) Illustration of the classical hybrid algorithm DisCOptER. The planar wind field consists of 15
regularly aligned vortices indicated by the green and red discs. Blue dots: locally connected vertices
of the (h, l)-dense graph, see a). Red: Shortest path on the graph, Green: Continuous solution
obtained via refinement.

We quickly recap the complexity analysis from [7]. The novel algorithm DisCOptER
was compared against the traditional, purely graph-based approach in terms of accuracy
of the provided solution compared to the continuous optimum. Trajectories of the desired
accuracy can in principle be obtained by solving the shortest path problem on a sufficiently
dense, locally complete digraph, that can be characterized by its vertex density h and local
connectivity radius l, see Definition 2. An optimized combination of these properties is
h = σl2/L2, where σ is an upper bound for the curvature of the optimal trajectory and L

denotes its path length [8, Theorem 4]. Hence, l−1 may serve as a suitable measure for the
solution accuracy. The number of vertices |V | in such a digraph is in O(l−4) and the number
of arcs |A| is in O(l−6). The complexity of solving the shortest path problem with Dijkstra’s
algorithm is O(|A|+ |V | log |V |) and so the overall time complexity is in

O(l−6). (18)

Since the required graph density is dictated exclusively by the wind conditions, the
complexity of the hybrid algorithm approach is asymptotically inherited from the Optimal
Control stage. Using a direct collocation method, the problem is discretized over the time
domain with quasi equidistant steps δτ . A comparable accuracy measure is then defined
as l := Lδτ . Solving the first order necessary conditions – well known as Karush-Kuhn-
Tucker (KKT) conditions – for the discretized problem via Newton’s method rapidly yields a
solution, provided that the starting point was already sufficiently close. Due to the problem
structure each iteration step essentially involves a linear system of equations with an arrow-
shaped matrix, which can be solved efficiently by specialized band-solvers. The overall time
complexity of the hybrid algorithm is determined by the number of iterations and the cost of
each step, which is in

O(l−1). (19)

ATMOS 2022

2:8 Discrete-Continuous Globally Optimal Trajectory Optimization

0.0 0.2 0.5 0.8 1.0-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.0 0.2 0.5 0.8 1.0-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.0 0.2 0.5 0.8 1.0-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6a) b) c)

Figure 2 Illustration of the hybrid algorithm DisCOptER. The planar wind field consists of
15 regularly aligned vortices indicated by the green and red discs. Blue dots: locally connected
vertices of the (h, l)-dense graph, see Figure 1 a). Red: kth shortest path on the graph, Green:
Continuous solution obtained via refinement. a) Starting from the very shortest path the refinement
stage does not converge. b) The 5th shortest path on the graph leads to a local optimum. c) The
14th shortest path on the graph finally leads to the global optimum.

3 Towards Global Optimality

In terms of runtime the hybrid algorithm DisCOptER appears to be clearly superior to
the traditional graph-based approach. One key question, however, remains: What is the
right graph density? This sections answers this question and presents a variant of the
algorithm which is guaranteed to find a global minimizer in finite time by calculating not
only one but multiple shortest paths. We exploit the fact that, by continuity, there is a
sufficiently large neighborhood around the minimizer over which the objective function is
convex, see Theorem 4. If started within this neighborhood, optimal control methods will
quickly converge up to arbitrary precision. Using a sufficiently dense graph, as described
in Lemma 5, we guarantee that there is a path that lies in this neighborhood of the global
minimizer.
This path can be found by computing paths by Yen’s algorithm [32], which computes shortest
simple paths in the order of increasing travel time. A suitable stopping criterion is technically
not necessary, but anyway provided in Theorem 6. The required graph density is dictated by
the wind conditions. Adverse scenarios will require dense graphs leading to a large number
of feasible paths that is, e.g., exponential in the number of vortices, cf. again the example in
Fig. 2. The number will, however, always be finite and – most importantly – independent of
the desired solution accuracy.

▶ Theorem 4. Let ∥w(p)∥ ≤ c0 < v/
√

5, ∥wx(p)∥ ≤ c1, ∥wxx(p)∥ ≤ c2, and ∥wxxx(p)∥ ≤ c3
for every p ∈ Ω. Moreover, let z⋆⋆ := (ξ⋆⋆, L⋆⋆) ∈ Z be a global minimizer of problem (4),
that satisfies the necessary and sufficient conditions (11), (13), and (14) with C > 0 and
B > 0. Then the problem (4) is convex in a neighborhood of z⋆⋆, i.e., there is a RC > 0
exclusively depending on the wind conditions such that the LBB-conditions are satisfied for
any z ∈ Z with

∥∆z∥H1([0,1]) := ∥z − z⋆⋆∥H1([0,1]) ≤ RC . (20)

Proof. According to (13), there is a C > 0 such that

inf
δλ∈Λ
δλ̸=0

sup
δz∈δZ
δz ̸=0

⟨δλ, h′(z⋆⋆)[δz]⟩
∥δz∥H1∥δλ∥Λ

≥ C

R. Borndörfer, F. Danecker, and M. Weiser 2:9

with h as defined in (7). Moreover, it holds that

T ′′(ξ⋆⋆)[δξ, δξτ]2 ≥ B
(
δL2 + ∥δξ∥2

L2 + ∥δξτ∥2
L2

)
for any δz ∈ δZ such that ξτ

⋆⋆T δξτ = L⋆⋆δL ∀τ ∈ [0, 1], see (14). Due to the continuity of
the bilinear form, the inf-sup-condition is satisfied for any z with ∥∆z∥ ≤ RC1, such that

inf
δλ∈Λ
δλ̸=0

sup
δz∈δZ
δz ̸=0

⟨δλ, h′(z)[δz]⟩
∥δz∥H1∥δλ∥Λ

≥ C

2 > 0.

Similarly, the continuity of T as given in (2), guarantees that there is a RC2 > 0 such that

T ′′(ξ)[δξ, δξτ]2 ≥ B2
(
δL2 + ∥δξ∥2

L2 + ∥δξτ∥2
L2

)
for any z ∈ Z such that ∥z − z⋆⋆∥H1([0,1]) ≤ RC2 and any δz ∈ δZ such that ξT

τ δξτ =
LδL ∀τ ∈ [0, 1]. Consequently, the sufficient conditions are satisfied for any z with
∥∆z∥ ≤ RC := min(RC1, RC2). ◀

Providing a sufficiently (h, l)-dense graph, we can guarantee that there is a discrete path
within the convex neighborhood of the global minimizer BRC

(ξ⋆⋆). The following Lemma
involves a result from [8, Theorem 3] stating that the curvature of a global minimizer of (4)
is bounded by

∥ξ⋆⋆
ττ∥ ≤ σ := c1L⋆⋆2

v − c0

(√
2v + v + c0

v − c0

(
(1 +

√
2)v + c0

))
. (21)

▶ Lemma 5. Let (L⋆⋆, ξ⋆⋆) be a minimizer of (4). For any RC > 0 there is a h small
enough such that the corresponding (h, l)-dense digraph contains a valid path ξR with ∥ξ⋆⋆ −
ξR∥H1([0,1]) ≤ RC . The connectivity length l shall here be given as l = L⋆⋆

√
h/σ, which is

an optimized choice as derived in [8, Theorem 4].

Proof. In [8, Theorem 3], it was proved that for every ξ ∈ X with ∥ξτ∥ = L, there is a
trajectory ξR(ξ) on an (h, l)-dense digraph with

∥ξR(ξ)− ξ∥H1([0,1]) ≤ 2σ
l

L
+ 2h

L

l
+ 3h.

Since ∥ξτ
⋆⋆∥ = L⋆⋆, this bound holds for a global optimizer (L⋆⋆, ξ⋆⋆) of (4). Together with

l = L⋆⋆
√

h/σ this reads

∥ξR(ξ)− ξ⋆⋆∥H1([0,1]) ≤ 4
√

σh + 3h,

which directly proves that ∥ξR(ξ)− ξ⋆⋆∥H1([0,1]) ≤ RC for sufficiently small h. ◀

Having defined a spatially bounded (h, l)-dense digraph, we use Yen’s algorithm [32]
to enumerate paths in order of increasing travel time. Each generated discrete path ξG,i

undergoes a locally convergent refinement stage. If ξG,i is the path on the graph that is
closest to the minimizer ξ⋆⋆, then Theorem 4 and Lemma 5 guarantee that it lies in the
convex domain. For this reason we do not require the solver to incorporate any globalization
strategies. Instead, the KKT system (11) can be solved via Newton’s method, which either
converges quadratically or is terminated in case of non-convexity.
Since any other local minimizer may be found as well, the preliminary solution shall be denoted
as ξ⋆(ξG,i) in Algorithm 1 and may replace the current best solution ξC if T (ξ⋆(ξG,i)) < T (ξC).
A suitable stopping criterion builds on the following local error bound.

ATMOS 2022

2:10 Discrete-Continuous Globally Optimal Trajectory Optimization

▶ Theorem 6. Let (L⋆⋆, ξ⋆⋆) be a global minimizer of (4) and define ∆ξ := ξ − ξ⋆⋆. Then
there are constants B > 0 and RE > 0 exclusively depending on the wind conditions, such
that for any ξ ∈ X with ∥∆ξ∥H1 ≤ RE, the error in the objective function T as defined in (2)
is bounded by

T (ξ)− T (ξ⋆⋆) ≤ 1
2B∥∆ξ∥2

H1([0,1]). (22)

Proof. As shown in the proof of [8, Theorem 2] the second directional derivative of T is
bounded from above at a global minimizer. Let this bound be compactly given as

|T ′′(ξ)[δξ, δξτ]2| ≤ 2B∥δξτ∥2
H1([0,1])

with some B > 0 that only depends on the wind conditions. Due to the continuity of T there
is a RE > 0 such that for any ξ ∈ X with ∥∆ξ∥H1 ≤ RE , the second directional derivative
of T is bounded by

|T ′′(ξ)[δξ, δξτ]2| ≤ B∥δξτ∥2
H1([0,1]).

We use this bound, the optimality of ξ⋆⋆, and Taylor’s Theorem to validate that

T (ξ) = T (ξ⋆⋆) + T ′(ξ⋆⋆)[∆ξ, ∆ξτ]︸ ︷︷ ︸
=0

+
∫ 1

0
(1− ν)T ′′(ξ⋆⋆ + ν∆ξ)[∆ξ, ∆ξτ]2dν

≤ T (ξ⋆⋆) + 1
2B∥∆ξ∥2

H1([0,1]). ◀

Since we are only interested in discrete paths within the convex domain of the global
minimizer BR(ξ⋆⋆), the generation of new paths is terminated if the extra cost of the next
discrete path cannot be compensated by convergence to a nearby local minimizer anymore,
i.e., if

T (ξG,i)− T (ξC) ≥ 1
2BR2 =: ϵ, (23)

where ξG,i denotes the ith shortest path, ξC the current best guess and R := min(RC , RE).
▶ Remark. We finally want to point out that the required graph density is exclusively dictated
by the wind conditions and independent of the requested solution accuracy. Therefore, even
though the enumeration of multiple discrete paths is certainly more expensive than finding
the single shortest path as in the original DisCOpter concept, this difference vanishes
asymptotically such that the proposed algorithm for global optimality inherits the superior
convergence properties of the optimal control method given in Equation (19).

4 Conclusion

We presented a novel discrete-continuous algorithm that computes globally optimal solutions
of the Free Flight Trajectory Optimization Problem in finite time to any desired accuracy.
The main advantage of the method, and the key to its efficiency, is that the density of the
discretization in the first graph-search stage of the algorithm depends only the problem data,
and not on the desired accuracy. In this way, the algorithm inherits the superior asymptotic
convergence properties of the second optimal control stage. A next step is a demonstration of
computational efficiency. This requires improvements in the discrete part, in particular, an
adaptive graph construction and the use of k-shortest path or k-dissimilar path algorithms
that are, at least in practice, faster than Yen’s algorithm, such as [13, 24] or [2], respectively.

R. Borndörfer, F. Danecker, and M. Weiser 2:11

Algorithm 1 This algorithm provides a globally optimal solution to the Free Flight
trajectory optimization problem (4) in finite time.

Data: xO, xD, Ω, v, w, c0, c1, c2, c3, C,B,B, RE , RC , TOL

Result: (LC , ξC) with T (ξC)− T (ξ⋆⋆) ≤ TOL and ∥ξτ
⋆⋆∥ − LC ≤ TOL

1 (LC , ξC) ← None; TC ←∞; i← 0; R← min(RC , RE) ;
2 ϵ← Calculate the error bound for ∥δξ∥H1 ≤ R from Theorem 6;
3 (h, l)← Calculate h(R) and l(h) as in Lemma 5;
4 Define a rectangular, spatially bounded (h, l)-dense digraph covering Ω;
5 do
6 Calculate the ith shortest path ξG,i;
7 if T (ξG,i)− TC ≥ ϵ then
8 return (LC , ξC);
9 end

/* Optimal Control stage */
10 (converged, L⋆, ξ⋆)← (Try to) Calculate a local minimizer starting from
11 (L(ξG,i), ξG,i) up to tolerance TOL;

/* Update */
12 if converged and T (ξ⋆) < TC then
13 (LC , ξC)← (L⋆, ξ⋆);
14 TC ← T (ξ⋆);
15 end
16 i← i + 1;
17 while true;

References

1 Bernardetta Addis, Andrea Cassioli, Marco Locatelli, and Fabio Schoen. A global optimization
method for the design of space trajectories. Computational Optimization and Applications,
48:635–652, 2011. doi:10.1007/s10589-009-9261-6.

2 Ali Al Zoobi, David Coudert, and Nicolas Nisse. On the complexity of finding k shortest
dissimilar paths in a graph. Research report, Inria ; CNRS ; I3S ; Université Côte d’Azur,
2021. URL: https://hal.archives-ouvertes.fr/hal-03187276.

3 Ioannis P. Androulakis, Costas D. Maranas, and Christodoulos A. Floudas. αBB: A global op-
timization method for general constrained nonconvex problems. Journal of Global Optimization,
7(4):337–363, 1995. doi:10.1007/BF01099647.

4 Marco Blanco, Ralf Borndörfer, Nam-Dung Hoang, Anton Kaier, Pedro Maristany de las
Casas, Thomas Schlechte, and Swen Schlobach. Cost Projection Methods for the Shortest
Path Problem with Crossing Costs. In Atmos, 2017. doi:10.4230/OASIcs.ATMOS.2017.15.

5 Marco Blanco, Ralf Borndörfer, Nam-Dung Hoang, Anton Kaier, Adam Schienle, Thomas
Schlechte, and Swen Schlobach. Solving Time Dependent Shortest Path Problems on Airway
Networks Using Super-Optimal Wind. In 16th Workshop on Algorithmic Approaches for
Transportation Modelling, Optimization, and Systems (ATMOS 2016). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2016. doi:10.4230/OASIcs.ATMOS.2016.12.

6 Mohammad Reza Bonyadi and Zbigniew Michalewicz. Particle Swarm Optimization for Single
Objective Continuous Space Problems: A Review. Evolutionary Computation, 25(1):1–54,
2017. doi:10.1162/EVCO_r_00180.

7 Ralf Borndörfer, Fabian Danecker, and Martin Weiser. A Discrete-Continuous Algorithm for
Free Flight Planning. Algorithms, 14(1):4, 2021. doi:10.3390/a14010004.

ATMOS 2022

https://doi.org/10.1007/s10589-009-9261-6
https://hal.archives-ouvertes.fr/hal-03187276
https://doi.org/10.1007/BF01099647
https://doi.org/10.4230/OASIcs.ATMOS.2017.15
https://doi.org/10.4230/OASIcs.ATMOS.2016.12
https://doi.org/10.1162/EVCO_r_00180
https://doi.org/10.3390/a14010004

2:12 Discrete-Continuous Globally Optimal Trajectory Optimization

8 Ralf Borndörfer, Fabian Danecker, and Martin Weiser. Error bounds for Discrete-Continuous
Shortest Path Problems with Application to Free Flight Trajectory Optimization. under
revision, 2021.

9 Dietrich Braess. Finite Elemente: Theorie, schnelle Löser und Anwendungen in der Elastiz-
itätstheorie. Springer-Verlag, 2013. doi:10.1007/978-3-642-34797-9.

10 Andrea Cassioli, Dario Izzo, David Lorenzo, Marco Locatelli, and Fabio Schoen. Global
Optimization Approaches for Optimal Trajectory Planning, pages 111–140. Springer, 2012.
doi:10.1007/978-1-4614-4469-5_5.

11 Huite M. de Jong. Optimal Track Selection and 3-dimensional flight planning. techreport,
Royal Netherlands Meteorological Institute, 1974.

12 Holger Diedam. Global optimal control using direct multiple shooting. PhD thesis, Heidelberg
University, 2015.

13 Gang Feng. Finding k shortest simple paths in directed graphs: A node classification algorithm.
Networks, 64(1):6–17, 2014. doi:10.1002/net.21552.

14 Christodoulos A Floudas. Deterministic global optimization: theory, methods and applications,
volume 37. Springer Science & Business Media, 2013.

15 Bernd Hartke. Global optimization. Wiley Interdisciplinary Reviews: Computational Molecular
Science, 1(6):879–887, 2011. doi:10.1002/wcms.70.

16 Casper Kehlet Jensen, Marco Chiarandini, and Kim S. Larsen. Flight Planning in Free
Route Airspaces. In Gianlorenzo D’Angelo and Twan Dollevoet, editors, 17th Workshop on
Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2017), volume 59 of OpenAccess Series in Informatics (OASIcs), pages 1–14, 2017. doi:
10.4230/OASIcs.ATMOS.2017.14.

17 Donald R. Jones, Cary D. Perttunen, and Biruce E. Stuckman. Lipschitzian Optimization
without the Lipschitz Constant. J. Optim. Theory Appl., 79(1):157–181, 1993. doi:10.1007/
BF00941892.

18 Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal motion plan-
ning. The international journal of robotics research, 30(7):846–894, 2011. doi:10.1177/
0278364911406761.

19 Stefan E. Karisch, Stephen S. Altus, Goran Stojković, and Mirela Stojković. Operations. In
Quantitative problem solving methods in the airline industry, pages 283–383. Springer, 2012.
doi:10.1007/978-1-4614-1608-1_6.

20 Mohammad Khajehzadeh, Mohd Raihan Taha, Ahmed El-Shafie, and Mahdiyeh Eslami. A
survey on meta-heuristic global optimization algorithms. Research Journal of Applied Sciences,
Engineering and Technology, 3(6):569–578, 2011.

21 Anders N. Knudsen, Marco Chiarandini, and Kim S. Larsen. Heuristic Variants of A∗-
Search for 3D Flight Planning. In Willem-Jan van Hoeve, editor, Integration of Constraint
Programming, Artificial Intelligence, and Operations Research, pages 361–376, Cham, 2018.
Springer International Publishing. doi:10.1007/978-3-319-93031-2_26.

22 Anders Nicolai Knudsen, Marco Chiarandini, and Kim S. Larsen. Constraint Handling in
Flight Planning. In Principles and Practice of Constraint Programming - 23rd International
Conference, CP 2017, Melbourne, VIC, Australia, August 28 - September 1, 2017, Proceedings,
pages 354–369, 2017. doi:10.1007/978-3-319-66158-2_23.

23 Harold W. Kuhn and Albert W. Tucker. Nonlinear programming. In Proceedings of the second
Berkeley Symposium on Mathematical Statistics and Probability, pages 481–493. University of
California Press, 1951.

24 Denis Kurz and Petra Mutzel. A sidetrack-based algorithm for finding the k shortest
simple paths in a directed graph. In Seok-Hee Hong, editor, 27th International Symposium
on Algorithms and Computation, ISAAC 2016, December 12-14, 2016, Sydney, Australia,
volume 64 of LIPIcs, pages 49:1–49:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2016. doi:10.4230/LIPIcs.ISAAC.2016.49.

https://doi.org/10.1007/978-3-642-34797-9
https://doi.org/10.1007/978-1-4614-4469-5_5
https://doi.org/10.1002/net.21552
https://doi.org/10.1002/wcms.70
https://doi.org/10.4230/OASIcs.ATMOS.2017.14
https://doi.org/10.4230/OASIcs.ATMOS.2017.14
https://doi.org/10.1007/BF00941892
https://doi.org/10.1007/BF00941892
https://doi.org/10.1177/0278364911406761
https://doi.org/10.1177/0278364911406761
https://doi.org/10.1007/978-1-4614-1608-1_6
https://doi.org/10.1007/978-3-319-93031-2_26
https://doi.org/10.1007/978-3-319-66158-2_23
https://doi.org/10.4230/LIPIcs.ISAAC.2016.49

R. Borndörfer, F. Danecker, and M. Weiser 2:13

25 Marco Locatelli. Simulated Annealing Algorithms for Continuous Global Optimiza-
tion. In Handbook of global optimization, pages 179–229. Springer, 2002. doi:10.1007/
978-1-4757-5362-2_6.

26 Thi Thoa Mac, Cosmin Copot, Duc Trung Tran, and Robin De Keyser. Heuristic approaches
in robot path planning: A survey. Robotics and Autonomous Systems, 86:13–28, 2016.
doi:10.1016/j.robot.2016.08.001.

27 Amgad Madkour, Walid G. Aref, Faizan Ur Rehman, Mohamed Abdur Rahman, and Saleh
Basalamah. A Survey of Shortest-Path Algorithms, 2017. arXiv:1705.02044.

28 Hok K. Ng, Banavar Sridhar, and Shon Grabbe. Optimizing Aircraft Trajectories with
Multiple Cruise Altitudes in the Presence of Winds. Journal of Aerospace Information Systems,
11(1):35–47, 2014. doi:10.2514/1.I010084.

29 Adam Schienle, Pedro Maristany de las Casas, and Marco Blanco. A Priori Search Space
Pruning in the Flight Planning Problem. In 19th Symposium on Algorithmic Approaches for
Transportation Modelling, Optimization, and Systems (ATMOS 2019), volume 75 of OpenAccess
Series in Informatics (OASIcs), pages 8:1–8:14, 2019. doi:10.4230/OASIcs.ATMOS.2019.8.

30 Omar Souissi, Rabie Benatitallah, David Duvivier, AbedlHakim Artiba, Nicolas Belanger,
and Pierre Feyzeau. Path planning: A 2013 survey. In Proceedings of 2013 International
Conference on Industrial Engineering and Systems Management (IESM), pages 1–8. IEEE,
2013.

31 Cathie A. Wells, Paul D. Williams, Nancy K. Nichols, Dante Kalise, and Ian Poll. Reducing
transatlantic flight emissions by fuel-optimised routing. Environmental Research Letters,
16(2):025002, 2021. doi:10.1088/1748-9326/abce82.

32 Jin Y. Yen. Finding the K Shortest Loopless Paths in a Network. Management Science,
17(11):712–716, 1971. doi:10.1287/mnsc.17.11.712.

33 Ernst Zermelo. Über das Navigationsproblem bei ruhender oder veränderlicher Windverteilung.
ZAMM Z. Angew. Math. Mech., 11(2):114–124, 1931. doi:10.1002/zamm.19310110205.

ATMOS 2022

https://doi.org/10.1007/978-1-4757-5362-2_6
https://doi.org/10.1007/978-1-4757-5362-2_6
https://doi.org/10.1016/j.robot.2016.08.001
http://arxiv.org/abs/1705.02044
https://doi.org/10.2514/1.I010084
https://doi.org/10.4230/OASIcs.ATMOS.2019.8
https://doi.org/10.1088/1748-9326/abce82
https://doi.org/10.1287/mnsc.17.11.712
https://doi.org/10.1002/zamm.19310110205

Tropical Neighbourhood Search: A New Heuristic
for Periodic Timetabling
Enrico Bortoletto !

Zuse Institute Berlin, Germany

Niels Lindner !

Zuse Institute Berlin, Germany

Berenike Masing !

Zuse Institute Berlin, Germany

Abstract
Periodic timetabling is a central aspect of both the long-term organization and the day-to-day
operations of a public transportation system. The Periodic Event Scheduling Problem (PESP), the
combinatorial optimization problem that forms the mathematical basis of periodic timetabling, is
an extremely hard problem, for which optimal solutions are hardly ever found in practice. The
most prominent solving strategies today are based on mixed-integer programming, and there is a
concurrent PESP solver employing a wide range of heuristics [3]. We present tropical neighborhood
search (tns), a novel PESP heuristic. The method is based on the relations between periodic
timetabling and tropical geometry [4]. We implement tns into the concurrent solver, and test it on
instances of the benchmarking library PESPlib. The inclusion of tns turns out to be quite beneficial
to the solver: tns is able to escape local optima for the modulo network simplex algorithm, and
the overall share of improvement coming from tns is substantial compared to the other methods
available in the solver. Finally, we provide better primal bounds for five PESPlib instances.

2012 ACM Subject Classification Applied computing → Transportation; Mathematics of computing
→ Combinatorial optimization; Mathematics of computing → Network flows; Mathematics of
computing → Solvers; Mathematics of computing → Integer programming; Computing methodologies
→ Concurrent algorithms

Keywords and phrases Periodic Timetabling, Tropical Geometry, Neighborhood Search, Mixed-
Integer Programming

Digital Object Identifier 10.4230/OASIcs.ATMOS.2022.3

Funding Enrico Bortoletto: Funded within the Research Campus MODAL, funded by the German
Federal Ministry of Education and Research (BMBF) (fund number 05M20ZBM).
Berenike Masing: Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Found-
ation) under Germany’s Excellence Strategy – The Berlin Mathematics Research Center MATH+
(EXC-2046/1, project ID: 390685689).

1 Introduction

Rhythm is to music what the timetable is for a public transit system. Periodicity of
transportation networks is a common characteristic, quite useful in practice, and so periodic
timetables are of particular importance. Setting up departure and arrival times in a feasible
way is quite complicated, and the standard framework to model and optimize such timetables
is that of the Periodic Event Scheduling Problem (PESP), first devised by Serafini and
Ukovich [29]. Other than public transportation, PESP is also useful in automated production
systems [11], and more generally in any case where periodicity constraints are in effect.
Deciding whether a PESP instance is feasible is known to be NP-hard for any fixed period
time T ≥ 3 [23, 26], or when the underlying graph is series-parallel [20].

© Enrico Bortoletto, Niels Lindner, and Berenike Masing;
licensed under Creative Commons License CC-BY 4.0

22nd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2022).
Editors: Mattia D’Emidio and Niels Lindner; Article No. 3; pp. 3:1–3:19

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bortoletto@zib.de
https://orcid.org/0000-0002-2869-6498
mailto:lindner@zib.de
https://orcid.org/0000-0002-8337-4387
mailto:masing@zib.de
https://orcid.org/0000-0001-7201-2412
https://doi.org/10.4230/OASIcs.ATMOS.2022.3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

3:2 Tropical Neighbourhood Search: A New Heuristic for Periodic Timetabling

Other than a basic MIP formulation, in practice there have been many attempts to tackle
the problem by a plethora of techniques [6, 7, 8, 9, 18, 19, 21, 22, 25, 27]. However, the most
successful method in practice remains the concurrent solver of Borndörfer, Lindner, and
Roth [3], which, in parallel, implements MIP-based branch-and-cut [15], the modulo network
simplex algorithm (mns, [8, 25]) as a local improvement heuristic, and a maximum-cut based
heuristic [18], together with other features.

In this paper we introduce a novel heuristic, called Tropical Neighbourhood Search (tns).
The tns algorithm is based on the link between the space of feasible periodic timetables and
tropical geometry established in [4]. We will recall useful theoretical results in Section 2,
which provide geometrical insight to the algorithm then described in Section 3. Finally, we
will describe our implementation of tns in Section 4 and evaluate it in Section 5 on a subset
of the instances of the benchmarking library PESPlib [5]. We conclude the paper with an
outlook in Section 6.

2 Tropical Decomposition of Periodic Timetable Space

The goal of periodic timetabling in public transport is to assign timestamps to departure and
arrival events of, e.g., trains at stations, so that the time between such events is within some
given bounds. By the periodic nature, it suffices to consider timestamps modulo a period
time T . The standard mathematical model for periodic timetabling is the Periodic Event
Scheduling Problem (PESP) [29]. A PESP instance is comprised of a tuple (G, T, ℓ, u, w),
whose elements are:

An event-activity network G, a directed graph whose vertices V (G) represent events in
the network, and whose arcs A(G) represent activities between events. In the context of
periodic timetabling, these events describe the points in time of departures or arrivals,
while the activities model the time durations of driving between stations, dwelling at a
station, transferring between lines, turning at terminal stations, or fixing headways [16].
We will assume that G is simple and weakly connected, which is no restriction [15].
A period time T ∈ N, indicating after what time an event should occur again.
Vectors ℓ, u ∈ RA(G) of lower and upper bounds on the activities, such that 0 ≤ ℓa < T

and 0 ≤ ua − ℓa < T , indicating minimum and maximum durations of a ∈ A(G).
A vector w ∈ RA(G) of weights, often modelling an ascribed importance to a given activity,
for example represented by the number of passengers partaking in said activity.

The variables to determine are the periodic timetable, a vector π ∈ RV (G), and the periodic
tension, a vector x ∈ RA(G). A pair (π, x) of timetable and tension is said to be feasible if

∀(i, j) ∈ A(G) : πj − πi ≡ xij mod T and ℓij ≤ xij ≤ uij , (1)

where the first constraint models the periodicity property, while the second ensures that the
tension is within the given bounds. Note that due to 0 ≤ ua − ℓa ≤ T for all a ∈ A(G), for
any given π there is at most one x such that (π, x) is feasible. In this case, we will hence
speak of the tension associated to a timetable.

Given an appropriate tuple (G, T, ℓ, u, w), PESP consists in finding a feasible pair (π, x)
such that the weighted tension w⊤x is minimized. If ℓ and u are integral, which is true for
most practical purposes, by a result of [26] the feasibility of the instance implies the existence
of an integral optimal solution.

PESP can be formulated as a mixed-integer program by employing some auxiliary integer
variables p ∈ ZA(G) to model the modulo constraints by πj − πi + Tpij = xij for all
(i, j) ∈ A(G). Then, using the incidence matrix B ∈ {−1, 0, 1}V (G)×A(G) of G, the problem

E. Bortoletto, N. Lindner, and B. Masing 3:3

is as follows:

Minimise w⊤x

subject to −B⊤π + Tp = x

ℓ ≤ x ≤ u,

p ∈ ZA(G), π ∈ RV (G), x ∈ RA(G)

(2)

where each pij is called the (periodic) offset of the arc (i, j). If (π, x) is a feasible timetable-
tension-pair, it is straightforward to compute the unique corresponding vector of offsets.

Each of the three variables in the problem are of interest in themselves. The space of
periodic tensions x has been analysed in-depth, in particular the convex hull X of all feasible
tensions, see [2, 19, 23, 26]. Also the space of periodic offsets p has received attention, or
better that of periodic cycle offsets z, which are analogous to periodic offsets and arise in an
alternative MIP formulation of PESP, namely the cycle formulation

Minimise w⊤x

subject to Γx = Tz,

ℓ ≤ x ≤ u,

z ∈ ZB, x ∈ RA(G)

(3)

where B is some integral cycle basis with cycle matrix Γ ∈ {−1, 0, 1}B×A(G), and z is an
integer vector of so-called periodic cycle offsets, see, e.g., [15] for further details. In [4] the
polytope of feasible fractional cycle offset variables is recognised to be a zonotope, and several
properties of PESP are derived via tilings of said zonotope.

What is instead of main interest in this paper is the space of periodic timetables.

▶ Definition 1. For an instance (G, T, ℓ, u, w), the set Π of feasible periodic timetables can
be written as

Π :=
{

π ∈ RV (G)
∣∣∣ ∃p ∈ ZA(G), ∀(i, j) ∈ A(G) : ℓij ≤ πj − πi + Tpij ≤ uij

}
. (4)

In particular, by defining for each p ∈ ZA(G) the polyhedron

R(p) :=
{

π ∈ RV (G)
∣∣∣ ∀(i, j) ∈ A(G) : ℓij − Tpij ≤ πj − πi ≤ uij − Tpij

}
, (5)

the feasible timetable space can be expressed as the union

Π =
⋃

p∈ZA(G)

R(p). (6)

As introduced in [4], each R(p) is a weighted digraph polyhedron [14]. Namely, for any fixed
p ∈ ZA(G) it can be described as

R(p) =
{

π ∈ RV (G)
∣∣∣ ∀(i, j) ∈ A(G) : πj − πi ≤ κ(p)ij

}
, (7)

for the weighted digraph (G, κ(p)), with the following:
vertices V (G) := V (G),
arcs A(G) := A(G) ∪A(G⊤), where A(G⊤) = {(j, i)|(i, j) ∈ A(G)},
weights κ(p)ij := uij − Tpij for all (i, j) ∈ A(G), and κ(p)ij := Tpji − ℓji for all
(i, j) ∈ A(G⊤).

By construction, every (G, κ(p)) is strongly connected, therefore the lineality space of its
weighted digraph polyhedron is solely R1 [14].

ATMOS 2022

3:4 Tropical Neighbourhood Search: A New Heuristic for Periodic Timetabling

v0

v1

v2

[3,
12

] [4, 13]

[2, 10]

0 0 0 -1 0 1

0 1 1 -1 1 2

0 0 1

-1 0 2

1 0 0

0 -1 0 -1 -1 1

0 1 21 1 1

0 0 21 0 1

0 -1 11 -1 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
−1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

π1

π2

fundamental domain of T

Figure 1 A PESP instance and its polytropal decomposition Π/R1 (T = 10, w arbitrary).

Let T := R ∪ {∞} be the tropical semiring, with the tropical sum a⊕ b := min{a, b} and
the tropical product a ⊙ b := a + b, see, e.g., [12] for more background. A set S ⊂ Tn is
tropically convex if (a⊙x)⊕ (b⊙ y) ∈ S for every x, y ∈ S, and any a, b ∈ T. It was shown in
[14] that weighted digraph polyhedra arise as the tropical convex hull of finitely many points
with coordinates in T. Moreover, when the underlying digraph is strongly connected, no
∞-coordinates appear. In this case, which is the one interesting to us, all weighted digraph
polyhedra can be seen as polytropes [13] by quotienting out the trivial lineality space, i.e.,
R1. We refer to [4] to see how general properties of polytropes translate to the context of
periodic timetabling, e.g., the relation between polytrope vertices, vertices of the tension
polytope X, and spanning tree structures. See also [24].

It is clear that R(p) ∩R(q) = ∅ holds for any two distinct offset vectors p and q, since
u − ℓ < T by hypothesis. If Π ̸= ∅, then the set Π/R1 is therefore a disjoint union of
infinitely many polytropes, as we have visualized for a small exemplary instance in Figure 1.
However numerous, these polytropes adhere to a certain structure, which we summarise in
the following proposition.

▶ Proposition 2 ([4], §3.3). Consider the PESP instance (G, T, ℓ, u, w) with timetable space
Π, denoting as B the incidence matrix of G, and as B an integral cycle basis of G, with
cycle matrix Γ. Then:

1. For any feasible timetable π ∈ Π all of its translations by integer multiples of T are
feasible: If π ∈ R(p)/R1, then π + Tq ∈ R(p + B⊤q)/R1 for all q ∈ ZV (G).

2. Two feasible timetables π, π′ ∈ Π have the same associated periodic tension if and only if
there exists q ∈ ZV (G) such that π′ = π + Tq.

3. Two feasible timetables π, π′ ∈ Π have the same associated periodic tension if and only if
Γp = Γp′ for the associated offsets p, p′ ∈ ZA(G).

E. Bortoletto, N. Lindner, and B. Masing 3:5

The unbounded set Π/R1 then turns out to be simpler than expected, since its ambient
space can be restricted by another quotient, based on the equivalence relation

p ∼= p′ ⇐⇒ Γp = Γp′ (8)

implied in the above proposition. In view of the cycle formulation (3) of PESP, we consider
p and p′ equivalent whenever they correspond to the same cycle offset. With n := |V (G)|,
we define the torus of feasible periodic timetables T := (Rn/ (TZ)n) /R1. This is an (n− 1)-
dimensional torus of side length T , whose representative can be any full-dimensional hypercube
of side length T in Rn/R1, called fundamental domain. It now makes sense to also have
a shorthand notion to refer to the quotient of our weighted digraph polyhedra in T. We
choose (R(p)/(TZ)n)/R1 =: R(p) ⊆ T.

To conclude this recapitulatory section, it is now possible to describe how the polytropes
position themselves inside some fundamental domain, along the lines of [4]. Given a PESP
instance (G, T, ℓ, u, w), we define (in breach of our hypothesis of u− ℓ < T) its limit instance,
where all upper bounds ua are substituted with ℓa + T , and denote it by (G, T, ℓ, w)∞. For
a polytrope R(p) of the base instance we denote as R′(p) the polytrope in the limit instance
that contains it. We now say that two non-empty polytropes R(p) and R(q) are neighbours
when R′(p) and R′(q) intersect in a common facet.

▶ Proposition 3 ([4], §3.7). Let p ∈ ZA(G) be an offset vector with R(p) ̸= ∅, k an integer,
and eij ∈ ZA(G) the canonical basis vector of the arc (i, j) ∈ A(G). Then:
1. If |k| > 2, then R(p + keij) is empty.
2. If |k| > 1, then R(p) and R(p + keij) are not neighbours.
3. If |k| = 1 and R(p + keij) ̸= ∅, then R(p) and R(p + keij) are neighbours, and one of

the two inequalities defined by the arc (i, j) is facet-defining for R(p): For k = 1 this
is the lower bound inequality πj − πi ≥ ℓij − Tpij, for k = −1 this is the upper bound
inequality πj − πi ≤ uij − Tpij.

4. Two non-empty polytropes R(p) and R(q) are neighbours whenever there exist represent-
atives of the equivalence classes of p and q whose difference is, up to sign, a canonical
basis vector. In other words, whenever there exists an arc (i, j) ∈ A(G) such that
[p]∼= − [q]∼= = [±eij]∼=.

This allows the construction of the neighbourhood graph of an instance, whose nodes are
the equivalence classes of offsets, and two classes are adjacent if their respective polytropes
are neighbours in T. For the limit instance of the instance of Figure 1, the polytropal
decomposition is depicted in Figure 2 next to the neighbourhood graph derived from it:
Each dark blue triangle corresponds to the equivalence class [0, 0, 0]∼= and shares a facet only
with the hexagon, corresponding to the class [0, 0, 1]∼=. This, in turn, has both [0, 0, 0]∼= and
[0, 0, 2]∼= as neighbours.

3 Tropical Neighbourhood Search

We can now outline the core steps undertaken by the promised heuristic, which we call
Tropical Neighbourhood Search (tns). It is a local improvement heuristic that operates within
the framework of the concurrent solver [3]. The solver keeps a pool of the feasible solutions it
finds, ordered by objective value, and various local improvement heuristics use the pooled
solutions as starting points. In particular, tns, once given a starting solution (π⋆, x⋆, p⋆),
identifies the polytrope R(p⋆) and proceeds to explore some neighbouring polytropes, i.e., it
determines the optimal weighted tension over each R(p) for (a subset of) neighbours p of p⋆.
If an improving solution is found, it is added to the pool. Doing so, it in fact operates on the
neighbourhood graph of the given instance.

ATMOS 2022

3:6 Tropical Neighbourhood Search: A New Heuristic for Periodic Timetabling

0 0 0 -1 0 1

0 1 1 -1 1 2

0 0 1

-1 0 2

1 0 0

0 -1 0 -1 -1 1

0 1 21 1 1

0 0 21 0 1

0 -1 11 -1 0

fundamental domain of T

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
−1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

π1

π2

[0 0 0]∼=

[0 0 1]∼=

[0 0 2]∼=

Figure 2 Limit instance and neighbourhood graph for the same instance as in Figure 1.

Algorithm 1 Tropical Neighbourhood Search tns.

Require: PESP instance (G, T, ℓ, u, w)
1: (π⋆, x⋆, p⋆)← pick a starting solution from the pool
2: xtns ← x⋆

3: for arc (i, j) and direction k ∈ {−1, +1} in exploreList do
4: fix offset p← p⋆ + keij

5: solve PESP|p
6: if PESP|p feasible then
7: (πopt, xopt, popt)← optimal solution of PESP|p
8: improv← (w⊤xtns − w⊤xopt)/(w⊤xtns)
9: if improv > 0 then

10: Add (πopt, xopt, popt) to the pool
11: if improv > qualityFactor then
12: break
13: xtns ← xopt

Formally, our heuristic can be described by Algorithm 1, where
PESP|p is simply PESP restricted to the specific offset vector p, i.e., we solve (2) with all
integer variables fixed to p. This is a linear program, which is dual to an uncapacitated
minimum cost network flow problem [25].
exploreList is a list of arc-direction tuples, indicating which neighbours to explore. It
may contain only a subset of all possibilities.
The solution picking method could vary in principle, although in our implementation it
always selects the solution in the pool with smallest weighted tension.
qualityFactor ∈ [0, 1] is a factor utilized as a preemptive exit condition, which triggers
when the percentage improvement of a newly found solution exceeds this factor.

E. Bortoletto, N. Lindner, and B. Masing 3:7

Note that Algorithm 1 is a description of tns with the incidence matrix formulation of
PESP (2). One can equivalently work with the cycle formulation (3) instead, which changes
the LP subproblem of PESP to PESP|z for a vector z of periodic cycle offsets. This poses
no issue, and we refer to the next section for more details.

It is known that tns can be used to escape local minima reached via the modulo network
simplex, as there even exist such instances where the neighbourhood graph has none [4].

4 Implementation details

As anticipated, there are various elements in Algorithm 1 that may alter the overall behaviour
and performance of the algorithm depending on how they are adjusted. Therefore, before
moving forward with the computational experiments, we will now detail the characteristics
of such elements, what settings and strategies we decided to employ, the motivations that
moved us, and other minor implementation details.

4.1 Preparing the exploreList
A deciding factor for both the speed and the behaviour of our tns heuristic is determining
the search space. Clearly, choosing which or how many neighbouring polytropes to explore is
a factor that deserves consideration, but even the order of exploration may affect the overall
performance, since it has potentially positive interplay with concurrency.

As we know from Proposition 3, only arcs (i, j) whose inequalities are facet-defining for
R(p⋆) can yield feasible neighbours, and only in the appropriate direction. Unfortunately,
knowing a priori which inequalities are facet-defining is not trivial, and we therefore detail
two strategies: one precise but slow, one fast but imprecise. When setting up exploreList in
our tests, we decided to either scan all possible neighbours, i.e., all pairs (a, +1) and (a,−1)
for all arcs a ∈ A(G), or to restrict ourselves to a subset of the facet-defining inequalities,
namely those that are tight in the starting solution (π⋆, x⋆, p⋆), i.e., pairs (a, +1) if x⋆

a = ℓa

and pairs (a,−1) if x⋆
a = ua. This second way only the faces on a particular side of the

polytrope are considered. We mark the first exploreList strategy by all, and the second
one by side. The side strategy is quick to set up, but has the defect of not considering all
facet-defining inequalities. Note that when a simplex-based LP solver is invoked on PESP|p
or PESP|z, then (π⋆, x⋆, p⋆) will be a vertex of R(p⋆).

Given the equivalence relation ∼= (8), we know that polytropes are uniquely determined
by their cycle offset z = Γp. Given then neighbouring periodic offsets p + ei1j1 and p + ei2j2 ,
for arcs (i1, j1) and (i2, j2) in A(G), it may happen that Γ(p + ei1j1) = Γ(p + ei2j2) and
the two explorations end up being identical. Therefore, another way of avoiding irrelevant
explorations is to fix any cycle matrix Γ of the instance graph and pre-process all arcs, storing
a unique representative for all arcs whose columns in Γ are identical.

4.2 Sorting the exploreList
Another choice to be made while preparing exploreList is the order in which to consider the
arc-direction pairs. This can be influential because if a good solution is put into the pool
earlier, then it is earlier available to other methods in the concurrent solver. In particular,
in combination with the quality factor, this can lead to tns-loops that are shorter but still
improvement-dense. We decided to use four different strategies to sort the arcs:
s1 descending weight wa, to prioritize exploration of heavy and hence influential arcs;
s2 descending span ua − ℓa, to prioritize exploration of neighbours that are close-by, and

therefore more likely feasible, since two neighbouring polytropes R(p) and R(p ± eij)
have distance at most T − (uij − ℓij);

ATMOS 2022

3:8 Tropical Neighbourhood Search: A New Heuristic for Periodic Timetabling

s3 descending weighted span wa(ua − ℓa), to combine the two sorting strategies above;
s4 descending average improvement, so as to prioritize exploration via arcs that on average

have given good improvements in previous iterations. While the previous three strategies
are pre-processed at the beginning, this is a dynamic sorting strategy, which keeps track
of the average (positive and negative) improvements given by each arc throughout the
various iterations. The rationale behind this is to prioritize all those arcs which provided
net improvements but not the best improvement overall. Initially all averages are set to
0, and no changes is made in case of infeasibility. This is similar to pseudocost branching
in mixed-integer programming [1].

4.3 The qualityFactor

The quality factor can be interpreted as a percentage, based on which the tns-loop is
terminated early in case of a percentage-improvement that exceeds the given bound. As limit
cases this means that any positive improvement whatsoever is enough to conclude the search
when the factor is set to 0%, and that no quality-based exit can happen when the factor is
set to 100% or more. In our tests, we perform our tests using two quality factors:

q0.001, meaning 0.1% quality factor.
q1, meaning 100% quality factor: every arc-direction tuple of exploreList is considered.

4.4 Subproblem Formulation: Arc Offsets vs. Cycle Offsets

As mentioned, Algorithm 1 is tns with respect to the incidence formulation of PESP (2),
but one can equivalently perform tns using the cycle formulation (3) instead. The algorithm
then reads the same as Algorithm 1, except that the cycle offsets are computed and used
instead, with line 4 changing to z ← z⋆ + kΓeij , and line 5 now solving PESP|z. Notice that
Γeij is indeed the (i, j)-th column of the cycle matrix. In this, the choice of which cycle
basis to use can be quite influential on the solving speed of the linear programs PESP|z.
Preliminary tests showed that for each instance there can be impressive differences, up to a
factor 14, between the average solving times of different problem formulations and different
cycle bases.

In order to choose which formulation to use for each instance, we compared the average
for-loop iteration time of each of them and then simply picked the fastest one. The
formulations tested were the incidence matrix formulation, and four variants of the cycle
matrix formulation. One used a minimum width cycle basis [17], whereas three used different
fundamental cycle bases: from a minimum span, minimum weight, and a minimum weighted
span spanning tree, respectively. Since the average iteration time appeared very consistent
throughout the tests and short even in the worst cases, tests of less than a minute per
formulation are more than enough to process hundreds of linear programs and thereby
compute an applicable average iteration time. In particular, the cycle formulation performed
well overall, with the fundamental cycle bases of a minimum weighted span spanning tree
being the fastest in all but two instances, where the fundamental cycle bases of a minimum
span spanning tree were best instead.

Regardless of the specific cycle bases used in our tests, these evaluations were fast to
obtain, and it can be suggested that a similar pre-evaluation strategy could be systematically
used in the future.

We use Gurobi 9.5 [10] to solve each iteration’s linear program.

E. Bortoletto, N. Lindner, and B. Masing 3:9

4.5 Hashing Visited Polytropes
Throughout repeated use of tns, in particular in the exploration of different neighbourhoods,
it is possible to explore the same polytrope multiple times, since the neighbourhoods of any
two polytropes may have non-trivial intersection. A way to prevent this from happening is
then to progressively keep a record of every processed offset vector and skip it whenever it is
encountered again. In our preliminary performance evaluations this tracking method seemed
to have little effect, positive or negative. We therefore decided to maintain it, hoping for a
stronger impact in longer tests.

5 Computational Experiments and Results

We conducted several tests on eight PESPlib instances [5] of varying size, namely R1L1, R2L2,
R3L3, R4L4, R1L1v, R4L4v, BL1, BL3. The last two are bus timetabling instances, whereas
the rest are based on railway networks. For each we used both warm starts, employing initial
solutions close to the PESPlib current best primal bounds (cf. Table 1), and cold starts
without any initial solution.

Table 1 Initial solution values for the warm starts.

R1L1 31 099 786 R2L2 43 404 232 R3L3 44 837 461 R4L4 38 836 756
R1L1v 43 258 386 R4L4v 64 408 523 BL1 8 457 513 BL3 8 502 382

Table 2 Parameter combinations for tns.

Instances exploreList arcs exploreList sort qualityFactor Initial Solution
R1L1, R2L2, s1
R3L3, R4L4, all s2 q0.001 cold

R1L1v, R4L4v, side s3 q1 warm
BL1 , BL3 s4

Overall the various tns parameters are summarised in Table 2. Each combination was
tested within the concurrent solver [3]. Going forward we will refer to mns tests when
the modulo network simplex method works alone, tns+mns tests when the two heuristics
run concurrently, and complete tests when tns and all the methods implemented in the
concurrent solver are used together.

5.1 Impact of Parameter Choices for tns

In a first step, we want to evaluate how much the choice of arc-direction tuples and their
sorting influence our results. We run tns+mns and compare it to mns alone, for all parameter
combinations, see Table 2. For a meaningful comparison of the test runs, we disabled
multi-node cuts within the mns implementation, because of their randomizing character. To
complete the analysis we also run complete tests. The computation time per configuration
is one hour wall time each, performed on an Intel i7-9700K CPU with 64 GB RAM.

5.1.1 mns+tns vs. mns

We can make the following observations: In combination with mns, our new heuristic was
able to beat mns alone for all instances, as becomes evident from Table 6. Highlighted entries
correspond to the best objective in comparison to the other parameter choices per instance.

ATMOS 2022

3:10 Tropical Neighbourhood Search: A New Heuristic for Periodic Timetabling

The last column, corresponding to the objective value obtained by mns alone is never in the
first place, while any other column is the winner at least once.

We point out that for one instance, namely the warm-started R4L4, mns was not able to
find any improvement, while all four sortings of all arcs with low qualityFactor found the
same improvement. This supports our claim that tns can be used to escape local minima.

To assess each heuristic’s performance, we rank them by their objective value after 6
minutes (i.e., 10% of the total running time) and after 1 hour (100%), such that the best
objective is ranked in first place, and assign the same placement number for equal objectives.
When comparing the average ranking values, it is hard to discern a clear ranking in between
the tns parameter choices: all with pseudocost-like improvement (s4) and qualityFactor q1
seems best on average, but is a clear winner only for the cold R3L3 instance.

The two exemplary plots for the two instances R1L1v and BL3, see Figure 3, show the
development of the objective for mns vs. tns+mns. It is evident that each of the parameter
choices is reasonable, and depending on the instance may perform well or not. For example,
side-s1-q1 is the best for BL3-cold, yet one of the worst heuristics in the R1L1v-cold run.

Another property which can be seen in the figures is that in the beginning, the side
instances tend to perform better. After a while however, the all-runs become competitive.

5.1.2 complete Runs
This phenomenon is even stronger when evaluating the parameter choices in the complete
runs: When comparing the average ranking of the methods after 6 minutes with the final
state after an hour, as indicated in Table 7, one can observe that – with the exception of
all-s3-q0.001 – the all-heuristics rank better, while side methods worsen.

This behaviour can be also observed when looking at the graphs for the complete case in
Figure 4. What catches the eye in these figures is that the all runs seem to have the same
shape in objective development as the side runs, but lag behind. After a while however, the
dark (all) strands catch up to the light (side) strands. A similar pattern can be observed in
most of the instances, particularly for the larger ones. An explanation for this could be that
in the beginning, improvements are easily found, and side will quickly update the pool and
restart with a better solution, while all will continue to iterate through all options, even
though better solutions have already been obtained (possibly) by other concurrent methods.
In contrast, in the later stages, when improving solutions are hard to find, it pays off to
search through all of the neighbouring polytropes. In contrast to mns+tns, in complete a
low quality factor produces better results on average. This can be explained in a similar way
as above: A low quality factor disrupts unnecessary explorations when larger improvements
are found in the beginning. With time, the improvements in objective become smaller, such
that qualityFactor has less of an impact, so that most of the arc-direction pairs in exploreList
are explored anyway.

We conclude that all sorting factors are relevant, as each one performs well for some
instances. Which one is the best choice is hard to predict in advance, and overall – particularly
in the interplay with other concurrent heuristics – their influence is not large. Both side
and all are valid choices for exploreList: The former is better suited for earlier stages of
solving, while the latter performs well once improvements become hard to find.

5.2 Contribution of tns in Comparison to Other Methods
Aside from the behaviour as discussed in the previous section, we want to analyze the quality
of the contributions of tns in the scope of the concurrent solver. To this end, we compare the
improvement of the objective value obtained by the different algorithms in the complete runs.

E. Bortoletto, N. Lindner, and B. Masing 3:11

Table 3 tns’ contribution to the improvement gained in the complete runs in %.

warm cold
avg. min max avg. min max

BL1 7.43 0.0 17.97 3.68 0.02 8.52
BL3 4.68 0.0 14.59 2.92 0.0 6.04
R1L1 7.66 6.38 10.04 2.95 0.04 5.15
R1L1v 0.81 0.0 5.02 2.96 0.03 5.92
R2L2 6.89 0.0 31.64 2.76 0.05 5.46
R3L3 15.05 6.98 21.71 2.95 1.05 6.21
R4L4 9.52 1.16 12.45 1.89 0.89 3.23
R4L4v 0.56 0.0 1.5 1.48 0.0 3.76

What should be noted first, is that the total improvements of cold starts are significantly
larger than those of warm starts, and this also holds for tns in the complete runs. In relation
to the total improvements however, the contribution of tns is larger for warm starts. We see
evidence of that in Table 3: It shows the average, minimum and maximum improvement found
by any of the exploreList’s choices in relation to the total improvement in the complete run
in percent. With the exception of R4L4v and R1L1v, the average (and in most cases also the
maximal) values of the warm started instances is larger than of the cold started ones. Table 4
displays the same, except that the first 6 minutes are excluded from the improvements. One
can observe that compared to Table 3 the contribution of tns increases for the cold instances.
This observation suggests that tns is particularly well suited for the later stages of solving a
PESP instance, namely when improvements increment more slowly. At the beginning, when
still far from a (local) minimum, tns is dominated by other algorithms in the solver.

Table 4 tns’ contribution to the improvement gained in the complete runs in % after 6 minutes.

warm cold
avg. min. max. avg. min. max.

BL1 4.97 0.06 11.87 4.73 0.0 13.78
BL3 6.74 0.0 26.61 5.32 0.01 26.48
R1L1 0.0 0.0 0.0 8.28 0.0 41.78
R1L1v 9.46 0.0 72.64 7.41 1.15 28.49
R2L2 2.76 0.0 11.18 2.22 0.0 10.61
R3L3 1.79 0.47 4.02 7.15 0.0 37.09
R4L4 2.84 0.0 15.62 1.37 0.0 3.45
R4L4v 0.42 0.0 1.38 2.59 0.0 14.44

Very noticeable in Table 3 and Table 4 is the wide range of tns’ contribution for the
different choices of exploreList. In almost all instances there is at least one choice which
provides close to zero improvement, while the maximum value goes up to double-digit
percentages. This property can also be observed in Figure 5. Here, we have chosen the
exemplary instance R3L3 and displayed the fractional contributions of all used heuristics in
the complete solver. The warm started instance (left) has significantly more contribution
through tns (green parts) in comparison to the cold started one. The top plots display
the contributions for the whole time frame, while the lower plots show them for the last 54
minutes. When comparing the upper to the lower plots, it becomes evident, that some of
exploreList’s choices gain in importance, while others seem to perform particularly badly.

ATMOS 2022

3:12 Tropical Neighbourhood Search: A New Heuristic for Periodic Timetabling

E.g., for the cold run, each of the sortings with low qualityFactor seem to contribute similarly
in the beginning, but after the first 6 minutes have passed, s4 clearly contributes the most
to the concurrent solution, yet the largest total improvement is found by s1, with only little
direct tns contribution. Which one of the sortings provide the best solution is not clear
however, our experiments did not show any clear indication. We therefore conclude that it
may be worth it to try different sorting techniques in tns if no good improvements are found.

Based on Figure 5, we observe that the runs with high qualityFactor result in less
improvement than with low qualityFactor , and the tns contribution is also often higher for
low quality factors. While not the case for each instance and sorting, this seems to be a
general tendency. When comparing tns’ influence over time, this hierarchy is less prominent.

This supports again our interpretation of the previous section: Low quality factors are
advantageous in the beginning. At a later stage, when the objective improvements become
smaller, the qualityFactor exit condition is rarely triggered, regardless of low or large choice.

5.3 New PESPlib Incumbents
Based on the observation that tns contributes significantly to finding better solutions for
PESP instances within the framework of the concurrent solver, we were able to compute
new best primal solutions for 5 out of the 8 considered PESPlib instances. For some of these
instances, we could find such a solution already within one hour in our complete experiments
(see, e.g., BL3 in Table 7). We then let the solver run for another 8 hours to further improve
the timetables. We summarize the objective values of these new incumbents in Table 5.

Table 5 New incumbents for 5 PESPlib instances found with the help of tns. The old values are
as of July 7, 2022. The last column shows the (wall) time of discovery.

Instance New Value Old Value Time (s)
BL3 6 675 098 6 999 313 25 732
R1L1v 42 591 141 42 667 746 9 110
R3L3 40 483 617 40 849 585 3 547
R4L4 36 703 391 36 728 402 11 122
R4L4v 61 968 380 64 327 217 3 625

6 Outlook

The tns algorithm turns out to be a valuable supplement to the already enormous zoo
of periodic timetabling heuristics, being capable to provide timely and practical schedule
improvements. For future research, it seems reasonable to embed tns in a metaheuristic such
as tabu search or simulated annealing in order to overcome local optima. Another branch of
research would be to employ automated algorithm configuration techniques [28] to find out
which parameters work best for a given instance.

References
1 M. Benichou, J. M. Gauthier, P. Girodet, G. Hentges, G. Ribiere, and O. Vincent. Experiments

in mixed-integer linear programming. Mathematical Programming, 1(1):76–94, December 1971.
doi:10.1007/BF01584074.

2 R. Borndörfer, H. Hoppmann, M. Karbstein, and N. Lindner. Separation of cycle inequalities
in periodic timetabling. Discrete Optimization, 35:100552, February 2020. doi:10.1016/j.
disopt.2019.100552.

https://doi.org/10.1007/BF01584074
https://doi.org/10.1016/j.disopt.2019.100552
https://doi.org/10.1016/j.disopt.2019.100552

E. Bortoletto, N. Lindner, and B. Masing 3:13

3 R. Borndörfer, N. Lindner, and S. Roth. A concurrent approach to the periodic event schedul-
ing problem. Journal of Rail Transport Planning & Management, 15:100175, September 2020.
doi:10.1016/j.jrtpm.2019.100175.

4 E. Bortoletto, N. Lindner, and B. Masing. The tropical and zonotopal geometry of periodic
timetables, 2022. doi:10.48550/ARXIV.2204.13501.

5 M. Goerigk. PESPlib - A benchmark library for periodic event scheduling, 2012. URL:
http://num.math.uni-goettingen.de/%7Em.goerigk/pesplib/.

6 M. Goerigk and C. Liebchen. An Improved Algorithm for the Periodic Timetabling Problem.
In G. D’Angelo and T. Dollevoet, editors, 17th Workshop on Algorithmic Approaches for
Transportation Modelling, Optimization, and Systems (ATMOS 2017), volume 59 of OpenAccess
Series in Informatics (OASIcs), pages 12:1–12:14, Dagstuhl, Germany, 2017. Schloss Dagstuhl–
Leibniz-Zentrum für Informatik. doi:10.4230/OASIcs.ATMOS.2017.12.

7 M. Goerigk, A. Schöbel, and F. Spühler. A Phase I Simplex Method for Finding Feasible
Periodic Timetables. In M. Müller-Hannemann and F. Perea, editors, 21st Symposium on
Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2021), volume 96 of Open Access Series in Informatics (OASIcs), pages 6:1–6:13, Dagstuhl,
Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/OASIcs.
ATMOS.2021.6.

8 M. Goerigk and A. Schöbel. Improving the modulo simplex algorithm for large-scale periodic
timetabling. Computers and Operations Research, 40(5):1363–1370, May 2013. doi:10.1016/
j.cor.2012.08.018.

9 P. Großmann, S. Hölldobler, N. Manthey, K. Nachtigall, J. Opitz, and P. Steinke. Solving
Periodic Event Scheduling Problems with SAT. In J. He, D. Wei, A. Moonis, and W. Xindong,
editors, Advanced Research in Applied Artificial Intelligence, Lecture Notes in Computer
Science, pages 166–175, Berlin, Heidelberg, 2012. Springer. doi:10.1007/978-3-642-31087-4_
18.

10 Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2022. URL: https://www.
gurobi.com.

11 C. Helmberg, T. Hofmann, and D. Wenzel. Periodic event scheduling for automated production
systems. INFORMS Journal on Computing, 34(2):1291–1304, 2022. doi:10.1287/ijoc.2021.
1101.

12 M. Joswig. Essentials of tropical combinatorics, volume 219 of Graduate Studies in Mathematics.
American Mathematical Society, Providence, RI, 2021.

13 M. Joswig and K. Kulas. Tropical and ordinary convexity combined. Advances in Geometry,
10(2):333–352, 2010. doi:doi:10.1515/advgeom.2010.012.

14 M. Joswig and G. Loho. Weighted digraphs and tropical cones. Linear Algebra and its
Applications, 501:304–343, 2016. doi:10.1016/j.laa.2016.02.027.

15 C. Liebchen. Periodic timetable optimization in public transport. PhD thesis, Technische
Universität Berlin, 2006.

16 C. Liebchen and R. H. Möhring. The Modeling Power of the Periodic Event Scheduling Problem:
Railway Timetables — and Beyond. In F. Geraets, L. Kroon, A. Schoebel, D. Wagner, and C. D.
Zaroliagis, editors, Algorithmic Methods for Railway Optimization, Lecture Notes in Computer
Science, pages 3–40, Berlin, Heidelberg, 2007. Springer. doi:10.1007/978-3-540-74247-0_1.

17 C. Liebchen and L. Peeters. Integral cycle bases for cyclic timetabling. Discrete Optimization,
6:98–109, February 2009. doi:10.1016/j.disopt.2008.09.003.

18 N. Lindner and C. Liebchen. New Perspectives on PESP: T-Partitions and Separat-
ors. In V. Cacchiani and A. Marchetti-Spaccamela, editors, 19th Symposium on Al-
gorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2019), volume 75 of OpenAccess Series in Informatics (OASIcs), pages 2:1–2:18, Dag-
stuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum für Informatik. ISSN: 2190-6807.
doi:10.4230/OASIcs.ATMOS.2019.2.

ATMOS 2022

https://doi.org/10.1016/j.jrtpm.2019.100175
https://doi.org/10.48550/ARXIV.2204.13501
http://num.math.uni-goettingen.de/%7Em.goerigk/pesplib/
https://doi.org/10.4230/OASIcs.ATMOS.2017.12
https://doi.org/10.4230/OASIcs.ATMOS.2021.6
https://doi.org/10.4230/OASIcs.ATMOS.2021.6
https://doi.org/10.1016/j.cor.2012.08.018
https://doi.org/10.1016/j.cor.2012.08.018
https://doi.org/10.1007/978-3-642-31087-4_18
https://doi.org/10.1007/978-3-642-31087-4_18
https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.1287/ijoc.2021.1101
https://doi.org/10.1287/ijoc.2021.1101
https://doi.org/doi:10.1515/advgeom.2010.012
https://doi.org/10.1016/j.laa.2016.02.027
https://doi.org/10.1007/978-3-540-74247-0_1
https://doi.org/10.1016/j.disopt.2008.09.003
https://doi.org/10.4230/OASIcs.ATMOS.2019.2

3:14 Tropical Neighbourhood Search: A New Heuristic for Periodic Timetabling

19 N. Lindner and C. Liebchen. Determining All Integer Vertices of the PESP Polytope by Flipping
Arcs. In D. Huisman and C. D. Zaroliagis, editors, 20th Symposium on Algorithmic Approaches
for Transportation Modelling, Optimization, and Systems (ATMOS 2020), volume 85 of
OpenAccess Series in Informatics (OASIcs), pages 5:1–5:18, Dagstuhl, Germany, 2020. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik. doi:10.4230/OASIcs.ATMOS.2020.5.

20 N. Lindner and J. Reisch. An analysis of the parameterized complexity of periodic timetabling.
Journal of Scheduling, February 2022. doi:10.1007/s10951-021-00719-1.

21 N. Lindner and R. van Lieshout. Benders decomposition for the periodic event scheduling
problem. Technical Report 21-29, ZIB, Takustr. 7, 14195 Berlin, 2021.

22 G. P. Matos, L. M. Albino, R. L. Saldanha, and E. M. Morgado. Solving periodic timetabling
problems with SAT and machine learning. Public Transport, August 2020. doi:10.1007/
s12469-020-00244-y.

23 K. Nachtigall. Cutting Planes for a Polyhedron Associated with a Periodic Network. undefined,
1996.

24 K. Nachtigall. Periodic network optimization and fixed interval timetables. Technical report,
Deutsches Zentrum für Luft- und Raumfahrt e.V., 1999. LIDO-Berichts. URL: https:
//elib.dlr.de/3657/.

25 K. Nachtigall and J. Opitz. Solving Periodic Timetable Optimisation Problems by Mod-
ulo Simplex Calculations. In M. Fischetti and P. Widmayer, editors, 8th Workshop on
Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (ATMOS’08),
volume 9 of OpenAccess Series in Informatics (OASIcs), Dagstuhl, Germany, 2008. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik. ISSN: 2190-6807. doi:10.4230/OASIcs.ATMOS.
2008.1588.

26 M. A. Odijk. Construction of periodic timetables, part 1: A cutting plane algorithm. Technical
Report 94-61, TU Delft, 1994.

27 J. Pätzold and A. Schöbel. A Matching Approach for Periodic Timetabling. In M. Goerigk and
R. Werneck, editors, 16th Workshop on Algorithmic Approaches for Transportation Modelling,
Optimization, and Systems (ATMOS 2016), volume 54 of OpenAccess Series in Informatics
(OASIcs), pages 1:1–1:15, Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum für
Informatik. ISSN: 2190-6807. doi:10.4230/OASIcs.ATMOS.2016.1.

28 E. Schede, J. Brandt, A. Tornede, M. Wever, V. Bengs, E. Hüllermeier, and K. Tierney. A survey
of methods for automated algorithm configuration, 2022. doi:10.48550/ARXIV.2202.01651.

29 P. Serafini and W. Ukovich. A mathematical model for periodic scheduling problems. SIAM
Journal on Discrete Mathematics, 2(4):550–581, 1989. doi:10.1137/0402049.

https://doi.org/10.4230/OASIcs.ATMOS.2020.5
https://doi.org/10.1007/s10951-021-00719-1
https://doi.org/10.1007/s12469-020-00244-y
https://doi.org/10.1007/s12469-020-00244-y
https://elib.dlr.de/3657/
https://elib.dlr.de/3657/
https://doi.org/10.4230/OASIcs.ATMOS.2008.1588
https://doi.org/10.4230/OASIcs.ATMOS.2008.1588
https://doi.org/10.4230/OASIcs.ATMOS.2016.1
https://doi.org/10.48550/ARXIV.2202.01651
https://doi.org/10.1137/0402049

E. Bortoletto, N. Lindner, and B. Masing 3:15

A Appendix

Table 6 Objective values of tns and mns in parallel after 1h wall time, in comparison to mns
alone.

all
s1-q0.001 s1-q1 s2-q0.001 s2-q1 s3-q0.001 s3-q1 s4-q0.001 s4-q1

BL1-warm 8258561 8235826 8186321 8300527 8182495 8238180 8208581 8213667
BL1-cold 8477888 8403606 8549631 8857331 8275775 8520448 8817740 8346471
BL3-warm 8359354 8348109 8098761 8312052 8062572 8348109 8327236 8379410
BL3-cold 8842185 9239538 9075754 8684087 8999692 8522210 9012239 8861540
R1L1-warm 30678496 30610793 30600296 30588100 30678496 30578866 30600296 30583524
R1L1-cold 35788003 35103477 35300490 35646174 35588509 35374751 35589367 35382965
R1L1v-warm 42943355 42943355 42943355 42943355 42943355 42943355 42943355 42943355
R1L1v-cold 46122798 46465421 46212022 46696787 46504815 46425825 46467141 46678146
R2L2-warm 43398483 43382565 43382736 43382736 43398483 43382565 43398483 43382736
R2L2-cold 45545963 46106414 44143731 45270818 45016237 45032259 44405920 44233438
R3L3-warm 44546204 44544442 44591244 44539593 44544442 44544948 44548577 44593350
R3L3-cold 44296073 43407015 42430742 42488680 43840438 42806733 42610123 42176416
R4L4-warm 37387179 37460489 37405396 37492682 37312244 37367970 37366297 37363497
R4L4-cold 42975571 41336513 42929915 42261165 42627952 41546954 42003636 42335060
R4L4v-warm 64403669 64408523 64403669 64406909 64403669 64408523 64403669 64408523
R4L4v-cold 65376186 66594246 66351066 66694524 65949084 66391164 66296248 65823105
6 min. ranking 9.88 10.62 7.25 8.38 8.62 9.12 8.38 6.69
final ranking 9.0 8.06 6.75 9.0 7.06 6.5 7.62 6.19

side
s1-q0.001 s1-q1 s2-q0.001 s2-q1 s3-q0.001 s3-q1 s4-q0.001 s4-q1 MNS

BL1-warm 8156407 8217310 8273813 8197344 8204102 8214464 8145927 8177211 8362237
BL1-cold 8790388 8464797 8523165 8509967 8681972 8375229 8688826 8676485 8973473
BL3-warm 8376740 8263350 8408354 8065263 8408354 7946851 8193045 8029258 8359914
BL3-cold 8780061 8479738 8664483 8715578 8692029 8873040 8821544 8985128 8895307
R1L1-warm 30674972 30658531 30691866 30688021 30756833 30688021 30756833 30681160 30684785
R1L1-cold 36423144 35686177 36133582 35353728 36044751 36078420 36541854 35633823 36390414
R1L1v-warm 42943355 42943355 42943355 42943355 42943355 42943355 42943355 42943355 42946450
R1L1v-cold 46961984 47270557 47182681 46530813 46658767 47345018 47409082 46555105 47600910
R2L2-warm 43398483 43364985 43398483 43386980 43386980 43398483 43398483 43364985 43385954
R2L2-cold 44667116 44593903 44502873 44640728 44496851 44428158 44403440 44522515 44504010
R3L3-warm 44795451 44795451 44795451 44795451 44795451 44795451 44795451 44795451 44810246
R3L3-cold 42187095 43170308 44316260 43665920 43376728 43507592 43430305 43574669 45577898
R4L4-warm 37415040 37399063 37356432 37386139 37314559 37288889 37363831 37311361 37444171
R4L4-cold 42846346 42044976 41788252 41528536 41952148 41772120 42575956 42763956 42622532
R4L4v-warm 64408523 64408523 64408523 64408523 64408523 64408523 64408523 64408523 64408523
R4L4v-cold 66228809 65578506 65739359 65741111 66134278 66032110 65175140 65877024 66270894
6 min. ranking 8.12 6.19 7.75 6.88 8.62 6.56 7.56 7.88 6.81
final ranking 9.94 7.06 9.5 7.19 8.69 7.81 8.69 7.5 13.44

ATMOS 2022

3:16 Tropical Neighbourhood Search: A New Heuristic for Periodic Timetabling

101 102 103

Time (s)

4.4

4.6

4.8

5.0

5.2

5.4
Ob

je
ct

iv
e

1e7
all-s1-q0.001
all-s1-q1
all-s2-q0.001
all-s2-q1
all-s3-q0.001
all-s3-q1
all-s4-q0.001
all-s4-q1
side-s1-q0.001
side-s1-q1
side-s2-q0.001
side-s2-q1
side-s3-q0.001
side-s3-q1
side-s4-q0.001
side-s4-q1
MNS

(a) R1L1v-cold.

101 102 103

Time (s)

0.8

1.0

1.2

1.4

Ob
je

ct
iv

e

1e7
all-s1-q0.001
all-s1-q1
all-s2-q0.001
all-s2-q1
all-s3-q0.001
all-s3-q1
all-s4-q0.001
all-s4-q1
side-s1-q0.001
side-s1-q1
side-s2-q0.001
side-s2-q1
side-s3-q0.001
side-s3-q1
side-s4-q0.001
side-s4-q1
MNS

(b) BL3-cold.

Figure 3 Examples of the objective progression in comparison to different parameter choices for
parallel mns+tns in comparison to mns.

E. Bortoletto, N. Lindner, and B. Masing 3:17

Table 7 Objective values after 1h runtime with the complete strategy.

all
s1-q0.001 s1-q1 s2-q0.001 s2-q1 s3-q0.001 s3-q1 s4-q0.001 s4-q1

BL1-warm 6792526 6935103 6547850 6697639 6572855 6740896 6562891 7025590
BL1-cold 7621147 7457877 6465738 6758000 7144032 6699148 7147572 6911380
BL3-warm 7334701 7140000 7259769 7023881 6974763 7206833 7553069 7164378
BL3-cold 7406444 7727433 7629390 7753854 7768767 7233719 7462949 7716933
R1L1-warm 30426994 30423140 30423140 30426994 30426994 30426994 30431036 30426994
R1L1-cold 34020450 33522247 31692344 34177686 31856836 33795188 34125594 33794486
R1L1v-warm 42943355 42943355 42943355 42814750 42801531 42943355 42943355 42943355
R1L1v-cold 46169674 46551486 46041342 46326249 45768586 46341535 47172536 45813504
R2L2-warm 43207702 43319135 43206244 43275789 43263142 43329691 43047738 43329691
R2L2-cold 42361958 42416233 41640213 43131819 42337570 42512473 42586419 41960342
R3L3-warm 44408363 44397465 44379012 44399516 44378435 44371830 44397486 44411156
R3L3-cold 41222660 42739161 41228048 42440292 42384919 40483617 42758160 44132022
R4L4-warm 36909735 36916544 36901735 36935621 36928689 36960219 36997153 36990506
R4L4-cold 41823843 41243736 43339597 42061213 42174340 40282996 43336050 41504147
R4L4v-warm 64330043 64328991 64340252 64285960 64340252 64339747 64339747 64340252
R4L4v-cold 63222568 64090696 64580054 62632707 63302814 64225355 63173171 64649625
6 min. ranking 12.5 8.62 9.5 9.88 7.56 10.19 10.38 10.31
final ranking 8.69 9.19 6.75 9.19 7.94 8.06 11.0 10.5

side
s1-q0.001 s1-q1 s2-q0.001 s2-q1 s3-q0.001 s3-q1 s4-q0.001 s4-q1

BL1-warm 6527346 6593280 6429697 6504754 6483936 6508182 6570960 6533503
BL1-cold 6542043 7101531 6650416 7195907 6455312 6791979 6808078 6649762
BL3-warm 6871983 7308628 7341305 7030706 7362216 7040927 6909267 6903738
BL3-cold 7163591 7504180 7349736 7614397 7514692 7232455 7212076 7247561
R1L1-warm 30426994 30426994 30426994 30423140 30425260 30426994 30426994 30425260
R1L1-cold 32816267 33578895 33551641 33642348 33857174 33321098 33785910 33708393
R1L1v-warm 42886458 42943355 42943355 42943355 42943355 42943355 42943355 42943355
R1L1v-cold 44544618 46040263 46330633 45723589 46295094 45923497 46228814 46390710
R2L2-warm 43203025 43318930 43191843 43004597 43318930 43222313 43100634 43047991
R2L2-cold 41095503 42522032 41856192 42195345 42390560 42168432 41914851 42347940
R3L3-warm 44430322 44382720 44433727 44414666 44321035 44404928 44385201 44400190
R3L3-cold 41391010 41773723 41985509 41473233 40993187 42284859 40959638 44300876
R4L4-warm 36974381 36923867 36953228 36915142 36935274 37064318 36913014 36814620
R4L4-cold 42207683 41930820 41605374 42155011 41124227 41549938 41784069 40541428
R4L4v-warm 64340252 64340252 64250155 64339747 64339747 64339747 64339747 64339747
R4L4v-cold 64389979 64026343 61968380 64348631 63482236 63127690 63036902 62757263
6 min. ranking 4.19 6.31 5.69 5.31 4.75 6.06 5.31 6.25
final ranking 6.5 9.0 6.69 7.06 7.0 6.81 5.56 6.06

ATMOS 2022

3:18 Tropical Neighbourhood Search: A New Heuristic for Periodic Timetabling

101 102 103

Time (s)

4.5

5.0

5.5

6.0

6.5

7.0

Ob
je

ct
iv

e
1e7

all-s1-q0.001
all-s1-q1
all-s2-q0.001
all-s2-q1
all-s3-q0.001
all-s3-q1
all-s4-q0.001
all-s4-q1
side-s1-q0.001
side-s1-q1
side-s2-q0.001
side-s2-q1
side-s3-q0.001
side-s3-q1
side-s4-q0.001
side-s4-q1

(a) R1L1v-cold.

101 102 103

Time (s)

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Ob
je

ct
iv

e

1e8
all-s1-q0.001
all-s1-q1
all-s2-q0.001
all-s2-q1
all-s3-q0.001
all-s3-q1
all-s4-q0.001
all-s4-q1
side-s1-q0.001
side-s1-q1
side-s2-q0.001
side-s2-q1
side-s3-q0.001
side-s3-q1
side-s4-q0.001
side-s4-q1

(b) R4L4v-cold.

Figure 4 Examples objective progression in comparison to different heuristics in the complete
concurrent solver.

E. Bortoletto, N. Lindner, and B. Masing 3:19

0

100000

200000

300000

400000

q0.001 s1 q1 s1 q0.001 s2 q1 s2 q0.001 s3 q1 s3 q0.001 s4 q1 s4

(a) warm.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1e7

q0.001 s1

1e7

q1 s1

1e7

q0.001 s2

1e7

q1 s2

1e7

q0.001 s3

1e7

q1 s3

1e7

q0.001 s4

1e7

q1 s4

Tropical
MNS
MaxCut
Reflow
MIP
Expand

(b) cold.

0

25000

50000

75000

100000

125000

150000

175000

200000

q0.001 s1 q1 s1 q0.001 s2 q1 s2 q0.001 s3 q1 s3 q0.001 s4 q1 s4

(c) warm after 6 minutes.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
1e7

q0.001 s1

1e7

q1 s1

1e7

q0.001 s2

1e7

q1 s2

1e7

q0.001 s3

1e7

q1 s3

1e7

q0.001 s4

1e7

q1 s4

(d) cold after 6 minutes.

Figure 5 Contribution of the individual methods in the concurrent solver and tns (green) for the
instance R3L3.

ATMOS 2022

Greedy Algorithms for the Freight Consolidation
Problem
Zuguang Gao1 !

The University of Chicago Booth School of Business, Chicago, IL, USA

John R. Birge !

The University of Chicago Booth School of Business, Chicago, IL, USA

Richard Li-Yang Chen !

Flexport, Inc., San Francisco, CA, USA

Maurice Cheung !

Flexport, Inc., San Francisco, CA, USA

Abstract
We define and study the (ocean) freight consolidation problem (FCP), which plays a crucial role in
solving today’s supply chain crisis. Roughly speaking, every day and every hour, a freight forwarder
sees a set of shipments and a set of containers at the origin port. There is a shipment cost associated
with assigning each shipment to each container. If a container is assigned any shipment, there is
also a procurement cost for that container. The FCP aims to minimize the total cost of fulfilling all
the shipments, subject to capacity constraints of the containers. In this paper, we show that no
constant factor approximation exists for FCP, and propose a series of greedy based heuristics for
solving the problem. We also test our heuristics with simulated data and show that our heuristics
achieve small optimality gaps.

2012 ACM Subject Classification Theory of computation → Theory and algorithms for application
domains

Keywords and phrases Freight consolidation, heuristics, greedy algorithm

Digital Object Identifier 10.4230/OASIcs.ATMOS.2022.4

1 Introduction

The spiking high container prices since the COVID-19 pandemic has caused significant issues
in global supply chains. In this paper, we consider the (ocean) freight consolidation problem
(FCP) - a combinatorial optimization problem that is being solved every day and every hour
by some of the world leading freight forwarders. In a nutshell, the freight consolidation
problem aims to optimize the assignments of shipments to containers at the origin ports, such
as Yantian Port (Shenzhen) and Port of Shanghai. In the FCP, there are a set of shipments
and a set of candidate containers that can be used. The origin/destinations of each shipment
and each container, as well as the estimated departure/arrival dates of each container, are
predetermined as the shipment/container becomes available at the port. There are two major
costs: cost of assigning a shipment to a container (shipment cost), and cost of procuring a
container (container cost). We further explain these costs in slightly more detail:

The shipment cost takes into account everything related to sending the shipment boxes to
their final destinations. Starting from the origin port, the remaining cycle of a shipment
includes arriving at a destination port, being sorted and loaded to rail or truck, and
delivering to their destinations. If a shipment is assigned to two containers that arrive
at different ports, the remaining rail and/or trucking costs will be different. Further

1 Corresponding author

© Zuguang Gao, John R. Birge, Richard Li-Yang Chen, and Maurice Cheung;
licensed under Creative Commons License CC-BY 4.0

22nd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2022).
Editors: Mattia D’Emidio and Niels Lindner; Article No. 4; pp. 4:1–4:19

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:zuguang.gao@chicagobooth.edu
https://orcid.org/0000-0003-0872-4532
mailto:john.birge@chicagobooth.edu
https://orcid.org/0000-0002-7446-0953
mailto:rchen@flexport.com
https://orcid.org/0000-0001-7075-2601
mailto:mcheung@flexport.com
https://doi.org/10.4230/OASIcs.ATMOS.2022.4
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

4:2 Greedy Algorithms for the Freight Consolidation Problem

more, many shipments also have time window requirements, and based on the arrival
time of different containers, there may be different lateness costs. Therefore, we have a
shipment cost associated with assigning each shipment to each container. If a container
is not feasible for a shipment due to time window or destination ports, the corresponding
shipment cost (of assigning that shipment to that container) is assigned ∞.
The container cost is the cost of using a container. There is a set of containers available
at the origin port, each with its own destination, departure time, and cost of procurement.
If we decide to assign any shipment to a container, then we have to pay the procurement
cost for that container.

Moreover, if we find there is no proper container to assign a shipment, there is always an
option to “coload” that shipment, i.e., use a third-party shipper, e.g., Shipco, to fulfill that
shipment. The cost associated with assigning the shipment to a third-party shipper is called
the “coloading” cost. In our formulation, the “coloading” option can be viewed as a container
with unlimited capacity, and the coloading costs are equivalently viewed as the shipment
cost of assigning a shipment to this “coloading” container.

The freight forwarder aims to fulfill all shipments at hand while minimizing the total
cost, which includes both shipment costs and container costs, subject to certain constraints.
Specifically, each container has its own size in three-dimensions, as does each shipment. A
container also has a maximum weight limit. In reality, we need to ensure that the total
weight of all shipments assigned to a container does not exceed the weight limit of that
container, and the center of mass (of a loading plan of these shipments) is not too far away
from the center of the container. Moreover, these shipments should be able to fit into the
container in three dimensions. Assuming a shipment is packed in a three-dimensional box,
there are six possible rotations (orientations) of a box when being loaded to the container.
Some boxes do not allow all six rotations, and some boxes are not stackable (which means
they have to be put on the top). Given all these practical constraints, the problem of loading
any given set of shipments to a container is a separate NP-hard problem, which is called
the container loading problem in literature (see [5] for a comprehensive review). It would
be too complicated to consider all container-loading constraints in our freight consolidation
model. Therefore, we simplify the constraints by just having a weight capacity constraint
and a volume capacity constraint for each container, ignoring the actual three-dimensional
packing feasibility constraint. Despite that FCP does not reflect all practical constraints, we
believe it is the simplest model to capture the most important features of the problem.

Up till now, a keen reader would recognize that our FCP can be viewed as a combination
of the generalized assignment problem (GAP) and the bin packing problem (BPP), in a more
complicated version. The shipment costs mimic the costs of assigning jobs in GAP, while
in FCP we have two sets of capacity constraints (both weight and volume). The container
cost is the cost of using each container (bin), while we have different costs for each container
(bin). Therefore, FCP is already complicated in its nature and is expected to be difficult
to solve. In this paper, we prove the non-approximability result of FCP, i.e., there is no
constant factor approximation to FCP in polynomial time, unless P = NP . As a remedy, we
propose a series of heuristics. With simulated data that aims to reflect the actual practice,
we show that our heuristics return solutions with small optimality gaps.

The remaining of the paper is organized as follows. In Section 2, we provide a compre-
hensive literature review on the Bin Packing and related problems. In Section 3 we formally
introduce the FCP and provide the non-approximability result. In Section 4, we provide
main greedy heuristics for solving the FCP. Due to page limits, some of the discussions in
Section 2 are delayed to Appendix A.

Z. Gao, J. R. Birge, R.-L.-Y. Chen, and M. Cheung 4:3

2 Literature Review of the Bin Packing and Related Problems

2.1 Classical Bin Packing Problem

We first review the classical (one-dimensional) bin packing problem (BPP). In the classical
bin packing problem, we are given a set of items, each with a one-dimensional size, and an
unlimited number of containers (bins) with the same sizes. The BPP asks to minimize the
total number of bins used, subject to the constraints that the total size of items added to
each bin does not exceed the size of the bin. BPP is strongly NP-hard [14], meaning that no
full polynomial time approximation scheme (FPTAS) exists. Over the years, many heuristics
have been developed to provide high-quality solutions for practical purposes. The traditional
heuristics are all for the “online” version of BPP, meaning that the list of items are shown
one by one, and a decision for each item is made final as soon as the item is shown. Classical
heuristics include the following.

First Fit (FF) [16]: Upon seeing an item, it is inserted to the first bin (according to the
indices of the bins) that has room for it. A new bin is opened if the item does not fit into
any existing bin.
Next Fit (NF) [16]: Upon seeing an item, it is inserted to the last existing bin (according
to the indices of the bins) that has room for it. A new bin is opened if the item does not
fit into any existing bin.
Best Fit (BF) [20]: Upon seeing an item, it is inserted to the fullest bin that has room
for it. A new bin is opened if the item does not fit into any existing bin.
Worst Fit (WF) [11]: Upon seeing an item, it is inserted to the emptiest bin (among
those existing ones) that has room for it. A new bin is opened if the item does not fit
into any existing bin.
Almost Worst Fit (AWF) [11]: Upon seeing an item, it is inserted to the second emptiest
bin that has room for it. A new bin is opened if the item does not fit into any existing
bin.

For the “offline” problem, on the other hand, we are given access to the full list of items from
the beginning (before making any decisions). The above heuristics may also be used, but
combined with some sorting of the items. For example, FF-Decreasing uses the First Fit
heuristic on the presorted list of items, where the items are listed in decreasing order of their
sizes. Other heuristics such as BF-Decreasing, NF-Decreasing, FF-Increasing are defined
similarly. We refer to [12] for a survey on the worst-case analysis of the above algorithms.

There are also algorithms that have both online and offline flavor for BPP. One example
is the Better-Fit heuristic algorithm (BFH) [10]. In BFH, an existing item from a bin is
removed and replaced with the current item if the current item better fills the bin. If the
packing of the current item results in a smaller remaining space than the packing of the
existing item, then the existing item is removed from the bin it is in. The replaced item is
then packed again using BFH. Such procedure continues for all items until better-fit cannot
pack a replaced item, in which case it is packed with BF heuristic.

In recent years, there are also developments of more complicated metaheuristic approaches
for solving the BPP. Examples include the Whale Optimization Algorithm (WOA) [17] (may
be improved with Lévy Flights [1]), (Adaptive) Cuckoo Search (may also incorporate with Lévy
Flights) [21], Squirrel Search Algorithm [15], the Fitness-Dependent Optimizer (FDO) [3, 2],
and so on. Since BPP is still not so close to our FCP, we do not extend our discussions
on these metaheuristics. We refer to [18] for a comprehensive survey of the aforementioned
algorithms.

ATMOS 2022

4:4 Greedy Algorithms for the Freight Consolidation Problem

2.2 Variations of BPP
One major restriction of the classical BPP is that the objective is simply minimizing the
number of bins used, and these bins are assumed to be identical. In our FCP, however,
containers may differ in their size/dimensions, and the costs of containers are different from
each other. Luckily, a number of variations of the classical BPP have also been studied in
the literature.

2.2.1 Bin Packing Problem with General Cost Structures (GCBP)
In GCBP, the cost of a bin is not one, but depends on the number of items actually inserted
into this bin. Specifically, the cost of a bin is given by a function f : {0, 1, 2, . . . , n} → R+,
where f is a monotonically non-decreasing concave function, and f(0) = 0. In words, if
the bin has been inserted k items, the cost of that bin would be f(k). GCBP was first
proposed in [4], where the worst-case performance of some BPP heuristics was analyzed.
Specifically, it was shown that many common heuristics for BPP, such as FF, BF, and NF
as described in Section 2.1 do not have a finite asymptotic approximation ratio, while NF-
Decreasing was shown to have an asymptotic approximation ratio of exactly 2. Moreover, the
BF-Increasing, FF-Increasing and NF-Increasing achieve a better asymptotic approximation
ratio of approximately 1.691. It was also shown in [4] that any heuristic that is independent
of f has an asymptotic approximation ratio of at least 4

3 . Later, [13] developed an asymptotic
fully polynomial time approximation scheme (AFPTAS) and proved the tight bound of 1.5
asymptotic approximation ratio.

2.2.2 Generalized Bin Packing Problem (GBPP)
GBPP was first introduced in [7]. In GBPP, a set of items I with volume and profit has to
be loaded into proper bins. Items can be either compulsory or non-compulsory, i.e., the item
set is partitioned into two subsets: items in IC are mandatory to load into any bin, and
items in INC are optional. Bins are also classified in bin types, where bins belonging to the
same type have the same capacity and cost. Moreover, for each bin type, there is a maximum
number of bins that can be used. The objective is to accommodate all compulsory items and
possibly non-compulsory items into appropriate bins in order to minimize the overall cost,
which is the total cost of all used bins deducted by the total profit earned from the items.

GBPP differs from FCP in two ways: first, only one set of capacity constraints are
considered; second, in GBPP, each item has the same profit (or cost) if inserted into different
bins, while in FCP, items would cost differently if inserted into different containers. Even
though GBPP is a still a much simplified version of the FCP, it was shown in [8] and [6] that
GBPP cannot be approximated by any constant, unless P = NP .

2.2.3 Generalized Bin Packing Problem with Bin-Dependent Item
Profits (GBPPI)

GBPPI extends GBPP by allowing that when an item is inserted into different bins, the
profit earned from that item may be different. In this sense, GBPPI is the closest model to
FCP, with the only difference being the absence of an additional set of capacity constraints
on containers. GBPPI was introduced in [9], and to the best of our knowledge, there has
been no further studies on the same problem since then. Since this is closely relevant to our
problem, we provide a more detailed discussion of this problem in Appendix A.

Z. Gao, J. R. Birge, R.-L.-Y. Chen, and M. Cheung 4:5

3 Problem Formulation and Non-Approximability Result

In this section, we first define what we call the Freight Consolidation Problem (FCP). Then,
we present the non-approximability result of the FCP. An instance of the FCP is given by a
set of shipments and a set of containers. Each shipment has a weight and a volume, and each
container has its own weight limit (capacity) and volume limit. There is a cost associated
with assigning each shipment to each container (shipment cost), and, if any container is used
(been assigned any shipment), there will be a procurement cost of that container (container
cost). The goal is to assign all shipments to some containers to minimize the overall cost
(total of shipment costs and container costs), subject to the volume and weight capacity
constraints of these containers. In the following, we formulate the FCP as an integer linear
program (ILP).
Sets:

S = {1, 2, . . . , |S|} - set of shipments (indexed by s)
C = {1, 2, . . . , |C|} - set of containers (indexed by c)

Parameters:
ξsc - cost of packing shipment piece s into container c, assigned ∞ if cannot ship s with c

pc - procurement cost of container c

ϕs - weight of shipment s

Φc - weight limit of container c

vs - volume of shipment s

Vc - volume limit of container c

Binary decision variables:
µsc = 1 if s is assigned to container c

µc = 1 if container c is used
The optimization problem (FCP):

min
µsc,µc

∑
c∈C

∑
s∈S

ξscµsc +
∑
c∈C

pcµc (1a)

s.t.
∑
c∈C

µsc = 1, ∀s ∈ S, (1b)∑
s∈S

ϕsµsc ≤ Φc, ∀c ∈ C, (1c)∑
s∈S

vsµsc ≤ Vc, ∀c ∈ C, (1d)

µc ≥ µsc, ∀s ∈ S, ∀c ∈ C, (1e)
µsc, µc ∈ {0, 1}, ∀s ∈ S, c ∈ C.

The objective (1a) is to minimize the total cost, which includes both the cost of shipping
and the cost of containers. (1b) implies that each shipment must be assigned to one of the
containers. (1c) and (1d) ensure that the total weight (resp. volume) of shipments assigned
to each container does not exceed the weight (resp. volume) limit of that container. Lastly,
(1e) forces us to pay the cost of a container as long as at least one of the shipments is assigned
to that container.

The approximation ratio of any algorithm that solves FCP is defined as follows.

ATMOS 2022

4:6 Greedy Algorithms for the Freight Consolidation Problem

▶ Definition 1. Given the minimization problem (1), an instance π of the problem, an
algorithm ALG, the optimum OPT(π) ≥ 0, and value ALG(π) of the solution computed by
the algorithm, the approximation ratio of the algorithm ALG is the infimum α ≥ 1 such that

ALG(π) ≤ α · OPT(π), ∀π, (2)

i.e., for all instances, the output of the algorithm incurs a total cost that is at most α times
the optimal value.

We next have the following non-approximability result for FCP.

▶ Proposition 2. For any constant α, there is no polynomial-time algorithm for the Freight
Consolidation Problem (FCP) (1) with approximation ratio α, unless P = NP .

Proof. We prove by reduction from the decision version of the Bin Packing Problem (BPP).
Consider an instance π̂ of the BPP, which consists of n items, each with a volume vi

for i = 1, . . . , n, and unlimited number of bins, each with a capacity V , where V ≥ vi for
all i = 1, . . . , n. The decision version of the BPP asks if it is feasible to assign all items to the
bins such that at most k bins are used. This instance π̂ of BPP can be transformed into an
instance π of the FCP as follows. The instance π of the FCP would include n shipments, each
with volume vi for i = 1, . . . , n. The weight of these shipments are all 0. There are also k + n

containers with volume capacity V and weight capacity one. The cost of procuring each of
the containers 1, . . . , k is one, and the cost of procuring each of the containers k + 1, . . . , k +n

are kα. All shipment costs ξ are zero. We note that, if π̂ for BPP has a solution, then the
optimal value of the FCP is at most k; otherwise if π̂ does not have a solution, then the
optimal value of the FCP must be greater than kα since at least one container with cost kα

must be used.
Suppose that to the contrary a polynomial time algorithm approximating the FCP with

a constant α > 1 exists, then through such an algorithm we would be able to determine
if an instance of the BPP has a solution: the algorithm would return value ≤ kα for the
instances of the FCP corresponding to the instances of the BPP which have a solution, and
the algorithm would return value > kα for those corresponding to the instances of BPP
without a solution. Unless P = NP , this is impossible since the decision version of the BPP
is NP -complete. ◀

Since there is no constant factor approximation for the FCP (assuming P ̸= NP), we
propose in the next section some intuitive greedy heuristics for the problem.

4 Proposed Heuristics

In this section, we propose a series of greedy-type heuristics that find solutions that are
(hopefully) close to optimal.

4.1 Greedy Cost-Feasibility Algorithm (GR)
4.1.1 Overview
In this subsection, we propose a greedy heuristic for the FCP, which we call the Greedy
Cost-Feasibility algorithm. In this algorithm, we first assign all shipments to the containers
such that the shipping cost is the lowest, i.e., for each shipment s, we find one container c′

such that ξsc′ = minc ξsc, and assign shipment s to container c′. This assignment provides a
lower bound on the total shipping costs. The assignment, however, may not be feasible as

Z. Gao, J. R. Birge, R.-L.-Y. Chen, and M. Cheung 4:7

some of the capacity constraints of the containers may be violated. In each of the following
steps, the algorithm moves one shipment at a time, from one container to another, to make
the assignment move towards feasibility, while keeping the increment of the shipping cost at
a minimum.

4.1.2 Overflow Score
We define an “overflow score” on each container for any given assignment, and use this
overflow score together with the shipping costs to determine which shipment to be moved to
which container. For any assignment µ, the overflow score for container c is defined as

Oc(µ) := β1 ·

[∑
{s|µsc=1} vs − Vc

]+

Vc
+ β2 ·

[∑
{s|µsc=1} ϕs − Φc

]+

Φc
, (3)

where β1, β2 are some adjustable parameters that satisfy β1, β2, β1 + β2 ∈ [0, 1]. The first
term of the overflow score measures the percentage volume overflow of container c, and the
second term measures the percentage weight overflow of container c. These two terms are
summed together with weights β1, β2 to obtain the overflow score of container c.

The total overflow score of an assignment is then defined as

O(µ) :=
∑

c

Oc(µ). (4)

4.1.3 Moving Towards Feasibility
After computing the overflow score of each container given the initial assignment, we find
those containers with Oc(µ) > 0, i.e., containers that are not feasible. For each shipment
in these containers, we try to move the shipment out of its current container to another
container, and compute the new overflow score O′. Let µ denote the current assignment,
and µsc′ denote the new assignment that moves shipment s from its current container to
container c′. If we move the shipment s from its current container c to container c′, we will
have the following cost-feasibility ratio:

R(s, c′) := ξsc′ − ξsc

O(µ) − O(µsc′) . (5)

The algorithm decides to move the shipment s from c to c′ that minimizes the above ratio. In
other words, in deciding which move to take, we choose the move that incurs least incremental
shipping cost per unit reduction of the overflow score.

Since there are always coloading options for those shipments in the overflowed containers,
at each round after the move, the overflow score is guaranteed to decrease. We repeat this
process until the overflow score decreases to zero, at which time we have a feasible solution.

In the end, we also perform a post-adjustment procedure by looking at each used container
(containers with µc = 1)2 and the shipments assigned to it. We will remove that container
and coload all shipments assigned to it if it is more profitable to do so.

4.1.4 Algorithm Summary
The complete Greedy Cost-Feasibility (GR) algorithm is given as Algorithm 1.

2 In the rest of this paper, we also say a container c is “opened” if µc = 1, and “closed” if µc = 0.

ATMOS 2022

4:8 Greedy Algorithms for the Freight Consolidation Problem

Algorithm 1 Greedy Cost-Feasibility (GR).

Input: shipment info, container info, β1, β2 ▷ β1, β2 are adjustable parameters
Output: Assignment of each shipment to a container
Greedy Procedure

1: Assign each shipment to its shipment cost-minimizing container, i.e., assign s to a c′

such that ξsc′ ≤ ξsc, ∀c. Denote the current assignment by µ.
2: Compute the overflow score of the current assignment O(µ).
3: while O(µ) > 0 do
4: For each shipment-container pair (s, c), compute the cost-feasibility ratio R(s, c) if s

is reassigned to c.
5: Find the pair (s, c) with the minimum R(s, c). Reassign s to c.
6: Compute the new overflow score.
7: end while

Post-Adjustment Procedure
8: for each container c with µc = 1 do
9: Find all shipments s that has been assigned to c.

10: if pc +
∑

s assigned to c ξsc >
∑

s assigned to c ξs1 then
11: µc = 0, coload all these shipments. ▷ Coload all shipments in c if more profitable
12: end if
13: end for

4.2 Greedy + Local Search (GRL)
The next heuristic we introduce is Greedy with Local Search (GRL).

4.2.1 Overview
From the solution of GR, we perform local movements of shipments. Specifically, we search
in two neighborhoods of a solution: the “shift” neighborhood, which consists of all solutions
obtained by reassigning one shipment from the current solution, and the “swap” neighborhood,
which consists of all solutions obtained by swapping the assignment of two shipments from the
current solution. In searching each neighborhood, there are two standard ways of performing
movements: first-admissible (FA) and best-admissible (BA).

In the first-admissible scheme, we randomly search the neighborhood and take the move
as soon as we find a better solution.
In the best-admissible scheme, we search all possible moves and thus all solutions in
the neighborhood, and choose to take the move that leads to the most reduction in the
shipment cost.

It has been shown in [19] that for the generalized assignment problem (GAP), BA returns a
slightly better solution, but takes much longer time to generate the solution. We therefore
choose FA in our implementations for two reasons: first, the (potentially) slightly better
solution from BA may not be worth the extra time; second, our problem size is much larger
than those that have been experimented upon in the GAP literature.

4.2.2 Searching the “Shift” Neighborhood
The search of the “shift” neighborhood is performed in cycles. In each cycle, we first randomly
sort the list of all shipments. Then, starting from the first shipment s in the list, we sort
the set of opened containers (those with µc = 1 in the GR solution) in increasing order

Z. Gao, J. R. Birge, R.-L.-Y. Chen, and M. Cheung 4:9

of µsc, and try to reassign this shipment to each container in the container list. If the
reassignment is feasible, the shipment is reassigned permanently, and a new cycle is started.
Otherwise, we move to the next container in the sorted container list. If no container before
the current assigned container is feasible, i.e., no reassignment of the current shipment
can lead to reduction in cost while keeping feasibility, we skip this shipment and move
to the next shipment. This process is repeated until we reach a cycle where no feasible
improvement relocation can be made, at which time the solution is locally optimal in its
“shift” neighborhood.

4.2.3 Searching the “Swap” Neighborhood
The search of the “swap” neighborhood is also performed in cycles. We first generate a list
of all pairs of shipments. In each cycle, we sort this list randomly. Then, starting from the
first shipment pair in the list, we try to swap the assignment of the two shipments. If the
assignment after the swap is feasible for both containers, and the swap leads to a reduction in
the total shipment cost, the swap is made permanent and a new cycle will start. Otherwise,
we move to the next pair of shipments. This process is repeated until we reach a cycle where
no swaps are made after visiting all shipment pairs, at which time the solution is locally
optimal in its “swap” neighborhood.

4.2.4 Local Optimal Solution in Both Neighborhoods
Given any input solution, we first repeatedly search the “shift” neighborhood. We always
keep the best solution found so far, and the search is repeated until no better solution
is found after Max_Nonimprove_S consecutive number of searches. Next, we search
the “swap” neighborhood of the best solution found so far (locally optimal within the
“shift” neighborhood), after which we reach a locally optimal solution within the “swap”
neighborhood. If the new solution is better than the solution before searching the “swap”
neighborhood, we will again repeatedly search the “shift” neighborhood and then the
“swap” neighborhood. The whole process is repeated until no better solution is found after
Max_Nonimprove consecutive number repetitions, at which point the solution is locally
optimal within both neighborhoods.

4.2.5 Algorithm Summary
The complete Greedy + Local Search (GRL) algorithm is given as Algorithm 2.

4.3 Greedy + Local Search + Varying Containers (GRLV)
We now introduce the heuristic that is based on GRL, but tries to vary the set of used
(opened) containers.

4.3.1 Overview
This heuristic consists of two layers. In the first layer, we generate a set of “seed” solutions.
In the second layer, we try to vary the set of used containers on each “seed” solution, and
finally return the best solution found throughout the process.

There are several intuitions behind this heuristic. First, the local search can be combined
with the post-adjustment: Every time after running local search and finding a locally optimal
solution, we can check again if deleting some containers and coloading all shipments in

ATMOS 2022

4:10 Greedy Algorithms for the Freight Consolidation Problem

Algorithm 2 Greedy + Local Search (GRL).

Input: shipment info, container info, β1, β2, Max_Nonimprove_S, Max_Nonimprove

Output: Assignment of each shipment to a container
1: Run Greedy Procedure (as in Algorithm 1).
2: Run Post-Adjustment Procedure (as in Algorithm 1), save as “initial solution”.

Local-Search Procedure
3: “best solution” = “initial solution”
4: Outer_counter = 0
5: while Outer_counter < Max_Nonimprove do
6: Inner_counter = 0
7: “best shift solution” = “initial solution”
8: while Inner_counter < Max_Nonimprove_S do
9: Search the “shift” neighborhood of the “initial solution”, save as “shift solution”

10: if “shift solution” has lower total cost than “best shift solution” then
11: “best shift solution” = “shift solution”
12: Inner_counter = 0
13: else
14: Inner_counter = Inner_counter + 1
15: end if
16: end while
17: Search the “swap” neighborhood of the “best shift solution”, save as “swap solution”
18: while “swap solution” has lower cost than “best shift solution” do
19: Inner_counter = 0
20: “best shift solution” = “swap solution”
21: while Inner_counter < Max_Nonimprove_S do
22: Search the “shift” neighborhood of the “swap solution”, save as “shift solution”
23: if “shift solution” has lower total cost than “best shift solution” then
24: “best shift solution” = “shift solution”
25: Inner_counter = 0
26: else
27: Inner_counter = Inner_counter + 1
28: end if
29: end while
30: Search the “swap” neighborhood of the “best shift solution”, save as “swap

solution”
31: end while
32: if “swap solution” has lower cost than the “best solution” then
33: “best solution” = “swap solution”
34: Outer_counter = 0
35: else
36: Outer_counter = Outer_counter + 1
37: end if
38: end while
39: Return “best solution”

those containers can be more profitable. If such containers exist, we proceed to delete these
containers. Then we can redo the local search and the post-adjustment, and repeat this
process till the post-adjustment does not delete any more containers. Second, every time we

Z. Gao, J. R. Birge, R.-L.-Y. Chen, and M. Cheung 4:11

perform some procedure that might change the set of used (opened) containers, we might
do further local search based on the current solution, or we can also build a new solution
from scratch, again using the Greedy Procedure, but this time fixing the set of unopened
containers , i.e., set ξsc = ∞ for all containers that are not open before applying the Greedy
Procedure. Third, every time we try to vary the set of containers, we can either add/delete
one container at a time, or we can add/delete a number of containers altogether. In the
following, we describe the procedures/subroutines that are used in this heuristic.

4.3.2 Adjusted Local Search
We may combine the Post-Adjustment Procedure with the Local-Search Procedure,
then iterate both procedures repeatedly until the set of opened containers no longer changes
so that we obtain a local optimum within both neighborhoods. We define the Adjust-Local
Procedure as Algorithm 3.

Algorithm 3 Adjust-Local Procedure.

Input: initial solution
Output: updated solution

1: “updated solution” = “initial solution”
2: Num_del_master = 1
3: while Num_del_master > 0 do
4: Run Local-Search Procedure on “updated solution”, save as “updated solution”
5: Run Post-Adjustment Procedure on “updated solution”, save as “upsated

solution”
6: Save the number of deleted containers in the Post-Adjustment Procedure as

Num_del_master

7: end while
8: Return “updated solution”

4.3.3 Adding One of the Deleted Containers Back
Since the Post-Adjustment Procedure deletes some containers, we try to add one of
those deleted containers back to the solution and then perform Adjust-Local Procedure.
In the end, we save the best solution found during this process. The Add-One Procedure
is defined as Algorithm 4.

4.3.4 Deleting a Chain of Containers
We observe that the GR solution, even after the Post-Adjustment Procedure, uses more
containers than the optimal solution returned by the solver. Based on an initial solution, we
try to delete a chain of containers. Specifically, we sort the containers in increasing order of
their profit, i.e., for each container c, we compute:

Profit of using container c :=
∑

s:µsc=1
ξs1 −

(
pc +

∑
s:µsc=1

ξsc

)
, (6)

which is the total coloading cost of the shipments assigned to container c deducted by the
total shipping cost of those shipments and the procurement cost of the container. This is
the actual “saving” from using container c for these shipments, compared with the cost of
coloading all these shipments.

ATMOS 2022

4:12 Greedy Algorithms for the Freight Consolidation Problem

Algorithm 4 Add-One Procedure.

Input: initial solution
Output: updated solution

1: “updated solution” = “initial solution”
2: Run Adjust-Local Procedure on “initial solution”, save as “cand solution”, save the

set of deleted containers as S

3: Run Adjust-Local Procedure on “initial solution”, save as “updated solution”
4: for each container in set S do
5: Reopen the container in the “cand solution”, and add the shipments what were

assigned to this container in the “initial solution” to this container, save as “current
solution”

6: if “current solution” has lower total cost than “updated solution” then
7: “updated solution” = “current solution”
8: end if
9: Close this container in the “cand solution”

10: end for
11: Return “updated solution”

We delete the top k containers in the list from the initial solution and perform the
Adjust-Local Procedure, where k ranges from 0 to num_cont_del (a preset parameter).
In the end, we output the best solution among these (k + 1) solutions. The Del-Chain
Procedure is defined as Algorithm 5.

Algorithm 5 Del-Chain Procedure.

Input: initial solution, num_cont_del

Output: updated solution
1: “updated solution” = “initial solution”
2: “current solution” = “initial solution”
3: Sort the containers used in the “initial solution” in increasing order of their total profit (6).

Save as “sorted list”
4: for j ∈ {0, 1, 2, . . . , num_cont_del} do
5: Delete the jth container from the “current solution”, coload all shipments previously

assigned to that container, save as “current solution”
6: Run Adjust-Local Procedure on “current solution”, save as “new solution”
7: if “new solution” has lower total cost than “updated solution” then
8: “updated solution” = “new solution”
9: end if

10: end for
11: Return “updated solution”

4.3.5 Deleting One More Container

Given an initial solution, we may again sort the containers in increasing order of their
profits (6), and try to delete one container from the top num_cont_del containers in the
sorted list. The best solution is saved in the end. We define the Del-One Procedure as
Algorihtm 6.

Z. Gao, J. R. Birge, R.-L.-Y. Chen, and M. Cheung 4:13

Algorithm 6 Del-One Procedure.

Input: initial solution, num_cont_del

Output: updated solution
1: “updated solution” = “initial solution”
2: Sort the containers used in the “initial solution” in increasing order of their total profit (6).

Save as “sorted list”
3: for j ∈ {0, 1, 2, . . . , num_cont_del} do
4: Delete the jth container from the “initial solution”, coload all shipments previously

assigned to that container, save as “current solution”
5: Run Adjust-Local Procedure on “current solution”, save as “current solution”
6: if “current solution” has lower total cost than “updated solution” then
7: “updated solution” = “current solution”
8: end if
9: end for

10: Return “updated solution”

4.3.6 Deleting Containers One by One
Starting from some initial solution, we can repeatedly perform Del-One Procedure, until
further deleting any containers leads to no improvement in the solution. The Del-ObO
Procedure is defined as Algorithm 7.

Algorithm 7 Del-ObO Procedure.

Input: initial solution, num_cont_del

Output: updated solution
1: “updated solution” = “initial solution”
2: Run Del-One Procedure on “initial solution”, save as “current solution”
3: if “current solution” has lower total cost than the “updated solution” then
4: “updated solution” = “current solution”
5: while “current solution” has lower total cost than the “updated solution” do
6: “updated solution” = “current solution”
7: Run Del-One Procedure on “current solution”, save as “current solution”
8: end while
9: end if

10: Return “updated solution”

4.3.7 Algorithm Summary
The complete Greedy + Local Search + Varying Containers (GRLV) algorithm is given as
Algorithm 8.

ATMOS 2022

4:14 Greedy Algorithms for the Freight Consolidation Problem

Algorithm 8 Greedy + Local Search + Varying Containers (GRLV).

Input: shipment info, container info, β1, β2, Max_Nonimprove_S,
Max_Nonimprove, num_cont_del

Output: Assignment of each shipment to a container
1: Run Greedy Procedure (as in Algorithm 1), save as “GR solution”
2: Run Post-Adjustment Procedure (as in Algorithm 1) on “GR solution”, save as

“PA solution”
3: Run Adjust-Local Procedure on “GR solution”, save as “LC solution”
4: Run Greedy Procedure on “PA” solution, i.e., first set ξsc = ∞ for all containers

that are not open (used) in the “PA solution”, then run Greedy Procedure. Save the
solution as “PA_GR solution”

5: Run Greedy Procedure on “LC” solution, i.e., first set ξsc = ∞ for all containers
that are not open (used) in the “LC solution”, then run Greedy Procedure. Save the
solution as “LC_GR solution”

6: Run Add-One Procedure on “PA solution”, save as “PA_one solution”
7: Run Add-One Procedure on “LC solution”, save as “LC_one solution”
8: Run Add-One Procedure on “PA_GR solution”, save as “PA_GR_one solution”
9: Run Add-One Procedure on “LC_GR solution”, save as “LC_GR_one solution”

10: Run Del-Chain Procedure on “PA solution”, save as “CHAIN_PA solution”
11: Run Del-Chain Procedure on “LC solution”, save as “CHAIN_LC solution”
12: Run Del-Chain Procedure on “PA_GR solution”, save as “CHAIN_PA_GR solution”
13: Run Del-Chain Procedure on “LC_GR solution”, save as “CHAIN_LC_GR solution”
14: Run Del-Chain Procedure on “PA_one solution”, save as “CHAIN_PA_one solution”
15: Run Del-Chain Procedure on “LC_one solution”, save as “CHAIN_LC_one solution”
16: Run Del-Chain Procedure on “PA_GR_one solution”, save as

“CHAIN_PA_GR_one solution”
17: Run Del-Chain Procedure on “LC_GR_one solution”, save as

“CHAIN_LC_GR_one solution”
18: Run Del-ObO Procedure on “PA solution”, save as “OBO_PA solution”
19: Run Del-ObO Procedure on “LC solution”, save as “OBO_LC solution”
20: Run Del-ObO Procedure on “PA_GR solution”, save as “OBO_PA_GR solution”
21: Run Del-ObO Procedure on “LC_GR solution”, save as “OBO_LC_GR solution”
22: Run Del-ObO Procedure on “PA_one solution”, save as “OBO_PA_one solution”
23: Run Del-ObO Procedure on “LC_one solution”, save as “OBO_LC_one solution”
24: Run Del-ObO Procedure on “PA_GR_one solution”, save as “OBO_PA_GR_one

solution”
25: Run Del-ObO Procedure on “LC_GR_one solution”, save as “OBO_LC_GR_one

solution”
26: Return the best solution among {“CHAIN_PA solution”, “CHAIN_LC solution”,

“CHAIN_PA_GR solution”, “CHAIN_LC_GR solution”, “CHAIN_PA_one solution”,
“CHAIN_LC_one solution”, “CHAIN_PA_GR_one solution”, “CHAIN_LC_GR_one
solution”, “OBO_PA solution”, “OBO_LC solution”, “OBO_PA_GR solution”,
“OBO_LC_GR solution”, “OBO_PA_one solution”, “OBO_LC_one solution”,
“OBO_PA_GR_one solution”, “OBO_LC_GR_one solution”}.

Z. Gao, J. R. Birge, R.-L.-Y. Chen, and M. Cheung 4:15

5 Experiments

In this section, we provide experimental results on our proposed heuristics, including GR,
GRL, and GRLV. We first generate a set of instances that hopefully reflects part of the
reality. Each of these instances are generated as the following:

Containers: We have 150 containers in an instance (not including the “coloading”
container), each with a weight capacity Φc = 28, 000 (kg) and a volume capacity Vc =
76 (m3), which reflects the capacities of the most used containers (40’ high-cube container).
The container cost pc is sampled from a truncated Normal distribution (lower bounded
at 0) with the mean 9000 and the standard deviation 4000. The “coloading” container,
however, has a cost 0, and infinite weight and volume capacities.
Shipments: We have 1000 shipments in an instance, each with its weight and volume
sample from the truncated bivariate Normal distribution (lower bounded at 0) with the

means (2000, 10) and the covariance matrix
[
250, 000, 000 1, 000, 000
1, 000, 000 4, 500

]
.

Shipment costs: Each shipment has a limited number of feasible non-coloading contain-
ers. For each shipment, the number of feasible containers is sampled from the truncated
Normal distribution (lower bounded at 0) with the mean 10 and the standard deviation 10.
Then, if shipment s has k number of feasible containers, we randomly select k containers
from the container set, plus the “coloading” container. The shipment costs ξsc are sampled
from a truncated Normal distribution (lower bounded at 0) with the mean 3500 and the
standard deviation 10, 000.

The experiments were run on 20 simulated instances generated as above. These instances
have much larger sizes than any of those tested in the Bin Packing or Generalized Assignment
Problem literature. In GR, we set the parameters β1 = β2 = 0.5. In GRL, we further set the
parameters Max_Nonimprove_S = 1 and Max_Nonimprove = 10. In GRLV, we start
with generating different GR solutions by setting different parameters of β1, β2 (β1 ranging
from 1 to 5 and β2 ranging from 1 to 5). We then fix the set of β1, β2 that gives the best GR
solution, and the parameter num_cont_del is set to 5. The benchmark is the solution of
the integer linear program (1) returned by the Gurobi solver whose default optimality gap
is 0.01%, and the solving time limit is set to 60 seconds. The setups of the experiments are
described as follows.

Program used for implementation: Julia Version 1.7.2.
Solver used for solving the ILP: Gurobi Version 9.5.1 (academic license).
Machine used for running: Surface Book 2 with Intel Core i7-8650 CPU @ (1.90 GHz
2.11 GHz) and 16 GB RAM.

The results of the experiments, including the optimality gaps (compared with the optimal
solutions returned by the solver) and the runtimes (in seconds) of all heuristics, averaged
over the 20 instances, are summarized as Table 1.

Table 1 Summary of experimental results.

Metric Solver GR GRL GRLV

Average Optimality Gap 0.01% 8.36% 4.56% 3.73%
Average Runtime (s) 26.18 7.99 72.43 3056.92

Finally, we remark that while the solver is able to solve these instances to a smaller
optimality gap with shorter runtime, the problem size is expected to grow significantly in
the near future. It is likely that the solver will not be able to solve the problem when its

ATMOS 2022

4:16 Greedy Algorithms for the Freight Consolidation Problem

size grows larger in the next few years. Given this expectation, a freight forwarder should
be prepared to not rely on the integer linear program solver for the FCP. Therefore, our
proposed heuristics will still be practically relevant.

6 Conclusion and Future Direction

In this paper, we have properly defined the freight consolidation problem (FCP) - a proven
important and practically relevant problem faced by freight forwarders every day and every
hour at the origin ports. We proved the non-approximability result of the FCP, and proposed
a series of greedy based heuristics to solve the problem. Our solutions are shown to perform
well in the numerical experiments with simulated data. For future improvement of this work,
we may consider more generalized definitions of the neighborhood in the local search. We
may also generate the set of used (opened) containers by some types of genetic algorithms.
Furthermore, it might be helpful to use Tabu list and Tabu search to avoid repeated search
of candidate solutions.

References

1 Mohamed Abdel-Basset, Gunasekaran Manogaran, Laila Abdel-Fatah, and Seyedali Mirjalili.
An improved nature inspired meta-heuristic algorithm for 1-d bin packing problems. Personal
and Ubiquitous Computing, 22(5):1117–1132, 2018.

2 Diaa Salama Abdul-Minaam, Wadha Mohammed Edkheel Saqar Al-Mutairi, Mohamed A Awad,
and Walaa H El-Ashmawi. An adaptive fitness-dependent optimizer for the one-dimensional
bin packing problem. IEEE Access, 8:97959–97974, 2020.

3 Jaza Mahmood Abdullah and Tarik Ahmed. Fitness dependent optimizer: inspired by the bee
swarming reproductive process. IEEE Access, 7:43473–43486, 2019.

4 Shoshana Anily, Julien Bramel, and David Simchi-Levi. Worst-case analysis of heuristics for
the bin packing problem with general cost structures. Operations Research, 42(2):287–298,
1994.

5 Merve Aydemir and Tuncay Yigit. A review of the solutions for the container loading problem,
and the use of heuristics. In The International Conference on Artificial Intelligence and
Applied Mathematics in Engineering, pages 690–700. Springer, 2019.

6 Mauro Maria Baldi and Maurizio Bruglieri. On the generalized bin packing problem. Interna-
tional Transactions in Operational Research, 24(3):425–438, 2017.

7 Mauro Maria Baldi, Teodor Gabriel Crainic, Guido Perboli, and Roberto Tadei. The generalized
bin packing problem. Transportation Research Part E: Logistics and Transportation Review,
48(6):1205–1220, 2012.

8 Mauro Maria Baldi, Teodor Gabriel Crainic, Guido Perboli, and Roberto Tadei. Asymptotic
results for the generalized bin packing problem. Procedia-Social and Behavioral Sciences,
111:663–671, 2014.

9 Mauro Maria Baldi, Daniele Manerba, Guido Perboli, and Roberto Tadei. A generalized bin
packing problem for parcel delivery in last-mile logistics. European Journal of Operational
Research, 274(3):990–999, 2019.

10 Avnish K. Bhatia, M Hazra, and SK Basu. Better-fit heuristic for one-dimensional bin-packing
problem. In 2009 IEEE International Advance Computing Conference, pages 193–196. IEEE,
2009.

11 Edward G Coffman, Gabor Galambos, Silvano Martello, and Daniele Vigo. Bin packing
approximation algorithms: Combinatorial analysis. In Handbook of Combinatorial Optimization,
pages 151–207. Springer, 1999.

Z. Gao, J. R. Birge, R.-L.-Y. Chen, and M. Cheung 4:17

12 Edward G. Coffman Jr, Michael R. Garey, and David S. Johnson. Approximation algorithms
for bin packing: A survey. In Dorit S. Hochbaum, editor, Approximation Algorithms for
NP-hard Problems, pages 46–93. PWS Publishing Co., Boston, MA, USA, 1996.

13 Leah Epstein and Asaf Levin. Bin packing with general cost structures. Mathematical
Programming, 132(1):355–391, 2012.

14 Juris Hartmanis. Computers and intractability: A guide to the theory of np-completeness
(michael r. garey and david s. johnson). SIAM Review, 24(1):90–91, 1982.

15 Mohit Jain, Vijander Singh, and Asha Rani. A novel nature-inspired algorithm for optimization:
Squirrel search algorithm. Swarm and Evolutionary Computation, 44:148–175, 2019.

16 David S. Johnson, Alan Demers, Jeffrey D. Ullman, Michael R Garey, and Ronald L. Graham.
Worst-case performance bounds for simple one-dimensional packing algorithms. SIAM Journal
on Computing, 3(4):299–325, 1974.

17 Seyedali Mirjalili and Andrew Lewis. The whale optimization algorithm. Advances in
Engineering Software, 95:51–67, 2016.

18 Chanaleä Munien and Absalom E Ezugwu. Metaheuristic algorithms for one-dimensional
bin-packing problems: A survey of recent advances and applications. Journal of Intelligent
Systems, 30(1):636–663, 2021.

19 Ibrahim H Osman. Heuristics for the generalised assignment problem: simulated annealing
and tabu search approaches. Operations-Research-Spektrum, 17(4):211–225, 1995.

20 Wansoo T Rhee and Michel Talagrand. Online bin packing with items of random size.
Mathematics of Operations Research, 18(2):438–445, 1993.

21 Xin-She Yang and Suash Deb. Cuckoo search via Lévy flights. In 2009 World Congress on
Nature & Biologically Inspired Computing (NaBIC), pages 210–214. IEEE, 2009.

A Review of GBPPI

In this section, we discuss the algorithms in [9] in more detail. The overall approach can be
described in three steps.
1. Constructive Heuristics. Items are given in a presorted list, and are visited one by one. All

containers are closed initially. Let pij be the profit of inserting i to bin j, and let Φres(j)
be the remaining space of bin j after inserting i. Upon seeing an item i, compute a
weighted profit of inserting item i to bin j for all bins that are opened and has enough
capacity for item i. The weighted profit is calculated as

α · pij + (1 − α) · Φres(j), (7)

where α is some parameter that can be configured. We then insert i to the bin j that
results in a maximum weighted profit.
This insertion process may be generalized by looking at N items each time, where N

is another parameter to be configured, rather than just one item. Specifically, we look
at item i and the succeeding N − 1 items in the list. For each item, we find the best
bin according to (7), and then select the best item-bin pair that maximizes the weighted
profit.
If no bin is feasible, there are two different heuristics to choose a new bin to open:

Best Profitable (BP). BP heuristics considers item i and the remaining succeeding
items in the item list, and selects the bin that maximizes the overall profit, which is
the sum of profits of the items that can be inserted into the bin deducted by the cost
of that bin. If the overall profit is negative and item i is non-compulsory, then item i

is discarded.
Best Assignment (BA). BA heuristics selects the bin that maximizes the profit for
item i.

ATMOS 2022

4:18 Greedy Algorithms for the Freight Consolidation Problem

At the end when all items are inserted to some bins, a post-optimization procedure is
performed, which consists of two parts. First, for each bin used in the solution, we try to
perform (if possible) the best swap with a bin that has not been used. Second, we remove
bins from the solution that are not profitable and do not contain compulsory items.

2. Greedy Adaptive Search Procedure (GASP). GASP, shown as Algorithm 9, is a metaheur-
istic that uses BA or BP as a subroutine. The multi-start initialization generates
some initial solution and sets the initial parameters of α, N that will be used in the BP or
BA constructive heuristics. Before reaching some preset time limit, the algorithm at each
round first sort the items uniformly randomly. The BP or BA heuristic is then performed,
and if the resulting solution is better than the best one found so far, we replace the best
solution as the current one, and perform “1 to 1” swaps to search the neighborhood of the
current solution. A swap consists on unloading one item to create sufficient room to insert
another item that was not part of the solution. If the heuristic solution is not better than
the best one, the counter numConsecutive is incremented. If no better solution is found
after performing MAXCONSECUTIV E number of constructive heuristics, we jump
to the long-term initialization procedure which will reset different parameters
for α, N .

Algorithm 9 The GASP [9].

1: IS : Initial solution provided by the multi-start initialization procedure
2: BS : best solution
3: BS := IS

4: numConsecutive : number of consecutive non-improving solutions
5: numConsecutive := 0
6: while time limit has not been reached do
7: sort the items
8: perform either the BP or the BA constructive heuristic
9: store the resulting solution as CS

10: if CS < BS then
11: BS := CS

12: perform “1 to 1” swaps
13: numConsecutive := 0
14: else
15: numConsecutive := numConsecutive + 1
16: end if
17: score update procedure
18: if numConsecutive = MAXCONSECUTIV E then
19: long-term reinitialization procedure
20: numConsecutive := 0
21: end if
22: end while

3. Model-Based Matheuristic (MBM). MBM is a parallel matheuristic for the GBPPI. During
each iteration we feed the MBM a solution from GASP. Then, the set of bins used in the
solution is randomly partitioned into P subsets, where P is the total number of threads
available for the parallel computing. Each thread then solves the GBPPI problem using
a solver with some time limit, e.g. 1 second, where the problem instance only uses a
subset of bins, the items loaded to those bins, and the items not loaded in the solution.

Z. Gao, J. R. Birge, R.-L.-Y. Chen, and M. Cheung 4:19

The partial solutions returned by the solver are then merged to create a new current
solution, and if the current solution is better, we save it as the best solution. This process
is repeated until some time limit is reached.

In [9], the above algorithms were also tested using both artificial instances and some instances
from the parcel delivery in last-mile logistics.

ATMOS 2022

A Bilevel Model for the Frequency Setting Problem
Hector Gatt !

IMT Atlantique, LS2N, Nantes. France
Lumiplan, Saint-Herblain, France

Jean-Marie Freche !

Lumiplan, Saint-Herblain, France

Arnaud Laurent !

IMT Atlantique, LS2N, Nantes, France

Fabien Lehuédé !

IMT Atlantique, LS2N, Nantes, France

Abstract
Based on a partnership between IMT Atlantique and the French company Lumiplan, this work
is part of a process of strengthening the Heurès software currently offered by Lumiplan to public
transport operators to support their bus and driver scheduling operations. This work addresses the
frequency setting problem which aims at defining the frequencies of the bus lines of a network for
different time periods of a day. This operation complements a study on line planning with more
accurate estimations of the demand, necessary bus types and passengers behaviors. In this paper,
the operator’s exploitation costs are minimized while respecting service-levels constraints, based
on the predictions of the path choice made by the passengers. The problem is solved by an easily
implementable process and a case study based on a real network is presented to show the efficiency
of our method.

2012 ACM Subject Classification Networks → Network design and planning algorithms

Keywords and phrases Frequency Setting, Service Performance, Bilevel, Passenger Assignment

Digital Object Identifier 10.4230/OASIcs.ATMOS.2022.5

Acknowledgements We thank the anonymous reviewers for their reading and comments.

1 Introduction

Adapting line frequencies to demand is a key element for an efficient network design. Known
as the Frequency Setting Problem, this problem can be executed after redefining the lines
of a network or seasonally to take into account some changes in passenger demand. This
problem can thus be seen as a strategic as well as a tactical problem. According to the
public transportation system first introduced by Ceder and Wilson in 1986 [1], the Frequency
Setting Problem takes place after the Bus Network Design and before the Timetable Design.
It consists in determining, for a given time period, the number of times buses pass on
the lines, to satisfy a range of travelers. This problem is necessary to consider additional
parameters into account such as heterogeneous bus fleet, authorized frequencies and capacity
constraints for the fleet and the network. Regarding the satisfaction of travelers, [8] analyzed
the perception of potential users about existing bus services in Delhi, India, and concluded
most of people avoid using buses due to overloading, excessive travel time compared with a
personal vehicle, the need to make a transfer, and lack of punctuality. The line frequencies
have impact both on the operational costs of the operator and on the service-levels offered
to passengers. Hence, the estimation of waiting times as a function of line frequencies is a
crucial point to model service quality. [9] introduces a distinction between short-headway
lines and long-headway lines with ten minutes as the bound and proposes an expected waiting

© Hector Gatt, Jean-Marie Freche, Arnaud Laurent, and Fabien Lehuédé;
licensed under Creative Commons License CC-BY 4.0

22nd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2022).
Editors: Mattia D’Emidio and Niels Lindner; Article No. 5; pp. 5:1–5:8

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hector.gatt@imt-atlantique.fr
mailto:jean-marie.freche@lumiplan.com
mailto:arnaud.laurent@imt-atlantique.fr
mailto:fabien.lehuede@imt-atlantique.fr
https://doi.org/10.4230/OASIcs.ATMOS.2022.5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

5:2 A Bilevel Model for the Frequency Setting Problem

time depending on this distinction. To do this, they propose an expected waiting time for
short-headway lines equal to half the headway interval and an expected waiting time set at
an arbitrary value for long-headway lines.

According to [4], there are two major types of approaches to solve the frequency setting
problem. The first one consists in solving the problem without taking into account the choice
of path made by the passengers according to the line frequencies. Among the relative works,
we retain those of [6] where they assume a fixed demand-line assignment, as well as the work
of [5] who determine the frequency and demand on each line considering discrete frequencies,
non-captive vehicles, limited fleet size and with an objective of minimizing the travel time of
all passengers. The second type of approach is based on a bilevel approach. The first level
sets the bus line frequencies, which impact expected waiting times on passenger paths. At the
second level, passengers decide on which path they prefer to reach their destination. Indeed,
the frequency of a bus line influences the traveler’s perception and choice of whether to use
it or not. Thus, the use of a bilevel model makes it possible to determine line frequencies
while taking into account passenger choice. Among the first papers dealing with a bilevel
approach for the Frequency Setting Problem, we find [2] who define their upper-level as
determining the frequencies which minimize the total expected travel and waiting times while
their lower-level consists in a transit assignment problem.

In this paper, after having previously defined a set of bus lines to operate [3], we focus
on determining the frequency of these bus lines, with the objective of minimizing operating
costs considering service-level constraints and operational constraints. Furthermore, in order
to better model traveler behavior, we introduce constraints that ensure that each traveler
takes his fastest path according to the defined line frequencies. To solve this problem, we
propose a Mixed Integer Linear Program based on a path formulation of passenger paths.
This formulation captures the bilevel problem in a single stage but it has many variables and
constraints. To make this model tractable, we propose a Path Selection Process denoted PSP.
This process integrates several steps which dynamically select the passenger paths that are
integrated in the model. Experiments show that PSP leads to qualitative solutions within a
short solving time.

2 The Frequency Setting Problem

The Frequency Setting Problem (FSP) consists in determining the number of buses of each
possible type on each line for a given operating period, in order to minimize the operating
cost while satisfying passenger demand. In this problem, this demand is modeled by a
time-dependent origin-destination matrix containing the number of passengers willing to
travel from a station to another, for each time period. We study this problem at a tactical
level, where operator expenses are detailed in terms of cumulative kilometric costs and
cumulative driving times.

We consider a transportation network based on a graph G = (V,A,L), composed of
bus lines contained in a set L, running on sequences of road sections represented by arcs
contained in a set A. Each arc (i, j) connects a pair of stations in V . Each of these bus lines
can be associated with different types of buses, all of them contained in a set B. Each bus
type is associated with an operating cost and a capacity. We assume that each arc (i, j) ∈ A

is associated to a distance and a travel time depending on the time period of the day. For
each period, we consider capacity constraints on the overall number of buses of each type
available at that period as well as on the number of buses traveling on each arc. To travel in
the network, passengers use paths defined in a set P. A passenger path is associated with a
single OD pair and consists of a sequence of arcs, each associated to a line, on the network.

H. Gatt, J.-M. Freche, A. Laurent, and F. Lehuédé 5:3

Figure 1 Network example with three bus lines l1 : (A,B,C), l2 : (C,D,E) and l3 : (C,D, F).

We consider passenger paths with 0 or 1 transfer. An exception is made for travelers who do
not have a path with 0 or 1 transfer. In this case, a path with 2 transfers is proposed. Let
us illustrate this on the small network of Figure (1). On this network, a passenger from B to
D has two paths p and p′ defined as : p = [a2, a3] and p′ = [a2, a4]. The path p takes lines l1
and l2 and the path p′ takes lines l1 and l3.

We define the traveling time of a passenger path as the sum of the riding times on this
path and the expected waiting times induced by boarding at the first stop of the path or at
transfers. To estimate expected waiting times on passenger paths, we follow [9] and propose
a different calculation mode depending on the line frequency: We set an expected waiting
time equal to half the time between two buses for high frequency lines (more than six buses
per hour). For low frequency lines (five buses per hour or less), the expected waiting time is
set to five minutes. This constant expected waiting time for low-frequency lines has been
chosen under two assumptions: (1) when the frequency of a line is low, each passenger selects
carefully its bus departure time and arrives five minutes in advance at the station. (2) The
synchronization of arrival and departure times for connections with a low-frequency line is
usually done in a later step. Thus, setting a maximum expected waiting time of 5 minutes
allows to anticipate this future synchronization. Passengers are supposed to always chose the
path which has the minimum traveling time.

We assume that 100% of the demand must be satisfied. Passenger satisfaction is modeled
with two criteria: (1) traveling time and (2) comfort of the trip. The traveling time criterion
is based on the notion of reference traveling time of a passenger. This reference traveling
time is typically estimated by the operator based on what should be expected by passengers
according to their shortest possible riding time on the network or based on the actual
performance of the existing network. A first service level constraint specify that a passenger
path cannot be longer than a given percentage αmax (> 100%) of the reference traveling
time for the path OD. To model the comfort offered to passengers, we define a maximum
bus filling percentage (τb) that set the operational bus capacity used in the model.

3 Solving the frequency setting problem

3.1 Bilevel model
To model the presented FSP, we propose a MILP which extends the model of [5] on four
major aspects: (1) we consider the sum of operating costs as the objective and not as a
constraint, (2) we integrate capacity constraints for the network and for an heterogeneous
fleet, (3) we use a path-based model to represent the path chosen by passengers on the
network, (4) we introduce a bi-level formulation in order to model the passenger assignment
by enforcing each path assigned to an OD to be a shortest path for this OD in term of
waiting and traveling times. This model is described in details in Appendix (A).

ATMOS 2022

5:4 A Bilevel Model for the Frequency Setting Problem

Table 1 Main notation used.

G = (V,A,L) Graph representing the infrastructure of the network
V Main stations
A Road sections
L Set of bus lines that are operational
B All types of buses being operational
P Set of passenger paths
Lp Set of lines associated to passenger path p ∈ P

L(a) Set of lines passing through the arc a ∈ A

F Set of frequencies authorized to be operated
qτ

[s,t] Quantity of passenger demand from s to t during time period τ

∆(τ) Duration of the time period τ considered
ob Number of operable buses of type b ∈ B
κb Passenger capacity of buses of type b ∈ B
sa,b Arc a saturation threshold for b-type buses
dl Round trip distance of the line l ∈ L
tl Round trip time of the line l ∈ L
tp Time of the passenger path p ∈ P

costb Operational cost per kilometer for buses of type b ∈ B
wage Hourly wage for bus drivers

For passenger paths, we let xp be a binary variable being equal to one if a path p ∈ P is
used. The variable γp is a continuous variable representing the percentage of the OD pair
using path p ∈ P that satisfies xp = 1, while wp models the expected waiting time on path
p ∈ P if it is used. For bus line variables, we let yl,f be a binary variable equal to one if bus
line l ∈ L is assigned to frequency f ∈ F and ψl,b, an integer variable equal to the number
of buses of type b ∈ B on line l ∈ L.

The bilevel problem is modeled with a single level reformulation using the optimal value
function introduced by [7]. In our problem, this results in Constraint (13), called shortest
path constraint. This constraint states that if a path p ∈ P is selected for an OD [s, t], then
it has to be at least as short as any other path from s to t.

3.2 General process

Given the number of paths and constraints to be added to the model, we propose an iterative
method of path selection to accelerate the resolution of the model. Hence, we propose the
Path Selection Process (PSP) summarized in Figure 2a. Step 0 generates an exhaustive set
of passenger paths Ω, all compatible with the targeted service levels. The generation of a
set Ω of passenger paths is based on two steps: a dominance step and the second being a
filtering step. For this purpose, for each passenger path we introduce two notions: minimum
traveling time and maximum traveling time. The minimum traveling time is defined as the
sum of the riding time and the lowest possible expected waiting time at departure and at
each transfer. The maximum traveling time is defined as the sum of the riding time and the
highest possible expected waiting time at departure and at each transfer. The dominance
step test if the minimum traveling time of a path p is lower than the maximum traveling
time of all other paths p′ relying the same origin-destination and with at most the same
number of transfers. The filtering step removes path p whose minimum traveling time is

H. Gatt, J.-M. Freche, A. Laurent, and F. Lehuédé 5:5

(a) Overview of the Path Selection Process (PSP) for solving the FSP.

(b) Zoom on the step 1 of the Path Selection Process (PSP).

strictly greater than αmax× the reference traveling time of the OD pair. Then, the selection
of initial paths among this set Ω to create a set P is performed by selecting for each OD pair,
all direct paths and the path associated with the minimum traveling time. The FSP-milp is
then solved with P by using CPLEX. Step 1 aims at building a feasible solution in which
each OD is assigned to its shortest path. This step ensures that there is no shorter path
that an OD should have taken. This is done by iteratively adding paths from Ω to P when
these paths are shorter than those used in the solution of the FSP-milp. This results in a
dynamic addition of shortest path constraints as soon as a passenger path from Ω is added to
P. Finally, Step 2 consists in solving the FSP-lp, a relaxed version of the FSP-milp, with the
set of passenger paths Ω as input to select additional paths from Ω to be added to P. The
model is then solved again with a warm-start procedure based on the last integer solution
obtained in Step 2. Finally, Step 1 is executed one more time to build a feasible solution,
from the integer solution obtained in step 2, in which each OD can be assigned a path.

ATMOS 2022

5:6 A Bilevel Model for the Frequency Setting Problem

4 Numerical Results

Our experiences are based on a case study of the agglomeration of Poitiers, France, which
has more than 130,000 inhabitants and is itself part of the ”Grand Poitiers” urban area
(200,000 inhabitants). The data has been produced in collaboration with RTP (Régie des
Transports Poitevin) the public transport operator of the ”Grand Poitiers” urban area. To
carry out this study, a graph composed of 78 nodes and 106 edges has been defined, based
on the existing network. Furthermore, based on a study of travelers’ trips conducted by
the RTP operator, we generate 15 one-hour OD matrices covering a typical operating day
from 6am to 9pm. This case study is based on the optimization of the frequency of the 23
bus lines currently operated on four time periods. For each of these time periods we use
PSP and evaluate the quality of the solution obtained compared to upper and lower bounds.
To obtain upper and lower bounds, we run our FSP model for each time period with all
passenger paths in the ω set generated in step 0 and solve it with CPLEX with a time limit
of 10 hours. The models are implemented with Julia and solved by Cplex 20.1 through
the JuMP interface on a DELL R440 1U server with a 2.1 GHz Intel Xeon 6230 CPU and
192GB of RAM. For our experiments, the set of bus line frequencies F is defined from 0 to
12 and the bus filling percentage τb is set to 20% for all type of buses. Furthermore, the
αmax service-level parameter is set to 100%, enforcing each passenger to use a path with a
traveling time at most equal to the reference traveling time for the path OD.

Table 2 The columns show the time period, the number of OD pairs and the number of passengers
considered in the period, the upper and lower bounds and optimality gap obtained when solving
FSP model with all passenger paths and finally the objective value, the gap to the best upper bound
ub∗ found and the solving time with PSP. All solving times are in seconds and (tl) means that the
wall time has reached the maximum solving time.

Instance FSP-milp with all passenger paths PSP
Time # # Up. b. Lower Opt. Solv. Obj Gap to Solv.
period OD Pass. ub∗ bound gap time value ub∗ time

6am-7am 1301 1503 17942 17047 4.99% 36000 (tl) 17942 0% 642
7am-8am 1770 4993 139553 32113 76.99% 36000 (tl) 39079 −72% 12632
8am-9am 1728 3640 172876 22025 87.26% 36000 (tl) 27229 −84% 2147
9am-10am 1526 2337 88922 17003 80.88% 36000 (tl) 18880 −79% 748
10am-11am 1442 1938 137585 15774 88.54% 36000 (tl) 17012 −88% 518
11am-12am 1562 2532 150290 17638 88.26% 36000 (tl) 20372 −86% 993
12am-1pm 1530 2917 143699 22825 84.12% 36000 (tl) 24435 −83% 908
1pm-2pm 1540 3018 113038 21299 81.16% 36000 (tl) 25434 −78% 1029
2pm-3pm 1614 2703 141884 17126 87.93% 36000 (tl) 19010 −87% 1274
3pm-4pm 1705 3392 51539 20362 60.49% 36000 (tl) 25224 −51% 3595
4pm-5pm 1929 4047 118728 22975 80.65% 36000 (tl) 26330 −78% 952
5pm-6pm 1941 5205 167713 25498 84.80% 36000 (tl) 33169 −80% 1812
6pm-7pm 1681 2596 19591 19591 0% 23973 19591 0% 700
7pm-8pm 1078 1123 16112 16112 0% 22217 16112 0% 223
8pm-9pm 818 617 12962 12962 0% 16467 12962 0% 71

From results in Table (2), we make several observations:
Our PSP method stops in less than 1 hour for all time periods except 7am − 8am (3
hours and 30 minutes).

H. Gatt, J.-M. Freche, A. Laurent, and F. Lehuédé 5:7

For all time periods, the objective value obtained with our PSP method is less than or
equal to the best upper bound ub∗ of the FSP-milp found with all passenger paths.

The mean deviation of the objective value obtained with our PSP method from the best
upper bound ub∗ found is equal to −58% and the median deviation is equal to −78%.

For 6pm−7pm, 7pm−8pm and 8pm−9pm time periods, the solution obtained with PSP
method is proven optimal by the resolution of the FSP-milp with all passenger paths.

5 Conclusion

We proposed a model and a heuristic for solving a practical application of the frequency
setting problem. In this model, we minimize the operator cost while respecting service-
levels for passengers. The problem is solved efficiently by a simple path selection process.
Computational results were obtained on a case study and showed the relevance of our heuristic
for public transport companies. These results can be used to refine frequencies on a network
or to produce better cost and fleet estimations in a bus network design perspective.

References

1 Avishai Ceder and Nigel H.M. Wilson. Bus network design. Transportation Research Part B:
Methodological, 20(4):331–344, August 1986. doi:10.1016/0191-2615(86)90047-0.

2 Isabelle Constantin and Michael Florian. Optimizing frequencies in a transit network: a
nonlinear bi-level programming approach. International Transactions in Operational Research,
2(2):149–164, 1995. doi:10.1016/0969-6016(94)00023-M.

3 Hector Gatt, Jean-Marie Freche, Fabien Lehuédé, and Thomas G Yeung. A Column Generation-
Based Heuristic for the Line Planning Problem with Service Levels. In ATMOS 2021: Inter-
national Symposium on Algorithmic Approaches for Transportation Modelling, Optimization,
and Systems, Lisbon, Portugal, September 2021. URL: https://hal.archives-ouvertes.fr/
hal-03356433.

4 O.J. Ibarra-Rojas, F. Delgado, R. Giesen, and J.C. Muñoz. Planning, operation, and control
of bus transport systems: A literature review. Transportation Research Part B: Methodological,
77:38–75, July 2015. doi:10.1016/j.trb.2015.03.002.

5 Héctor Martínez, Antonio Mauttone, and María E. Urquhart. Frequency optimization in
public transportation systems: Formulation and metaheuristic approach. European Journal of
Operational Research, 236(1):27–36, July 2014. doi:10.1016/j.ejor.2013.11.007.

6 G. F. Newell. Dispatching Policies for a Transportation Route. Transportation Science,
5(1):91–105, February 1971. Publisher: INFORMS. doi:10.1287/trsc.5.1.91.

7 M. Schmidt and Beck Y. A gentle and incomplete introduction to bilevel optimization, 2021.
URL: www.optimization-online.org/DB_FILE/2021/06/8450.pdf.

8 Hemant Kumar Suman, Nomesh B. Bolia, and Geetam Tiwari. Perception of potential bus users
and impact of feasible interventions to improve quality of bus services in Delhi. Case Studies
on Transport Policy, 6(4):591–602, December 2018. doi:10.1016/j.cstp.2018.07.009.

9 Bin Yu, Zhongzhen Yang, and Jinbao Yao. Genetic Algorithm for Bus Frequency Optimization.
Journal of Transportation Engineering, 136(6):576–583, June 2010. doi:10.1061/(ASCE)TE.
1943-5436.0000119.

ATMOS 2022

https://doi.org/10.1016/0191-2615(86)90047-0
https://doi.org/10.1016/0969-6016(94)00023-M
https://hal.archives-ouvertes.fr/hal-03356433
https://hal.archives-ouvertes.fr/hal-03356433
https://doi.org/10.1016/j.trb.2015.03.002
https://doi.org/10.1016/j.ejor.2013.11.007
https://doi.org/10.1287/trsc.5.1.91
www.optimization-online.org/DB_FILE/2021/06/8450.pdf
https://doi.org/10.1016/j.cstp.2018.07.009
https://doi.org/10.1061/(ASCE)TE.1943-5436.0000119
https://doi.org/10.1061/(ASCE)TE.1943-5436.0000119

5:8 A Bilevel Model for the Frequency Setting Problem

A FSP model

min
∑
l∈L

∑
b∈B

ψl,b × cl,b (1)

s.t.
∑
f∈F

yl,f = 1 ∀l ∈ L (2)

∑
b∈B

ψl,b ≥ θf × yl,f ∀l ∈ L, f ∈ F (3)

ψl,b ≤
∑
f∈F

θf × yl,f ∀l ∈ L, b ∈ B (4)

∑
p∈P[s,t]

γp = 1 ∀[s, t] ∈ ODτ (5)

ob ≥
∑
l∈L

tl
∆(τ) × ψl,b ∀b ∈ B (6)

sa,b ≥
∑

l∈L:a∈l

ψl,b ∀a ∈ A, b ∈ B (7)∑
f∈F

θf × yl,f ≥ γp ∀p ∈ P, l ∈ Lp (8)

∑
b∈B

τb × κb × ψl,b ≥
∑

[s,t]∈ODτ

∑
p∈P[s,t]:
l∈Lp(a)

γp × qτ
[s,t] ∀l ∈ L, a ∈ l (9)

xp ≥ γp ∀p ∈ P (10)
rtto(p),d(p) × αmax ≥ tp × xp + wp ∀p ∈ P (11)

wp ≥
∑
l∈Lp

∑
f∈F

waitf × yl,f − (1 − xp) × 5 × |Lp| ∀p ∈ P (12)

tp′ +
∑

l∈Lp′

∑
f∈F

waitf × yl,f ≥ xp × tp + wp ∀[s, t] ∈ ODτ , (p, p′) ∈ P[s,t] (13)

yl,f ∈ {0, 1} ∀l ∈ L, f ∈ F
xp ∈ {0, 1} ∀p ∈ P

γp ∈ [0, 1] ∀p ∈ P

wp ∈ R+ ∀p ∈ P

The objective function (1), is defined as the sum of total operating costs. To do this, cl,b is
defined equal to the sum of cumulative kilometric costs and cumulative driving times. Hence,
cl,b = dl × costb + tl × wage

60 .
Constraint (3) enforces each line to be associated to a exactly one frequency.
Constraints (3) and (4) rely the frequencies of bus lines and the buses operating on them.
Constraint (5) forces the totality of each OD pair demand to be dispatched on passenger paths
satisfying them.
Constraint (6) ensures the number of buses used for operation is available.
Constraint (7) ensures the number of buses of each type driving on a road section during the
period is lower than the saturation limit.
Constraint (8) forces a passenger path used to have each of the associated lines being operated.
Constraint (9) is used to integrate the bus filling percentage service-level parameter.
Constraints (10), (11), (12) are used to integrate the αmax service-level parameter.
Constraint (13) enforces a traveler to take its fastest possible path with chosen frequencies.

Dynamic Traffic Assignment for Electric Vehicles
Lukas Graf #

Universität Augsburg, Germany

Tobias Harks #

Universität Augsburg, Germany

Prashant Palkar #

Universität Augsburg, Germany

Abstract
We initiate the study of dynamic traffic assignment for electrical vehicles addressing the specific
challenges such as range limitations and the possibility of battery recharge at predefined charging
locations. We pose the dynamic equilibrium problem within the deterministic queueing model of
Vickrey and as our main result, we establish the existence of an energy-feasible dynamic equilibrium.
There are three key modeling-ingredients for obtaining this existence result:
1. We introduce a walk-based definition of dynamic traffic flows which allows for cyclic routing

behavior as a result of recharging events en route.
2. We use abstract convex feasibility sets in an appropriate function space to model the energy-

feasibility of used walks.
3. We introduce the concept of capacitated dynamic equilibrium walk-flows which generalize the

former unrestricted dynamic equilibrium path-flows.
Viewed in this framework, we show the existence of an energy-feasible dynamic equilibrium by
applying an infinite dimensional variational inequality, which in turn requires a careful analysis of
continuity properties of the network loading as a result of injecting flow into walks.

We complement our theoretical results by a computational study in which we design a fixed-point
algorithm computing energy-feasible dynamic equilibria. We apply the algorithm to standard
real-world instances from the traffic assignment community illustrating the complex interplay of
resulting travel times, energy consumption and prices paid at equilibrium.

2012 ACM Subject Classification Mathematics of computing → Network flows; Networks → Traffic
engineering algorithms

Keywords and phrases Electromobility, Dynamic Traffic Assignment, Dynamic Flows, Fixed Point
Algorithm

Digital Object Identifier 10.4230/OASIcs.ATMOS.2022.6

Related Version Full Version: https://arxiv.org/abs/2207.04454

Supplementary Material Dataset, Software: https://github.com/ArbeitsgruppeTobiasHarks/el
ectric-vehicles/tree/f6f67e45c70c3cd2b0690280be3591d044127747

Funding Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - HA 8041/1-2.

Acknowledgements We are grateful to the anonymous reviewers for their valuable feedback on
this paper. Additionally, we thank the organizers and participants of the 2022 Dagstuhl seminar
on “Dynamic Traffic Models in Transportation Science” where we had many helpful and inspiring
discussions on the topic of this paper.

1 Introduction

Electric vehicles (EVs) are a great promise for the coming decades in order to allow for
mobility but at the same time take measures against the climate change by reducing the
emissions of classical combustion engines. The wide-spread operation of EVs, however, is by

© Lukas Graf, Tobias Harks, and Prashant Palkar;
licensed under Creative Commons License CC-BY 4.0

22nd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2022).
Editors: Mattia D’Emidio and Niels Lindner; Article No. 6; pp. 6:1–6:15

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lukas.graf@math.uni-augsburg.de
https://orcid.org/0000-0001-9212-0277
mailto:tobias.harks@math.uni-augsburg.de
mailto:prashant.palkar@math.uni-augsburg.de
https://orcid.org/0000-0001-7693-4211
https://doi.org/10.4230/OASIcs.ATMOS.2022.6
https://arxiv.org/abs/2207.04454
https://github.com/ArbeitsgruppeTobiasHarks/electric-vehicles/tree/f6f67e45c70c3cd2b0690280be3591d044127747
https://github.com/ArbeitsgruppeTobiasHarks/electric-vehicles/tree/f6f67e45c70c3cd2b0690280be3591d044127747
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

6:2 Dynamic Traffic Assignment for Electric Vehicles

far not fully resolved as the battery technology comes with several complications, some of
which are listed below:

The limited battery capacity implies a limited driving range of EVs resulting in complex
resource-constrained routing behavior taking the feasibility of routes w.r.t. the energy
consumption into account (cf. [4, 17]).

Feasible routes may contain cycles if the possibility of recharging at predefined charging
stations is included (see [1, 18, 17]). The necessity of multiple recharging operations is
especially relevant for longer trips such as long-haul trucking or for the use of EVs in
urban logistics [4].

The recharging strategy itself can be quite complex involving mode choices ranging from
low-power supply modes (22 kW) to high-power supply modes (350 kW) (cf. [19]). Different
modes may come with substantially different recharging times and prices (cf. [16]).

For a selected recharge mode, the duration of the recharge determines both, the resulting
battery state (and hence the subsequent reach of the vehicle), and the corresponding
total recharge price and, thus, adds a further strategic dimension.

While some of the above challenges have been partly addressed within the “battery-constrained
routing” community (cf. [1, 4, 6, 18, 15, 17, 13] and references therein), the majority of these
works rely on a static and mostly decoupled view on traffic assignment: Each vehicle is routed
independently (subject to battery related side constraints) and the interaction of vehicles in
terms of congestion effects with increased travel times is not considered. Only a few works
(such as [22, 23]) take congestion effects of routing EVs into account, yet, still relying on a
static routing model.

In a realistic traffic system, vehicles travel dynamically through the network and the
route choices of vehicles are mutually dependent as the propagation of traffic flow leads to
congestion at bottlenecks and in turn determines the route choices to avoid congestion. This
complex and self-referential dependency has been under scrutiny in the traffic assignment
community for a long time and it is usually resolved by dynamic traffic assignments (DTA)
under which – roughly speaking – at any point in time, no driver can opt to a better route.
As a result, the actual equilibrium travel times do depend on the collective route choices
of all vehicles and even more strikingly, the equilibrium routes determine the actual energy
consumption profile of an EV leading to a complex coupled dynamic system. Note that
emergent congestion effects are even relevant for the pure recharging process of an EV, since
with the rapid growth rates of EVs compared to the relatively scarce recharging infrastructure,
significant waiting times at recharging stations are anticipated (cf. [19]).

DTA models have been studied in the transportation science community for more than
50 years with remarkable success in deriving a concise mathematical theory of dynamic
equilibrium distributions, yet there is no such theory for DTA models addressing the specific
characteristics of EVs. Let us quote a recent survey article by Wang, Szeto, Han and Friesz [20]
that mentions the lack of DTA models for the operation of EVs: “To our best knowledge, a
DTA model with path distance constraints for electric vehicles remains undeveloped; so do
the corresponding solution algorithms.” This research gap might have good mathematical
reasons: virtually all known existence results in the DTA literature rely on the assumption
that paths must be acyclic in order to obtain a well defined path-delay operator mapping
the path-inflows to the experienced travel time (cf. [2, 3, 5, 9, 25, 12, 14]). As explained
above, the range-limitation of EVs requires recharging stops and, thus, leads to cyclic routing
behavior with path length restrictions requiring a new approach to establish equilibrium
existence.

L. Graf, T. Harks, and P. Palkar 6:3

Our Contribution
In this paper, we study a dynamic traffic assignment problem that addresses the operation
of electrical vehicles including their range-limitations caused by limited battery energy and
necessary recharging stops. Our contributions can be summarized as follows:
1. We propose a DTA model tailored to the operation of EVs that combines the Vickrey

deterministic queueing model with graph-based gadgets modeling complex recharging
procedures such as mode choices and recharge durations. A combined routing and
recharging strategy of an EV can be reduced to choosing an energy-feasible walk within
this extended network.

2. A feasible walk may contain cycles and the set of feasible walks that respect the battery-
constraints may be quite complex. After establishing some fundamental properties of
the resulting network loading when flow is injected into walks, we introduce abstract
convex, closed and bounded feasibility sets in an appropriate function space to describe
the resulting feasible dynamic walk-flows. These feasibility sets are used to set up the
formal definition of a capacitated dynamic equilibrium in which also the monetary effect
of prices charged at recharging stations is integrated in the utility function of agents.

3. With the formalism of the network loading and the notion of a capacitated dynamic
equilibrium, we then proceed to the key question of equilibrium existence. We show
that the walk-delay operator that maps the walk-inflows to resulting travel times is
sequentially weak-strong continuous on the convex feasibility space (which corresponds
to weakly-continuous as previously used by Zhu and Marcotte [25] for paths under the
strict FIFO-condition). This allows us to apply a variational inequality formulation by
Lions [11] to establish the existence of dynamic equilibria. While the general variational
inequality approach dates back to Friesz et al. [5], our result generalizes previous works
on side-constraint dynamic equilibria (e.g. Zhong et al. [24]), because we do not assume a
priori compactness of the underlying convex restriction set, nor strict FIFO as in [24, 25].

4. We finally develop a fixed-point algorithm for the computation of energy-feasible dynamic
equilibria and apply the algorithm to several real-world instances from the literature.
To the best of our knowledge, this work is among the first to compute dynamic traffic
equilibria for electric vehicles and it can serve as the basis for evaluating the interplay
between congestion, travel times and used energy in a dynamic traffic equilibrium.

2 The Model

We now introduce our model for electric vehicles in which we combine the Vickrey deterministic
queuing model with graph-based extensions in order to model the key characteristics of the
battery recharging technology for electric vehicles. The complex strategic decision of an EV
involves
1. the route choice – possibly involving necessary recharging stops and cycles,
2. the mode choice of the battery-recharge (e.g., Level 1, 2, 3),
3. the actual duration of each battery-recharge en route, which determines the resulting

battery state and the recharge cost while also adding to the EV’s total travel time.
We model this complex decision space by using several graph-based gadgets inside the Vickrey
network model leading to the battery-extended network. This way, we can reduce the complex
strategy choice of an EV to selecting a feasible walk inside the battery-extended network. We
will now start with the physical Vickrey flow model and then discuss the battery-extended
network.

ATMOS 2022

6:4 Dynamic Traffic Assignment for Electric Vehicles

The Physical Vickrey Network Model. The physical Vickrey network model is based on a
finite directed graph G′ = (V ′, E′) with positive rate capacities νe ∈ R+ and positive transit
times τe ∈ R+ for every edge e ∈ E′. There is a finite set of commodities I = [n] := {1, . . . , n},
each with a commodity-specific source node si ∈ V ′ and a commodity-specific sink node
ti ∈ V ′. The (infinitesimally small) agents of every commodity i ∈ I each represent a vehicle
(electric or combustion engine) and they enter the network according to a bounded and
integrable network inflow rate function ui : R≥0 → R≥0 with bounded support. We denote
by T := sup { θ ∈ R≥0 | ∃i ∈ I : ui(θ) > 0 } the last time a vehicle enters the network. If the
total inflow into an edge e = vw ∈ E′ exceeds the rate capacity νe, a queue builds up and
agents need to wait in the queue before they are forwarded along the edge. The total travel
time along e is thus composed of the waiting time spent in the queue plus the physical transit
time τe.

The Battery-Extended Network. For vehicles corresponding to a commodity i ∈ I, we
assume that they all have an equal initial battery state of level bi > 0, i ∈ I. If an agent of
commodity i travels along an edge e ∈ E, it comes with a (flow-independent) battery cost
of bi,e ∈ R which may be positive (energy consumption) or negative (recuperation). The
maximum battery capacity is denoted by bmax

i . Note that the assumption that battery cost
is independent of congestion is well justified, since the engine of an EV completely turns off
when a vehicle stands still leading to negligible energy consumption while queueing up. Yet,
the chosen route does depend on the perceived travel time, thus, also the realized energy
consumption does (indirectly) depend on congestion.

Recharging may occur using different modes ranging from relatively low power supply (up
to 3.7 kilowatts (kW), Level 1) to medium supply (up to 22 kW, Level 2) up to high supply (25
kW to more than 350 kW, Level 3) or even complete battery swaps. Each mode may result in
different recharging times for a fixed targeted state of charging (SOC), and also the resulting
prices may significantly vary not only among modes but also among recharge locations.1
Besides the recharge location and mode choice, the planned duration for the recharge is an
important decision as it directly affects the journey time, the resulting SOC and the price
paid. Given a tariff for recharging,2 we can model the set of possible combinations of recharge
times, battery states and recharge prices via tuples of the form (τ, bi, pi), i ∈ I, where τ ∈ N
is the time (in minutes) spent for recharging, bi ≡ bi(τ) is the resulting increase of the battery
level and pi ≡ pi(τ) ∈ R+ is the charged price for a vehicle of commodity i ∈ I. Note that
the functions bi(τ), pi(τ) can be directly derived from the SOC function for recharging and
the resulting tariffs, respectively (cf. Xiao et al [21]). Recharging stations are identified
with subsets of nodes of V ′ denoted by Ci ⊆ V ′, i ∈ I, where Ci depends on i ∈ I to allow
for different recharging technologies, that is, some vehicles may only recharge at stations
that have the required technology. By introducing copies of commodities it is again without
loss of generality to assume that every agent of commodity i uses the same technology. For
a recharging location v ∈ Ci, i ∈ I, we introduce a subgraph as depicted in Figure 1. For
v ∈ Ci, the parallel edges leaving v correspond to the different recharging modes available
and the subsequent edges model the different recharging times with corresponding recharge

1 The statistics for 2021 for the recharging prices in Germany show for instance a significant price span for
the “cents per kWh tariff” ranging from 35 Euro cents at public stations to 79 cents at private stations
(cf. [16]).

2 Pricing happens frequently on the basis of a per-minute tariff, other tariffs charge on a per kWh basis
or on a per-session basis, see [16] for an overview on pricing schemes in Germany.

L. Graf, T. Harks, and P. Palkar 6:5

v ⇒ v

v1
m1(v)

v2
m2(v)

v3
m3(v)

v̄

(τv1v̄, νv1v̄, bi,v1v̄, pi,v1v̄)
...

...

...

Figure 1 Left: Initial vertex v with an EV using a walk (red edges) without recharging. Right:
Expansion of node v using a graph-based gadget modeling the recharging options. There are three
recharging modes, say a low, medium or high power supply (Level 1, Level 2, Level 3) leading to the
first three edges m1(v), m2(v), m3(v). The subsequent parallel edges model the different charging
times and resulting increase of the battery levels. The red edges describe one cycle inside the gadget
and represent a recharge using mode 1 for time τv1v̄ with resulting battery level increase of |bv1v̄| at
price pv1v̄.

states and prices.3 At the end of this series-parallel graph-gadget, a backwards arc towards
v is introduced. We associate with every edge a tuple of the form (τe, νe, bi,e, pi,e), where
τe is the travel time (or recharge duration for a gadget edge), νe the inflow capacity, bi,e

the battery recharge and pi,e the price paid for the used recharge on edge e. Note that we
have pi,e ≡ pi,e(τe) and bi,e ≡ bi,e(τe) for corresponding pricing and recharging functions,
respectively. Any cycle in such a gadget is in one-to-one correspondence to a mode (e),
recharge duration (τe), battery recharge (bi,e) and price decision (pi,e). If a mode is not
compatible with the recharging technology used by EVs of type i ∈ I, we can set bi,e = +∞
to close the corresponding recharge edge for i ∈ I. For every i ∈ N , we denote the newly
constructed vertices and edges, respectively, by V (Ci), E(Ci), i ∈ I.

▶ Definition 1. The battery-extended network is a tuple N = (G, ν, τ, b, p), where
G = (V, E) is the battery-extended graph with V := V ′∪i∈I V (Ci) and E := E′∪i∈I E(Ci)),
νe ∈ R+, e ∈ E denotes the inflow-capacities,
τe ∈ R+, e ∈ E denotes the travel times or recharge durations,
bi,e ∈ R, i ∈ I, e ∈ E denotes the battery-consumption values,
pi,e ∈ R+, i ∈ I, e ∈ E denotes the recharge prices.

An si-ti walk in the battery-extended graph G corresponds to a route choice in the original
graph G′ together with recharging decisions corresponding to cycles inside the gadgets, see
Figure 1 for an example.

Feasible Walks in the Battery-Extended Network. Assume that we are given the battery-
extended network N . Let W = (e1, . . . , ek) be a sequence of edges in the graph G. We call
W a walk if its edges can be traversed in this order i.e. if we have ej = vj−1vj for all j ∈ [k]
for k ∈ N. We assume that all walks considered in this paper are finite and just use the
term walk to denote a finite walk. Note, that a walk is allowed to contain self-loops and/or

3 For the sake of a simple illustration we allow parallel arcs but by introducing further dummy nodes
subdividing an edge, one obtains a simple graph so that an edge can uniquely be represented by a tuple
vw for v, w ∈ V .

ATMOS 2022

6:6 Dynamic Traffic Assignment for Electric Vehicles

si

v1

v2v3 tiv4v5

1

55

1

1 2
1

0

−4

−2

0

si

v1

v2v3 tiv4v5

1

55

1

1 2
1

0

−4

−2

0

Figure 2 Example of an instance with start node si and sink node ti, bi = 3, bmax
i = 4. The green

edges represent the recharging gadget. Blue numbers at edges indicate the energy consumption values
bi,e. The shortest energy-feasible walk (assuming positive travel times on edges) is illustrated with red
edges on the right which contains two simple cycles C1 := {v3, v4, v5, v3} and C2 := {v1, v2, v3, v1},
where the first cycle is contained in the recharging gadget and represents a mode and duration
choice.

nontrivial cycles as required for a recharge operation. We denote by kW := k the length
of W and by eW

j the j-th edge of walk W . W is an si-ti walk, if v0 = si and vk = ti. We
denote by Wi the set of all si,ti-walks and assume that this set is always non-empty, i.e. that
every commodity has at least one walk from its source to its sink. Finally, we denote by
W := { (i, W) | i ∈ I, W ∈ Wi } the set of all commodity-walk pairs. The set Wi represents
the set of strategies for a particle of commodity i ∈ I and, thus, a complete strategy profile is
a family of walk inflow rates for all commodities and all walks such that for every commodity
the sum of its walk inflow rates matches its network inflow rate. We denote the set of all
such strategy profiles by

K :=
{

h ∈
(
L2

≥0([0, T])
)W

∣∣∣∣∣ ∀i ∈ I :
∑

W ∈Wi

hW
i (θ) = ui(θ) for almost all θ ∈ R≥0

}
,

where L2
≥0([0, T]) denotes the set of L2-integrable non-negative functions and any h ∈ K is

called a walk-flow. The crucial point when modeling electric vehicles is the energy-feasibility
of a walk, that is, the battery must not fully deplete when traversing a walk. We capture
this property in the following definition.

▶ Definition 2. A walk W = (e1, . . . , ek) ∈ Wi is energy-feasible for commodity i ∈ I,
if bW (vj) ∈ [0, bmax

i] holds for all j = 1, . . . , k, where bW (vj) is defined inductively as
bW (v1) = bi and bW (vj+1) = min{bW (vj) − bi,ej+1 , bmax

i }.

We assume that for every i ∈ I there is at least one energy-feasible walk and denote their
collection by Wi,b := {W ∈ Wi|W is energy feasible for i}. This set represents the set of
energy-feasible strategies for a particle of commodity i ∈ I. Thus, a complete energy-feasible
strategy profile is a family of walk inflow rates for all commodities and all walks such that for
every commodity the sum of its walk inflow rates matches its network inflow rate. We further
define Wb = {(i, W)|i ∈ I, W ∈ Wi,b} to be the set of commodity and energy-feasible walk
pairs. Note that the set Wb need not be finite. In Figure 2, we give an example illustrating
that walking along cycles might indeed be necessary to reach the sink.

3 Dynamic Equilibria with Convex Constraints

So far, we have reduced the strategy space of every player involving the routing and recharging
decisions to the set of feasible walks inside the battery-extended graph G. What is still
missing to formally introduce the traffic assignment problem, or equivalently, the dynamic

L. Graf, T. Harks, and P. Palkar 6:7

equilibrium problem, is the precise form of the utility function for an agent. We assume that
agents want to travel from si to ti but have preferences over travel time and recharge prices.
While the recharge prices can be directly derived from the chosen walk W , the resulting travel
time can only be described, if the walk-choices of all agents have been unfolded over time
giving the resulting queueing times of a walk. This dynamic unfolding of the traffic inflow is
usually termed as the network loading which is discussed in the following paragraphs.

Edge-Walk-Based Flows over Time. Given a feasible walk-flow h ∈ K, we develop the
theoretical basis for the resulting network loading. This network loading provides then the
basis for time dependent label functions µW

i : R≥0 → R≥0 which for every time θ provide us
with the travel time for a particle entering walk W at time θ. These label functions will then
be used for our dynamic equilibrium concept which takes energy-feasibility of walks and their
resulting travel time into account. Let R := { (i, W, j) | i ∈ I, W ∈ Wi, j ∈ [kW] } denote the
set of triplets consisting of the commodity identifier, walk and edge position in the walk,
respectively. A flow over time is then a tuple f = (f+, f−), where f+, f− ∈

(
L2

≥0(R≥0)
)R

are vectors of L2-integrable non-negative functions modeling the inflow rate fW,+
i,j (θ) and

outflow rate fW,−
i,j (θ) of commodity i on the j-th edge of some walk W ∈ Wi at time θ. For

any such flow over time we define the aggregated edge in- and outflow rates of an edge e ∈ E

as

f+
e (θ) :=

∑
(i,W,j)∈R:eW

j =e

fW,+
i,j (θ) and f−

e (θ) :=
∑

(i,W,j)∈R:eW
j =e

fW,−
i,j (θ) (1)

and the cumulative edge in- and outflows by F +
e (θ) :=

∫ θ

0 f+
e (z)dz, F −

e (θ) :=
∫ θ

0 f−
e (z)dz,

F W,+
i,j (θ) :=

∫ θ

0 fW,+
i,j (z)dz and F W,−

i,j (θ) :=
∫ θ

0 fW,−
i,j (z)dz. Note, that F +

e , F −
e , F W,+

i,j and
F W,−

i,j are non-decreasing, absolute continuous functions which satisfy

F +
e (θ) =

∑
(i,W,j)∈R:eW

j =e

F W,+
i,j (θ) and F −

e (θ) =
∑

(i,W,j)∈R:eW
j =e

F W,−
i,j (θ).

Furthermore, we define the queue length of an edge e at time θ by qe(θ) := F +
e (θ)−F −

e (θ+τe).
Then, for any flow particle entering an edge e = vw at time time θ, its travel time on this
edge is ce(θ) := τe + qe(θ)

νe
and its exit time from edge e is given by Te(θ) := θ + ce(θ). Now,

given some feasible walk-flow h ∈ K we call a flow over time f a feasible flow over time
associated with h if it satisfies the following constraints (2)–(6): The walk inflow rates of h

and f match, i.e., for every i ∈ I, W ∈ Wi we have

fW,+
i,1 (θ) = hW

i (θ) for almost all θ ∈ R≥0. (2)

The flow satisfies a balancing constraint at every intermediate node, i.e. for every i ∈ I,
W ∈ Wi and any 1 ≤ j < kW we have

fW,−
i,j (θ) = fW,+

i,j+1(θ) for almost all θ ∈ R≥0. (3)

The aggregated outflow respects the edges capacity, i.e. for every edge e we have

f−
e (θ + τe) ≤ νe for almost all θ ∈ R≥0, (4)

as well as weak flow conservation over edges, i.e. for every edge e we have

F −
e (θ + τe) ≤ F +

e (θ) for all θ ∈ R≥0. (5)

ATMOS 2022

6:8 Dynamic Traffic Assignment for Electric Vehicles

And, finally, the flow has to satisfy the following link transfer equation for every i ∈ I,
W ∈ Wi and any 1 ≤ j ≤ kW :

F W,−
i,j

(
TeW

j
(θ)
)

= F W,+
i,j (θ) for all θ ∈ R≥0. (6)

It turns out that every feasible walk-flow h ∈ K has a unique associated feasible flow over
time which we can obtain by a natural network loading procedure. This has been shown by
Cominetti et al. in [2, Proposition 3] for the case of flows using only simple paths, but the
same proof can also be applied to the case of general walks.

▶ Lemma 3. For any h ∈ K there is a unique (up to changes on a subset of measure zero)
associated flow over time f .

For any fixed network we denote by F the set of all feasible flows over time associated
with some h ∈ K. Lemma 3 then provides us with a one-to-one mapping between K and F .

Capacitated Dynamic Equilibria. For a given walk-flow h with associated feasible flow
over time f , we are in the position to compute for every commodity type (i, W) with
W = (eW

1 , . . . , eW
kW

) a label function giving at time θ for any node on that walk the arrival
time at ti. Let Ŵ = (v0, . . . , vkW

) denote the representation of W as a sequence of nodes
satisfying eW

j = vj−1vj , j ∈ [kW] with v0 = si, vkW
= ti. As a node can appear multiple

times in W , we use the subindex j ∈ [kW] as a unique identifier of the position of that node
in the walk. With this notation we can unambiguously and recursively define the following
label function:

ℓW
i,kW

(θ) := θ, for all θ ≥ 0,

ℓW
i,j(θ) := ℓW

i,j+1(TeW
j+1

(θ)), for j = [kW] − 1, . . . , 0 and all θ ≥ 0
(7)

where ℓW
i,j is the label function of the (j + 1)-th node when traversing the walk Ŵ beginning

with the starting node at position 0. Since W is a walk with end node ti, the value ℓW
i,0(θ)

measures the arrival time at ti for a particle entering W at time θ (assuming that the particle
follows W). Note that ℓW

i,j is only defined for nodes contained in W and a node v in Ŵ may
be associated with several label functions whose number is equal to the number of occurrences
of v in Ŵ . We can easily compute the total travel time for a vehicle of commodity i ∈ I

leaving at time θ as µW
i (θ) := ℓW

i,0(θ) − θ. Finally, to determine the total cost of any particle
each commodity i ∈ I has an associated aggregation function ci which can be any continuous,
non-decreasing function ci : R×R → R.4 The total cost of a particle of commodity i starting
at time θ on walk W is then ci(µW

i (θ),
∑

e∈W pi,e).
Now, instead of letting particles choose any walk between their respective source and

sink node, we impose further restrictions to only use walk-flows from some closed, convex
restriction set S ⊆ L2([0, T])W . Using such S we can, for example, not only model battery
constraints but also temporary road closures or restrictions on the set of feasible flows itself
(as every h corresponds to a unique flow) – though, in the latter case it is in general not
obvious whether the resulting set S satisfies convexity. We now want to express that some
h ∈ S is an equilibrium, if no particle can improve its total cost (i.e. aggregate of travel
time and total price) by deviating from its current path while staying within S. However,
since individual particles are infinitesimally small, the deviation of a single particle does not

4 A simple example of such a function would be a weighted sum of the two arguments.

L. Graf, T. Harks, and P. Palkar 6:9

influence the feasibility w.r.t. S. Instead, we will consider deviations of arbitrarily small but
positive volumes of flow leading to the notion of saturated and unsaturated walks as used in
the static Wardropian model by Larsson and Patriksson [10]. To do that we first define for
any given walk-inflow h, commodity i, walks W, Q ∈ Wi, time θ̄ ≥ 0 and constants ε, δ > 0
the walk-inflow obtained by shifting flow of commodity i from walk W to walk Q at a rate
of ε during the interval [θ̄, θ̄ + δ] by HW →Q

i (h, θ̄, ε, δ) := (h′
R)R∈W with

h′W
i = [hW

i − ε1[θ̄,θ̄+δ]]+, h′Q
i = hQ

i + hW
i − h′W

i and

h′R
i′ = hR

i′ for all (i′, R) ∈ W \ {(i, Q), (i, W)},

where 1[θ̄,θ̄+δ] : [0, T] → R is the indicator function of the interval [θ̄, θ̄ + δ] and for any
function g : [0, T] → R the function [g]+ is the non-negative part of g, i.e. the function
[g]+ : [0, T] → R, θ 7→ max{g(θ), 0}. Using this notation, we can define the set of unsaturated
alternatives to some fixed walk W of some commodity i with respect to some h ∈ S at time
θ̄ ≥ 0 as

DW
i (h, θ̄) :=

{
Q ∈ Wi

∣∣∣∀δ′ > 0 : ∃δ ∈ (0, δ′], ε > 0 : HW →Q
i (h, θ̄, ε, δ) ∈ S

}
. (8)

With this definition we are now able to formally introduce the concept of a dynamic
equilibrium in our model.

▶ Definition 4. Given a network N = (G, ν, τ, p), a set of commodities I, a restriction set
S and for every commodity an associated source-sink pair (si, ti) ∈ V × V as well as an
aggregation function ci, a feasible walk-flow h ∈ S ∩ K is a capacitated dynamic equilibrium,
if for all (i, W) ∈ W and almost all θ̄ ≥ 0 it holds that

hW
i (θ̄) > 0 =⇒ ci

(
µW

i (θ̄),
∑
e∈W

pi,e

)
≤ ci

µQ
i (θ̄),

∑
e∈Q

pi,e

 for all Q ∈ DW
i (h, θ̄). (9)

Note that, in the case where all inflows are allowed (i.e. S = L2([0, T])W) the above
definition is equivalent to the classic definition of dynamic equilibria. For a battery-extended
network we can use S := { h ∈ L2([0, T])W | hW

i ≡ 0 for all W ∈ W \ Wb } and will call a
capacitated dynamic equilibrium an energy-feasible dynamic equilibrium.

4 Existence of Capacitated Dynamic Equilibria

In this section, we will show the existence of capacitated dynamic equilibria using an infinite
dimensional variational inequality as pioneered by Friesz et al. [5] and also used by Cominetti
et al. [2]. Since we use a more general equilibrium concept and allow for flow to use arbitrary
walks (from an a priori infinite set of possible walks) instead of just simple paths, we have to
adjust several technical steps of the proof. See Figure 2 for a simple instance where travelling
along cycles is already necessary and [18] for an extensive discussion of this topic.

The general structure of the proof will be as follows: First, we introduce the concept
of dominating sets of walks which will allow us to only consider some finite subset W ′ of
the set of all walks. We then define a function A : h 7→ ci

(
µW

i (_),
∑

e∈W pi,e

)
mapping

walk-flows to costs of particles of commodity i using walk W . Using this mapping we can
then formulate a variational inequality for which we can show that any solution to it is a
capacitated dynamic equilibrium. Finally, a result by Lions [11] guarantees the existence of
such solutions given that the mapping A satisfies an appropriate continuity property which
we will show to hold for our model. We start by giving the definition of dominating walks
and sets and then formally state our main theorem:

ATMOS 2022

6:10 Dynamic Traffic Assignment for Electric Vehicles

▶ Definition 5. A walk (i, Q′) ∈ W is a dominating walk for another walk (i, Q) with respect
to S if for any walk-flow h ∈ K ∩S and all times θ ∈ [0, T] we have ci

(
µQ′

i (θ̄),
∑

e∈Q′ pi,e

)
≤

ci

(
µQ

i (θ̄),
∑

e∈Q pi,e

)
and, additionally, Q ∈ DW

i (h, θ̄) always implies Q′ ∈ DW
i (h, θ̄) for

any walk (i, W) ∈ W.
A subset W ′ ⊆ W is a dominating set with respect to S if for any walk (i, Q) ∈ W, there

exists a dominating walk (i, Q′) ∈ W ′.

▶ Theorem 6. Let N = (G, ν, τ, p) be any network and I a finite set of commodities each
associated with an aggregation function ci and a source-sink pair (si, ti). Let S ⊆ L2([0, T])W

be a restriction set which is closed, convex and has non-empty intersection with K, and there
exists some finite dominating set W ′ ⊆ W with respect to S. Then there exists a capacitated
dynamic equilibrium in N .

In order to prove this theorem we first need some additional definitions and notation: We
will make use of two function spaces, namely the space L2([a, b]) of L2-integrable functions
from an interval [a, b] to R and the space C([a, b]) of continuous functions from [a, b] to
R. The former is a Hilbert space with the natural pairing ⟨., .⟩ : L2([a, b]) × L2([a, b]) →
R, (g, h) 7→ ⟨g, h⟩ :=

∫ b

a
g(x)h(x) dx. The latter is a normed space with the uniform norm

∥f∥∞ := supθ∈[a,b] |f(θ)|. Both, the natural pairing and the norm, can be extended in a
natural way to L2([a, b])d and C([a, b])d, respectively, for any d ∈ N. In particular, all these
spaces are topological vector spaces. We say that a sequence hk of functions in L2([a, b])d

converges weakly to some function h ∈ L2([a, b])d if for any function g ∈ L2([a, b]) we have
limk→∞⟨hk, g⟩ = ⟨h, g⟩. For any topological space X (in the following this will be either
L2([a, b])d or C([a, b])d) and any subset C ⊆ L2([a, b])d a mapping A : C → X is called
sequentially weak-strong continuous if it maps any weakly converging sequence of functions
in C to a (strongly) convergent sequence in X.

With this, we can now describe the kind of variational inequality we will use to show
the existence of capacitated dynamic equilibria. Namely, given an interval [a, b] ⊆ R≥0, a
number d ∈ N, a subset C ⊆ L2([a, b])d and a mapping A : C → L2([a, b])d, the variational
inequality VI(C, A) is the following:

Find h∗ ∈ C such that ⟨A(h∗), h̄ − h∗⟩ ≥ 0 for all h̄ ∈ C. (VI(C, A))

Conditions to guarantee the existence of such an element h∗ are given by Lions in [11,
Chapitre 2, Théorème 8.1] which, following Cominetti et al. [2], can be restated as follows:

▶ Theorem 7. Let C be a non-empty, closed, convex and bounded subset of L2([a, b])d.
Let A : C → L2([a, b])d be sequentially weak-strong continuous. Then, the variational
inequality (VI(C, A)) has a solution h∗ ∈ C.

For our proof we choose C := π(S ∩ K ∩ ι(
(
L2([0, T])

)W′

)), where ι :
(
L2([0, T])

)W′

→(
L2([0, T])

)W is the canonical embedding (i.e. augmenting W ′-dimensional vectors with
zero functions to W-dimensional vectors) and π :

(
L2([0, T])

)W →
(
L2([0, T])

)W′

the
canonical projection. For ease of notation we will usually omit these embeddings/pro-
jections from our notation and assume that they are implicitly applied, whenever we
switch between elements of

(
L2([0, T])

)W′

and
(
L2([0, T])

)W . Next, we define a map-
ping A : C → L2([0, T])W′ by defining for every walk-flow h ∈ C, commodity i ∈ I and walk
W ∈ W ′

i := { W ∈ Wi | (i, W) ∈ W ′ } the continuous function AW
i (h) given by

AW
i (h) : θ 7→ ci

(
µW

i (θ̄),
∑
e∈W

pi,e

)
− min

Q∈W′
i

ci

µQ
i (θ̄),

∑
e∈Q

pi,e

 .

L. Graf, T. Harks, and P. Palkar 6:11

Clearly, the assumptions on S and the fact that K is bounded, closed and convex
imply that C is a non-empty, closed, convex and bounded subset of L2([0, T])W′ . Thus,
in order to be able to apply Theorem 7 it only remains to show that A is sequentially
weak-strong continuous. Since taking differences and minima of sequentially weak-strong
continuous mappings results again in such a mapping, it suffices to show that the maps
h 7→ ci

(
µW

i (_),
∑

e∈W pi,e

)
are sequentially weak-strong continuous from C to L2([0, T]).

▶ Lemma 8. The map C 7→ L2([0, T]), h 7→
(
[0, T] → R, θ 7→ ci

(
µW

i (θ),
∑

e∈W pi,e

))
is

sequentially weak-strong continuous for every W ∈ W ′
i, i ∈ I.

The proof of this lemma follows along similar lines as [2, Lemmas 3-7] by Cominetti et al.
but requires some adjustments due to the differences between the models (in particular,
the fact that we allow for walks involving cycles). The main steps of the proof are first to
determine a (flow-independent) bound on the residence time of particles in the network,
then decompose the lemma’s map into several simpler maps and, finally, show appropriate
continuity properties for those. The details of this proof can be found in the full version of
the paper. With this lemma at hand we can now prove our main theorem.

Proof of Theorem 6. By Lemma 8 the map h 7→ ci

(
µW

i (_),
∑

e∈W pi,e

)
is weak-strong

continuous from C to L2([0, T]) for each W ∈ W ′
i, i ∈ I. Taking the minimum of finitely many

weak-strong continuous mappings results in a weak-strong continuous mapping again and,
finally, the difference of two weak-strong continuous mappings is also weak-strong continuous.
Thus, A is sequentially weak-strong-continuous from C to L2([0, T])W′ . Applying Theorem 7
provides a solution h∗ for VI(C, A). It remains to show that this is, in fact, a capacitated
dynamic equilibrium. We do this by contradiction, i.e. assume that h∗ is not a capacitated
dynamic equilibrium. Then, by using some technical measure theoretic arguments, we can get
an alternative walk inflow h̄ := HW →Q

i (h∗, θ̄, ε, δ) ∈ S with
∫ θ̄+δ

θ̄
min { h∗W

i (θ), ε } dθ > 0
and ci

(
µW

i (θ),
∑

e∈W pi,e

)
− ci

(
µQ

i (θ),
∑

e∈Q pi,e

)
≥ γ for all θ ∈ [θ̄, θ̄ + δ] and some γ > 0.

Since h̄ only uses walks that are already used in h∗ and additionally walk Q, all walks used
by h̄ are in W ′. Thus, we can conclude that h̄ ∈ C. But at the same time a direct calculation
shows that ⟨A(h∗), h̄ − h∗⟩ =

∫ θ̄+δ

θ̄
(A(h∗)Q(θ) − A(h∗)W (θ)) · min { h∗W

i (θ), ε } dθ < 0,
which is a contradiction to h∗ being a solution to (VI(C, A)). Therefore, h∗ already is a
capacitated dynamic equilibrium. ◀

We conclude by discussing two special cases for which our existence theorem can be applied
by suitable choices of the abstract restriction set S: Dynamic equilibria and energy-feasible
dynamic equilibria.

Dynamic Equilibria. If we choose S = L2([0, T])W then capacitated dynamic equilibria
are exactly the dynamic equilibria as defined in [2, 5, 9, 25, 12]. To see this, note, that
in this case we always have DW

i (h, θ̄) = Wi. Thus, (9) translates to the constraint that
whenever there is positive inflow into some walk W , this walk has to be a shortest walk at
that time. Since dynamic flows in the Vickrey-model satisfy FIFO, the set of simple paths
is a dominating set for the set of all walks with respect to S = L2([0, T])W (i.e. removing
a cycle from a walk can never increase its aggregated cost). As the set of simple paths is
clearly finite, one can use Theorem 6 to show existence of dynamic equilibria. Note that the
classical existence proofs for dynamic equilibria (e.g. by Han et al. [8] or Cominetti et al. [2])
usually have the restriction to simple paths as part of the model itself, i.e. they only allow
walk-inflows from L2([0, T])W′ where W ′ is the set of simple source-sink paths.

ATMOS 2022

6:12 Dynamic Traffic Assignment for Electric Vehicles

s
bmax = 6

u = 3
u v t

e1

b = 4
τ = 1

e2

b = 2
τ = 2

e3
b = 0
τ = 1

e4

b = 4
τ = 1

e5

b = 2
τ = 2

Figure 3 An instance where overtaking can occur in an energy-feasible dynamic equilibrium. If the
capacities are chosen such that no queues form, the paths P1 = (e1, e3, e5) and P2 = (e2, e3, e4) are
the shortest energy-feasible paths and any flow split between these two paths is an equilibrium. Note,
that in such a flow particles travelling along path P1 will temporally overtake particles travelling on
path P2 even though both paths have the same total travel time. If we add suitable edge capacities,
this may lead to particles travelling on path P2 being delayed on edge e3 by later starting particles
travelling on path P1.

Energy-Feasible Dynamic Equilibria. Now let us turn to the case of energy-feasible dynamic
equilibria, i.e. equilibria of flows in battery-extended networks. We show that Theorem 6
implies the existence of energy-feasible dynamic equilibria.

▶ Theorem 9. Let N be an battery-extended network and S := ι(L2([0, T])Wb) ⊆ L2([0, T])W .
Then, there exists an energy-feasible dynamic equilibrium in N , i.e. a capacitated dynamic
equilibrium with respect to S.

Proof. First, it is quite obvious that S is closed, convex and has non-empty intersection with
K (using our assumption that every commodity has at least one energy-feasible source-sink
walk). For the existence of a finite dominating set, we will show that due to the FIFO
condition in the Vickrey model, there exists a constant κi such that for every agent playing
against any walk choices of all other agents there exists an optimal strategy which enters
any (recharging) node at most κi times. We begin by defining the minimum positive energy
increment for i ∈ I along any simple cycle by αi := minE′⊆E

{∑
e∈E′ bi,e|

∑
e∈E′ bi,e > 0

}
and then choosing κi := max

{
bmax

i

αi

}
. Now, suppose there is some node v, which is visited

k ∈ N times by a walk W of commodity i. By renaming indices, we can assume that v appears
in W in the order v1, . . . , vk with vj = v, j ∈ [k]. Clearly, whenever we have bW (vℓ) ≥ bW (vj)
for some ℓ < j, we can delete the cycles between vℓ and vj to obtain another energy-feasible
walk W ′ of the same commodity. Due to FIFO and the fact that the aggregation function
ci is non-decreasing, the new walk W ′ then has at most the same aggregated cost as W .
Thus, commodity i always has an optimal walk where the sequence bW (v1) < · · · < bW (vk)
is monotonically increasing with increments of at least αi > 0. With bW (vk) ≤ bmax

i , we
get k ≤ κi as wanted. Consequently, choosing W ′ as the (finite!) subset of W containing
only walks which visit any particular node at most κi times provides us with the required
dominating walk set. Thus, all conditions of Theorem 6 are satisfied and we obtain the
existence of an energy-feasible dynamic equilibrium. ◀

5 Computational Study and Conclusion

While Theorem 9 guarantees the existence of energy-feasible dynamic equilibria, the non-
constructive nature of our proof (or more precisely the non-constructive existence result for
the variational inequality) means that it is not clear how to actually compute such equilibria.
Moreover, in contrast to dynamic equilibria, even in the single-commodity case it seems
unlikely that energy-feasible dynamic equilibria exhibit a simple phase structure which would
allow for a stepwise construction by repeatedly extending a given partial equilibrium as it is

L. Graf, T. Harks, and P. Palkar 6:13

1 12

5

9

4 6 7 8

10 11 2

13 3

Figure 4 Left: The Nguyen-network with three recharging stations (green loops). Right: Conver-
gence of quality measures during the algorithm (change of flow between consecutive iterations ∆h

and regret QoPI; ε denotes the desired quality at which the algorithm terminates).

possible for dynamic equilibria (cf. [9]). Namely, even in simple toy instances (e.g. Figure 3)
simultaneous starting particles may overtake each other at intermediate nodes while still
arriving at the sink at the same time. Consequently, if one were to extend a given equilibrium
flow, particles starting within the new extension period might overtake particles of a previous
phase and then form a queue, hereby increasing the travel time of those earlier particles and
possibly leading to violations of the equilibrium condition in the previously calculated part
of the flow. Consequently, to compute an energy-feasible dynamic equilibrium the whole
time-horizon [0, T] has to be taken into account at once. This makes it unlikely, that an
exact computation of energy-feasible dynamic equilibria is possible.

Figure 5 Left: Travel times of the four commodities in the Nguyen network without recharging.
Middle: Travel times with recharging. Right: Energy consumption per unit flow with and without
recharging. Note, that allowing recharging can reduce the travel times of some of the commodities
(as more routes become feasible) – for the price of increased total energy consumption.

Thus, we instead compute approximate equilibria by discretizing time and employing
a walk-flow based fixed point algorithm similar to the one used by Han et al. in [7] for
dynamic equilibria. We apply this algorithm to a set of real-world instances and are able
to compute flows which are very close to energy-feasible dynamic equilibria (in the sense
that particles only use walks which are close to shortest energy-feasible walks in hindsight).
We demonstrate this convergence of the flows to approximate dynamic equilibria in terms
of certain quality measures and show the applicability of our algorithm to moderate sized
instances like the Nguyen network with up to 20 commodities (see Figures 4 and 5 for some
of the results for four commodities). On the negative side we observe a sharp increase in
computation time with larger networks and/or more recharging stations as the number of
walks we have to consider increases exponentially. More detailed results of our computational
study can be found in the full version of our paper.

ATMOS 2022

6:14 Dynamic Traffic Assignment for Electric Vehicles

References

1 Moritz Baum, Jonas Sauer, Dorothea Wagner, and Tobias Zündorf. Consumption profiles
in route planning for electric vehicles: Theory and applications. In Costas S. Iliopoulos,
Solon P. Pissis, Simon J. Puglisi, and Rajeev Raman, editors, 16th International Symposium
on Experimental Algorithms, SEA 2017, June 21-23, 2017, London, UK, volume 75 of LIPIcs,
pages 19:1–19:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

2 Roberto Cominetti, José R. Correa, and Omar Larré. Dynamic equilibria in fluid queueing
networks. Oper. Res., 63(1):21–34, 2015.

3 Roberto Cominetti, José R. Correa, and Neil Olver. Long term behavior of dynamic equilibria
in fluid queuing networks. In Integer Programming and Combinatorial Optimization - 19th
International Conference, IPCO 2017, Waterloo, ON, Canada, June 26-28, 2017, Proceedings,
pages 161–172, 2017.

4 Guy Desaulniers, Fausto Errico, Stefan Irnich, and Michael Schneider. Exact algorithms for
electric vehicle-routing problems with time windows. Oper. Res., 64(6):1388–1405, 2016.

5 Terry L. Friesz, David Bernstein, Tony E. Smith, Roger L. Tobin, and B. W. Wie. A
variational inequality formulation of the dynamic network user equilibrium problem. Oper.
Res., 41(1):179–191, January 1993.

6 Aurélien Froger, Ola Jabali, Jorge E. Mendoza, and Gilbert Laporte. The electric vehicle
routing problem with capacitated charging stations. Transportation Science, 56(2):460–482,
2022. doi:10.1287/trsc.2021.1111.

7 Ke Han, Gabriel Eve, and Terry L Friesz. Computing dynamic user equilibria on large-scale
networks with software implementation. Networks and Spatial Economics, 19(3):869–902,
2019.

8 Ke Han, Terry L. Friesz, and Tao Yao. Existence of simultaneous route and departure choice
dynamic user equilibrium. Transportation Research Part B: Methodological, 53:17–30, 2013.

9 Ronald Koch and Martin Skutella. Nash equilibria and the price of anarchy for flows over
time. Theory Comput. Syst., 49(1):71–97, 2011. doi:10.1007/s00224-010-9299-y.

10 Torbjörn Larsson and Michael Patriksson. An augmented lagrangean dual algorithm for
link capacity side constrained traffic assignment problems. Transportation Research Part B:
Methodological, 29(6):433–455, 1995.

11 Jacques-Louis Lions. Quelques méthodes de résolution des problémes aux limites non linéaires.
Etudes mathématiques. Dunod, Paris, 1969.

12 Frédéric Meunier and Nicolas Wagner. Equilibrium results for dynamic congestion games.
Transportation Science, 44(4):524–536, 2010. An updated version (2014) is available on Arxiv.

13 Payas Rajan and Chinya V. Ravishankar. Stochastic Route Planning for Electric Vehicles.
In Christian Schulz and Bora Uçar, editors, 20th International Symposium on Experimental
Algorithms (SEA 2022), volume 233 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 15:1–15:17, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. doi:10.4230/LIPIcs.SEA.2022.15.

14 Bin Ran and David E. Boyce. Dynamic urban transportation network models: theory and im-
plications for intelligent vehicle-highway systems. Lecture notes in economics and mathematical
systems. Springer, Berlin, New York, Paris, 1996.

15 Michael Schneider, Andreas Stenger, and Dominik Goeke. The electric vehicle-routing problem
with time windows and recharging stations. Transp. Sci., 48(4):500–520, 2014.

16 Statista 2021. https://www.statista.com/statistics/1167538/electricity-prices-cha
rging-stations-electric-cars-by-provider-germany/. Accessed: 2022-03-14.

17 Sabine Storandt and Stefan Funke. Cruising with a battery-powered vehicle and not getting
stranded. In Jörg Hoffmann and Bart Selman, editors, Proceedings of the Twenty-Sixth AAAI
Conference on Artificial Intelligence, July 22-26, 2012, Toronto, Ontario, Canada. AAAI
Press, 2012.

https://doi.org/10.1287/trsc.2021.1111
https://doi.org/10.1007/s00224-010-9299-y
https://doi.org/10.4230/LIPIcs.SEA.2022.15
https://www.statista.com/statistics/1167538/electricity-prices-charging-stations-electric-cars-by-provider-germany/
https://www.statista.com/statistics/1167538/electricity-prices-charging-stations-electric-cars-by-provider-germany/

L. Graf, T. Harks, and P. Palkar 6:15

18 Martin Strehler, Sören Merting, and Christian Schwan. Energy-efficient shortest routes for
electric and hybrid vehicles. Transportation Research Part B: Methodological, 103:111–135,
2017. Green Urban Transportation. doi:10.1016/j.trb.2017.03.007.

19 AVERE the European Association for Electromobility. Pricing of electric vehicle recharging in
Europe, 2020. Study prepared by European Alternative Fuels Observatory.

20 Yi Wang, W.Y. Szeto, Ke Han, and Terry L. Friesz. Dynamic traffic assignment: A review of
the methodological advances for environmentally sustainable road transportation applications.
Transportation Research Part B: Methodological, 111:370–394, 2018.

21 Yiyong Xiao, Yue Zhang, Ikou Kaku, Rui Kang, and Xing Pan. Electric vehicle routing problem:
A systematic review and a new comprehensive model with nonlinear energy recharging and
consumption. Renewable and Sustainable Energy Reviews, 151:111567, 2021.

22 Yanhai Xiong, Jiarui Gan, Bo An, Chunyan Miao, and Ana L. C. Bazzan. Optimal elec-
tric vehicle fast charging station placement based on game theoretical framework. IEEE
Transactions on Intelligent Transportation Systems, 19(8):2493–2504, 2018.

23 Hong Zheng, Xiaozheng He, Yongfu Li, and Srinivas Peeta. Traffic Equilibrium and Charging
Facility Locations for Electric Vehicles. Networks and Spatial Economics, 17(2):435–457, 2017.

24 Renxin Zhong, Agachai Sumalee, Terry L. Friesz, and William H.K. Lam. Dynamic user
equilibrium with side constraints for a traffic network: Theoretical development and numerical
solution algorithm. Transportation Research Part B: Methodological, 45(7):1035–1061, 2011.

25 Daoli Zhu and Patrice Marcotte. On the existence of solutions to the dynamic user equilibrium
problem. Transportation Science, 34(4):402–414, 2000.

ATMOS 2022

https://doi.org/10.1016/j.trb.2017.03.007

Delay Management with Integrated Decisions on
the Vehicle Circulations
Vera Grafe !

Technische Universität Kaiserslautern, Germany

Alexander Schiewe !

Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM, Kaiserslautern, Germany

Anita Schöbel !

Technische Universität Kaiserslautern, Germany
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM, Kaiserslautern, Germany

Abstract
The task of delay management in public transport is to decide whether a vehicle should wait for a
delayed vehicle in order to maintain the connection for transferring passengers. So far, the vehicle
circulations are often ignored in the optimization process, although they have an influence on
the propagation of the delay through the network. In this paper we consider different ways from
literature to incorporate vehicle circulations in the delay management stage of public transport
planning. Since the IP formulation for the integrated problem is hard to solve, we investigate bounds
and develop several heuristics for the integrated problem. Our experiments on close-to real-world
instances show that integrating delay management and decisions on vehicle circulations may reduce
the overall delay by up to 39 percent. We also compare the runtimes and objective function values of
the different heuristics. We conclude that we can find competitive solutions in a reasonable amount
of time.

2012 ACM Subject Classification Applied computing → Transportation

Keywords and phrases Public Transport, Delay Management, Vehicle Circulations, Integer Pro-
gramming

Digital Object Identifier 10.4230/OASIcs.ATMOS.2022.7

1 Introduction

Public transportation plays an essential role in passenger mobility. An important factor
for the satisfaction of the passengers, and therefore also for the economic success of the
transportation company, is reliability. However, guaranteeing this is not an easy task:
Unplanned disturbances are inevitable in transportation networks. Because of numerous
interdependencies, these can have a huge impact on the overall network. Hence, an important
task in everyday business is to react to disturbances in the best possible way. The most
crucial decision to be made in this context is whether a vehicle should wait for a delayed
feeder vehicle. If the connecting vehicle does not wait for the feeder vehicle, the passengers
on the latter wishing to transfer miss their connection and have to wait for the next ride.
Especially in networks with a low frequency this is very frustrating for the passengers. On
the other hand, waiting for the delayed vehicle adds further delay in the network, since all
passengers on the connecting vehicle are then also affected by the delay and maybe even
miss a later transfer themselves. This way, the delay can propagate through the entire
network. Hence, the task of delay management is to make waiting decisions and find a
feasible disposition timetable keeping the passengers’ dissatisfaction to a minimum.
A further aspect which has to be considered are the vehicle schedules or rolling stock
circulations: If a vehicle arrives at the final destination of a trip with a delay and is scheduled
to serve another trip subsequently, it is possible that the latter cannot start on time. This

© Vera Grafe, Alexander Schiewe, and Anita Schöbel;
licensed under Creative Commons License CC-BY 4.0

22nd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2022).
Editors: Mattia D’Emidio and Niels Lindner; Article No. 7; pp. 7:1–7:18

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:grafe@mathematik.uni-kl.de
mailto:alexander.schiewe@itwm.fraunhofer.de
https://orcid.org/0000-0002-1055-2066
mailto:schoebel@mathematik.uni-kl.de
https://orcid.org/0000-0002-9306-5529
https://doi.org/10.4230/OASIcs.ATMOS.2022.7
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

7:2 Delay Management with Integrated Decisions on the Vehicle Circulations

also may propagate the delay. This type of delay propagation has only been sparsely treated
in the literature. In this paper, we suggest an approach to mitigate this effect, namely by
replanning the circulations of the vehicles: If there is another vehicle available, it can serve
the second trip, possibly even without delay. In order to make use of such a rescheduling, we
integrate the planning of vehicle circulations into the delay management problem.

Literature review. Delay Management has been studied extensively over the last two decades.
One of the first models, which is based on mixed-integer programming, was introduced in
[22, 23]. Different extensions to this model have been made. In [16] the limited capacity of
the track system was taken into account by adding headways to the integer programming
formulation and presenting heuristic solution approaches. The capacity of the stations was
considered in [4]. These models rest on the assumption that the passengers continue their
journey as planned in case of delays. In reality, passengers might adapt their routes to
the current situation. This possibility was first considered in [6]. Heuristics for solving the
problem with re-routing were presented in [3] and a software tool was introduced in [14]. For
literature reviews on delay management, we refer to [12, 7].

Integrating delay management on a macroscopic level and train scheduling on a microscopic
level was studied in [2]. In [5] a sequential approach for rescheduling timetable, rolling
stock and crew was presented. Integrating rescheduling of vehicle circulations and delay
management was considered in [11], where especially the rolling stock constraints are modelled
in detail but wait/no-wait decision with regard to passenger transfers are not considered.
First ideas for integrating vehicle circulation planning in delay management have been
sketched in [8, 15]. For an overview on vehicle scheduling, see [1].

Contribution of the paper. We consider three different models from literature: First, the
classic delay management problem where the vehicle circulations are ignored. Second, a
model which respects the planned vehicle circulations taking into account that delay is
propagated along the vehicles’ circulations. Third, we present an integrated model in which
the circulations are re-optimized within delay management. We analyze the models and their
relations and give bounds on the optimal objective values of the integrated formulation. We
also develop three heuristics to solve it and evaluate our approaches on close-to real-world
datasets.

2 Including vehicle circulations in delay management

In this section, we present integer programming formulations for three different models for
the delay management problem, differing in the extent to which the vehicle circulations are
considered.

All three models take an event-activity-network Npure = (E , Apure) based on a set of trips
T and a set of stations v ∈ V as input. A trip t ∈ T represents a section that needs to be
served by a single vehicle, e.g., a line. Arrival events and departure events are given by

Earr = {(v, t, arr) : t ∈ T arrives at v ∈ V } and Edep = {(v, t, dep) : t ∈ T departs at v ∈ V }

and E = Earr ∪ Edep. We assume that a timetable π ∈ N|E| is given and fixed, assigning
the scheduled time πi to event i ∈ E . The events are connected by the activities Apure :=
Adrive ∪ Await ∪ Atransfer, where

V. Grafe, A. Schiewe, and A. Schöbel 7:3

Adrive := {((v1, t, dep), (v2, t, arr)) ∈ Edep × Earr : t serves v2 directly after v1},

Await := {((v, t, arr), (v, t, dep)) ∈ Earr × Edep},

Atransfer := {((v, t1, arr), (v, t2, dep)) ∈ Earr × Edep : there is a transfer from t1 to t2 at v},

are the drive, wait and transfer activities, respectively. Each activity a ∈ Apure has a
corresponding lower bound La ∈ N, the minimal time needed to perform the activity. Note
that if delays occur, possible upper bounds for activities often cannot be respected any more,
which is why we ignore them and only consider the lower bounds. A timetable is feasible if it
respects the bounds on the activities, i.e., if for all a = (i, j) ∈ Apure πj − πi ≥ La holds.

When dealing with delays, we distinguish the following two types of delays:
Source delays are caused by external factors, e.g., damaged tracks.
Propagated delays evolve within the transportation system. E.g., if a train arrives at a
station with a delay and hence also departs with a delay, then this departure delay has
been propagated along the waiting activity and is called propagated delay.

The goal of delay management is to adapt to these delays, i.e., to find a disposition timetable
x ∈ N|E| where xi denotes the time of event i ∈ E . When determining the disposition
timetable, we have to make two different kinds of decisions:

Wait/depart decisions: For every transfer a ∈ Atransfer we have to decide whether or not
it should be maintained.
Circulation decisions: We have to decide which vehicle operates which trip.

Note that for train transportation also headway activities need to be considered. For the
sake of simplicity these are neglected here, but could be added easily to all three models to
be presented.

In order to handle the circulation decisions, we define circulations c = (tc1 , . . . , tcn)
consisting of a list of trips which are operated consecutively by the same vehicle. Since an
event i uniquely determines its corresponding trip, we can model the circulations by defining
the following new types of events and activities,

Efirst := {i ∈ Edep : i is the first departure of a circulation}
Elast := {i ∈ Earr : i is the last arrival of a circulation}

Estart := {i ∈ (Edep\Efirst) : i is the first event of a trip}
Eend := {i ∈ (Earr\Elast) : i is the last event of a trip}

Acirc := {((v1, t1, arr), (v2, t2, dep)) ∈ Eend × Estart : t1 and t2 can be operated within
the same circulation}

and the set of all activities as A := Apure ∪Acirc. The EAN including the circulation activities
is denoted by N = (E , A). From the set of all possible circulation activities a subset has to
be chosen such that for every i ∈ Estart ∪ Eend there is exactly one ingoing and one outgoing
activity. We set Afix

circ := {a ∈ Acirc : a is chosen}. Note that the circulations do not refer to
cycles in the event-activity-network which is an acyclic time-expanded network. We are not
requiring periodic networks here.

Apart from the EAN, the input data contain the source delays and passenger weights. We
have two types of source delays, namely source delays di at events i ∈ E and source delays
da on activities a ∈ Atrain := Adrive ∪ Await. An event may just start late for some external
reason, e.g., a driver coming too late to work, while an activity may have a longer duration
as anticipated, e.g., due to a speed reduction on a piece of a track. Correspondingly, for the

ATMOS 2022

7:4 Delay Management with Integrated Decisions on the Vehicle Circulations

trip

Afix
circ

Acirc\Afix
circ

Figure 1 An EAN with circulation activities.

passengers weights we use wi for i ∈ E as the number of passengers reaching their destination
at event i. For a ∈ Atransfer the number of transferring passengers is given by wa. The total
sum of passengers’ delays can be approximated by only using the values wa and wi as shown
in [23]. We do not consider routing decisions depending on the disposition timetable.

We consider three different models for the delay management problem. In all of them the
goal is to find a disposition timetable minimizing the total delay of all passengers. The first
model is the usual model for delay management (see [23]) which ignores that delays may be
propagated along circulation activities and concentrates on the wait/depart decisions. We call
this model (DM). However, the resulting disposition timetable might not be operable if delay
is propagated along circulation activities. In the second model, (DM-fix), the circulation
activities are fixed beforehand and respected when computing the disposition timetable. It
finds a disposition timetable which can be operated. In the third model, (DM-opt), we go a
step further and allow that the circulation activities may be changed if this fits better to the
current situation. This means we optimize the circulations while computing the disposition
timetable. In order to formulate the models as integer programs, we encode the decisions to
be made as binary variables,

ya =
{

1 if the transfer a is cancelled
0 otherwise

for the transfer activities a ∈ Atransfer and

v(i,j) =
{

1 if circulation activity (i, j) is chosen
0 otherwise

for the circulation activities (i, j) ∈ Acirc. Note that the second set of variables is only
present in (DM-opt).

2.1 The classic delay management formulation (DM)
The formulation for the first model, (DM), is the “classic” delay management first been
proposed in [22].

z = min
∑
i∈E

wi(xi − πi) + T
∑

a∈Atransfer

waya (DM)

s.t. xi ≥ πi + di i ∈ E (1)
xj − xi ≥ La + da a = (i, j) ∈ Atrain (2)
M1ya + xj − xi ≥ La a = (i, j) ∈ Atransfer (3)
xi ∈ N i ∈ E (4)
ya ∈ {0, 1} a ∈ Atransfer. (5)

V. Grafe, A. Schiewe, and A. Schöbel 7:5

The objective function minimizes the approximated total delay the passengers have at their
final destination. If a passenger misses a transfer, we assume that after a time period T

everything is on time again and we therefore penalize the missed transfer accordingly in the
second sum of the objective. The constraints (1) ensure that the source delays of the events
are respected by the disposition timetable. The propagation of the delays along the activities
a ∈ Apure is enforced by constraints (2) and (3). For a ∈ Atransfer this is only necessary if
the transfer is maintained, which is why we have the big-M-constraints here.

2.2 Delay management with fixed circulations (DM-fix)
In the second model, (DM-fix), the originally planned circulation activities Afix

circ are included.

zfix = min
∑
i∈E

wi(xi − πi) + T
∑

a∈Atransfer

waya (DM-fix)

s.t. xj − xi ≥ La a = (i, j) ∈ Afix
circ (6)

(1) − (5).

For (DM-fix) the objective function and constraints (1) to (5) are the same as for (DM) while
constraints (6) make sure that the circulation activities (chosen beforehand) are respected.
Note that in [7] the circulation activities are called turn-around activities Aturn.

2.3 Integrating delay management and vehicle scheduling (DM-opt)
Finally, in the third model, (DM-opt), we allow to make the decisions about the circulations
together with the decisions in delay management.

zopt = min
∑
i∈E

wi(xi − πi) + T
∑

a∈Atransfer

waya (DM-opt)

s.t. M2(1 − vij) + xj − xi ≥ La a = (i, j) ∈ Acirc (7)∑
i∈Eend:(i,j)∈Acirc

vij = 1 j ∈ Estart (8)

∑
j∈Estart:(i,j)∈Acirc

vij = 1 i ∈ Eend (9)

vij ∈ {0, 1} (i, j) ∈ Acirc (10)
(1) − (5).

The IP for the third model (DM-opt) (sketched in [8]) also contains all the constraints from
(DM). Additionally, we have constraints (7) to incorporate the delay propagation along the
circulation activities. Let i = (v1, t1, arr) ∈ Eend and j = (v2, t2, dep) ∈ Estart be the end
and the start event of two trips. Then choosing v(i,j) = 1 means that t1 and t2 appear
consecutively in a circulation, i.e., the vehicle operating the trip t1 proceeds from its last
station v1 of trip t1 to the first station v2 of trip t2 and then operates trip t2. Often v1 = v2,
i.e., t1 ends at the same station from which t2 departs. In case that v1 ̸= v2 we have an
empty trip between the two stations. In contrast to (DM-fix), the circulation activities are
not fixed beforehand, but are determined in the optimization process. We hence have another
type of big-M-constraints here. It was shown in [15] how to compute reasonable values for
M1 and M2. Furthermore, we have to ensure that for every i ∈ Eend and every j ∈ Estart
there is exactly one circulation activity starting respectively ending in this event. This means
we have to find a perfect matching, which is included by constraints (8) and (9). All three
models are totally unimodular if the binary variables ya and vij are given and fixed. We
hence need not explicitly restrict xi to be integer if all delays di and da are integer values.

ATMOS 2022

7:6 Delay Management with Integrated Decisions on the Vehicle Circulations

Note that (DM) and (DM-fix) are similar: We simply add the delay propagation constraints
for Afix

circ, which are of the same form as those for Atrain. Hence, (DM-fix) can be solved
in the same way as (DM). (DM-opt), on the other hand, has a different structure, since it
includes the matching constraints and has big-M -constraints for the circulation activities.
Hence, it is much more difficult to solve, which also becomes apparent in the numerical
results in Section 5. However, from a practical point of view it is the preferable of the three
models, since it allows to adapt the circulations in a realistic way to the current situation.
Therefore, our aim is to solve the problem (DM-opt).

3 Analyzing the models

As already said, we are interested in solving (DM-opt). Unfortunately, this model is hard to
solve. On the other hand, (DM) is the classic delay management problem for which many
solution algorithms exist (see e.g. [12, 7]) and (DM-fix) can also be interpreted as a classic
delay management problem, just with a larger set of fixed activities. We hence can compute
the values of (DM) and (DM-fix). Our first result shows that these two values can be used
as bounds on the objective function value zopt of (DM-opt). Recall that delays da are only
relevant for activities a ∈ Atrain. To simplify notation, we set da := 0 for all a ∈ A\Atrain.

▶ Lemma 1. For the optimal objective values of the three problems the following holds:

z ≤ zopt ≤ zfix.

Proof. Every feasible solution for (DM-fix) is also feasible for (DM-opt) with appropriately
chosen v and every solution for (DM-opt) yields a feasible solution for (DM). ◀

As shown in [15], we can bound the maximal delay of the events in an optimal solution.

▶ Lemma 2 ([15]). For each of the models (DM), (DM-fix) and (DM-opt) there is an optimal
solution (x, y) respectively (x, y, v) such that for all events i ∈ E the following holds:

xi − πi ≤ dE
max + max

p∈Pi

∑
a∈p

da,

where Pi := {p : p is a directed path from an arbitrary node to i} and dE
max := maxi∈E di.

In the special case that da = 0 for all a ∈ A this simplifies to xi − πi ≤ dE
max.

As seen in the previous lemma we can use the solution of (DM) as a lower bound while
every solution to (DM-fix) is feasible for (DM-opt). Hence, solving (DM-fix) can be seen as a
heuristic for solving (DM-opt). In the following we discuss how good this approach is. We
first bound the value of (DM-fix).

▶ Lemma 3. For the optimal objective value zfix of (DM-fix) the following holds:

zfix ≤
∑
i∈E

wi · (dE
max + max

p∈Pi

∑
a∈p

da) =: B.

For the special case da = 0 for all a ∈ A we have that zfix ≤ P · dE
max, where P :=

∑
i∈E wi.

Proof. Let xi := πi + dE
max + maxp∈Pi

∑
a∈p da for all i ∈ E and ya := 0 for all a ∈ Atransfer.

Then (x, y) is a feasible solution for (DM-fix):
For all i ∈ E we have

xi = πi + dE
max + max

p∈Pi

∑
a∈p

da ≥ πi + di.

V. Grafe, A. Schiewe, and A. Schöbel 7:7

For all a = (i, j) ∈ Atrain ∪ Atransfer ∪ Afix
circ we have

xj − xi = (πj + dE
max + max

p∈Pj

∑
a′∈p

da′) − (πi + dE
max + max

p∈Pi

∑
a′∈p

da′)

(∗)
≥ πj − πi + da ≥ La + da,

where (∗) follows from the fact that every path p ∈ Pi can be extended to a path p′ ∈ Pj

with
∑

a′∈p da′ + da =
∑

a′∈p′ da′ .
Therefore, the corresponding objective value∑

i∈E
wi(xi − πi) + T

∑
a∈Atransfer

waya =
∑
i∈E

wi · (dE
max + max

p∈Pi

∑
a∈p

da)

is an upper bound for zfix. ◀

Using this lemma, we can restrict the approximation ratio of the heuristic solution
(DM-fix), namely zfix ≤ B · zopt, if z ≥ 1 (and hence zopt ≥ 1).
An idea for another bound is to ignore the delay of passengers exiting at events i which
cannot be influenced by decisions on the circulations. From now on, let E+

j denote the set of
events that are reachable from j ∈ E , i.e., i ∈ E+

j ⊂ E iff there is a directed path from j to i

in (E , A) and Ai
circ := {(i′, j) ∈ Acirc : i ∈ E+

j } the set of circulation activities from which i

can be reached (see Figure 2).

i trip

Ai
circ

Acirc\Ai
circ

Figure 2 EAN showing notation Ai
circ.

This allows for another bound between zfix and z.

▶ Proposition 4. For the optimal objective values of (DM-fix) and (DM) we have

zfix ≤ z +
∑

i∈E:Ai
circ ̸=∅

wi(dE
max + max

p∈Pi

∑
a∈p

da)

︸ ︷︷ ︸
=:B̃

=: B′.

For the special case da = 0 for all a ∈ A we have zfix ≤ z + dE
max

∑
i∈E : Ai

circ ̸=∅ wi.

Proof. We consider an optimal solution (x̄, ȳ) of (DM) as in Lemma 2 and construct a
feasible solution (x, y) of (DM-fix) as follows: We set y := ȳ and

xi :=
{

x̄i, if Ai
circ = ∅,

πi + dE
max + maxp∈Pi

∑
a∈p da, otherwise.

Note that for (i, j) ∈ A, Ai
circ ≠ ∅ implies Aj

circ ̸= ∅, since every path to i can be extended
to j. Furthermore, by the definition of x and Lemma 2, for all i ∈ E we have x̄i ≤ xi ≤
πi + dE

max + maxp∈Pi

∑
a∈p da. Then (x, y) is indeed a feasible solution of (DM-fix):

For all i ∈ E we have xi ≥ x̄i ≥ πi + di.

ATMOS 2022

7:8 Delay Management with Integrated Decisions on the Vehicle Circulations

For a = (i, j) ∈ Atransfer we have:

M1ya + xj − xi = M1ȳa + xj − x̄i ≥ M1ȳa + x̄j − x̄i ≥ La + da, if Ai
circ = ∅

and

M1ya + xj − xi =M1ȳa + (πj + dE
max + max

p∈Pj

∑
a′∈p

da′) − xi

≥M1ȳa + (πj + dE
max + max

p∈Pj

∑
a′∈p

da′) − (πi + dE
max + max

p∈Pi

∑
a′∈p

da′)

≥M1ȳa + πj − πi + da

≥La + da, otherwise.

Analogously, we can show that xj − xi ≥ La + da for a = (i, j) ∈ Atrain ∪ Afix
circ. For the

detailed proof we refer to [9].
Thus, all constraints of (DM-fix) are fulfilled and for the optimal objective value it follows
that

zfix ≤
∑
i∈E

wi(xi − πi) + T
∑

a∈Atransfer

waya

=
∑

i∈E:Ai
circ=∅

wi(x̄i − πi) +
∑

i∈E:Ai
circ ̸=∅

wi(dE
max + max

p∈Pi

∑
a∈p

da) + T
∑

a∈Atransfer

waȳa

≤ z +
∑

i∈E:Ai
circ ̸=∅

wi(dE
max + max

p∈Pi

∑
a∈p

da). ◀

We obtain that zfix − zopt ≤ B̃ and can use B′ for another estimate on the approximation
ratio analogously to B: If z ≥ 1 we receive that zfix ≤ B′ · zopt. Note that B and B′ have no
general order.

So far, we used that zopt ≤ zfix to derive bounds on (DM-opt). The following lemma
presents a bound on (DM-opt) which uses z: If (DM) finds a solution without any delay for
the passengers also (DM-opt) and (DM-fix) have solutions without any passengers’ delay.

▶ Proposition 5. Let wi > 0 for all i ∈ Eend and z = 0. Then also zfix = zopt = 0.

Proof. Let (x, y) be an optimal solution of (DM). We show that it is also feasible for (DM-fix).
Since z = 0, it holds xi = πi for all i with wi > 0. In particular, this is true for all i ∈ Eend.
Hence, for a = (i, j) ∈ Acirc it follows that

xj − xi = xj − πi

(∗)
≥ πj + dj − πi

(∗∗)
≥ La + dj ≥ La,

where (∗) follows from constraints (1) and (∗∗) from π being a feasible timetable. Thus,
x fulfils the constraints (6). All other constraints of (DM-fix) are naturally fulfilled, since
(x, y) is feasible for (DM). It follows that (x, y) is a feasible solution for (DM-fix) and hence,
zfix = 0. By Lemma 1, this also implies zopt = 0. ◀

4 Algorithmic approaches

For large instances, it is not possible to solve the IP formulation in reasonable time (see
Section 5). Thus, we consider three different heuristics. The first and the second ones look
for local improvements when changing the circulation activities while the third one iteratively
solves the delay management problem and optimizes the circulations.

V. Grafe, A. Schiewe, and A. Schöbel 7:9

4.1 NEI: Next-Event-Improve
A first heuristic approach is to compute a solution for (DM-fix), look for local improvements
of the matching problem, and solve (DM-fix) again with the newly chosen circulations. We
continue doing so until the solution does not improve any more.
Choosing the circulation activities means solving a perfect matching in the graph N [Acirc]:
We have to match every event from Eend to an event from Estart by some circulation activity.
For evaluating the quality of such a matching, for every trip we look at the delay which is
propagated to the next event right after the start of the trip. Hence, for (i, j) ∈ Acirc we
consider the time xk at event k ∈ E , where (j, k) ∈ Adrive is the first activity of the trip starting
at j. By (1) it has to hold xk ≥ πk+dk. Furthermore, (2) implies xk ≥ xj+L(j,k)+d(j,k), so we
need xk ≥ max(πk +dk, xj +L(j,k)+d(j,k)). Analogously, it holds xj ≥ max(πj +dj , xi+L(i,j))
by (1) and (7) if vij = 1. Assuming that possible transfers to j are not maintained, for the
disposition time of event k used in the objective function of Algorithm 1 (see appendix) we
obtain the approximation x̃k = max(πk + dk, max(πj + dj , xi + L(i,j)) + L(j,k) + d(j,k)) if
vij = 1, where xi is the time of event i in the incumbent solution.
For fixed circulations given by v we denote the corresponding instance of (DM-fix) by
(DM-fix)(v).

4.2 RE: Reachable Events
An idea for improving the running time of the algorithm is to not compute a matching for
the whole EAN in every iteration, but to do so successively. The intuition behind this is
that the choice of “later” circulation activities depends on the choice of “earlier” circulation
activities. Hence, we fix the “early” circulation activities first and the “late” ones afterwards.
Since an EAN is a time-expanded network, this can be expressed in terms of reachability.
For j ∈ Estart let l be the maximal number of start events on a directed path in N = (E , A)
from an arbitrary node to j. We call l the level of j and denote it by lv(j) and the maximal
level is denoted by lmax. An example with five trips is shown in Figure 3a. The red nodes
are the end events Eend, while the blue nodes are the start events Estart. The green path
ending at i contains two blue nodes and there is no path ending at i with more than two
blue nodes. Hence, we have lv(i) = 2. We could define the levels of the end events Eend
analogously, namely by counting the maximal number of end events on a path to i ∈ Eend.
This would lead to the levels shown in Figure 3b. However, in this case both levels contain
an odd number of nodes, so we cannot find a perfect matching within the single levels (which
is what we want to do in the heuristic). We can fix this problem by adapting the definition
of the end events Eend. For an end event i ∈ Eend we define lv(i) := lv(j), where j ∈ Estart
such that (i, j) ∈ Afix

circ. This way it is ensured that there always exists a perfect matching
within the single levels, namely the one given by Afix

circ. As an example we have a look at
Figure 3c. The dashed arcs represent the set Afix

circ and the dotted arcs the set Acirc\Afix
circ.

A disadvantage of the objective function in Algorithm 1 is that it is “too local”, i.e., the
set of events we consider when fixing the matching is quite small. Thus, in our next approach
we want to extend the objective function to not only take into account the delay at the next
events, but at all reachable events. Furthermore, we want to fix the matching “level-wise”
with the above definition of a level.

For some level l we denote by E l := {i ∈ E : lv(i) = l} the set of events on level l and
E l

start := E l ∩ Estart and E l
end := E l ∩ Eend. Furthermore, Al

circ := {(i, j) ∈ Acirc : i, j ∈ E l} is
the set of circulation activities between vertices of the same level l.

Let N l
circ = (E l

end ∪ E l
start, Al

circ) be the subgraph induced by the circulation activities on
level l. Furthermore, we denote the start and end events on level l together with all nodes
reachable from these by E l+

all := E l
end∪E l

start∪{i ∈ E : i is reachable from j for some j ∈ E l
start}

ATMOS 2022

7:10 Delay Management with Integrated Decisions on the Vehicle Circulations

1 2

2

i

(a) Levels of Estart.

1

1 1 2 2

2

(b) Levels when using the definition for the levels
of Estart also for Eend.

2

1 1 2 2

2

(c) Levels according to our definition.

Figure 3 Example showing the definition of the levels.

and set N l+

all := (E l+

all , Al+

all) := N [E l+

all] the subgraph induced by E l+

all . Analogously to the
subsets of A, also for Al+

all we define the subsets Al+

train = Al+

drive ∪ Al+

wait, Al+

transfer and Al+

circ.
Now in every step of the heuristic we want to solve (DM-fix) for N l+

all while simultaneously
reoptimizing the circulation activities in Al

circ and using the values xi for i ∈ E l
end we fixed in

the iteration before. This corresponds to solving the IP (DM-opt-l-all), which can be found
in the appendix, together with the resulting heuristic given in Algorithm 2.

4.3 DM-VS

Next we want to pursue a different approach, where we alternately solve (DM-fix) and
optimize the vehicle circulations. Hence, we first introduce the vehicle scheduling problem.
Usually, this problem is considered in the so-called trip graph, see e.g. [1]. However, to
be consistent with our notation, we formulate it in the EAN. For an overview of different
vehicle scheduling models we refer to [1]. A vehicle schedule is an assignment of vehicles
to trips such that every trip is covered exactly once. This corresponds to an assignment
fulfilling the constraints (8) to (10). The task of the vehicle scheduling problem (VS) is to
find cost-minimal vehicle circulations, where the costs are most often given by a weighted
sum of different cost shares. In our case, we are considering the fixed costs for using a vehicle,
the covered distance and the driving time of the vehicles. Recall that in the definition of
Estart and Eend we omitted the first departure and the last arrival of every circulation. In
particular, if a vehicle depot is considered, the trips of the vehicles from the depot to the first
trip of a circulation and from the last trip of a circulation back to the depot, and therefore
also the number of necessary vehicles, are not changed. We can therefore omit the fixed
costs for using a vehicle. Hence, we obtain the following formulation for a given disposition
timetable x:

min
∑

(i,j)∈Ãcirc

vij · l(i, j) (VS(x))

∑
i∈Eend:(i,j)∈Ãcirc

vij = 1 j ∈ Estart (8)

∑
j∈Estart:(i,j)∈Ãcirc

vij = 1 i ∈ Eend (9)

vij ∈ {0, 1} (i, j) ∈ Acirc, (10)

V. Grafe, A. Schiewe, and A. Schöbel 7:11

where l(i, j) is the length (in kilometers) of a shortest path from the station of event i to
the station of event j. Note that the set Ãcirc = {(i, j) ∈ Acirc : xj − xi ≥ L(i,j)} of available
circulation activities depends on the given timetable x and since the timetable is fixed we
may omit the driving time of the vehicles from the objective function.

The idea of the new heuristic is the following: We first solve our instance of (DM-fix)
and obtain a disposition timetable x. Next, we solve (VS)(x), i.e. we compute optimal
vehicle circulations based on the times from the disposition timetable. This gives us a set
of circulation activities with incidence vector vnew, which we then use to solve the delay
management problem again, i.e., we solve (DM-fix)(vnew). We iterate until there is no
improvement to the objective value of (DM-fix). The heuristic is given in Algorithm 3 (see
appendix).

5 Computational results

In this section, we evaluate the results from the previous sections computationally using
close-to real-world data. We compare the results for the three models (DM), (DM-fix) and
(DM-opt) and analyze the performance of the heuristics developed in Section 4.

For all experiments we use the open-source software framework LinTim, see [17, 18]. We
tested various close-to real-world datasets including representations of the metro system of
Athens, the bus system of the German city Göttingen and several datasets depicting parts
of the German high-speed railway network. An overview of the used datasets is given in
Table 3 in the appendix. We use a given timetable repeated periodically every hour with a
given vehicle schedule which covers 24 hours. For the three delay management models, we
use the four hour time interval from 8:00 am to 12:00 pm. Information about the resulting
EAN is given in Table 4 in the appendix. We use a LinTim procedure to generate uniformly
distributed source delays. An interval for the size of the delays as well as the number of delays
(given as percentage of the number of events and driving activities) are given as parameters.
We consider several settings, which are given in Table 5 (see appendix). We implemented
the IP models in Python and ran them on an Acer laptop with Intel(R) Core(TM) i5-7200U
CPU @2.5 GHz and 8 GB RAM using the solver Gurobi 9.0.1 ([10]). In order to provide
exact results, the instances which could not be solved within one hour were additionally run
on a compute server with 12 cores of Intel(R) Xeon(R) X5680 @3.3 GHz and 128 GB RAM.

5.1 Comparison of (DM), (DM-fix) and (DM-opt)

Objective Values. We start by comparing the optimal objective values of the three models
(DM), (DM-fix) and (DM-opt). Recall Lemma 1: z ≤ zopt ≤ zfix. Figure 4 shows the gap
between zfix and zopt and between zfix and z for different percentages of events/activities
with a source delay from Table 5. For all datasets we observe that zopt and z are very close.
The only exception is the setting with 5% of source delays for Göttingen: here we have
z ≈ 0.73zfix and zopt ≈ 0.86zfix, i.e., z is almost 15% smaller than zopt. The deviation of zfix

and zopt is much bigger, but depends a lot on the used dataset. For Athens the objective
value is improved by almost 39% in the setting of 3% source delay. Interestingly, for Germany
there is hardly any difference between the three values, probably due to the decreased
number of possible circulations in a (relatively) sparse railway network. We conclude that the
quality of the lower bound given by z is rather good, while (DM-opt) improves the solution
significantly compared to (DM-fix).

ATMOS 2022

7:12 Delay Management with Integrated Decisions on the Vehicle Circulations

1 3 5
% of events/activities

with source delay

0.6

0.7

0.8

0.9

1.0

ob
je

ct
iv

e
va

lu
e

co
m

pa
re

d
to

z
fi

x

Athens

1 3 5
% of events/activities

with source delay

0.8

0.9

1.0
Göttingen

1 3 5
% of events/activities

with source delay

0.98

0.99

1.00
Germany

DM
DM-fix
DM-opt

Figure 4 Comparison of objective values in settings 1 to 3.

Table 1 Average computation times (in seconds) for different percentages of events/activities
with a source delay. Instances which could not be solved within one hour are marked as “limit”.

Athens Göttingen Germany
1% 3% 5% 1% 3% 5% 1% 3% 5%

(DM) 0.26 0.93 0.34 8.52 19.10 510.09 2.65 3.53 3.81
(DM-fix) 0.30 0.77 0.45 12.96 153.78 1160.62 2.62 3.74 3.79
(DM-opt) 16.93 138.65 limit 470.17 limit limit 6.29 8.85 9.08

Computation times for IP-formulations. Next, we investigate the computation times for
solving the integer programs, see Table 1. The time for reading the necessary data, which
is never more than a few seconds, is not included in these numbers. First, we consider
the results for Athens. Both (DM) and (DM-fix) could be solved within a second. While
(DM-opt) for 1% delays was still quite fast with about 17 seconds, the computation time
increased rapidly with an increasing number of delays. With 3% delays more than two
minutes were needed and the instance with 5% delays could not be solved within the time
limit of one hour. However, the optimality gap at the end of the time limit was only 0.58%.
For Göttingen the situation is worse. Here, already (DM) needed nearly 9 minutes in the
case of 5% delays and for (DM-fix) it were almost 20 minutes. For solving (DM-opt) with
1% delays about 8 minutes were needed, while neither for 3% nor for 5% the IP could be
solved within the time limit. A gap of 2.42% respectively 16.59% was left.
The results for Germany paint a completely different picture. All instances could be solved
in at most 9 seconds. This is surprising since the infrastructure network as well as the sets
E and Apure for Germany are larger than for both of the other instances, see Tables 3 and
4. However, the set Acirc of all possible circulation activities is much smaller, which makes
finding the matching when solving (DM-opt) an easier task.

5.2 Heuristics

As established in the previous section, while (DM-opt) for Germany can be solved in seconds,
this is not the case for Athens and Göttingen. Hence, in this section we evaluate the
performance of the different heuristics from Section 4 for both of these datasets. Recall that
in the level-wise heuristic RE only those arcs (i, j) ∈ Acirc with lv(i) = lv(j) are considered.
For Athens this set contains 2706 arcs, for Göttingen it is 6200, which is in both cases
significantly smaller than the original set Acirc.

V. Grafe, A. Schiewe, and A. Schöbel 7:13

1 3 5
% of events/activities

with source delay

0.4

0.6

op
ti

m
al

ity
ga

p
Athens

1 3 5
% of events/activities

with source delay

0.10

0.15

0.20
Göttingen

RE
NEI
DM-VS
DM-fix

1 3 5
% of events/activities

with source delay

0.10

0.15

0.20
Göttingen with 1% gap

Figure 5 Quality of heuristics in settings 1 to 3: Athens, Göttingen and Göttingen with 1%
gap.

Table 2 Average computation times (in seconds) of heuristics for different percentages of events/ac-
tivities with source delays. Instances which could not be solved within one hour are marked as
“limit”.

Athens Göttingen Göttingen with 1% gap
1% 3% 5% 1% 3% 5% 1% 3% 5%

RE 42.32 44.87 49.56 138.68 2831.62 limit 54.26 110.52 271.02
DM-VS 24.15 25.52 47.07 79.70 3166.24 limit 22.75 46.26 95.91
(DM-fix) 0.30 0.77 0.45 12.96 153.78 1160.62 2.63 2.96 10.48

Solution Quality. We start by assessing the quality of the solutions, i.e., we compare
the objective values to zopt, see Figure 5. If the time limit of one hour was reached, the
best found solution is given. Note that all algorithms start by solving (DM-fix), so their
computation time will be larger than simply solving (DM-fix). Hence, it only makes sense to
use these heuristics if they provide solutions with an objective value smaller than zfix. While
Algorithm NEI fails to produce any solutions with objective value better than zfix, the others
yield significantly better results and were able to improve the solution given by (DM-fix) in
almost all cases. On the Athens data Algorithm RE is always better than DM-VS. We note
that for Athens, although significantly better than (DM-fix), the solution quality is still quite
poor for all algorithms: the smallest gap compared to zopt we obtained is 23%. The results
are much more promising for Göttingen, where we were able to obtain a gap of less than 8%
for the setting with 3% delays. The case of 5% of source delays was the only one in which
RE could not improve the solution of (DM-fix). DM-VS only yields a slight improvement.

Computation Times. For comparing the computation times of the heuristics we omitted
NEI, since it is inferior to (DM-fix). As can be seen in Table 2, both heuristics take much
longer than solving (DM-fix). However, for the Athens dataset they still run in reasonable
time: all instances could be solved within one minute, where RE is always a bit slower than
DM-VS. For the Göttingen data the computation times are even longer. While the instance
with 1% delays could be solved within a few minutes, for 3% delays the computation times
increased significantly. Even the faster of the heuristics took about 47 minutes, which is not
acceptable. With 5% delays the time limit was reached for both algorithms. A possibility to
mitigate this problem is to allow a small optimality gap when solving the integer programs
used in the algorithms. With such a gap of 1% we repeated the experiments for Göttingen.
As Table 2 shows, the effect is enormous: in all cases the computation times reduced to less

ATMOS 2022

7:14 Delay Management with Integrated Decisions on the Vehicle Circulations

than 5 minutes. As can be seen in Figure 5, in the first two settings the solution quality
is as good as in the previous experiments. For the setting with 5% source delays we get a
significant improvement: RE now finishes within the time limit and yields good results with
about 6% optimality gap.

6 Outlook

In this paper we showed the potential of including decisions on vehicle circulations in delay
management and we developed and analyzed three heuristics for the integrated problem,
two of them providing very good solutions in our experiments. We have also seen that the
price of sequentiality (see [21, 19]), i.e., the ratio between the optimal objective without
integrating the vehicle circulation decisions and the optimal objective value for the integrated
problem, can be bounded theoretically, but the bound can become very high. This coincides
with our experiments in which we show that integrating vehicle circulation decisions in delay
management may reduce the delay for the passengers significantly.

There are several aspects for ongoing research. First, a further speed-up of the heuristics
is relevant. Second, some aspects of delay management were not considered here. This
includes headway constraints between vehicles as well as realistic passenger behavior, e.g., in
the form of rerouting. The latter may be included along the lines of [20]. Finally, it would
be best to avoid delays as much as possible. This can be done by making the timetable more
robust. Many research papers are devoted to the topic of robust timetabling, see, e.g., [13]
and references therein. In the context of our paper, a timetable is robust if for any delay
scenario there exists a solution to the delay management problem with acceptable passengers’
delays. This is a further interesting topic for future research.

References
1 Stefan Bunte and Natalia Kliewer. An overview on vehicle scheduling models. Public Transport,

1:299–317, 2009.
2 Twan Dollevoet, Francesco Corman, Andrea D’Ariano, and Dennis Huisman. An iterative

optimization framework for delay management and train scheduling. Flexible Services and
Manufacturing Journal, 26:490–515, 2012.

3 Twan Dollevoet and Dennis Huisman. Fast heuristics for delay management with passenger
rerouting. Public Transport, 6:67–84, 2011.

4 Twan Dollevoet, Dennis Huisman, Leo Kroon, Marie Schmidt, and Anita Schöbel. Delay
management including capacities of stations. Transportation Science, 49(2):185–203, 2015.

5 Twan Dollevoet, Dennis Huisman, Leo Kroon, Lucas Veelenturf, and Joris Wagenaar. Applica-
tion of an iterative framework for real-time railway rescheduling. Computers & Operations
Research, 78:203–217, 2017.

6 Twan Dollevoet, Dennis Huisman, Marie Schmidt, and Anita Schöbel. Delay management
with rerouting of passengers. Transportation Science, 46(1):74–89, 2012.

7 Twan Dollevoet, Dennis Huisman, Marie Schmidt, and Anita Schöbel. Delay Propagation and
Delay Management in Transportation Networks, pages 285–317. Springer, 2018.

8 Holger Flier, Marc Nunkesser, Michael Schachtebeck, and Anita Schöbel. Integrating rolling
stock circulation into the delay management problem. NAM preprint series, Georg-August-
Universität Göttingen, 2007.

9 Vera Grafe. Delay management with integrated vehicle scheduling: Analysis and algorithms.
Master’s thesis, Technische Universität Kaiserslautern, 2020.

10 Gurobi Optimization, LLC. Gurobi optimizer reference manual, 2020. URL: http://www.
gurobi.com.

http://www.gurobi.com
http://www.gurobi.com

V. Grafe, A. Schiewe, and A. Schöbel 7:15

11 Rowan Hoogervorst, Twan Dollevoet, Gábor Maróti, and Dennis Huisman. Reducing passenger
delays by rolling stock rescheduling. Transportation Science, 54(3):762–784, 2020.

12 Eva König. A review on railway delay management. Public Transport, 12:335–361, 2020.
13 Richard M. Lusby, Jesper Larsen, and Simon Bull. A survey on robustness in railway planning.

European Journal of Operational Research, 266:1–15, 2018.
14 Ralf Rückert, Martin Lemnian, Christoph Blendinger, Steffen Rechner, and Matthias Müller-

Hannemann. Panda: A software tool for improved train dispatching with focus on passenger
flows. Public Transport, 9:307–324, 2017.

15 Michael Schachtebeck. Delay Management in Public Transportation: Capacities, Robustness,
and Integration. PhD thesis, Georg-August-Universität Göttingen, 2009.

16 Michael Schachtebeck and Anita Schöbel. To wait or not to wait and who goes first? delay
management with priority decisions. Transportation Science, 44:307–321, 2010.

17 Alexander Schiewe, Sebastian Albert, Vera Grafe, Philine Schiewe, Alexander Schöbel, and
Felix Spühler. LinTim - Integrated Optimization in Public Transportation. Homepage.
https://www.lintim.net/. open source.

18 Alexander Schiewe, Sebastian Albert, Vera Grafe, Philine Schiewe, Anita Schöbel, and Felix
Spühler. LinTim: An integrated environment for mathematical public transport optimiza-
tion. Documentation for version 2021.12. Technical report, Fraunhofer-Institut für Techno-
und Wirtschaftsmathematik, 2021. URL: https://nbn-resolving.org/urn:nbn:de:hbz:
386-kluedo-66870.

19 Philine Schiewe. Integrated Optimization in Public Transport Planning, volume 160 of Opti-
mization and Its Applications. Springer, 2020. doi:10.1007/978-3-030-46270-3.

20 Philine Schiewe and Anita Schöbel. Periodic timetabling with integrated routing: Towards
applicable approaches. Transportation Science, 54(6):1714–1731, 2020.

21 Philine Schiewe and Anita Schöbel. Integrated optimization of sequential processes: General
analysis and application to public transport. Technical report, TU Kaiserslautern, 2021.
submitted for publication.

22 Anita Schöbel. A model for the delay management problem based on mixed-integer-
programming. Electronic Notes in Theoretical Computer Science, 50(1):1–10, 2001.

23 Anita Schöbel. Integer programming approaches for solving the delay management problem.
In Algorithmic Methods for Railway Optimization, volume 4359 of Lecture Notes in Computer
Science, pages 145–170. Springer, 2007.

ATMOS 2022

https://nbn-resolving.org/urn:nbn:de:hbz:386-kluedo-66870
https://nbn-resolving.org/urn:nbn:de:hbz:386-kluedo-66870
https://doi.org/10.1007/978-3-030-46270-3

7:16 Delay Management with Integrated Decisions on the Vehicle Circulations

A Algorithms

Algorithm 1 Next-Events-Improve (NEI).

Input : EAN N = (E , A), incidence vector vold of Afix
circ

Output : A feasible solution (x, y, v) of (DM-opt)

1 Solve (DM-fix)(vold). Let (x, y) be an optimal solution and z̃ the optimal objective
value.

2 while true do
3 Compute a perfect matching in Ncirc := N [Acirc] with incidence vector vnew such

that ∑
(i,j)∈Acirc

vnew
ij

∑
k∈E:(j,k)∈A

wk(x̃k − πk)

is minimal, where x̃k = max(πk + dk, max(πj + dj , xi + L(i,j)) + L(j,k) + d(j,k)).
4 if vold ̸= vnew then
5 Solve (DM-fix)(vnew). Let (x̄, ȳ) be an optimal solution and z̄ the optimal

objective value.
6 if z̄ < z̃ then
7 vold = vnew, x = x̄, y = ȳ, z̃ = z̄

8 else
9 return (x, y, vold)

10 end
11 else
12 return (x, y, vold)
13 end
14 end

min
∑

i∈El+
all

wi(xl
i − πi) + T

∑
a∈Al+

transfer

waya (DM-opt-l-all)

xl
i = xl−1

i i ∈ E l
end (11)

xl
i ≥ πi + di i ∈ E l+

all\E l
end (12)

xl
j − xl

i ≥ La + da a = (i, j) ∈ Al+

train (13)

Mya + xl
j − xl

i ≥ La a = (i, j) ∈ Al+

transfer (14)

xl
j − xl

i ≥ La a = (i, j) ∈ (Al+

circ\Al
circ) ∩ Afix

circ (15)
M(1 − vij) + xl

j − xl
i ≥ La a = (i, j) ∈ Al

circ (16)∑
i∈El

end:(i,j)∈Acirc

vij = 1 j ∈ E l
start (17)

∑
j∈El

start:(i,j)∈Acirc

vij = 1 i ∈ E l
end (18)

xl
i ∈ N i ∈ E l+

all (19)

ya ∈ {0, 1} a ∈ Al+

transfer (20)
vij ∈ {0, 1} (i, j) ∈ Al

circ (21)

V. Grafe, A. Schiewe, and A. Schöbel 7:17

Algorithm 2 Reachable-Events (RE).

Input : EAN N = (E , A), incidence vector vold of Afix
circ

Output : A feasible solution (x, y, v) of (DM-opt)

1 Solve (DM-fix)(vold). Let (x, y) be an optimal solution and z̃ the optimal objective
value.

2 for l in {1, . . . , lmax} do
3 Solve (DM-opt-l-all). Let (xl, yl, vl) be an optimal solution and vnew the

incidence vector of Acirc when replacing vold
ij by vl

ij for (i, j) ∈ Al
circ.

4 if vold ̸= vnew then
5 Solve (DM-fix)(vnew). Let (x̄, ȳ) be an optimal solution and z̄ the optimal

objective value.
6 if z̄ < z̃ then
7 vold = vnew, x = x̄, y = ȳ, z̃ = z̄

8 end
9 return (x, y, vold)

Algorithm 3 DM-VS.

Input : EAN N = (E , A), incidence vector vold of Afix
circ

Output : A feasible solution (x, y, v) of (DM-opt)

1 Solve (DM-fix)(vold). Let (x, y) be an optimal solution and z̃ the optimal objective
value.

2 while true do
3 Solve (VS)(x). Let vnew be the incidence vector of the corresponding circulation

activities.
4 if vold ̸= vnew then
5 Solve (DM-fix)(vnew). Let (x̄, ȳ) be an optimal solution and z̄ the optimal

objective value.
6 if z̄ < z̃ then
7 Set vold = vnew, x = x̄, y = ȳ, z̃ = z̄.
8 else
9 return (x, y, vold)

10 end
11 else
12 return (x, y, vold)
13 end
14 end

ATMOS 2022

7:18 Delay Management with Integrated Decisions on the Vehicle Circulations

B Data

Table 3 Size of the PTN in the used datasets.

Dataset Number of
stops

Number of
edges

Number of
OD-pairs

Number of
passengers

Athens 51 52 2385 63323
Göttingen 257 548 58226 406146
Germany 319 452 77878 4183088

Table 4 Size of the EAN in the used datasets.

Dataset |E| |Apure| |Acirc| |Afix
circ|

Athens 5551 7142 72535 387
Göttingen 17798 33318 81844 412
Germany 21466 46385 30428 666

Table 5 Parameters for the delay generation and the resulting sum of delays for the used datasets.

Setting Interval for
source delays (s)

% of events/ activities
with source delay

Sum of source delays
Athens Göttingen Germany

1 [60, 900] 1% 42093 129015 144771
2 [60, 900] 3% 120616 389729 456749
3 [60, 900] 5% 202511 627346 752768

Algorithms and Hardness for Non-Pool-Based Line
Planning
Irene Heinrich !

TU Darmstadt, Germany

Philine Schiewe !

TU Kaiserslautern, Germany

Constantin Seebach !

TU Kaiserslautern, Germany

Abstract
Line planning, i.e. choosing paths which are operated by one vehicle end-to-end, is an important
aspect of public transport planning. While there exist heuristic procedures for generating lines from
scratch, most theoretical observations consider the problem of choosing lines from a predefined line
pool. In this paper, we consider the complexity of the line planning problem when all simple paths
can be used as lines. Depending on the cost structure, we show that the problem can be NP-hard
even for paths and stars, and that no polynomial time approximation of sub-linear performance is
possible. Additionally, we identify polynomially solvable cases and present a pseudo-polynomial
solution approach for trees.

2012 ACM Subject Classification Applied computing → Transportation; Mathematics of computing
→ Discrete optimization; Theory of computation → Problems, reductions and completeness; Theory
of computation → Discrete optimization; Theory of computation → Design and analysis of algorithms

Keywords and phrases line planning, public transport, discrete optimization, complexity, algorithm
design

Digital Object Identifier 10.4230/OASIcs.ATMOS.2022.8

Funding The research leading to these results has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation programme
(EngageS: grant agreement No. 820148) and by DFG under SCHO 1140/8-2.

1 Introduction

In public transport planning, lines are crucial building blocks. As lines are (simple) paths in
the public transport network that have to be covered by one vehicle end-to-end, they highly
influence the subsequent steps like timetabling and vehicle scheduling, see [14] and Figure 1.
On the one hand, lines influence the passengers by providing routes and transfers and on the
other hand, they determine the majority of the operating costs. Thus, line planning is an
important foundation for building a public transport supply. From a set of lines, the line
pool, a subset of lines and their frequencies, called line concept, is chosen for operation. The
frequency of a line determines how often it is operated per planning period. While there
is ample literature on line planning for a given fixed line pool, see [22], the construction of
line pools is often neglected. In this paper, we focus on designing line concepts without a
given line pool. Instead, we consider the set of all simple paths as candidates thus extending
the solution space in the line planning on all lines problem LPAL. We show that, assuming
P ̸= NP , polynomial time approximations cannot give a performance guarantee that is
better than linear and that depending on the cost-structure, the problem is NP-hard even
for simple graph classes. Additionally, we identify polynomially solvable cases and develop a
pseudo-polynomial algorithm for trees.

© Irene Heinrich, Philine Schiewe, and Constantin Seebach;
licensed under Creative Commons License CC-BY 4.0

22nd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2022).
Editors: Mattia D’Emidio and Niels Lindner; Article No. 8; pp. 8:1–8:21

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:heinrich@mathematik.tu-darmstadt.de
https://orcid.org/0000-0001-9191-1712
mailto:p.schiewe@mathematik.uni-kl.de
https://orcid.org/0000-0002-4223-3246
mailto:seebach@cs.uni-kl.de
https://orcid.org/0000-0001-6242-0279
https://doi.org/10.4230/OASIcs.ATMOS.2022.8
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

8:2 Algorithms and Hardness for Non-Pool-Based Line Planning

passenger
assignment

line pool
generation line planning timetabling . . .

passenger
assignment LPAL timetabling . . .

Figure 1 Sequential approach for public transport planning, adapted from [14] and integrated
version considered here.

Literature review. Traditionally, the process of line planning is split into two stages, see
Figure 1. For a given passenger assignment, a line pool is constructed and for this fixed pool,
a line concept is determined. Many (meta-)heuristic approaches exist for the transit network
design problem, where lines and often also passenger routes are generated [17, 9]. Usually,
lines are supposed to not deviate too much from shortest paths [1, 6], or a set of lines to
choose from is precomputed [26].

There is ample literature on line planning for a given line pool, i.e. a set from which
lines are chosen for operation, see [22]. The most important objectives for passengers are to
maximize the number of direct travelers [5] or to minimize the travel time [23, 4]. Here, it is
especially difficult to model passenger behavior realistically, see [13, 21].

In this paper we focus on minimizing the costs of a line concept as originally introduced
in [7]. By assigning passenger routes in a previous step, see Figure 1, it is guaranteed that
passengers can travel on favorable routes, see e.g. [5]. As in [27, 24, 25], we distinguish
between frequency-dependent and frequency-independent costs. Frequency-dependent costs
can include costs for the distance covered by the lines and for the number of vehicles needed
to operate the given line plan while frequency-independent costs can e.g. be used to reduce
the number of different lines operated.

When solving the line planning problem for a fixed line pool, the line pool has a large
influence on the complexity of the problem and the quality of solutions. One approach
is to handle the generation of a suitable pool as an optimization problem itself, see [12].
Another possibility is to solve the line planning problem on the set of all possible lines.
This idea has been studied using a column-generation approach in [3] where lines are only
allowed to start and end at terminal stations. For this case, the line planning problem was
shown to be NP-hard on planar graphs. See [2, 25] for further results on the complexity of
the problem using terminal stations in path networks representing Istanbul Metrobüs and
trees representing the Quito Trolebús. In [19], an integer programming formulation which
includes line planning on all lines is presented and applied to small instances while in [18],
line planning on all circular lines in a specific class of graphs is considered.

Our contribution. We focus on the line planning problem on all simple paths depending on
the cost structure and show that the problem is hard to solve approximately in polynomial
time: a sub-linear approximation ratio would imply P = NP , and even with another
simplification of the problem, no constant approximation ratio is possible unless P = NP .
We show that this problem is NP-hard even on planar graphs both when considering
only frequency-dependent costs and when considering frequency-independent costs. The
inclusion of frequency-independent costs makes the problem NP-hard even on paths and
stars. Considering only frequency-dependent costs, we identify both polynomially solvable
and NP-hard cases. Additionally, we present a pseudo-polynomial algorithm for trees and a
polynomial one for special cases. An overview of these results is presented in Table 1.

I. Heinrich, P. Schiewe, and C. Seebach 8:3

Table 1 Approximation hardness and complexity of LPAL assuming P ̸= NP .

graph
class

no frequency-independent costs
(dfix = 0)

with frequency-independent costs
(dfix > 0)

general no polynomial-time n1−ϵ approximation (Theorem 2)
no polynomial-time constant factor approximation, even for fmax ≡ ∞ (Theorem 3)

planar NP-hard, even for {0, 1} input (Corollary 5)

paths polynomial for fmax ≡ ∞ (see [11]) NP-hard (Theorem 7)

stars polynomial (Theorem 11) NP-hard (Theorem 8)

trees pseudo-polynomial (Theorem 12)
polynomial for fmin = fmax (Theorem 14) NP-hard (Theorems 7 and 8)

Outline. In Section 2 we formally introduce the line planning on all lines problem. We
discuss the hardness of approximation in Section 3 and prove new NP-hardness results in
Section 4. Section 5 contains a polynomial algorithm for stars and in Section 6 we develop a
pseudo-polynomial solution approach for trees as well as a polynomial version for a special
case.

2 Preliminaries

Graph theory. All graphs in this paper are undirected, finite, simple and non-empty.
Whenever we consider a graph G = (V, E), we use n := |V | to denote its number of
vertices. We measure the complexity of graph problems dependent on n. The degree deg(v)
of a vertex v is the number of its neighbors. A graph (V, E) with V = {v1, . . . , vm} and
E = {{v1, v2}, . . . , {vm−1, vm}} where all the vi are distinct is a simple v1-vm-path (or just
path). Paths can be specified as a sequence of vertices or as a sequence of edges. A complete
bipartite graph of the form K1,k is a star. A graph is traceable if it has a Hamiltonian path.

Line planning. A public transport network (PTN) is a graph G = (V, E) whose vertices
represent stations while its edges represent direct connections between the stations, e.g.,
streets or tracks. A line planning instance is a tuple (G, dfix, cfix, c, fmin, fmax), where

G = (V, E) is a PTN,
dfix ∈ R≥0 represents frequency-independent fixed costs,
cfix ∈ R≥0 represents frequency-dependent fixed costs,
c : E → R≥0, e 7→ ce is a map representing the edge-dependent costs, and
fmin and fmax : E → N are integer frequency restrictions on E, e 7→ fmin

e (respectively
e 7→ fmax

e) such that fmin
e ≤ fmax

e for all edges e ∈ E. Note that the lower frequency
restrictions fmin

e allow for passengers traveling on favorable routes while the upper
frequency restrictions fmax

e represent safety constraints.
A line ℓ is a simple path in G and a line concept (L, f) is a set of lines L with a frequency
vector f = (fℓ)ℓ∈L ∈ N|L|, i.e. fℓ is the frequency of line ℓ. At each edge e ∈ E, the lines sum
up to a total frequency

F (L,f)
e =

∑
ℓ∈L : e∈E(ℓ)

fℓ,

where E(ℓ) denotes the edge set of ℓ. We say that an edge e is covered by a line ℓ if e ∈ E(ℓ).
A line concept is feasible if for each edge e ∈ E the frequency restrictions are satisfied, i.e.

ATMOS 2022

8:4 Algorithms and Hardness for Non-Pool-Based Line Planning

fmin
e ≤ F

(L,f)
e ≤ fmax

e . The set of feasible line concepts is F(G, fmin, fmax) which we may
abbreviate by writing F(G).

We use frequency-dependent line costs costℓ = cfix +
∑

e∈E(ℓ) ce which consist of fixed
costs cfix and edge-dependent costs ce, e ∈ E. Additionally, we use frequency-independent
costs dfix per line. We define the costs of a line concept (L, f) as

cost((L, f)) = dfix · |L| +
∑
ℓ∈L

costℓ ·fℓ.

With this notation, we can formally define the line planning on all lines problem.

▶ Definition 1 (LPAL). Given a line planning instance, the line planning on all lines problem
LPAL is to find a feasible line concept with minimal costs.

3 Hardness of approximation

In this section we show that even in the case dfix = 0, no polynomial time approximation
algorithm for LPAL has a sub-linear performance ratio. Even when additionally fmax ≡ ∞,
no constant-factor polynomial time approximation is possible.

▶ Theorem 2. Assuming P ̸= NP , the problem LPAL cannot be approximated within a
factor of n1−ϵ by a polynomial-time algorithm, even in the case dfix = 0.

Proof. We prove this using a gap-producing reduction from the NP-complete problem
Hamiltonian Path (see [10]).

Consider a directed graph G on n vertices. We claim that a line planning instance
I = (G′, dfix, cfix, c, fmin, fmax) with dfix = 0, cfix = 1 and c ≡ 0 can be constructed from G

in polynomial time, where two special vertices v1 and v2 are marked, and it holds:
If G is traceable: I can be solved using a single line with endings v1 and v2.
If G is not traceable: I requires at least two lines.

To construct I, we first apply the reduction from [12] to G, creating an LPAL instance that
can be solved using a single line if and only if G is traceable. Then we join two new vertices
u1 and u2 to all other vertices with edges having fmin

e = 0. To u1 we join a new vertex v1,
likewise we join a new vertex v2 to u2 using edges having fmin

e = 1. This forces a line from
v1 to v2, but otherwise preserves the reduction equivalence.

Starting from G′, for every k ∈ N≥1, we construct a graph Gk as follows: create k copies
of G′, and for all i ∈ [1, k − 1], add an edge between v2 of copy i and v1 of copy i + 1. Call
these k − 1 new edges connectors. Then Gk consists of kn vertices. Consider a new line
planning instance Ik on Gk, where we also copied the weights from I onto Gk, and have
fmax

e = 1 on the connectors. If G is traceable, then Ik can be solved using a single line,
which we get by concatenating the lines for each copy of G′, with help of the connectors.

We say a line ℓ visits copy i if the vertices of ℓ and the i-th copy of G′ intersect. If G

is not traceable, then each copy of G′ is visited by at least two different lines, totaling at
least 2k visits. A single line can visit multiple copies of G′ and crosses a connector for each
additional visit. Since fmax

e = 1, every connector can only be crossed once. This affords us
k − 1 visits. The remaining k + 1 visits are paid by different lines, i.e. every line concept L
solving Ik needs |L| ≥ k + 1.

Now assume that for some ϵ ∈ (0, 1] we can approximate LPAL within n1−ϵ using an
algorithm A in polynomial time. We set k := ⌊1 + n(1−ϵ)/ϵ⌋, i.e. k is the smallest integer
larger than n(1−ϵ)/ϵ. Given a graph G as input to Hamiltonian Path, we construct Ik,
which has size kn, which is bounded by a polynomial in n. Then apply algorithm A, to get

I. Heinrich, P. Schiewe, and C. Seebach 8:5

an approximate solution of cost a. If G is traceable, then the optimal solution to Ik has
value 1. Hence a ≤ 1 · (kn)1−ϵ and a/k ≤ n1−ϵk−ϵ < n1−ϵ · (n(1−ϵ)/ϵ)−ϵ = 1. Thus a < k.
If G is not traceable, then the optimal solution to Ik has value at least k, hence also a ≥ k.
By comparing a to k, we can determine whether G is traceable in polynomial time, implying
P = NP . ◀

Since an n-approximation (or worse) for LPAL is useless in practice, we want to weaken
the lower bound by putting more restrictions on the considered instances. In the preceding
hardness proof, it was essential that we can use fmax to bound the frequencies.

In contrast we now consider instances, where fmax ≡ ∞.

▶ Theorem 3. Assuming P ̸= NP , the problem LPAL cannot be approximated within a
constant factor by a polynomial-time algorithm, even in the case dfix = 0 and fmax ≡ ∞.

Proof. In this proof we assume all LPAL instances (G = (V, E), dfix, cfix, c, fmin, fmax) to
have fmax ≡ ∞, dfix = 0, cfix = 1, c ≡ 0, and fmin

e ∈ {0, 1} for all e ∈ E.
Let I = (G = (V, E), dfix, cfix, c, fmin, fmax) be an LPAL instance. An edge e = {v1, v2} ∈

E with fmin
e = 1 and deg(v1) = 1 is an antenna of I and v1 is the tip of the antenna. We

call I nice if it has exactly two antennae. Let p be a path on G and V ′ ⊆ V . The restriction
of p to V ′ is the subgraph of p induced by V ′ ∩ V (p). The restriction is proper if it is a path.

If we add a new antenna to an instance I, then an optimal solution for the resulting
instance needs at least as many lines as for I. If I can be solved using a single line, then it
has at most two antennae. If I has exactly two antennae, then the single line has its ends at
the antenna tips. However, if I has fewer than two antennae, we may attach new antennae
until we have two, such that the resulting instance can still be solved using a single line.

Let I and J be nice instances. By abuse of notation, we define I × J to be an instance
constructed in the following manner: replace every edge e = {u, v} of J with fmin

e = 1 by a
copy of I and identify u and v with the antenna tips of that copy. For an example of I × J ,
see Figure 2. We claim that I × J is also nice. In particular, the antennae of I × J are part

× =

Figure 2 Example construction of I × J . Edges with fmin
e = 1 are red, other edges are dashed.

of two different copies of I. Denote these copies by A1
I×J and A2

I×J , respectively. Let ℓ be a
path on I × J and C be some copy of I which is part of I × J . There are only two vertices
where ℓ can enter or leave C. If ℓ starts outside C, it can enter C at most once. In that case,
the restriction of ℓ to C is proper. If ℓ starts inside C, it may leave and enter again, which
makes the restriction improper.

▷ Claim 4. I × I can be solved by a single line if and only if I can be solved by a single line.
If an optimal solution for I requires k ≥ 2 lines, then an optimal solution for I × I requires
at least k + 1 lines.

Proof of Claim 4. First assume that I can be solved by the single line ℓI . Since I is nice the
line ℓI ends in its antennae. By replacing every edge e of ℓI with fmin

e = 1 by a copy of ℓI

we obtain a line that solves I × I.

ATMOS 2022

8:6 Algorithms and Hardness for Non-Pool-Based Line Planning

Now assume that I requires k ≥ 2 lines for an optimal solution. Suppose towards a
contradiction that there are k′ ≤ k lines ℓ1, . . . , ℓk′ that solve I × I. Let d ∈ {1, 2}. Observe
that Ad

I×I has the following property: one of its antennae is an antenna of I × I, the other
antenna is a bridge (or 1-edge-cut) of the underlying graph of I × I. In particular, every line
on I × I can be restricted properly to Ad

I×I and, hence, restricting all k′ lines to Ad
I×I yields

a feasible solution for Ad
I×I . As Ad

I×I is a copy of I, k = k′ and every line ℓi has one end
in A1

I×I and the other in A2
I×I . Let I ′ be a copy of I which is inserted in the construction

process of I × I and is neither A1
I×I nor A2

I×I . Every line on I × I can be restricted properly
to I ′ since the two antennae of I ′ form a 2-edge-cut of I × I and the line neither starts nor
ends in I ′ by the above considerations. Since an optimal solution for I ′ requires k lines by
assumption we obtain that every line ℓi for i ∈ [1, k] intersects I ′. Let i ∈ [1, k]. Since ℓi

visits every copy of I which corresponds to an edge e of I with fmin
e = 1, we can restrict ℓi

to the vertices of I and obtain a path r on I, which visits all edges e with fmin
e = 1. This

implies that r solves I, which contradicts our assumption. ◁

For an LPAL instance I and a number k ∈ N≥1 we define Ik as the repeated product
((I × I) × ...) × I of k factors. If I can be solved using a single line, Ik can as well by Claim 1.
Otherwise Ik requires at least k + 1 lines. The product Ik contains at most n2k vertices.

Now assume that for some α ∈ [1, ∞), LPAL can be α-approximated using a polynomial
time algorithm A. Set k := ⌊α⌋. We show how to decide Hamiltonian Path in polynomial
time, implying P = NP .

Let G be a directed graph. Apply the reduction from [12] to G to obtain an LPAL
instance I0 that is solvable using a single line if and only if G is traceable. If I0 has more than
two antennae, then G is not traceable (each antenna corresponds to an end of a Hamiltonian
path if one exists). If I0 has two or fewer antennae, we consider all possible ways to attach
antennae such that the constructed instance has exactly two antennae. This results in a
list L of at most n2 nice instances. If I0 is solvable using a single line, then some instance
I ∈ L is, too. We repeat the following for every I ∈ L:

First construct Ik. This is possible in polynomial time since k does not depend on n.
Apply A to Ik to obtain an approximately optimal line concept that has cost x. If I can
be solved using one path, the minimal cost of solving Ik is 1. Hence x ≤ α. Otherwise the
minimal cost of solving Ik is k + 1, hence x ≥ k + 1 > α. It follows that by comparing x

to α, we can determine whether I can be solved using one path.
There is an I ∈ L which can be solved using just one path if and only if G is traceable. ◀

As this hardness result is weaker, we could hope to find an approximation algorithm
where the error grows only very slightly in n. This is an interesting open problem.

4 NP-hard cases

For general graphs and general cost structures, the problem of finding a cost-optimal line
concept is known to be NP-hard, even if

dfix = 1, cfix = 0, c ≡ 0, fmin
e ∈ {0, 1} for all e ∈ E, fmax ≡ ∞ or fmax ≡ 1 [12] or

dfix = 0, fmin
e ∈ {0, 1} for all e ∈ E, fmax ≡ ∞ or fmax ≡ 1 [11].

We can strengthen theses results and show that LPAL is NP-hard even for subcubic
planar graphs.

▶ Corollary 5. The problem LPAL is NP-hard, even if G is a planar graph with maximum
vertex degree at most three and
(a) dfix = 1, cfix = 0, c ≡ 0, fmin

e ∈ {0, 1} for all e ∈ E, fmax ≡ ∞ or fmax ≡ 1 or
(b) dfix = 0, fmin

e ∈ {0, 1} for all e ∈ E, fmax ≡ ∞ or fmax ≡ 1.

I. Heinrich, P. Schiewe, and C. Seebach 8:7

Proof sketch. We combine the following two results:
1. In [11, 12] a reduction technique of Hamiltonian Path to a problem equivalent to LPAL

with restrictions (a) and (b), respectively, is presented. In general, this reduction does
not preserve planarity.

2. Plesník [20] shows that Hamiltonian Path is NP-hard even for planar digraphs where
each vertex has in- and out-degree at most two and either in- or out-degree one.

By modifying the reductions of [11, 12] for these graphs, the constructed line planning
instance consists of a planar graph with vertex degree at most three. ◀

In the remainder of this section we show that if frequency-independent costs dfix are considered,
then LPAL remains NP-hard even for paths and stars. To this end we formulate reductions
that utilize fmax. Lemma 6 can be applied to transfer the hardness results even if fmax ≡ ∞.

▶ Lemma 6 (Lifting fmax). Let I = ((V, E), dfix, cfix, c, fmin, fmax) be an instance to LPAL
where cfix = 0, c ≡ 0 and fmin = fmax. Let K ∈ N. Define I ′ := ((V, E), dfix, cfix, c′, fmin, ∞)
with c′ :≡ K + 1 and K ′ := K + (K + 1)

∑
e∈E fmin

e .
Then I has a feasible line concept with cost at most K if and only if I ′ has a feasible line

concept with cost at most K ′. Both I ′ and K ′ can be computed in polynomial time.

Proof. We show that we can transfer a solution (L, f) from one instance to the other, such
that it is still feasible and within the cost bound. We add a superscript to cost, to distinguish
for which instance we view the costs.

I → I ′: Clearly, (L, f) remains feasible for I ′. Since c ≡ 0 and cfix = 0, we have
costI((L, f)) = dfix · |L|, which is less or equal to K. Since fmin = fmax, the frequency-
dependent line costs of I ′ are predetermined:

∑
ℓ∈L

fℓ · costI′

ℓ =
∑
ℓ∈L

fℓ ·

cfix +
∑

e∈E(ℓ)

c′
e

=

∑
ℓ∈L

fℓ

∑
e∈E(ℓ)

c′
e =

∑
e∈E

c′
e

∑
ℓ∈L:

e∈E(ℓ)

fℓ =
∑
e∈E

(K + 1)fmin
e

Then costI′((L, f)) = dfix · |L| +
∑

e∈E(K + 1)fmin
e ≤ K +

∑
e∈E(K + 1)fmin

e = K ′.
I ′ → I: Towards a contradiction, assume fmin

e + 1 ≤
∑

ℓ∈L : e∈E(ℓ) fℓ for some e ∈ E.
Then we derive in a similar fashion:

costI′
((L, f)) = dfix · |L| +

∑
e∈E

(K + 1)
∑
ℓ∈L:

e∈E(ℓ)

fℓ ≥ dfix · |L| + (K + 1) +
∑
e∈E

(K + 1)fmin
e

> K + (K + 1)
∑
e∈E

fmin
e = K ′

This contradicts costI′((L, f)) ≤ K ′ and, hence, fmin
e =

∑
ℓ∈L : e∈E(ℓ) fℓ for all e ∈ E,

implying that (L, f) is a feasible line concept for I. Subtracting the now fixed frequency-
dependent line costs yields costI((L, f)) = dfix · |L| ≤ K. ◀

First, we show that LPAL is NP-hard on paths.

▶ Theorem 7. The problem LPAL is NP-hard, even if G is a path and fmin = fmax or
fmax ≡ ∞.

ATMOS 2022

8:8 Algorithms and Hardness for Non-Pool-Based Line Planning

v−1 v0 v1 v2 v3 v4 v5 v6
10 20 19 17 15 11 6

1 2 2 4 5 6

Figure 3 Example for the construction from Theorem 7, along with feasible line concept. Here
S = {1, 2, 2, 4, 5, 6}.

Proof. We show a reduction of the NP-hard problem 3-Partition [10] to the decision
version of LPAL, first for the case fmin = fmax. Let S = {x1, . . . , x3p} be a multiset
of positive integers. The idea of our construction is to have a path with one subpath of
monotonically increasing frequency constraints and another subpath with monotonically
decreasing frequency constraints. We call these subpaths intervals in reference to the interval
of corresponding vertex indices. The first interval represents partitions S1, . . . , Sp while the
second interval represents the elements of S. By choosing the frequency restrictions, we force
the multiset of line frequencies to be exactly S. Then we can construct lines to have one end
in the first interval and the other end in the second interval, representing to which set Sk

an element xi ∈ S is assigned. In the first interval, lines can overlap in different ways, each
representing a different way to partition S.

Define h := 1
p

∑
S. We may assume that h is integer and that every subset of S which

sums to h contains exactly 3 elements as 3-Partition remains NP-hard in this case. Now
define a sequence of integers, used for constructing the frequency restrictions:

ai :=
{

h if i ≤ 0
−xi if i > 0

for i ∈ [1 − p, 3p]. (Note that indices may be negative.)

We construct our instance I = (G, dfix, cfix, c, fmin, fmax) with decision parameter K as
follows:

dfix := 1 cfix := 0 c :≡ 0 K := 3p.

The graph G is a path on 4p vertices, which we call v1−p, . . . , v3p. The edges are ei :=
{vi, vi+1} for i ∈ [1 − p, 3p − 1]. For all i ∈ [1 − p, 3p − 1], we set fmin

ei
:= fmax

ei
:=

∑i
j=1−p aj .

The construction is illustrated in Figure 3.
Consider a feasible solution (L, f) for I with cost((L, f)) ≤ K. From dfix = 1 follows that

|L| ≤ 3p. Since G is a path, we can say that every line of (L, f) has a left and a right end.
We first argue the case where the left end of each line (vi, . . . , vj) is in the first interval, i.e.
vi satisfies i ∈ [1 − p, 0], and the right end is in the second interval, i.e. vj satisfies j ∈ [1, 3p].

For every i ∈ [0, 3p − 2] we have F
(L,f)
ei > F

(L,f)
ei+1 , implying that at least one line has

a right end at vi+1. Also some line ends at v3p since F
(L,f)
e3p−1 = ph −

∑3p−1
j=1 xi = x3p > 0.

Hence L consists of exactly 3p lines, each having the right end at a different vi for i ∈ [1, 3p].
Let ℓi be the unique line ending at vi. To make up the difference F

(L,f)
ei − F

(L,f)
ei−1 = xi

in G, we obtain fℓi
= xi. For every j ∈ [1 − p, 0] consider the subset L̂j of lines which have

their left end at vj . Their frequencies sum up to F
(L,f)
ej − F

(L,f)
ej−1 = aj = h. Since all lines

have their left ends at some vj with j ∈ [1 − p, 0], the sets L̂1−p, . . . , L̂0 partition L and
correspond to a partition of S where each subset has sum h. This solves 3-Partition.

If there is a line whose left and right end are in the second interval, then it is no longer
guaranteed that fℓi

= xi for the line ℓi with right end at vi. Instead, fℓi
exceeds xi by the

total frequency of lines whose left ends are at vi. Now, we can elongate all lines with left end

I. Heinrich, P. Schiewe, and C. Seebach 8:9

v0 v1

v2

v3

v4

G

5
3

4

2

(L, f)

3

2
2

→ v1

v2

v3

v4

HL
3

2

2

=⇒ 3 + 4 = 2 + 5

Figure 4 Example of the relationship between line concepts on stars and number partitions.

at vi to the left end of ℓi and reduce the frequency of ℓi to xi without introducing new lines
or changing the total frequency of an edge. As there are no lines whose left end is v3p and
the right end of ℓ1 has to be in the first interval, this allow us to construct a solution in the
desired form in linear time.

Consider a solution S1 ∪ · · · ∪ Sp = S to 3-Partition with
∑

Sk = h for all k. We
construct a feasible line concept: for every i ∈ [1, 3p], create a line ℓi with frequency xi,
having its right end at vi. If xi ∈ Sk, then ℓi has its left end at v1−k. It is easy to check that
these lines sum up exactly to the frequency profile of G, and the cost K is not exceeded.

To show hardness for the case fmax ≡ ∞, we can apply Lemma 6. ◀

Additionally, LPAL is NP-hard on stars.

▶ Theorem 8. LPAL is NP-hard, even if G is a star and fmin ≡ fmax or fmax ≡ ∞.

In order to prove Theorem 8 we introduce the problem Partition into many Partitions.
First we prove that it is an NP-hard problem (Lemma 10) and then we reduce Partition
into many Partitions to the decision version of LPAL with the above assumptions.

▶ Definition 9. Partition into many Partitions is the following decision problem:
Input: A set of positive integers S and a number K.
Question: Can a subset S′ ⊆ S be partitioned into at least K nonempty sets, such that
each in turn is a yes-instance to Partition [16]?

▶ Lemma 10. Partition into many Partitions is strongly NP-hard.

The proof of Lemma 10 is an reduction of Partial Latin Square Completion (which
is shown to be NP-hard in [8]) to Partition into many Partitions. It is an adaptation
of the reduction described in [15] and can be found in Appendix A.

Before we present the full proof of Theorem 8 we provide a sketch of it in the following:
consider a feasible line concept (L, f) on a star G where fmin = fmax and the cost only
includes the number of lines. We observe that whenever a one-edge line ℓ1 ∈ L shares an
edge with some other line ℓ2 ∈ L, we may obtain an equivalent line concept L′ without
edge-sharing by shortening ℓ2 and increasing the frequency of ℓ1 which may only reduce the
cost. Hence, we may assume that only two-edge lines share an edge. We can visualize the edge
intersection between lines as a graph HL where each two-edge line (vi, v0, vj) is represented
by an edge {vi, vj}. If the resulting graph HL has a cycle, then k edges are covered by k

two-edge lines. We can therefore construct an equivalent line concept by covering each of
the edges with a one-edge line and removing the corresponding edges from HL. Thus, we
may assume that HL is a forest, and we can use each tree component to obtain a number
partition on some subset of the edge frequencies (see Figure 4). This makes the equivalence
to Partition into many Partitions apparent.

ATMOS 2022

8:10 Algorithms and Hardness for Non-Pool-Based Line Planning

Proof of Theorem 8. We show a reduction of Partition into many Partitions to the
decision version of LPAL. Let a set of positive integers S = {x1, . . . , xm} and the lower
bound K be given as an input to Partition into many Partitions.

We construct an instance I = (G = (V, E), dfix, cfix, c, fmin, fmax) with G and fmin = fmax

as in Figure 5 and decision parameter K ′ as follows: dfix := 1, cfix := 0, c :≡ 0, and
K ′ := m − K.

v0v1

v2

v3

vm

. . .

x1

x2
x3

xm

Figure 5 Line planning instance constructed in Theorem 8.

Let a solution Sol = ((A1, B1), . . . , (AK , BK)) to Partition into many Partitions be
given, i.e. the sets A1, . . . , AK , B1, . . . , BK are nonempty and form a partition of a subset of
S with

∑
Ai =

∑
Bi for all i ∈ [1, K]. We construct a solution to LPAL using Algorithm 1.

After each iteration of the for-loop starting in line 2, all edges {vi, v0} corresponding to
elements xi ∈ A ∪ B are covered exactly fmin

{vi,v0} times. In each iteration of the while-loop
starting in line 5, at least one element of A or B is removed and a new line is created. Note
that

∑
A =

∑
B is invariant as (A, B) is a partition such that the case in line 16 is reached.

Thus, at most |A| + |B| − 1 lines are created and each edge is covered according to fmin.
When entering the for-loop in line 23, all edges {vi, v0} corresponding to elements

xi ∈ S′ :=
⋃K

k=1(Ak ∪Bk) are covered according to fmin and at most
∑K

i=1(|Ai|+ |Bi|−1) =
|S′| − K lines are created. In the for-loop, the remaining edges corresponding to xi ∈ S \ S′

are covered by one one-edge line with appropriate frequency each. Thus, the corresponding
line concept (L, f) is feasible.

The costs of the line concept correspond to the number of created line, and we get

cost((L, f)) ≤ |S′| − K + |S \ S′| = |S| − K = m − K = K ′,

such that (L, f) is feasible for the decision version of LPAL.
For the other direction, consider a solution (L, f) to I with cost at most K ′, i.e. with at

most m − K lines. As discussed above, we may assume that one-edge lines do not overlap
with other lines. We construct an auxiliary graph HL with the vertices v1, . . . , vm. For each
two-edge line (vi, v0, vj), we create an edge {vi, vj} in HL. As discussed above, we can adapt
(L, f) such that HL has no cycles. For each one-edge line (vi, v0), we delete the vertex vi.
Note that we do not need to delete edges since we assumed that one-edge lines do not overlap.
Let m1 be the number of one-edge lines, and m2 the number of two-edge lines in L. Now
HL has m − m1 vertices and m2 ≤ K ′ − m1 = m − m1 − K edges.

As argued above, HL is a forest and contains at least K components. We call these trees
T1, . . . , TK . As we deleted all vertices belonging to one-edge lines, every vertex of HL has at
least one incident edge and thus each tree Ti contains at least two vertices.

Since every tree is bipartite, we may choose a bipartition (P1 := {vj : j ∈ J1}, P2 :=
{vj : j ∈ J2}) for every Ti. By construction, every line ℓ ∈ L is either disjoint from Ti = P1∪P2
or connects P1 with P2, i.e. ∅ ̸= V (ℓ) ∩ P1 if and only if ∅ ̸= V (ℓ) ∩ P2. We obtain:∑

j∈J1

xj =
∑
j∈J1

∑
ℓ∈L:

{vj ,v0}∈E(ℓ)

fℓ =
∑
ℓ∈L:

∅̸=V (ℓ)∩P1

fℓ =
∑
ℓ∈L:

∅̸=V (ℓ)∩P2

fℓ =
∑
j∈J2

∑
ℓ∈L:

{vj ,v0}∈E(ℓ)

fℓ =
∑
j∈J2

xj

I. Heinrich, P. Schiewe, and C. Seebach 8:11

Algorithm 1 Constructing a line concept from a Partition into many Partitions solution.
Input: a solution Sol = ((A1, B1), . . . , (AK , BK)) to a Partition into many Partitions
instance S = {x1, . . . , xm}

1: L = ∅
2: for (A, B) ∈ Sol do
3: treat the numbers in A and B as mutable data structures, which can store a value

and an index
4: assign to each y in A and B an index i such that xi = y

5: while |A| > 0 and |B| > 0 do
6: a = min(A)
7: b = min(B)
8: if a < b then
9: add to L a line from va.index to vb.index with frequency a

10: A.remove(a)
11: b -= a
12: else if a > b then
13: add to L a line from va.index to vb.index with frequency b

14: B.remove(b)
15: a -= b
16: else
17: add to L a line from va.index to vb.index with frequency a

18: A.remove(a)
19: B.remove(b)
20: end if
21: end while
22: end for
23: for i ∈ [1, n] where {vi, v0} is not covered yet do
24: add to L a line from vi to v0 with frequency xi

25: end for
26: return (L, f)

and, hence, ({xj : j ∈ J1}, {xj : j ∈ J2}) is a nonempty solution to Partition. We repeat
this for every tree Ti to get K disjoint number partitions, solving Partition into many
Partitions.

The hardness for the case fmax ≡ ∞ follows with Lemma 6. ◀

The presented hardness results in this section actually show strong NP-hardness, i.e. even
when we restrict the numerical parameters of LPAL instances to be (polynomially) small
compared to the graph, the problem remains NP-hard.

5 Optimal line planning for stars

While LPAL is NP-hard for paths if dfix > 0, the problem is easier when no frequency-
independent costs are considered, i.e., for dfix = 0. Here, the costs do not increase if edges are
covered by multiple lines, ending at different terminals. We can show that optimal solutions
have a special structure by rewriting the cost function

cost((L, f)) = dfix︸︷︷︸
=0

·|L| +
∑
ℓ∈L

costℓ ·fℓ =
∑
e∈E

ce · F (L,f)
e + cfix ·

∑
ℓ∈L

fℓ. (1)

ATMOS 2022

8:12 Algorithms and Hardness for Non-Pool-Based Line Planning

As all edges in a star are incident to a central vertex, there is an optimal solution where
each edge e ∈ E is covered exactly fmin

e times, i.e. F
(L,f)
e = fmin

e . Thus, it remains only
to minimize the frequency-dependent fixed costs cfix ·

∑
ℓ∈L fℓ in (1). As each line contains

either one or two edges and two-edge lines reduce the costs by cfix, this is equivalent to
minimizing the total frequency of one-edge lines.

It is easy to see that each of the following conditions guarantees optimality of the line
concept as in each case as many edges as possible are “paired up” to two-edge lines:
1. There is no one-edge line.
2. There is one one-edge line with frequency one.
3. There is an edge with ē ∈ E with fmin

ē >
∑

e∈E\{ē} fmin
e and

∑
ℓ∈L fℓ = fmin

ē .

Algorithm 2 Finding an optimal solution to LPAL for stars.

Input: An instance (G, dfix, cfix, c, fmin, fmax) where dfix = 0 and G = (V, E) is a star.
1: Elist = [e1, . . . , em] list of edges in E, sorted decreasingly by fmin

e , Ē = ∅, f̄min = fmin

2: f(e) = 0, f(ei,ej) = 0 for all e, ei, ej ∈ E, i > j

3: for ek ∈ Elist do
4: if there is ē ∈ Ē then
5: a = min{f(ē), fmin

ek
}

6: f(ē) −= a, f(ek,ē) = a

7: f̄min
ek

−= a

8: if f(ē) = 0 then
9: Ē = ∅

10: end if
11: end if
12: for ei, ej ∈ {e1, . . . , ek−1} with i > j, f(ei,ej) > 0 and f̄min

ek
> 1 do

13: b = min
{

f(ei,ej),
⌊

f̄min
ek

2

⌋}
14: f(ei,ej) −= b, f(ek,ei) += b, f(ek,ej) += b

15: f̄min
ek

−= 2 · b

16: end for
17: if f̄min

ek
> 0 then

18: f(ek) = f̄min
ek

, Ē = {ek}
19: end if
20: end for
21: L = {(ei, ej) : f(ei,ej) > 0} ∪ {(e) : f(e) > 0}, f = f |L
22: return (L, f)

In Algorithm 2, we present a polynomial time algorithm that finds an optimal solution to
LPAL. Starting with a list of edges sorted by decreasing fmin

e , LPAL is iteratively solved
for the first k edges, k ∈ {1, . . . , |E|} such that one of the optimality conditions 1, 2 or 3 is
satisfied at the end of each iteration for the already considered edges. The one-edge lines
with positive frequency are stored in the set Ē which never contains more than one edge.

After iteration 1, Ē = {e1} and condition 3 is satisfied. In iteration k, the edge ek is
paired up with edge ē ∈ Ē creating a new two-edge line if Ē is not empty. If f(ē) > fmin

ek
,

f̄min
ek

is reduced to zero, Ē = {ē} and condition 3 is satisfied. If f(ē) = fmin
ek

, f̄min
ek

and f(ē)
are reduced to zero, Ē = ∅ and condition 1 is satisfied. If f(ē) < fmin

ek
or Ē = ∅ in line 4,

Ē = ∅ in the for-loop starting in line 12 and we have to show that at the end of the iteration
either condition 1 or 2 is satisfied. As the list of edges is sorted by decreasing fmin

e , we know

I. Heinrich, P. Schiewe, and C. Seebach 8:13

that the total frequency of all already constructed lines is at least fmin
ek

2 such that we can
split already existing lines and create two new ones containing ek. Thus, in line 17 f̄min

ek
is

either zero or one, such that optimality condition 1 or 2 is satisfied and we get the following
theorem, proven in Appendix B.

▶ Theorem 11. Algorithm 2 finds an optimal solution to LPAL for stars with dfix = 0
in O(n3).

6 Optimal line planning for trees

Since paths are special instances of trees, LPAL is NP-hard on trees by Theorem 7. If we
assume that dfix = 0 and that fmax is bounded by a constant b, then we can provide a
pseudo-linear time algorithm for finding the optimal objective value of LPAL on trees.

▶ Theorem 12. If T is a tree, dfix = 0, and fmax is bounded by a constant b, then the
minimal cost for LPAL can be computed in O(nb3). An optimal line concept can be computed
in O(n3b3).

Intuition. It is well known that a rooted tree (T, r) can be constructed from the set
S := {(({v}, ∅), v) : v is a leaf of T} of rooted singleton trees by iteratively introducing
parents and merging subtrees. For our dynamic program it is crucial that we restrict the
operations further. We iteratively modify S by the following two operations:

introduce a parent: extend (T ′, r′) by p ∈ V (T) \ V (T ′) if p is the only neighbor of r′

in T that is not contained in V (T ′). Replace (T ′, r′) in S by the extended tree.
merge: (T1, r′) and (T2, r′) can be merged at r′ if r′ has only one child in T1 or in T2.
Replace the two trees in S by the merged tree.

If none of the above two operations can be applied, then S = {(T, r)}. We exploit that
there exists an optimal solution for LPAL with the following property: the restriction of this
solution to a rooted tree (T ′, r′) arising in the above construction satisfies that at most b

lines end in r′ (otherwise a merge of two such lines would give a solution of lower costs). We
compute the optimal value for LPAL using the above construction where each subtree has a
table which stores its optimal solutions, considering any possible number of lines ending in
its root. If (L, f) is a line concept for T , then for each v ∈ V (T) we define the number of
lines ending at v as

ηv((L, f)) :=
∑

ℓ∈L : v is
an end of ℓ

fℓ

where we allow zero-edge lines. The cost of an optimal solution satisfying ηv ≥ k is

cost(T | ηv ≥ k) := min{cost((L, f)) | (L, f) ∈ F(T), ηv((L, f)) ≥ k}.

We compute the cost vector

cost(T ′, r′) := (cost(T ′ | ηr′ ≥ 0), cost(T ′ | ηr′ ≥ 1), . . . , cost(T ′ | ηr′ ≥ b))

for each rooted subtree (T ′, r′) appearing in the above construction. The recursive computa-
tion stores intermediate results in a table to avoid re-computation. Finally, the cost of an
optimal line concept for T is cost(T | ηr ≥ 0).

ATMOS 2022

8:14 Algorithms and Hardness for Non-Pool-Based Line Planning

▶ Lemma 13 (Dynamic programming for trees). Let (T ′, r′) be a rooted tree and k ∈ {1, . . . , b}.
1. Singletons: If |V (T ′)| = 1, then cost(T ′ | ηr′ ≥ k) = k · cfix. The time required to compute

cost(T ′ | ηr′ ≥ k) is O(1) and, hence, the time required to compute cost(T ′, r′) is O(b).
2. Introduce a parent: If degT ′(r′) = 1 and u denotes the child of r′ in T ′, then cost(T ′ |

ηr′ ≥ k) equals

min
0≤m≤max{k,fmin

{u,r′}
}
{cost(T ′ − r′ | ηu ≥ m) + max

{
k, fmin

{u,r′}

}
· (cfix + c{u,r′}) − m · cfix}.

If the values cost(T ′ − r′ | ηu ≥ m) are pre-computed for all m ∈ {1, . . . , b}, then the time
required to compute cost(T ′ | ηr′ ≥ k) is O(b) and, hence, cost(T ′, r′) can be computed in
O(b2) time.

3. Merge: If (T ′, r′) is the union of two rooted trees (T1, r′), (T2, r′) where degT1(r′) = 1,
then

cost(T ′ | ηr′ ≥ k) = min
0≤m,k1,k2≤b,
k1+k2−2m=k

{cost(T1 | ηr′ ≥ k1) + cost(T2 | ηr′ ≥ k2) − m · cfix}.

If the values cost(T2 | ηr′ ≥ k2) and cost(T2 | ηr′ ≥ k2) are pre-computed for all
k1, k2 ∈ {1, . . . , b}, then the time required to compute cost(T ′ | ηr′ ≥ k) is O(b2) and,
hence, it requires O(b3) time to compute cost(T ′, r′).
For a proof of Lemma 13, see Appendix C.

Total runtime. A depth-first search algorithm yields a decomposition of T such that the
dynamic programming approach can be executed in the corresponding order. Since T is
a tree DFS has a running time of O(n). The running time to compute the cost vector
for all leaves in the initial set S is in O(nb) since there are at most n − 1 leaves in T and
by Lemma 13.(1). In the construction of T we introduce a parent |E(T)| = n − 1 times.
Together with Lemma 13.(2) this yields that computing the respective cost vectors has a total
running time of O(nb2). The merge operation is performed O(

∑
v∈V (T) degT (v)) = O(n)

times which gives a total running time of O(nb3). Altogether, the dynamic programming
has a running time of O(nb3).

Constructing a line concept. We showed how to compute the minimal cost among all
feasible line concepts. To construct a line concept of that cost we store in each cost vector
entry additionally a line concept of that cost. These line concepts can be computed recursively,
according to the decisions made (i.e. creating zero-edge line, extending lines by a single edge,
joining lines). This increases the algorithm runtime, depending on the line concept sizes.
On a tree there are O(n2) different paths. It is then possible to compute all cost vectors
augmented with line concepts in time O(n3b3). Altogether, this proves Theorem 12.

Since the runtime of the algorithm depends on b, it is pseudo-polynomial. For the special
case where for all e ∈ E it holds fmin

e = fmax
e , we provide a true polynomial time algorithm,

which does not depend on a frequency bound b.

▶ Theorem 14. If G is a tree, dfix = 0, and fmin
e = fmax

e for all e ∈ E, then Algorithm 3
computes an optimal solution to LPAL in O(n3).

The key idea of Algorithm 3 is to apply Algorithm 2 iteratively at every vertex. As
fmin = fmax, we can handle lines ending at vertex v ∈ V in the same way we handle edges
in stars: creating a two-edge line in a star corresponds to concatenating two lines in a tree.
A formal proof can be found in Appendix D.

I. Heinrich, P. Schiewe, and C. Seebach 8:15

Algorithm 3 Finding an optimal solution of LPAL on trees with fmin = fmax.

Input: An instance (G, dfix, cfix, c, fmin, fmax) where dfix = 0, fmin = fmax and G = (V, E)
is a tree.

1: L = {(e) : e ∈ E}
2: f(e) = fmin

e for all e ∈ E; for all other paths ℓ set fℓ = 0
3: for v ∈ V do
4: let S be the star formed by v and its neighbors
5: let (LS , fS) be the result of Algorithm 2 applied to the sub-instance on S

6: Lv = {ℓ ∈ L : ℓ ends in v}
7: for ℓ1, ℓ2 ∈ Lv do
8: let e1 be the edge of ℓ1 incident to v

9: let e2 be the edge of ℓ2 incident to v

10: if e1 = e2 then
11: continue
12: end if
13: d = min{fS

(e1,e2), fℓ1 , fℓ2}
14: ℓ+ = ℓ1 ∪ ℓ2
15: L = L ∪ {ℓ+}
16: fS

(e1,e2) −= d, fℓ1 −= d, fℓ2 −= d, fℓ+ += d

17: end for
18: end for
19: L = {ℓ ∈ L : fℓ > 0}, f = f |L
20: return (L, f)

7 Conclusion and outlook

Line planning on all lines LPAL means allowing all simple paths as possible lines in a public
transport supply. This large search space yields more options and, hence, better solutions
for optimal public transport planning. In this paper, we illuminated the algorithmic aspects
of LPAL. Frequency-independent line costs result in an NP-hard problem even for paths
and stars. Without these costs LPAL remains NP-hard on planar graphs but can be solved
in polynomial time on trees when fmin ≡ fmax, and in pseudo-polynomial time otherwise.
Assuming P ̸= NP , no useful approximation algorithm can exist, unless we further restrict
the problem inputs. Even when fmax ≡ ∞, no constant-factor approximation is possible.
The following are the most pressing open questions:

Is LPAL in NP? It is not clear that, especially when fmin is very large, the size of an
optimal line concept can be bounded by a polynomial in the input size.
Is there a polynomial time algorithm for LPAL with dfix = 0 on trees?
Is there a (pseudo-)polynomial time algorithm for LPAL with dfix = 0 on graphs with
treewidth 2 (or generally bounded treewidth)?
Under which restrictions exists a constant-factor approximation algorithm for LPAL?

When moving from trees to graphs of higher treewidth, an additional degree of freedom
can be considered: while for trees we can assume that passenger paths are fixed, this is no
longer true in general graphs. Thus, replacing the lower frequency bounds fmin by a flow
formulation for the passengers as in [3] can lead to even better solutions from a passenger’s
point of view. This presents an interesting extension of the problem, where it is especially
important to understand the structure of optimal solutions.

ATMOS 2022

8:16 Algorithms and Hardness for Non-Pool-Based Line Planning

References
1 R. Arbex and C. da Cunha. Efficient transit network design and frequencies setting multi-

objective optimization by alternating objective genetic algorithm. Transportation Research
Part B: Methodological, 81:355–376, 2015. doi:10.1016/j.trb.2015.06.014.

2 R. Borndörfer, O. Arslan, Z. Elijazyfer, H. Güler, M. Renken, G. Şahin, and T. Schlechte. Line
planning on path networks with application to the istanbul metrobüs. In Operations Research
Proceedings 2016, pages 235–241. Springer, 2018. doi:10.1007/978-3-319-55702-1_32.

3 R. Borndörfer, M. Grötschel, and M. Pfetsch. A column-generation approach to line planning in
public transport. Transportation Science, 41(1):123–132, 2007. doi:10.1287/trsc.1060.0161.

4 S. Bull, J. Larsen, R. Lusby, and N. Rezanova. Optimising the travel time of a line plan. 4OR,
October 2018. doi:10.1007/s10288-018-0391-5.

5 M. Bussieck, P. Kreuzer, and U. Zimmermann. Optimal lines for railway systems. European
Journal of Operational Research, 96(1):54–63, 1997. doi:10.1016/0377-2217(95)00367-3.

6 H. Cancela, A. Mauttone, and M. E. Urquhart. Mathematical programming formulations
for transit network design. Transportation Research Part B: Methodological, 77:17–37, 2015.
doi:10.1016/j.trb.2015.03.006.

7 M. Claessens, N. van Dijk, and P. Zwaneveld. Cost optimal allocation of rail passenger
lines. European Journal of Operational Research, 110(3):474–489, 1998. doi:10.1016/
S0377-2217(97)00271-3.

8 C. J. Colbourn. The complexity of completing partial latin squares. Discrete Applied
Mathematics, 8(1):25–30, 1984. doi:10.1016/0166-218X(84)90075-1.

9 R. Z. Farahani, E. Miandoabchi, W. Y. Szeto, and H. Rashidi. A review of urban transportation
network design problems. European Journal of Operational Research, 229(2):281–302, 2013.
doi:10.1016/j.ejor.2013.01.001.

10 M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

11 P. Gattermann. Generating Line-Pools. Master’s thesis, Fakultät für Mathematik und
Informatik, Georg-August-University Göttingen, 2015.

12 P. Gattermann, J. Harbering, and A. Schöbel. Line pool generation. Public Transport,
9(1-2):7–32, 2017. doi:10.1007/s12469-016-0127-x.

13 M. Goerigk and M. Schmidt. Line planning with user-optimal route choice. European Journal
of Operational Research, 259(2):424–436, 2017. doi:10.1016/j.ejor.2016.10.034.

14 V. Guihaire and J. Hao. Transit network design and scheduling: A global review. Transportation
Research Part A: Policy and Practice, 42(10):1251–1273, 2008. doi:10.1016/j.tra.2008.03.
011.

15 H. Hulett, T. G. Will, and G. J. Woeginger. Multigraph realizations of degree sequences:
Maximization is easy, minimization is hard. Operations Research Letters, 36(5):594–596, 2008.
doi:10.1016/j.orl.2008.05.004.

16 R. M. Karp. Reducibility Among Combinatorial Problems. In Raymond E. Miller and James W.
Thatcher, editors, Proceedings of a symposium on the Complexity of Computer Computations,
held March 20-22, 1972, at the IBM Thomas J. Watson Research Center, Yorktown Heights,
New York, USA, The IBM Research Symposia Series, pages 85–103. Plenum Press, New York,
1972. doi:10.1007/978-1-4684-2001-2_9.

17 K. Kepaptsoglou and M. Karlaftis. Transit route network design problem. Journal of
transportation engineering, 135(8):491–505, 2009. doi:10.1061/(ASCE)0733-947X(2009)135:
8(491).

18 B. Masing, N. Lindner, and R. Borndörfer. The Price of Symmetric Line Plans in the
Parametric City. arXiv preprint arXiv:2201.09756, 2022. doi:10.48550/ARXIV.2201.09756.

19 J. Pätzold, A. Schiewe, and A. Schöbel. Cost-Minimal Public Transport Planning. In
R. Borndörfer and S. Storandt, editors, 18th Workshop on Algorithmic Approaches for Trans-
portation Modelling, Optimization, and Systems (ATMOS 2018), volume 65 of OpenAccess

https://doi.org/10.1016/j.trb.2015.06.014
https://doi.org/10.1007/978-3-319-55702-1_32
https://doi.org/10.1287/trsc.1060.0161
https://doi.org/10.1007/s10288-018-0391-5
https://doi.org/10.1016/0377-2217(95)00367-3
https://doi.org/10.1016/j.trb.2015.03.006
https://doi.org/10.1016/S0377-2217(97)00271-3
https://doi.org/10.1016/S0377-2217(97)00271-3
https://doi.org/10.1016/0166-218X(84)90075-1
https://doi.org/10.1016/j.ejor.2013.01.001
https://doi.org/10.1007/s12469-016-0127-x
https://doi.org/10.1016/j.ejor.2016.10.034
https://doi.org/10.1016/j.tra.2008.03.011
https://doi.org/10.1016/j.tra.2008.03.011
https://doi.org/10.1016/j.orl.2008.05.004
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1061/(ASCE)0733-947X(2009)135:8(491)
https://doi.org/10.1061/(ASCE)0733-947X(2009)135:8(491)
https://doi.org/10.48550/ARXIV.2201.09756

I. Heinrich, P. Schiewe, and C. Seebach 8:17

Series in Informatics (OASIcs), pages 8:1–8:22. Schloss Dagstuhl–Leibniz-Zentrum für Inform-
atik, 2018. doi:10.4230/OASIcs.ATMOS.2018.8.

20 J. Plesník. The NP-completeness of the Hamiltonian cycle problem in planar digraphs
with degree bound two. Information Processing Letters, 8(4):199–201, 1979. doi:10.1016/
0020-0190(79)90023-1.

21 A. Schiewe, P. Schiewe, and M. Schmidt. The line planning routing game. European Journal
of Operational Research, 274(2):560–573, 2019. doi:10.1016/j.ejor.2018.10.023.

22 A. Schöbel. Line planning in public transportation: models and methods. OR spectrum,
34(3):491–510, 2012. doi:10.1007/s00291-011-0251-6.

23 A. Schöbel and S. Scholl. Line planning with minimal transfers. In 5th Workshop on
Algorithmic Methods and Models for Optimization of Railways, number 06901 in Dagstuhl
Seminar Proceedings, 2006. doi:10.4230/OASIcs.ATMOS.2005.660.

24 L. M. Torres, R. Torres, R. Borndörfer, and M. E. Pfetsch. Line Planning on Paths and Tree
Networks with Applications to the Quito Trolebu´s System. In Matteo Fischetti and Peter
Widmayer, editors, 8th Workshop on Algorithmic Approaches for Transportation Modeling,
Optimization, and Systems (ATMOS’08), volume 9 of OpenAccess Series in Informatics
(OASIcs), Dagstuhl, Germany, 2008. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
doi:10.4230/OASIcs.ATMOS.2008.1583.

25 L. M. Torres, R. Torres, R. Borndörfer, and M. E. Pfetsch. Line planning on tree networks
with applications to the Quito Trolebús system. International Transactions in Operational
Research, 18(4):455–472, 2011. doi:10.1111/j.1475-3995.2010.00802.x.

26 Q. K. Wan and H. K. Lo. A mixed integer formulation for multiple-route transit network design.
J. Math. Model. Algorithms, 2(4):299–308, 2003. doi:10.1023/B:JMMA.0000020425.99217.cd.

27 G. Şahin, A. Ahmadi Digehsara, R. Borndörfer, and T. Schlechte. Multi-period line planning
with resource transfers. Transportation Research Part C: Emerging Technologies, 119:102726,
2020. doi:10.1016/j.trc.2020.102726.

A Proof of Lemma 10

▶ Lemma 10. Partition into many Partitions is strongly NP-hard.

Proof. This proof is an adaptation of the reduction described in [15]. We reduce Partial
Latin Square Completion (cf. [15]) to Partition into many Partitions.

Consider a partial Latin square L of dimension p × p with m missing entries. Define
q := 6p − 2. We construct a Partition into many Partitions instance from the Latin
square by defining K := m and putting the following numbers into the set S:

If color c does not occur in row k, put x(k, c) := q(2k − 1) − (2c − 1) into S.
If color c does not occur in column ℓ, put y(ℓ, c) := q2(2ℓ − 1) + (2c − 1) into S.
If the cell in row k and column ℓ is empty, put z(k, ℓ) := q2(2ℓ − 1) + q(2k − 1) into S.

Partition into many Partitions requires that S only contains positive numbers. A quick
check of the x-numbers shows that they are positive: x(k, c) ≥ q − (2c − 1) ≥ q − (2p − 1) =
4p − 1 > 0. The y- and z-numbers are positive since ℓ, c and k each are positive.

We check that these numbers indeed form a set of size 3m, i.e. they are pairwise different:
Assume x(k1, c1) = x(k2, c2) holds for some k1, c1, k2, c2 ∈ [1, p]. Considering this equation
modulo q, we find (2c1−1) ≡ (2c2−1) mod q. Since q > 2p−1, it follows: c1 = c2. Hence the
equation simplifies to q(2k1 −1) = q(2k2 −1), so also k1 = k2. This shows that the x-numbers
are created by an injective map. The same arguments work for pairs of y-numbers and pairs of
z-numbers. Now assume x(k1, c1) = y(ℓ2, c2). It follows that (2c1 − 1) + (2c2 − 1) ≡ 0 mod q.
This is a contradiction since 4p − 2 < q. Assume x(k1, c1) = z(k2, ℓ2) or y(ℓ1, c1) = z(k2, ℓ2).
In both cases (2c1 − 1) ≡ 0 mod q would follow, which is a contradiction.

ATMOS 2022

https://doi.org/10.4230/OASIcs.ATMOS.2018.8
https://doi.org/10.1016/0020-0190(79)90023-1
https://doi.org/10.1016/0020-0190(79)90023-1
https://doi.org/10.1016/j.ejor.2018.10.023
https://doi.org/10.1007/s00291-011-0251-6
https://doi.org/10.4230/OASIcs.ATMOS.2005.660
https://doi.org/10.4230/OASIcs.ATMOS.2008.1583
https://doi.org/10.1111/j.1475-3995.2010.00802.x
https://doi.org/10.1023/B:JMMA.0000020425.99217.cd
https://doi.org/10.1016/j.trc.2020.102726

8:18 Algorithms and Hardness for Non-Pool-Based Line Planning

Now we consider all the ways 3 or fewer of these numbers can be a yes-instance to
Partition. A single number cannot be a yes-instance. Two numbers also cannot be a
yes-instance, since S is a set and all numbers are pairwise distinct. Here, we work out only
some of the possible three-number combinations. The rest can be calculated similarly.

z(k1, ℓ1) = x(k2, c2) + y(ℓ3, c3). Considering this equation modulo q, we find that c2 = c3.
Then, dividing by q and again applying modulo, we get k1 = k2 and finally ℓ1 = ℓ3.
z(k1, ℓ1) + x(k2, c2) = y(ℓ3, c3). It would follow: (2c2 − 1) + (2c3 − 1) ≡ 0 mod q, which
is not possible, as we have seen before.
x(k1, c1) = y(ℓ2, c2) + y(ℓ3, c3). It would follow: (2c1 − 1) + (2c2 − 1) + (2c3 − 1) ≡ 0
mod q. This is not possible, since 0 < (2c1 − 1) + (2c2 − 1) + (2c3 − 1) ≤ 6p − 3 < q.
x(k1, c1) = x(k2, c2) + x(k3, c3). Consider this equation modulo 2. Since q is even, we
would obtain −1 ≡ −2 mod 2, which is a contradiction. The case of three y-numbers is
dealt with in the same way. In the case of three z-numbers, first divide by q.

After considering all combinations, we find that the only way three numbers can be a yes-
instance to Partition, is by choosing one number from each family x,y and z; importantly
these numbers have matching choices for row, column and color.

Now let B1, . . . , Bm be a solution to Partition into many Partitions, i.e. the Bi are
nonempty yes-instances to Partition, are pairwise disjoint and their union is a subset of S.
As we have shown, each Bi contains at least three elements. Since |S| = 3m, every element
of S is used and no Bi can contain more than three elements. Then each Bi corresponds
to a triple of x-,y- and z-numbers, which in turn corresponds to a row k, a column ℓ and a
color c. We then fill our partial Latin square, by coloring the cell at row k and column ℓ

with c, repeating this for every Bi. Since every z-number was used, the Latin square is filled.
It is also a valid coloring, since for every row/column each missing color appears only in one
x-number/y-number.

For the other direction, consider a valid completion of the partial Latin square. Then
for each of the m new colorings ci in the cell at row ki and column ℓi, we create Bi :=
{z(ki, ℓi), x(ki, ci), y(ℓi, ci)}. Then each Bi is a yes-instance to Partition, and is contained
in S. The created sets are pairwise disjoint, since the Latin square would otherwise have a
collision.

This reduction proves strong NP-hardness: we may assume without loss of generality
that the input Latin square has at least p missing entries, because otherwise it would have
a completely filled row, from which we could remove an arbitrary cell without affecting its
ability to be completed. Then |S| ≥ 3p and the numbers in S are bounded by a polynomial
in p, hence also by a polynomial in |S|. ◀

B Proof of Theorem 11

▶ Theorem 11. Algorithm 2 finds an optimal solution to LPAL for stars with dfix = 0
in O(n3).

Proof. Note that Algorithm 2 computes a line concept that covers each edge e ∈ E ex-
actly fmin

e times, i.e. F
(L,f)
e = fmin

e . To prove optimality for dfix = 0, we therefore only have
to show that the total frequency of one-edge lines is minimized.

At the start of each for loop in line 3, the set Ē contains the edges for which a one-edge
line with positive frequency exists. Note that there is always at most one edge ē ∈ Ē, as by
the choice of a in line 5, fmin

e can only be positive if f(ē) is set to zero. Thus the line concept
(L, f) created in line 22 contains at most one one-edge line with positive frequency.

If there is no one-edge line, the line concept is optimal as in condition 1.

I. Heinrich, P. Schiewe, and C. Seebach 8:19

If there is a one-edge line containing the first edge e1 of Elist, i.e. the edge with the highest
fmin, then in line 5 the minimum a is always chosen as fmin

e for e ̸= e1, i.e. fmin
e1

>
∑

e̸=e1
fmin

e .
In this case, all lines contain edge e1 and thus

∑
ℓ∈L fℓ = fmin

e1
such that (L, f) is optimal,

see condition 3.
Otherwise, there is a one-edge line that does not contain the first edge. Here, we show

that for every ek ≠ e1 in the outer-loop (lines 3 to 20) with f̄min
ek

> 0 in line 17 also f̄min
ek

= 1
holds. Then, we have one one-edge line with frequency one and the line concept is optimal
according to condition 2.

As f̄min
ek

is only reduced in the algorithm, f̄min
ek

> 0 can only hold in line 17 if it already
holds before the for-loop starting in line 12. Note that in this case, k > 2 holds. We want to
show that f̄min

ek
is reduced in the for-loop (lines 12 to 16) until f̄min

ek
∈ {0, 1}. Suppose to the

contrary, that f̄min
ek

> 1 in line 17. Then the minimum b chosen in line 13 always has been
chosen as f(ei,ej) and we get∑

(ei,ej):
i,j<k

f(ei,ej) < α

where α is the value of f̄min
ek

before starting the for-loop in line 12. We know that α = fmin
ek

if Ē = ∅ in line 4 and α = fmin
ek

− f(ek,ē) if Ē = {ē} in line 4. To simplify the notation in the
following we set f(ek,ē) = 0 if Ē = ∅. As at the beginning of the for-loop in line 4 for ek all
edges ei, i ∈ {1, . . . , k − 1}, are covered fmin

ei
-times we get

∑
(ei,ej):
i,j<k

f(ei,ej) + f(ek,ē) ≥ 1
2

k−1∑
i=1

fmin
ei

≥ 1
2 · 2 · fmin

ek
= fmin

ek

and thus∑
(ei,ej):
i,j<k

f(ei,ej) ≥ fmin
ek

− f(ek,ē) = α

which is the desired contradiction.
The runtime of Algorithm 2 can be estimated in the following way: there are |E| =

|V | − 1 = n − 1 iterations of the outer for-loop starting in line 3 and O(n2) iterations of the
inner for-loop starting in line 12. As sorting Elist in line 1, initializing the frequencies in
line 2 and reconstructing the line concept in line 22 are also in O(n3), the total runtime of
Algorithm 2 is O(n3). ◀

C Proof of Lemma 13

▶ Lemma 13 (Dynamic programming for trees). Let (T ′, r′) be a rooted tree and k ∈ {1, . . . , b}.
1. Singletons: If |V (T ′)| = 1, then cost(T ′ | ηr′ ≥ k) = k · cfix. The time required to compute

cost(T ′ | ηr′ ≥ k) is O(1) and, hence, the time required to compute cost(T ′, r′) is O(b).
2. Introduce a parent: If degT ′(r′) = 1 and u denotes the child of r′ in T ′, then cost(T ′ |

ηr′ ≥ k) equals

min
0≤m≤max{k,fmin

{u,r′}
}
{cost(T ′ − r′ | ηu ≥ m) + max

{
k, fmin

{u,r′}

}
· (cfix + c{u,r′}) − m · cfix}.

If the values cost(T ′ − r′ | ηu ≥ m) are pre-computed for all m ∈ {1, . . . , b}, then the time
required to compute cost(T ′ | ηr′ ≥ k) is O(b) and, hence, cost(T ′, r′) can be computed in
O(b2) time.

ATMOS 2022

8:20 Algorithms and Hardness for Non-Pool-Based Line Planning

3. Merge: If (T ′, r′) is the union of two rooted trees (T1, r′), (T2, r′) where degT1(r′) = 1,
then

cost(T ′ | ηr′ ≥ k) = min
0≤m,k1,k2≤b,
k1+k2−2m=k

{cost(T1 | ηr′ ≥ k1) + cost(T2 | ηr′ ≥ k2) − m · cfix}.

If the values cost(T2 | ηr′ ≥ k2) and cost(T2 | ηr′ ≥ k2) are pre-computed for all
k1, k2 ∈ {1, . . . , b}, then the time required to compute cost(T ′ | ηr′ ≥ k) is O(b2) and,
hence, it requires O(b3) time to compute cost(T ′, r′).

Proof. If (T ′, r′) has only one vertex, then clearly the optimal line concept which satisfies
that k lines end in r′ consists of k zero-edge lines. This implies (1).

We prove (2). Since degT ′(r′) = 1 every line ℓ in T ′ is either contained in T ′ − r′ or
it has one end in T ′ − r′ and the other end is r′. In a line concept (L, f) of T ′, a line ℓ

with one end in T ′ − r′, the other end being r′ and frequency fℓ can be split into two lines
ℓ1 = (r′, u) and ℓ2 = ℓ − r′ with frequency fℓ without changing the feasibility. The line ℓ2 is
contained in T ′ − r′ and the cost of the line concept is increased by cfix · fℓ. This process can
be reversed, merging some line from T ′ − r′ that ends at u with the line (u, r′), decreasing
the cost accordingly. Assuming k ≤ fmax

{u,r′}, this allows us to rewrite cost(T ′ | ηr′ ≥ k):

cost(T ′ | ηr′ ≥ k) = min{cost((L, f)) : (L, f) ∈ F(T ′), ηr′((L, f)) ≥ k}
(a)= min{cost((L′, f ′)) + a · (cfix + c{u,r′}) − m · cfix : (L′, f ′) ∈ F(T ′ − r′),

fmin
{u,r′} ≤ a ≤ fmax

{u,r′}, m ≤ ηu((L′, f ′)), m ≤ a, a ≥ k}
(b)= min{cost((L′, f ′)) + max{k, fmin

{u,r′}} · (cfix + c{u,r′}) − m · cfix : (L′, f ′) ∈ F(T ′ − r′),

max{k, fmin
{u,r′}} ≤ fmax

{u,r′}, m ≤ ηu((L′, f ′)), m ≤ max{k, fmin
{u,r′}}}

(c)= min
0≤m≤max{k,fmin

{u,r′}
}
{cost(T ′ − r′ | ηu ≥ m) + max{k, fmin

{u,r′}} · (cfix + c{u,r′}) − mcfix}

(a) We split the lines in T ′ into some set of lines L′ on T ′ − r′, and a copies of the line (u, r′)
of which m are merged with lines from L′. Then the number of ends at r′ is exactly a

and, hence a ≥ k. Furthermore a ∈ [fmin
{u,r′}, fmax

{u,r′}]. Each merge reduces the cost by cfix.
(b) To minimize the cost, we have to minimize a: the only benefit of increasing a is that m

can be increased but the factor of a outweighs m. Hence we replace a by its minimum
possible value max{k, fmin

e }.
(c) Since m ≤ ηu((L′, f ′)) we can replace cost((L′, f ′)) by cost(T ′ − r′ | ηu ≥ m). The

condition max{k, fmin
{u,r′}} ≤ fmax

{u,r′} is fulfilled by the assumption on k. The remaining
constraints are written as a subscript.
If k > fmax

{u,r′}, then cost(T ′ | ηr′ ≥ k) = ∞ since no feasible line concept with ηr′ ≥ k

exists.
The time to compute cost(T ′ | ηr′ ≥ k) for some k is O(b), since max{k, fmin

{u,r′}} ≤ b. Hence
cost(T ′, r′) can be computed in O(b2).

Finally, we prove (3). Every line in T ′ that traverses r′ can be split into two lines, one
contained in T1 and the other contained in T2. In reverse, we can join lines from different
subtrees together at r′. Then

cost(T ′ | ηr′ ≥ k) = min
0≤m,k1,k2≤b,
k1+k2−2m=k

{cost(T1 | ηr′ ≥ k1) + cost(T2 | ηr′ ≥ k2) − m · cfix}

I. Heinrich, P. Schiewe, and C. Seebach 8:21

Note that at most b lines of T1 end at r′ by the degree condition. The time required to
compute cost(T ′ | ηr′ ≥ k) for some k is O(b2) since we have two degrees of freedom in the
minimum expression. Hence cost(T ′, r′) can be computed in O(b3). ◀

D Proof of Theorem 14

▶ Theorem 14. If G is a tree, dfix = 0, and fmin
e = fmax

e for all e ∈ E, then Algorithm 3
computes an optimal solution to LPAL in O(n3).

Proof. We first show that Algorithm 3 computes an optimal feasible solution: after line 2, a
feasible line concept is constructed. The operations in line 16 merge lines and, hence, the
feasibility of (L, f) remains.

For showing optimality, we note that since the total frequencies F
(L,f)
e are fixed for every

e ∈ E, obtaining an optimal line concept (L, f) is equivalent to minimizing
∑

ℓ∈L fℓ. Since
every line has two ends, another equivalent quantity to minimize is the total number of line
ends, weighted by f , i.e. 2

∑
ℓ∈L fℓ.

Define Lv,e := {ℓ ∈ L : ℓ ends in v and traverses e}. We need an invariant (I1) that holds
before every iteration of the outer for-loop: for every vertex v ∈ V that has not yet been
chosen in the outer for-loop, we have fmin

e =
∑

ℓ∈Lv,e
fℓ. Clearly (I1) holds directly after

executing line 2. The operations during an iteration only affect the local line ends, i.e. the
number of ends at yet unvisited vertices is unchanged. Hence (I1) is maintained.

Another invariant (I2), that holds before every iteration of the inner loop, for every
edge e incident to v, is

∑
ℓ∈Lv,e

fℓ = fS
(e) +

∑
e′ ̸=e fS

(e,e′). It holds initially, since Algorithm 2
produces a feasible line concept, and we have fmin

e = fS
(e) +

∑
e′ ̸=e fS

(e,e′); combine this with
(I1) to obtain (I2). Let e1 and e2 be chosen during an iteration, after line 9. The operations
inside the loop only affect lines that contain e1 or e2, hence for every e /∈ {e1, e2} (I2) is
maintained. (I2) is also maintained for e1, since fS

(e1,e2) and fℓ1 are changed by equal amounts.
The same holds true for e2.

We claim that after the inner for-loop finishes, we have fS
ℓ = 0 for all two-edge lines

ℓ = (e1, e2) of LS . Suppose towards a contradiction that fS
(e1,e2) > 0 for some e1 ̸= e2. By (I2),∑

ℓ∈Lv,e1
fℓ = fS

(e1) +
∑

e′ ̸=e1
fS

(e1,e′) > 0, and similarly
∑

ℓ∈Lv,e2
fℓ > 0. Hence there exist

ℓ1 ∈ Lv,e1 and ℓ2 ∈ Lv,e2 with fℓ1 > 0 and fℓ2 > 0. This is a contradiction since the inner
for-loop would have chosen ℓ1 and ℓ2 at some point, after which min{fℓ1 , fℓ2 , fS

(e1,e2)} = 0.
Using (I2) again, we have

∑
ℓ∈Lv,e

fℓ = fS
(e) after the inner for-loop. This means that

we have
∑

e incident to v fS
(e) =: xv line ends, with multiplicity, at vertex v. The algorithm’s

locality implies that this number does not change in further iterations of the outer loop.
In total Algorithm 3 produces a line concept with

∑
v∈V xv line ends. Suppose that there

is a better solution, i.e. a feasible line concept (L′, f ′) that has fewer than xv line ends at
some vertex v. Then we could restrict (L′, f ′) onto the star S around v and would obtain a
solution for S which has fewer ends, i.e. is better, than what Algorithm 2 computed, which
contradicts the optimality of Algorithm 2.

On the runtime: we represent lines by their end vertices. On a tree, this is enough to
unambiguously define them. The invocation of Algorithm 2 can be done in O(deg(v)3).
Since Lv has at most n elements, the for-loop in line 7 iterates at most n2 times. Every
operation inside the for-loop takes constant time and we can bound the total loop runtime
by O(n2). Overall, an iteration of the outer for-loop on a vertex v takes O(deg(v)n2).
Using the fact that on a tree

∑
v∈V deg(v) = 2n − 2, the total runtime of the algorithm is

O
(∑

v∈V deg(v)3 + n2 ∑
v∈V deg(v)

)
= O(n3). ◀

ATMOS 2022

The Edge Investment Problem: Upgrading Transit
Line Segments with Multiple Investing Parties
Rowan Hoogervorst #

DTU Management, Technical University of Denmark, Kongens Lyngby, Denmark

Evelien van der Hurk #

DTU Management, Technical University of Denmark, Kongens Lyngby, Denmark

Philine Schiewe #

Department of Mathematics, Technische Universität Kaiserslautern, Germany

Anita Schöbel #

Department of Mathematics, Technische Universität Kaiserslautern, Germany
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM, Kaiserslautern, Germany

Reena Urban #

Department of Mathematics, Technische Universität Kaiserslautern, Germany

Abstract

Bus Rapid Transit (BRT) systems can provide a fast and reliable service to passengers at lower costs
compared to tram, metro and train systems. Therefore, they can be of great value to attract more
passengers to use public transport, which is vital in reaching the Paris Agreement Targets. However,
the main advantage of BRT systems, namely their flexible implementation, also leads to the risk that
the system is only implemented partially to save costs. This paper focuses therefore on the Edge
Investment Problem: Which edges (segments) of a bus line should be upgraded to full-level BRT?
Motivated by the construction of a new BRT line around Copenhagen, we consider a setting in which
multiple parties are responsible for different segments of the line. Each party has a limited budget
and can adjust its investments according to the benefits provided to its passengers. We suggest two
ways to determine the number of newly attracted passengers, prove that the corresponding problems
are NP-hard and identify special cases that can be solved in polynomial time. In addition, problem
relaxations are presented that yield dual bounds. Moreover, we perform an extensive numerical
comparison in which we evaluate the extent to which these two ways of modeling demand impact
the computational performance and the choice of edges to be upgraded.

2012 ACM Subject Classification Applied computing → Transportation; Mathematics of computing
→ Combinatorial optimization; Applied computing → Operations research

Keywords and phrases Network Design, Public Transport, Bus Rapid Transit, Modeling

Digital Object Identifier 10.4230/OASIcs.ATMOS.2022.9

Supplementary Material Dataset: https://doi.org/10.11583/DTU.c.6130014

Funding This work was supported by the European Union’s Horizon 2020 research and innovation
programme [Grant 875022], the Federal Ministry of Education and Research [Project 01UV2152B],
and by Innovationsfonden [0205-00002B] under the project sEAmless SustaInable EveRyday urban
mobility (EASIER) as well as by DFG under SCHO 1140/8-2.

Acknowledgements We would like to thank the Region H [0205-00005B] and Movia for their efforts
to provide insight into the planning process of the BRT system and for the provision of data.

© Rowan Hoogervorst, Evelien van der Hurk, Philine Schiewe, Anita Schöbel, and Reena Urban;
licensed under Creative Commons License CC-BY 4.0

22nd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2022).
Editors: Mattia D’Emidio and Niels Lindner; Article No. 9; pp. 9:1–9:19

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rowho@dtu.dk
https://orcid.org/0000-0003-0358-9503
mailto:evdh@dtu.dk
https://orcid.org/0000-0002-4521-3283
mailto:p.schiewe@mathematik.uni-kl.de
https://orcid.org/0000-0002-4223-3246
mailto:schoebel@mathematik.uni-kl.de
https://orcid.org/0000-0002-9306-5529
mailto:urban@mathematik.uni-kl.de
https://orcid.org/0000-0002-9340-9387
https://doi.org/10.4230/OASIcs.ATMOS.2022.9
https://doi.org/10.11583/DTU.c.6130014
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

9:2 Upgrading Transit Line Segments with Multiple Investing Parties

1 Introduction

Public transport plays an important role in the transition towards a more sustainable
transportation network in cities. In order to convince people to choose public transport over
other modes, many cities opt to build Bus Rapid Transit (BRT) networks. Such networks
are characterized by a high average speed and frequent service, to a large extent achieved
through separation from other traffic. As the construction of BRT networks is expensive,
careful planning is needed to choose the final design of the system before investments are
made.

In this paper, we study a problem that is motivated by the development of a new BRT
line in the Capital Region of Denmark (Region Hovedstaden). This new BRT line will form a
radial around Copenhagen and will connect multiple municipalities surrounding the city [12].
A first assessment has defined five feasible route alternatives, each describing a possible route
of the new BRT line. The next steps in the process consist of determining the final route
and the investments made on this route. We focus on the second step: How to determine the
best investments in a line with respect to budget and return on investment constraints?

In our case, investments along a line cover, e.g., the costs needed to construct a separate
bus lane as well as the upgrading of intersections and traffic installations to allow for priority
of the BRT line. As these investments contribute to the quality of the journey for the
passengers, they have a direct impact on the passenger potential of the line. In particular,
these investments decrease the travel time along the route and at the same time increase
the reliability of the route. Our main focus is to find a set of upgrades along the line that
attracts the largest amount of passengers.

A complicating factor in constructing the BRT line in the Capital Region of Denmark is
that each municipality that is crossed by the line is responsible for investments for those
segments that lie within its borders. For the investments, a certain budget is available per
municipality. Moreover, municipalities have to compare the investment costs to the benefits
for their passengers. We incorporate this into our problem by introducing constraints that
limit the investments that municipalities are willing to make according to the number of
their passengers that are attracted.

1.1 Related Literature
Rapid transit network design, including the determination of stations, lines and frequencies,
has widely been studied in the literature. For a survey on the problem, the models and the
solution methods used to solve them, we refer to [9, 8]. Some more recent work has focused
on better modeling the interaction with the existing public transport system, e.g., in the
design of feeder-bus networks [3] and in computing the modal split between metro and bus
transit systems [10]. Moreover, [6] propose an integrated approach for both the design of
a new rapid transit network and the adaptation of the existing bus network. A different
perspective is taken by [2], who incorporate spacial and social equity principles in the transit
network design problem.

Another related problem is the network improvement problem. This problem consists of
choosing edges (and nodes) in a network to be upgraded while minimizing costs or satisfying
budget constraints and has, e.g., been studied by [7, 22, 13, 11, 1].

Literature on transit network design usually assumes that all upgrade decisions are made
by one central authority. In contrast to that, [20] consider local authorities that can only make
upgrade decisions for their own subgraphs, i.e., parts of the network. In a game-theoretic
setting, they formulate the interaction of the local authorities among others in a cooperative,

R. Hoogervorst, E. van der Hurk, P. Schiewe, A. Schöbel, and R. Urban 9:3

competitive and chronological way. Assuming a fixed demand, the travel time depends on
the capacity and the amount of flow on each edge. Each local authority aims to minimize
the travel time by increasing the capacity of an edge restricted by a budget.

Note that the Edge Investment Problem introduced here differs from these settings
because the route and stations of the BRT line are already given. Instead, we are interested
in attracting new passengers, i.e., in maximizing the demand, which is modeled by two
different objective functions, through infrastructure improvements.

1.2 Contribution
The contribution of this paper is to model the Edge Investment Problem for BRT lines
as required in the Capital Region of Denmark. We present two variants to model the decision
process of the municipalities, a collaborative version EIP and a version focusing on the return
on investment for each municipality ROI, as well as two variants to compute the number of
newly attracted passengers, Linear and MinImprov. We analyze the complexity of the four
resulting problems, identifying both NP-hard and polynomially solvable cases. Additionally,
we perform an extensive experimental evaluation both on artificial instances and on a case
study based on the BRT line in the Capital Region of Denmark. Here, we analyze the
influence of collaboration between municipalities and of the budget split on the number of
newly attracted passengers. We further assess the potential to attract new passengers for
five different route alternatives given in the case study.

2 Model and Problem Formulation

In the Edge Investment Problem, we assume that investing in the upgrade of edges
attracts new passengers. Before we model the different ways to determine the number of
attracted passengers, we formulate the general setting.

The BRT line is described as a line graph G = (V, E), where V = {1, . . . , n} for n ∈ N>0
denotes the set of stations and E =

{
ei = {i, i + 1} : i ∈ {1, . . . , n − 1}

}
the set of direct

connections between the stations. Let D ⊆ {(i, j) : i, j ∈ V, i < j} be the set of undirected
potential origin-destination (OD) pairs. For d = (i, j) ∈ D, let Wd be the set of edges of
the path from station i to station j, namely Wd = {ek : k ∈ {i, i + 1, . . . , j − 1}}, and let
ad ∈ N>0 be the maximum number of passengers that can be attracted.

Different parts of the graph are under the responsibility of different municipalities. We
denote the set of municipalities by M . For each municipality m ∈ M , let Em ⊆ E be the
subset of edges that lie within the responsibility of municipality m such that

⋃
m∈M Em = E.

As in our application, we assume that the sets Em for m ∈ M are pairwise disjoint and
contain only consecutive edges, i.e., for all m ∈ M there is some i, j ∈ V , i < j such that
Em = {ek : k ∈ {i, i + 1, . . . , j − 1}}. By Dm ⊆ D, Dm ̸= ∅, we denote the subset of OD
pairs that municipality m is interested in. Here, a municipality wants to increase the number
of passengers that start or end in their municipality but does not care whether passengers in
a different part of the network are attracted. Note that setting |M | = 1 represents the case
of one general budget, which is not separated into budgets for multiple municipalities.

The costs for upgrading an edge e ∈ E are ce ∈ R>0. We consider two types of constraints
for the municipalities. For each municipality m ∈ M , the amount of upgrades is restricted
by a budget Bm ∈ R>0 and by a return on investment factor bm ∈ R>0 per newly attracted
person. While the budget constraints model a general budget on the investments, the return
on investment constraints guarantee that the costs are smaller than the gain through upgrades
measured in the number of newly attracted passengers multiplied with the investment factor.

ATMOS 2022

9:4 Upgrading Transit Line Segments with Multiple Investing Parties

Upgrading edges of a bus line to BRT standard by implementing additional exclusive
infrastructure for BRT decreases the travel time and increases the reliability as it is less
dependent on congestion caused by regular (individual) traffic. Hence, more people are
attracted to the BRT line. We denote the infrastructure improvement achieved by upgrading
an edge e ∈ E by ue ∈ R>0. In the Edge Investment Problem, we aim at maximizing the
number of newly attracted passengers. The remaining question is how many upgraded edges
or which level of infrastructure improvements is necessary to attract new passengers. In this
paper, we propose two ways of modeling that: In the Linear model, we assume that the
number of attracted passengers increases linearly with the amount of realized infrastructure
improvements in proportion to the total amount of possible infrastructure improvements.
The maximum number of passengers is only attracted when all edges of the path of an
OD pair are upgraded, otherwise only a share is attracted. In the MinImprov model, we
assume that all potential passengers of an OD pair d ∈ D are attracted when a certain
threshold of infrastructure improvements Ld ∈ R>0 is reached on their path. Otherwise, no
new passengers are attracted for this OD pair. This is formally introduced next.
▶ Definition 1. Let F ⊆ E be the set of upgraded edges, and let an OD pair d ∈ D be given.
In Linear, the number of newly attracted passengers of OD pair d is determined by

pd(F) :=
∑

e∈F ∩Wd
ue∑

e′∈Wd
ue′

· ad.

In MinImprov, the number of newly attracted passengers of OD pair d is determined by

pd(F) :=
{

ad if Ld ≤
∑

e∈F ∩Wd
ue,

0 otherwise.

We are now in the position to formally describe the Edge Investment Problem, to
which both objective functions from Definition 1 can be applied, in the following definition:
▶ Definition 2 (EIP and ROI). Given are

a line graph (V, E) and a set of OD pairs D ⊆ {(i, j) : i, j ∈ V, i < j},
costs ce ∈ R>0 and infrastructure improvements ue ∈ R>0 for all e ∈ E,
a set of municipalities M ,
a set of edges Em ⊆ E, a set of OD pairs Dm ⊆ D, Dm ̸= ∅, a budget Bm ∈ R>0 and an
investment factor bm ∈ R>0 for all m ∈ M such that

⋃
m∈M Em = E,

a maximum number of potential passengers ad ∈ N>0 for all d ∈ D,
a lower bound Ld ∈ R>0 with Ld ≤

∑
e∈Wd

ue for all d ∈ D (needed only for ROI in the
MinImprov case).

The aim of the basic version EIP of the Edge Investment Problem is to determine a
subset F ⊆ E of edges to be upgraded such that the budget constraints∑

e∈F ∩Em

ce ≤ Bm for all m ∈ M (1)

are met and the number of newly attracted passengers
∑

d∈D pd(F) is maximized, where
pd(F) ∈ [0, ad] denotes the number of passengers of OD pair d ∈ D that are newly attracted
depending on F according to Definition 1.
In order to take into account that a municipality might require a certain return on investment,
we introduce return on investment constraints∑

e∈F ∩Em

ce ≤ bm ·
∑

d∈Dm

pd(F) for all m ∈ M (2)

in addition to the budget constraints (1) and obtain the model ROI.

R. Hoogervorst, E. van der Hurk, P. Schiewe, A. Schöbel, and R. Urban 9:5

In the following, we address both models EIP and ROI in combination with both objective
functions Linear and MinImprov given in Definition 1, yielding a total of four problems:

EIP-Linear (only constraints (1), Linear objective),
EIP-MinImprov (only constraints (1), MinImprov objective),
ROI-Linear (constraints (1) and (2), Linear objective) and
ROI-MinImprov (constraints (1) and (2), MinImprov objective).

We remark that the EIP-MinImprov model contains the special case in which we only
consider unit costs ce = 1 and unit infrastructure improvements ue = 1 for all edges e ∈ E.
In this case, we are allowed to upgrade at most Bm edges in municipality m ∈ M , and for
OD pair d ∈ D all potential passengers are attracted if at least a number of Ld edges is
upgraded, and no passengers otherwise.

3 Theoretical Analysis

In this section, we study EIP and ROI as well as relaxations. We analyze both problems
with both objectives regarding their complexity and show that all four problems are NP-hard
but admit polynomial special cases.

The first lemma gives an indication about the budget and the investment factor per
passenger that are sufficient such that it is optimal to upgrade all edges.

▶ Lemma 3. In ROI, we can omit constraints in the following cases:
(a) Let m ∈ M . The budget constraint (1) regarding m is redundant if one of the following

assumptions is satisfied:
1. Bm ≥

∑
e∈Em

ce,
2. Bm ≥ bm

∑
d∈Dm

pd(E).

(b) The set F := E is an optimal solution to ROI if Bm ≥
∑

e∈Em
ce and bm ≥

∑
e∈Em

ce∑
d∈Dm

pd(E)

for all m ∈ {1, . . . , M}.

Proof. In case (a1), the assumption clearly yields that the corresponding constraint is always
satisfied. Hence, it is redundant and can be omitted. In case (a2), we have for any F ⊆ E

satisfying the return on investment constraint (2) that also the budget constraint (1) is
satisfied because∑

e∈F ∩Em

ce ≤ bm

∑
d∈Dm

pd(F) ≤ bm

∑
d∈Dm

pd(E) ≤ Bm.

Hence, it is again redundant and can be omitted.
Case (b) implies that case (a1) is satisfied for all m ∈ M . Hence, all budget constraints (1)

can be omitted. This yields that F := E is a feasible solution because the return on investment
constraints (2) are also satisfied for all m ∈ M by assumption:

bm

∑
d∈Dm

pd(E) ≥
∑

e∈Em
ce∑

d∈Dm
pd(E)

∑
d∈Dm

pd(E) =
∑

e∈E∩Em

ce.

Finally, F = E is an optimal solution as most passengers are attracted when all edges are
upgraded. ◀

ATMOS 2022

9:6 Upgrading Transit Line Segments with Multiple Investing Parties

3.1 The Linear Case
We start the theoretical analysis by giving a linear integer programming (IP) formulation
of ROI-Linear in IP (3). For all e ∈ E, we introduce a binary variable xe ∈ {0, 1} which
satisfies that xe = 1 if and only if edge e is upgraded. Simplifying the notation by setting
µd := ad∑

e′∈Wd
ue′

, we get:

max
xe

∑
d∈D

(
µd

∑
e∈Wd

uexe

)
s.t.

∑
e∈Em

cexe ≤ Bm for all m ∈ M

∑
e∈Em

cexe ≤ bm ·
∑

d∈Dm

(
µd

∑
e∈Wd

uexe

)
for all m ∈ M

xe ∈ {0, 1} for all e ∈ E.

(3)

By pre-computing

ũe :=
∑

d∈D:
e∈Wd

µdue and ũm
e :=

∑
d∈Dm:
e∈Wd

bmµdue

for all e ∈ E and m ∈ M , this problem can equivalently be reformulated as follows:

max
xe

∑
e∈E

ũexe

s.t.
∑

e∈Em

cexe ≤ Bm for all m ∈ M

∑
e∈Em

(ce − ũm
e)xe −

∑
e∈E\Em

ũm
e xe ≤ 0 for all m ∈ M

xe ∈ {0, 1} for all e ∈ E.

Hence, EIP-Linear and ROI-Linear are multidimensional 0-1 knapsack problems. Note
that negative weights occur in the reformulated return on investment constraints. Moreover,
both problems are NP-hard by a reduction from 0-1 knapsack as Theorem 4 shows.

▶ Theorem 4. EIP-Linear and ROI-Linear are both NP-hard.

Proof. As EIP-Linear is a special case of ROI-Linear, it suffices to prove that they are
both in NP and that the decision version of EIP-Linear, which we call EIP-Linear again
for the sake of simplicity, is NP-complete. Given a solution to EIP-Linear or ROI-Linear,
we can check in polynomial time whether the budget constraints and (if applicable) the
return on investment constraints are satisfied and a certain value in the objective function is
reached.

We reduce (the decision version of) 0-1 knapsack to EIP-Linear. Let k elements with
rewards ri ∈ Z>0 and weights wi ∈ Z>0 for all i ∈ {1, . . . , k}, a budget B and a bound S′

be given. We construct an instance of EIP-Linear as follows: We set S := S′, n := k + 1,
this means V := {1, . . . , k + 1}, E := {ei : i ∈ {1, . . . , k}}, D := {(i, i + 1) : i ∈ {1, . . . , k}},
cei

:= wi and uei
:= 1 for all i ∈ {1, . . . , k}, M := {1}, B1 := B and ad := ri for all

d = (i, i + 1) with i ∈ {1, . . . , k}. We show that every feasible solution F ′ ⊆ {1, . . . , k}

R. Hoogervorst, E. van der Hurk, P. Schiewe, A. Schöbel, and R. Urban 9:7

of 0-1 knapsack with an objective value of at least S′ corresponds to a feasible solution
F ⊆ E of EIP-Linear with an objective value of at least S. The solutions F ′ and F

correspond to each other as follows: i ∈ F ′ if and only if ei ∈ F . Then the claim holds
because

∑
i∈F ′ wi =

∑
i∈F ′ cei

=
∑

e∈F ce and

∑
i∈F ′

ri =
∑

ei∈F

a(i,i+1) =
∑

d=(i,i+1):
i∈{1,...,k}

(∑
e∈F ∩{ei} 1

1 · ad

)
=
∑
d∈D

(∑
e∈F ∩Wd

ue∑
e∈Wd

ue
· ad

)
. ◀

Note that EIP-Linear can be decomposed into |M | independent knapsack problems and
hence can be solved in pseudo-polynomial time by dynamic programming. In the following,
we identify a case in which it is even polynomially solvable. To this end, we review the
consecutive ones property, which is well known in the literature (see, e.g., [15, 18, 5, 4]).

▶ Definition 5 (Consecutive Ones Property). A matrix A ∈ {0, 1}k×l satisfies the consecutive
ones property (C1P) on the rows if for all rows i ∈ {1, . . . , k} it holds: If Ai,j = 1 and
Ai,j′ = 1 for some j, j′ ∈ {1, . . . , l}, j < j′, then Ai,j̄ = 1 for all j ≤ j̄ ≤ j′.

▶ Lemma 6 ([21]). If a matrix A ∈ {0, 1}k×l satisfies C1P, then A is totally unimodular.

▶ Lemma 7. EIP-Linear can be solved in polynomial time if ce = 1 for all e ∈ E.

Proof. We sort the edges and municipalities from one end of the line to the other. Let
A ∈ R|M |×|E| be the coefficient matrix of the budget constraints, i.e., for all m ∈ M and
e ∈ E, we have Am,e = 1 if e ∈ Em, and Am,e = 0 otherwise. Because of the assumption
that the municipalities contain only consecutive edges, the matrix A satisfies the consecutive
ones property. By Lemma 6, it is totally unimodular and the linear programming relaxation
of IP (3) yields an integer solution. Therefore, the problem can be solved in polynomial
time [21]. ◀

3.2 The MinImprov Case
We present a linear IP formulation of ROI-MinImprov in IP (4). For all e ∈ E, we introduce
a binary variable xe ∈ {0, 1} which satisfies that xe = 1 if and only if edge e is upgraded.
Additionally, we need a binary variable yd ∈ {0, 1} for all d ∈ D which satisfies in each
optimal solution that yd = 1 if and only if Ld ≤

∑
e∈F ∩Wd

ue for the set F ⊆ E of upgraded
edges due to the maximization. This yields the following IP:

max
xe,yd

∑
d∈D

adyd

s.t.
∑

e∈Em

cexe ≤ Bm for all m ∈ M

∑
e∈Em

cexe ≤ bm ·
∑

d∈Dm

adyd for all m ∈ M

Ldyd ≤
∑

e∈Wd

uexe for all d ∈ D

xe ∈ {0, 1} for all e ∈ E

yd ∈ {0, 1} for all d ∈ D.

(4)

As before, we prove NP-hardness of EIP-MinImprov by a reduction from 0-1 knapsack.

ATMOS 2022

9:8 Upgrading Transit Line Segments with Multiple Investing Parties

▶ Theorem 8. EIP-MinImprov and ROI-MinImprov are both NP-hard, even if ue = 1
for all e ∈ E and Ld = 1 for all d ∈ D.

Proof. As in the proof of Theorem 4, EIP-MinImprov is a special case of ROI-MinImprov
and both problems are in NP.

Further, we apply the same reduction from 0-1 knapsack to EIP-MinImprov and
additionally choose Ld := 1 for all d ∈ D. It remains to show that the objective value is the
same for solutions that correspond to each other. We have that∑

d∈D:
Ld≤

∑
e∈F ∩Wd

ue

ad =
∑
i∈F ′

ri,

because

{d ∈ D : Ld ≤
∑

e∈F ∩Wd

ue} = {(i, i + 1) : i ∈ {1, . . . , k} and 1 ≤
∑

e∈F ∩{ei}

1}

= {(i, i + 1) : i ∈ {1, . . . , k} and ei ∈ F} = {(i, i + 1) : i ∈ F ′}. ◀

Exploiting C1P, we again obtain a polynomial special case in the following lemma:

▶ Lemma 9. EIP-MinImprov can be solved in polynomial time if ce = 1, ue = 1 for all
e ∈ E and Ld = 1 for all d ∈ D.

Proof. We again sort the edges and municipalities from one end of the line to the other. The
considered special case yields the following simplified formulation:

max
xe,yd

∑
d∈D

adyd

s.t.
∑

e∈Em

xe ≤ Bm for all m ∈ M

∑
e∈Wd

−xe + yd ≤ 0 for all d ∈ D

xe ∈ {0, 1} for all e ∈ E

yd ∈ {0, 1} for all d ∈ D.

The coefficient matrix of the budget and return on investment constraints is of the form

A =
[

A1 0
−A2 I

]
, where I ∈ R|D|×|D| is the unit matrix, A1 ∈ R|M |×|E| denotes whether an

edge belongs to a municipality, and A2 ∈ R|D|×|E| denotes whether an edge is on the path of
an OD pair. Formally, we have for all m ∈ M , d ∈ D and e ∈ E that

A1
m,e =

{
1 if e ∈ Em,

0 otherwise
and A2

d,e =
{

1 if e ∈ Wd,

0 otherwise.

The matrix A1 has C1P because of the assumption that municipalities contain only consecutive
edges, and A2 has C1P because the considered graph is a line graph. As multiplying a row of
a matrix by -1 only influences the sign of the determinant of the matrix and its submatrices,

the matrix
[

A1

−A2

]
is totally unimodular by Lemma 6. This yields that the coefficient matrix

A, which we obtain by appending a part of a unit matrix to the TU matrix, is also totally
unimodular. Therefore, the linear programming relaxation yields an integer solution in this
special case, and the problem can be solved in polynomial time [21]. ◀

R. Hoogervorst, E. van der Hurk, P. Schiewe, A. Schöbel, and R. Urban 9:9

3.3 Relaxations and Dual Bounds

Because ROI and EIP are NP-hard with both objective functions, we study different
relaxations and bounds on the objective value of the Edge Investment Problem. The
trivial lower and upper bounds are 0 and

∑
d∈D ad, respectively.

First, it is easy to see that EIP is a relaxation of ROI because the return on investment
constraints (2) are omitted in EIP, which expands the feasible set, but the objective stays
the same. Hence, EIP yields an upper bound on the number of newly attracted passengers in
ROI. However, EIP is NP-hard itself for both objective functions. Therefore, we consider the
special cases of Lemmas 7 and 9, which are relaxations of EIP-Linear and EIP-MinImprov,
respectively, as the following results show.

▶ Lemma 10. Let m ∈ M . If F ⊆ E satisfies budget constraint (1) regarding m, then it
also satisfies |F ∩ Em| ≤ Bm

min{ce:e∈Em} .

Proof. By assumption, it holds that Bm ≥
∑

e∈F ∩Em
ce ≥

∑
e∈F ∩Em

min{ce : e ∈ Em}.
Hence, we also have that Bm

min{ce:e∈Em} ≥
∑

e∈F ∩Em
1 = |F ∩ Em|. ◀

▶ Lemma 11. Let F ⊆ E and d ∈ D. If Ld ≤
∑

e∈F ∩Wd
ue, then we also have 1 ≤ |F ∩ Wd|.

Proof. By assumption, it holds that Ld ≤
∑

e∈F ∩Wd
ue ≤

∑
e∈F ∩Wd

max{ue : e ∈ Wd}.
Hence, we also have that |F ∩ Wd| =

∑
e∈F ∩Wd

1 ≥ Ld

max{ue:e∈Wd} . Integer rounding yields

|F ∩ Wd| ≥
⌈

Ld

max{ue:e∈Wd}

⌉
≥ 1. ◀

From Lemmas 10 and 11, we obtain the following relaxations:

▶ Corollary 12. The following problem is a relaxation of EIP:

max
F ⊆ E

∑
d∈D

pd(F)

s.t. |F ∩ Em| ≤ Bm

min{ce : e ∈ Em}
for all m ∈ M.

Considering EIP-Linear, the relaxation in Corollary 12 is of the same form as the
problem considered in Lemma 7 and can, hence, be solved in polynomial time.

▶ Corollary 13. The following problem is a relaxation of EIP-MinImprov:

max
F ⊆ E

∑
d∈D:

1≤|F ∩Wd|

ad

s.t. |F ∩ Em| ≤ Bm

min{ce : e ∈ Em}
for all m ∈ {1, . . . , M}.

The relaxation in Corollary 13 is of the same form as the problem considered in Lemma 9
and can, hence, be solved in polynomial time.

ATMOS 2022

9:10 Upgrading Transit Line Segments with Multiple Investing Parties

4 Computational Study

In the computational study, we evaluate the impact of the model variants, the budgets and
the investment factors on the choice of edges to be upgraded. We first present the results for
a set of artificial instances and afterwards for the proposed BRT line in Copenhagen.

4.1 Artificial Instances
We evaluate the models on a set of artificial instances, where each instance is determined by
a graph scenario α = (α1, α2, α3) and a budget scenario β = (β1, β2, β3) as given in Table 1.
The data is available at https://doi.org/10.11583/DTU.c.6130014.

Table 1 Parameters for generating artificial instances.

Parameter Value Explanation

α1 size 10
25

10 stations with 2 municipalities
25 stations with 5 municipalities

α2 segment costs
UNIT
MIDDLE
ENDS

unit costs of ce = 1 for all e ∈ E

more expensive towards the middle of the line
more expensive towards the end stations of the line

α3 demand pattern
EVEN
CENTER
END

same amount per OD pair
centered around a number of large stations
strong demand between end stations of the line

β1 budget limit
1
0.8
0.6

determines available overall budget as fraction of the costs
for upgrading all edges, i.e., B = β1

∑
e∈E

ce

β2 budget split
even
cost
pass

budget B evenly distributed to municipalities
Bm proportional to the costs of the edges in municipality m

Bm proportional to the number of passengers interesting
for municipality m

β3 scaling factor 1.2
1 investment factor per passenger given by bm = β3

∑
e∈E

ce∑
d∈D

ad

Evaluation

For each combination of a graph α and a budget scenario β, we determine an optimal
solution using both of the proposed objectives: Linear and MinImprov. For the latter,
we require that 75% of the edges on the path of an OD pair are upgraded before the
passengers corresponding to that OD pair are attracted. For Linear, the infrastructure
improvement ue of an edge e ∈ E is drawn at random. Moreover, we vary for both objectives
which constraints are enforced: only one overall budget for a global decision maker (SOC),
budget constraints (1) for all municipalities (EIP), and both constraints (1) and (2) for all
municipalities (ROI). The models are solved by means of the commercial solver CPLEX 22.1.

https://doi.org/10.11583/DTU.c.6130014

R. Hoogervorst, E. van der Hurk, P. Schiewe, A. Schöbel, and R. Urban 9:11

Runtime

Table 2 shows the obtained average runtimes in milliseconds, split out over the different
objectives, cost types and budget variants. Next to the influence of the number of stations, the
results show that the model SOC with only a global budget constraint is (often) the hardest
to solve for objective MinImprov. Moreover, in most cases ROI is harder to solve than EIP,
and ROI often turns out to be the hardest model to solve for objective Linear. Considering
the different cost types for objective Linear shows that the polynomially solvable special
case of UNIT costs for SOC and EIP is indeed solved much faster than MIDDLE or ENDS.
For MinImprov, there is no clearly easiest cost type as UNIT would only be polynomially
solvable if the lower bound Ld would be chosen as 1. The overall low runtimes suggest that
specialized polynomial-time algorithms are not necessary for realistically sized instances.

Table 2 Average runtime in milliseconds.

α1 = 10 α1 = 25
Objective α2 SOC EIP ROI SOC EIP ROI

Linear UNIT 3.09 3.00 4.11 9.09 8.54 19.20
Linear MIDDLE 13.37 5.96 6.96 28.54 18.26 33.76
Linear ENDS 18.78 7.02 10.91 18.11 18.43 31.41

MinImprov UNIT 30.61 15.46 15.35 508.63 106.33 128.30
MinImprov MIDDLE 17.87 21.33 22.87 2622.13 76.48 149.94
MinImprov ENDS 23.74 21.70 24.03 591.54 79.02 159.87

What is gained by collaborating?

In Figure 1, we see the investment and the number of attracted passengers for the models
SOC, EIP and ROI for objective functions Linear and MinImprov. As expected, SOC
results in the highest investments for each budget limit β1 ∈ {1, 0.8, 0.6} as well as the highest
number of attracted passengers. Similarly, EIP results in higher (or equal) investments and
attracted passengers than ROI, as ROI is the more restrictive model. For all budget limits,
especially the lower ones, the median share of newly attracted passengers is higher for the
objective Linear than for the objective MinImprov. Moreover, for the objective Linear,
the median share of newly attracted passengers is always higher than the median share of
investments. This is also true for objective MinImprov with a budget limit β1 ∈ {1, 0.8},
while it is distinctly lower for β1 = 0.6. This shows that in the distributed setting EIP and
especially in the benefit-oriented setting ROI, it is more difficult to upgrade 75% of the edges
of the path of an OD pair. Note that in the benefit-oriented case ROI, the 25th percentile
sometimes reaches zero, i.e., in the MinImprov case, the municipalities relatively often do
not invest at all.

ATMOS 2022

9:12 Upgrading Transit Line Segments with Multiple Investing Parties

SOC
1

EIP
1

ROI
1

SOC
0.8

EIP
0.8

ROI
0.8

SOC
0.6

EIP
0.6

ROI
0.6

0.0

0.2

0.4

0.6

0.8

1.0

(a) Linear, evaluating investment.

SOC
1

EIP
1

ROI
1

SOC
0.8

EIP
0.8

ROI
0.8

SOC
0.6

EIP
0.6

ROI
0.6

0.0

0.2

0.4

0.6

0.8

1.0

(b) Linear, evaluating attracted passengers.

SOC
1

EIP
1

ROI
1

SOC
0.8

EIP
0.8

ROI
0.8

SOC
0.6

EIP
0.6

ROI
0.6

0.0

0.2

0.4

0.6

0.8

1.0

(c) MinImprov, evaluating investment.

SOC
1

EIP
1

ROI
1

SOC
0.8

EIP
0.8

ROI
0.8

SOC
0.6

EIP
0.6

ROI
0.6

0.0

0.2

0.4

0.6

0.8

1.0

(d) MinImprov, evaluating attracted passengers.

Figure 1 Box plots showing the share of investment and attracted passengers compared to
upgrading all segments for varying budget limits. The orange line marks the median, the box the
25th- to 75th-percentile.

How does changing the budget split β2 influence the passengers?

Table 3 shows the influence of the budget split β2 in EIP and ROI on the number of attracted
passengers for different passenger demand patterns α3. For all three demand patterns,
splitting the demand according to the costs of the municipalities’ segments yields the highest
number of attracted passengers. While for the objective function Linear, switching between
EIP and ROI has almost no influence, there is a considerable difference between EIP and
ROI for MinImprov. This is especially the case for demand pattern END and, to a lesser
extent, for demand pattern EVEN. The reduction in passenger potential is considerably lower
for demand pattern CENTER, which is the demand pattern that has the highest passenger
potential for both models.

Table 3 Influence of the budget split β2 on the attracted passengers.

EIP ROI
Objective α3 β2 = cost β2 = even β2 = pass β2 = cost β2 = even β2 = pass

Linear CENTER 85.96% 83.61% 83.65% 85.53% 83.61% 83.65%
Linear END 79.74% 75.55% 72.23% 77.00% 74.98% 72.23%
Linear EVEN 80.31% 76.92% 76.92% 80.31% 76.92% 76.92%

MinImprov CENTER 79.83% 77.51% 77.49% 78.18% 77.04% 76.98%
MinImprov END 60.29% 54.41% 45.07% 47.64% 33.67% 26.12%
MinImprov EVEN 66.06% 61.33% 61.33% 60.62% 54.52% 54.52%

R. Hoogervorst, E. van der Hurk, P. Schiewe, A. Schöbel, and R. Urban 9:13

Upgrading segments in a dynamic setting

When increasing the budget, more segments can be upgraded in order to attract more
passengers. This is especially important when a fixed budget is available now, but more
budget might be available in the future. In our experiments, we see that the segments
upgraded for a low budget are almost always also upgraded for a higher budget: When
increasing the budget limit β1 from 0.6 to 0.8 and from 0.8 to 1, respectively, only 2.4% of
the segments are upgraded for the lower budget limit and would not be upgraded for the
higher one. Thus, we conclude that implementing an optimal solution for a low budget allows
for an optimal solution when increasing the budget later on in the vast majority of cases. In
this sense, a greedy heuristic seems to be a good solution approach here. For an example,
see Figure 4 in Appendix A.

4.2 Copenhagen Case Study

The analyzed problem is motivated by the plans to build a set of new BRT lines in the
Copenhagen Region. One of these lines will run foremost along the route of the current bus
line 400S. The line runs through several municipalities, that each individually need to decide
on the route approval, investment budget and upgrading of the segments. A pre-assessment
study was conducted for the line that calculated the expected costs, travel durations and
number of passengers per station for five different route alternatives, see Figure 2.

Figure 2 Route alternatives for a new BRT line in the Copenhagen Region. Adapted from [19].

ATMOS 2022

9:14 Upgrading Transit Line Segments with Multiple Investing Parties

We use the data about the five route alternatives from the pre-assessment study to
construct instances for EIP and ROI. These instances contain between 24 and 32 stations
depending on the route alternative, with the restriction that there are two edges that are not
upgradable. To obtain OD-data, we translate station passenger demand information to OD
pair demands according to the classical gravity model [14]. Moreover, as the municipalities
still have to decide on the investments that they are willing to make, we create budget
scenarios β = (β1, β2, β3) as in the artificial instances according to Table 1.

Evaluation

For all five route alternatives, considering the model SOC or EIP with the same budget limit
β1, the investment is almost the same for the objectives Linear and MinImprov (see, e.g.,
Figures 5 and 6 in Appendix A). However, the numbers of passengers that are attracted are
considerably lower for MinImprov. Note that particularly fewer passengers can be attracted
in the benefit-oriented problem ROI-MinImprov for some of the route alternatives. A
reason might be that it is difficult to achieve an upgrade of 75% of the edges on the path of
an OD pair, especially because there are two segments on the routes that are not allowed to
be upgraded.

When comparing the various route alternatives, the goal is to determine which one has
the highest potential to attract new passengers without leading to high investment costs.
Figure 3 shows that for both passenger behavior patterns investigated here, i.e., for the
objective functions Linear and MinImprov, route alternatives 4 and 5 have the highest
potential to attract new passengers for all budget limits and all models SOC, EIP and ROI.
These two route alternatives are therefore to be given preference. A peculiarity of route
alternatives 1 and 2 is that one municipality contains a costly highway segment in the middle
(see Figure 5 in Appendix A). An investment would be very advantageous for passengers
in general, but the investing municipality would not benefit as much because there are no
stations along this costly highway segment that can attract new passengers. Therefore, this
segment is only upgraded in SOC and EIP:cost with β1 = 1.0, and in particular never in
ROI. Note that this costly segment is not contained in the preferable route alternatives 4
and 5 (see Figure 6 in Appendix A).

1500 2000 2500 3000 3500 4000 4500
attracted passengers

to
ta

l i
nv

es
tm

en
t

(a) Linear.

1500 2000 2500 3000 3500 4000 4500
attracted passengers

to
ta

l i
nv

es
tm

en
t

(b) MinImprov. (c) Legend.

Figure 3 Comparing investment costs and attracted passengers for the different route alternatives.
Note that the x- and the y-axes are scaled the same in both plots.

R. Hoogervorst, E. van der Hurk, P. Schiewe, A. Schöbel, and R. Urban 9:15

5 Conclusion

In this paper, we introduced the Edge Investment Problem, which is motivated by the
construction of a new BRT line around Copenhagen and which aims to capture a maximum
amount of new passengers. We modeled the problem mathematically, developed linear integer
programming formulations and analyzed the complexity. Additionally, we evaluated both
the Copenhagen case study as well as related artificial instances concerning the investment
and the newly attracted passengers.

The presented models can also be applied to general graphs, which is considered in
ongoing research. Here, an upgrade of one edge can affect several lines such that the problem
structure gets more involved. Future work could also consider the connectivity of upgraded
edges in addition to the gained infrastructure improvements, as their relative arrangement
might have an impact on the attractiveness to passengers of a BRT line as well. For example,
if the bus often switches between normal traffic and the dedicated BRT infrastructure, it
might no longer be perceived as a BRT line by the passengers. Hence, a preferred solution
would contain long consecutive sections of upgraded edges.

Further, a natural extension of the problem analysis is to model the Edge Investment
Problem in a game-theoretic setting. In addition to the municipalities, it is interesting to
consider a central authority that can either subsidize the investments of the municipalities or
invest in any edges itself with respect to a budget constraint. This could give new incentives
for the municipalities to invest.

When extending the problem to general graphs with multiple lines, it might also be
beneficial to consider the Edge Investment Problem in an integrated setting, see [16].
Here, combinations with line planning, passenger routing and tariff planning based on [17]
are especially promising.

References
1 M. Baldomero-Naranjo, J. Kalcsics, A. Marín, and A. M. Rodríguez-Chía. Upgrading edges in

the maximal covering location problem. European Journal of Operational Research, 303(1):14–
36, 2022. doi:10.1016/j.ejor.2022.02.001.

2 R. Camporeale, L. Caggiani, and M. Ottomanelli. Modeling horizontal and vertical equity in
the public transport design problem: A case study. Transportation Research Part A: Policy
and Practice, 125:184–206, July 2019. doi:10.1016/j.tra.2018.04.006.

3 L. Deng, W. Gao, W. Zhou, and T. Lai. Optimal Design of Feeder-bus Network Related
to Urban Rail Line based on Transfer System. Procedia - Social and Behavioral Sciences,
96:2383–2394, November 2013. doi:10.1016/j.sbspro.2013.08.267.

4 M. Dom. Algorithmic Aspects of the Consecutive-Ones Property, 2009.
5 M. Dom, J. Guo, R. Niedermeier, and S. Wernicke. Red-blue covering problems and the

consecutive ones property. Journal of Discrete Algorithms, 6(3):393–407, September 2008.
doi:10.1016/j.jda.2007.11.002.

6 N. González-Blanco, A. J. Lozano, V. Marianov, and J. A. Mesa. An Integrated Model
for Rapid and Slow Transit Network Design. In Matthias Müller-Hannemann and Federico
Perea, editors, 21st Symposium on Algorithmic Approaches for Transportation Modelling,
Optimization, and Systems (ATMOS 2021), volume 96 of Open Access Series in Informatics
(OASIcs), pages 18:1–18:6, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. doi:10.4230/OASIcs.ATMOS.2021.18.

7 S. O. Krumke, M. V. Marathe, H. Noltemeier, R. Ravi, and S. S. Ravi. Approximation Algo-
rithms for Certain Network Improvement Problems. Journal of Combinatorial Optimization,
2(3):257–288, September 1998. doi:10.1023/A:1009798010579.

ATMOS 2022

https://doi.org/10.1016/j.ejor.2022.02.001
https://doi.org/10.1016/j.tra.2018.04.006
https://doi.org/10.1016/j.sbspro.2013.08.267
https://doi.org/10.1016/j.jda.2007.11.002
https://doi.org/10.4230/OASIcs.ATMOS.2021.18
https://doi.org/10.1023/A:1009798010579

9:16 Upgrading Transit Line Segments with Multiple Investing Parties

8 G. Laporte and J. A. Mesa. The Design of Rapid Transit Networks. In Gilbert Laporte, Stefan
Nickel, and Francisco Saldanha da Gama, editors, Location Science, pages 687–703. Springer
International Publishing, Cham, 2019. doi:10.1007/978-3-030-32177-2_24.

9 G. Laporte, J. A. Mesa, and F. A. Ortega. Optimization methods for the planning of
rapid transit systems. European Journal of Operational Research, 122(1):1–10, April 2000.
doi:10.1016/S0377-2217(99)00016-8.

10 J. Liang, J. Wu, Z. Gao, H. Sun, X. Yang, and H. K. Lo. Bus transit network design with
uncertainties on the basis of a metro network: A two-step model framework. Transportation
Research Part B: Methodological, 126:115–138, August 2019. doi:10.1016/j.trb.2019.05.
011.

11 Y. Lin and K. Mouratidis. Best upgrade plans for single and multiple source-destination pairs.
GeoInformatica, 19(2):365–404, April 2015. doi:10.1007/s10707-014-0219-1.

12 Movia. BRT på Ring 4 – Mulighedsstudie af BRT mellem Ishøj og Lyngby. Technical
report, Movia, 2020. In Danish. URL: https://www.moviatrafik.dk/media/hgzhlcox/
brt-400s-i-ring-4-ishoej-lyngby-komprimeret-final-a.pdf.

13 L. Murawski and R. L. Church. Improving accessibility to rural health services: The maximal
covering network improvement problem. Socio-Economic Planning Sciences, 43(2):102–110,
June 2009. doi:10.1016/j.seps.2008.02.012.

14 J.-P. Rodrigue. The geography of transport systems. Routledge, 2020. doi:10.4324/
9780429346323.

15 N. Ruf and A. Schöbel. Set covering with almost consecutive ones property. Discrete
Optimization, 1(2):215–228, November 2004. doi:10.1016/j.disopt.2004.07.002.

16 P. Schiewe and A. Schöbel. Integrated optimization of sequential processes: General analysis
and application to public transport. EURO Journal on Transportation and Logistics, 11:100073,
2022. doi:10.1016/j.ejtl.2022.100073.

17 A. Schöbel and R. Urban. The cheapest ticket problem in public transport. Transportation
Science, 2022. doi:10.1287/trsc.2022.1138.

18 A. Schöbel. Locating Stops Along Bus or Railway Lines—A Bicriteria Problem. Annals of
Operations Research, 136(1):211–227, April 2005. doi:10.1007/s10479-005-2046-0.

19 Vejdirektoratet, Rambøll, and MoeTetraplan. BRT i Ring 4-korridoren – forberedende analyse
fra Ishøj station til kommunegrænsen til Lyngby-Taarbæk kommune. Technical report,
Vejdirektoratet, 2022. In Danish. URL: https://dagsordener.gladsaxe.dk/vis/pdf/bilag/
5398c71e-b824-48ac-9058-6e0fe75a2a5c.

20 H. Wang and X. Zhang. Game theoretical transportation network design among multi-
ple regions. Annals of Operations Research, 249(1):97–117, February 2017. doi:10.1007/
s10479-014-1700-9.

21 L. A. Wolsey and G. L. Nemhauser. Integer and combinatorial optimization, volume 55. John
Wiley & Sons, 1999.

22 J. Z. Zhang, X. G. Yang, and M. C. Cai. A Network Improvement Problem Under Different
Norms. Computational Optimization and Applications, 27(3):305–319, March 2004. doi:
10.1023/B:COAP.0000013061.17529.79.

https://doi.org/10.1007/978-3-030-32177-2_24
https://doi.org/10.1016/S0377-2217(99)00016-8
https://doi.org/10.1016/j.trb.2019.05.011
https://doi.org/10.1016/j.trb.2019.05.011
https://doi.org/10.1007/s10707-014-0219-1
https://www.moviatrafik.dk/media/hgzhlcox/brt-400s-i-ring-4-ishoej-lyngby-komprimeret-final-a.pdf
https://www.moviatrafik.dk/media/hgzhlcox/brt-400s-i-ring-4-ishoej-lyngby-komprimeret-final-a.pdf
https://doi.org/10.1016/j.seps.2008.02.012
https://doi.org/10.4324/9780429346323
https://doi.org/10.4324/9780429346323
https://doi.org/10.1016/j.disopt.2004.07.002
https://doi.org/10.1016/j.ejtl.2022.100073
https://doi.org/10.1287/trsc.2022.1138
https://doi.org/10.1007/s10479-005-2046-0
https://dagsordener.gladsaxe.dk/vis/pdf/bilag/5398c71e-b824-48ac-9058-6e0fe75a2a5c
https://dagsordener.gladsaxe.dk/vis/pdf/bilag/5398c71e-b824-48ac-9058-6e0fe75a2a5c
https://doi.org/10.1007/s10479-014-1700-9
https://doi.org/10.1007/s10479-014-1700-9
https://doi.org/10.1023/B:COAP.0000013061.17529.79
https://doi.org/10.1023/B:COAP.0000013061.17529.79

R. Hoogervorst, E. van der Hurk, P. Schiewe, A. Schöbel, and R. Urban 9:17

A Appendix: Further Evaluations

100%1 100%

80%0.8 92%

59%0.6 80%

SO
C

80%1 92%

73%0.8 87%

55%0.6 77%

EI
P:

ev
en

80%1 92%

73%0.8 87%

55%0.6 77%

RO
I:

ev
en

, 1
.2

80%1 92%

73%0.8 87%

55%0.6 77%

RO
I:

ev
en

, 1
.0

100%1 100%

77%0.8 89%

56%0.6 77%

EI
P:

co
st

100%1 100%

77%0.8 89%

56%0.6 77%

RO
I:

co
st

, 1
.2

90%1 96%

73%0.8 87%

56%0.6 77%

RO
I:

co
st

, 1
.0

80%1 92%

66%0.8 85%

55%0.6 77%

EI
P:

pa
ss

80%1 92%

66%0.8 85%

55%0.6 77%

RO
I:

pa
ss

, 1
.2

80%1 92%

66%0.8 85%

55%0.6 77%

RO
I:

pa
ss

, 1
.0

in
ve

st
m

en
t

pa
ss

en
ge

rs

bu
dg

et
 li

m
it

Figure 4 Example for upgraded line segments, α1 = 25, α2 = ENDS, α3 = CENTER for objective
Linear. For each model SOC, EIP with β2, ROI with β2, β3, the segments upgrades for budget
limit β1 ∈ {1, 0.8, 0.6} are given. Segments are colored according to the corresponding municipality
if they are upgraded and are gray if they are not upgraded. The shade of the color gives the share
of the passengers using the segment compared to the total number of potential passengers. The
width of a segment corresponds to its costs. The passenger distribution for the completely upgraded
BRT line is given at the top. The investment is given as a percentage of the costs of the complete
BRT line and the passengers attracted are given as a percentage of the potential of the completely
upgraded BRT line.

ATMOS 2022

9:18 Upgrading Transit Line Segments with Multiple Investing Parties

10
0%

1
86

%
SO

C

10
0%

1
86

%
EI

P:
co

st

62
%

1
80

%
RO

I:c
os

t,
1.

2

53
%

1
76

%
RO

I:c
os

t,
1

59
%

1
79

%
EI

P:
pa

ss

59
%

1
79

%
RO

I:p
as

s,
1.

2

53
%

1
76

%
RO

I:p
as

s,
1

75
%

0.
8

85
%

SO
C

46
%

0.
8

67
%

EI
P:

co
st

41
%

0.
8

66
%

RO
I:c

os
t,

1.
2

34
%

0.
8

64
%

RO
I:c

os
t,

1

53
%

0.
8

76
%

EI
P:

pa
ss

53
%

0.
8

76
%

RO
I:p

as
s,

1.
2

53
%

0.
8

76
%

RO
I:p

as
s,

1

60
%

0.
6

79
%

SO
C

36
%

0.
6

63
%

EI
P:

co
st

36
%

0.
6

63
%

RO
I:c

os
t,

1.
2

33
%

0.
6

61
%

RO
I:c

os
t,

1

44
%

0.
6

70
%

EI
P:

pa
ss

44
%

0.
6

70
%

RO
I:p

as
s,

1.
2

44
%

0.
6

70
%

RO
I:p

as
s,

1

investment

passengers

budget limit

(a
)

Li
ne

ar
.

10
0%

1
77

%
SO

C

10
0%

1
77

%
EI

P:
co

st

48
%

1
67

%
RO

I:c
os

t,
1.

2

36
%

1
59

%
RO

I:c
os

t,
1

55
%

1
69

%
EI

P:
pa

ss

48
%

1
67

%
RO

I:p
as

s,
1.

2

36
%

1
59

%
RO

I:p
as

s,
1

75
%

0.
8

76
%

SO
C

44
%

0.
8

52
%

EI
P:

co
st

24
%

0.
8

45
%

RO
I:c

os
t,

1.
2

16
%

0.
8

40
%

RO
I:c

os
t,

1

52
%

0.
8

66
%

EI
P:

pa
ss

45
%

0.
8

65
%

RO
I:p

as
s,

1.
2

36
%

0.
8

59
%

RO
I:p

as
s,

1

58
%

0.
6

72
%

SO
C

35
%

0.
6

48
%

EI
P:

co
st

23
%

0.
6

43
%

RO
I:c

os
t,

1.
2

14
%

0.
6

38
%

RO
I:c

os
t,

1

45
%

0.
6

60
%

EI
P:

pa
ss

39
%

0.
6

59
%

RO
I:p

as
s,

1.
2

33
%

0.
6

55
%

RO
I:p

as
s,

1

investment

passengers

budget limit
(b

)
M

in
Im

pr
ov

.

Fi
gu

re
5

O
ve

rv
ie

w
of

th
e

up
gr

ad
ed

se
gm

en
ts

fo
r

ro
ut

e
al

te
rn

at
iv

e
1.

T
he

fir
st

tw
o

ed
ge

s
ar

e
no

t
al

lo
w

ed
to

be
up

gr
ad

ed
.

R. Hoogervorst, E. van der Hurk, P. Schiewe, A. Schöbel, and R. Urban 9:19

10
0%

1
88

%
SO

C

10
0%

1
88

%
EI

P:
co

st

80
%

1
83

%
RO

I:c
os

t,
1.

2

75
%

1
81

%
RO

I:c
os

t,
1

75
%

1
81

%
EI

P:
pa

ss

75
%

1
81

%
RO

I:p
as

s,
1.

2

75
%

1
81

%
RO

I:p
as

s,
1

80
%

0.
8

84
%

SO
C

67
%

0.
8

72
%

EI
P:

co
st

62
%

0.
8

71
%

RO
I:c

os
t,

1.
2

57
%

0.
8

70
%

RO
I:c

os
t,

1

63
%

0.
8

79
%

EI
P:

pa
ss

63
%

0.
8

79
%

RO
I:p

as
s,

1.
2

63
%

0.
8

79
%

RO
I:p

as
s,

1

60
%

0.
6

78
%

SO
C

53
%

0.
6

67
%

EI
P:

co
st

53
%

0.
6

67
%

RO
I:c

os
t,

1.
2

50
%

0.
6

65
%

RO
I:c

os
t,

1

53
%

0.
6

72
%

EI
P:

pa
ss

53
%

0.
6

72
%

RO
I:p

as
s,

1.
2

53
%

0.
6

72
%

RO
I:p

as
s,

1

investment

passengers

budget limit

(a
)

Li
ne

ar
.

10
0%

1
79

%
SO

C

10
0%

1
79

%
EI

P:
co

st

69
%

1
70

%
RO

I:c
os

t,
1.

2

59
%

1
68

%
RO

I:c
os

t,
1

78
%

1
72

%
EI

P:
pa

ss

67
%

1
69

%
RO

I:p
as

s,
1.

2

59
%

1
68

%
RO

I:p
as

s,
1

80
%

0.
8

76
%

SO
C

66
%

0.
8

61
%

EI
P:

co
st

47
%

0.
8

56
%

RO
I:c

os
t,

1.
2

38
%

0.
8

53
%

RO
I:c

os
t,

1

67
%

0.
8

72
%

EI
P:

pa
ss

59
%

0.
8

68
%

RO
I:p

as
s,

1.
2

55
%

0.
8

67
%

RO
I:p

as
s,

1

58
%

0.
6

69
%

SO
C

52
%

0.
6

55
%

EI
P:

co
st

41
%

0.
6

51
%

RO
I:c

os
t,

1.
2

33
%

0.
6

49
%

RO
I:c

os
t,

1

52
%

0.
6

60
%

EI
P:

pa
ss

44
%

0.
6

57
%

RO
I:p

as
s,

1.
2

44
%

0.
6

57
%

RO
I:p

as
s,

1

investment

passengers

budget limit

(b
)

M
in

Im
pr

ov
.

Fi
gu

re
6

O
ve

rv
ie

w
of

th
e

up
gr

ad
ed

se
gm

en
ts

fo
r

ro
ut

e
al

te
rn

at
iv

e
5.

T
he

fir
st

tw
o

ed
ge

s
ar

e
no

t
al

lo
w

ed
to

be
up

gr
ad

ed
.

ATMOS 2022

A Formulation of MIP Train Rescheduling at
Terminals in Bidirectional Double-Track Lines with
a Moving Block and ATO
Kosuke Kawazoe1 #

Faculty of Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan

Takuto Yamauchi
Faculty of Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan

Kenji Tei
Faculty of Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan

Abstract
When delays in trains occur, train schedules are rescheduled to reduce the impact. Despite many
existing studies of automated train rescheduling, this study focuses on automated rescheduling
considering a moving block and Automatic Train Operation (ATO). This study enables such
automated rescheduling by formalizing this problem as a mixed integer programming (MIP) model.
In previous work, the formulation was achieved for unidirectional single-track railway lines. In this
paper, we aim to achieve the formulation for bidirectional double-track lines. Specifically, we propose
a formulation of constraints about trains’ running terminal stations. To evaluate our automated
rescheduling approach, we implemented an MIP model consisting of a combination of the new
constraints with the previous MIP model. We demonstrated the feasibility of our approach by
applying it to a bidirectional double-track line with eight delay scenarios. We also evaluate the delay
reduction and computation overhead of our approach by comparing it with a baseline with these
eight scenarios. The results show that the total delay of all trains from our approach reduced from
20% to 30% than one from the baseline. On the other hand, the computation time increased from
less than 1 second to a minimum of about 20 seconds and a maximum of about 1600 seconds.

2012 ACM Subject Classification Applied computing → Transportation

Keywords and phrases Train rescheduling, Mixed integer programming, ATO, Moving block

Digital Object Identifier 10.4230/OASIcs.ATMOS.2022.10

1 Introduction

In railway operation, when trains are delayed due to accidents, troubles, or congestions, the
train schedule needs to be often reconstructed as a temporary schedule to reduce the impact
of the delay [4] [13]. This is called train rescheduling. Automated train rescheduling attracts
attention from the industry because manual scheduling is cumbersome and error-prone [4].
There are many studies for the practical application of automated rescheduling [4]. Especially,
recent studies deal with automated rescheduling considering new types of train systems: a
moving block [10] [9] and Automatic Train Operation (ATO) [14]. A moving block is a new
railway safety system using radio communications. It is said to be effective in the reduction
of delays, especially when a small delay such as several minutes occurs in busy lines with
short train intervals [10]. Recently, this moving block started to spread combined with ATO
[10] [9], especially in metropolitan busy lines.

1 Corresponding author

© Kosuke Kawazoe, Takuto Yamauchi, and Kenji Tei;
licensed under Creative Commons License CC-BY 4.0

22nd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2022).
Editors: Mattia D’Emidio and Niels Lindner; Article No. 10; pp. 10:1–10:18

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kosuke.kawazoe@asagi.waseda.jp
https://doi.org/10.4230/OASIcs.ATMOS.2022.10
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

10:2 MIP Rescheduling in Bidirectional Moving Block and ATO

The purpose of this study is to formulate a mixed integer programming (MIP) rescheduling
model [1] in bidirectional double-track railway lines with both a moving block and ATO. The
novelty of this study is that currently MIP approach has not been applied to rescheduling
considering both the systems in bidirectional double-track lines. On the other hand, the MIP
method has the advantage that it is always possible to get the solution to minimize desired
indices among possible solutions keeping all of described constraints [1]. It can be thought
that this advantage is important in the rescheduling in busy lines with short train intervals
where a moving block and ATO would be implemented.

Recently, Kawazoe et al. [5] proposed a formulation of an MIP rescheduling model
considering both a moving block and ATO. However, their formulation deals with only
unidirectional single-track lines. This limits the applicability of the automated rescheduling
because most industrial scenes require double-track lines and bidirectional train operation.

In this paper, we extend this work to deal with bidirectional double-track lines with both
a moving block and ATO. Specifically, we formulate additional constraints for trains’ running
around terminal stations. To formulate such constraints, we newly assume a moving block
on a bidirectional double-track line with ATO operation, which is based on the model of
Hou et al. [4] Then, we classify seven patterns based on the positional relationships of the
trains around terminal stations, and formulate constraints for each pattern. Furthermore,
we implemented the MIP model including those new constraints, and demonstrated the
feasibility of our approach by applying it to a bidirectional double-track line with eight delay
scenarios by using the CPLEX solver. We evaluated the delay reduction and the calculation
time of our approach by comparing it with a baseline constructed by extending Hou et al.
[4]’s model to support bidirectional double-track lines. The results show that generated
schedules of our approach reduced the total delay from 20% to 30% than one from the
baseline. On the other hand, the computation time increased from less than 1 second to a
minimum of about 20 seconds and a maximum of about 1600 seconds.

There are two contributions of this paper as follows. First, it makes us get the train
rescheduling solution that minimizes the total delay of all trains in bidirectional double-
track lines with both a moving block and ATO among possible solutions keeping all of the
constraints we described. Second, it makes us confirm the rescheduling model with the
moving block reduced the total delay from 20% to 30% than one from the baseline without a
moving block in bidirectional double-track lines with ATO.

This paper is organized as follows. Section 2 describes the previous work of automated
train rescheduling. Section 3 describes a moving block. Next, Section 4 describes assumptions
about our formulation. Then, Section 5 describes the formulation of of trains’ running
around terminal stations according to the assumptions in Section 4. Section 6 describes the
implementation of the MIP model including the constraints in Section 5 and evaluation of it.
After that, Section 7 describes discussions about the results of the evaluation. Furthermore,
Section 8 describes related studies, and Section 9 describes our conclusions and future work.

2 Automated Train Rescheduling

We introduce previous studies of automated train rescheduling following two ways of classi-
fication. The first classification is based on the method of finding answers to rescheduling.
In previous studies, there are two mainstream methods using a search [2]. The first one
is using metaheuristics, which includes greedy search [3] and genetic algorithm [11]. The
second one is using MIP [1] [13]. Metaheuristics has the disadvantage that it is not always
possible to obtain solutions that minimize the desired indices. This is because they do not

K. Kawazoe, T. Yamauchi, and K. Tei 10:3

Figure 1 An example of radio communications on CBTC.

do exhaustive searches [1]. On the other hand, the MIP method uses a specialized solver
for MIP (a MIP solver) and performs an exhaustive search. Therefore, it is always possible
to solutions to minimize desired indices, for example, a total delay of all stations and all
trains among possible solutions satisfying all of the constraints [1]. In addition to these
two methods, there are also studies using the graph theory [2] [7]. However, this method
also has to consider the order to decide the values of variables. Therefore, it takes more
time compared with the MIP method when solving the same scale problem. Furthermore,
in recent years, there are studies using data-driven machine learning [15] or reinforcement
learning [18]. However, in these methods, it is not certain to always get the solutions that
minimize the object index as same as metaheuristics.

The second classification is based on the consideration of new railway systems. Recent
studies deal with automated rescheduling considering new types of train systems. Among
these studies, we focus on the previous studies considering ATO and a moving block. There
are studies [11] [17] [12] considering Communications-Based Train Control (CBTC) [10],
which is a standard using a moving block. CBTCs in all of these three studies are assumed to
have the function of ATO. Therefore, these three studies consider both those two systems at
the same time. However, each of these uses metaheuristics [11], a unique decision algorithm
[17], or a simulation software specialized in railway operation [12], so they did not use the
MIP method. On the other hand, Kawazoe et al. [5] proposed an MIP model that considers
both a moving block and ATO. This model is based on the model of Hou et al. [4] Before
this [5], there were rescheduling studies considering only either ATO [4] or a moving block
[16]. However, Kawazoe et al. [5] assumed a unidirectional single-track line in their model.
The rescheduling with both the systems in bidirectional multiple track lines is not formulated
as an MIP model in previous work.

3 Moving Block

A moving block is a new railway safety system using radio communications. Each train
gets the information of the preceding train to prevent collisions. The most widespread
international standard using a moving block is CBTC [10]. Fig. 1 shows the example of radio
communications on CBTC. Train A and B in Fig. 1 sequentially send the central controller
the information of each train’s position or speed through the nearest radio base. From this
information, the central controller calculates how close A can get to B and how the brakes of
A activate keeping safety. The calculation results are sent to A sequentially, and if A gets
too close to B, the brakes of A will activate and A will stop automatically to keep safe and
prevent collisions.

ATMOS 2022

10:4 MIP Rescheduling in Bidirectional Moving Block and ATO

Table 1 Symbols of Description.

Sets, elements, and constants Variables
i ∈ M Stations set M = {1, 2, ..., i, ..., |M |} tai, j Actual arrival time at i of j (s)
j ∈ N Trains set N = {1, 2, ..., j, ..., |N |} tdi, j Actual departure time at i of j (s)
k ∈ K Sections set K = {1, 2, ..., k, ..., |N | − 1} εl

k, j Whether level is l of j in k (0-1)
l ∈ P ATO levels set P = {1, 2, ..., l, ..., |P |}
Rl

k,j ATO running time with l in k (s)

Figure 2 Perspective of the assumed railway line.

The conventional signal system needs to leave room for the distance between two trains.
This is because it keeps safety considering that it cannot detect the positions of all trains
online and the error of braking distance. On the other hand, a moving block can detect the
safe distance not to crash into preceding train online using position information by radio
communications. Therefore, a moving block can shorten distances between trains keeping
safety, compared with the conventional system. For this reason, a moving block is said to be
effective in reducing delays, especially by several minutes in busy railway lines with short
intervals of trains [9].

Some standards of CBTC have the function of ATO [10]. Moreover, some of the other
standards, for example, ATACS [9] developed by East Japan Railway Company in Japan,
are also assumed to be combined with ATO in the future. Therefore, the number of lines
with both a moving block and ATO will increase from now on.

4 Assumptions

In this section, we describe the perspective, ATO, and the moving block of the railway line
we assumed in this study. In addition, Table 1 shows the symbols used in assumptions and
constraints this section and in Section 5. These include the sets and these elements, and the
decision variables of MIP based on the model of Hou et al. [4] mentioned in Section 2.

4.1 Perspective and ATO
In this study, we assume the railway line as a metropolitan busy subway line with bidirectional
double tracks. Fig. 2 shows the perspective of the line. It has |M | stations. We assume
|N | train services in this line, and each has a train number. The “up” forward trains whose
train numbers are odds go from station 1 to |M |. The “down” forward trains whose train
numbers are evens, go from |M | to 1. The section between Station i and i + 1 is Section k.
Therefore, i = k. Every station has two platforms. Station 1 and |M | are terminal stations.
Some trains which arrived at terminal stations come from depots. Some trains in terminal
stations become “turnaround trains” and go back as the counter-forward trains. We describe
the turnaround train of j as r(j). The train number r(j) is decided up to j in advance and
never changed by rescheduling. The other trains go back to depots as Fig. 2 shows.

K. Kawazoe, T. Yamauchi, and K. Tei 10:5

(a) Approaching when (TA) in terminal sections.
(b) Approaching when (TB) in terminal sections.

Figure 3 Assumed approaches due to the assumed the moving block at terminal sections.

ATO is the system to automate trains’ running. In this study, we assume every train has
ATO on it. ATO has pre-programmed P speed patterns for each section. Each pattern in P

patterns is called ATO level “l”, and the smaller the value of “l”, the shorter the running
time of the section. In each section, each train follows one ATO level selected by staff on the
train and runs the section automatically. In this study, ϵl

k,j is the boolean decision variable
of rescheduling, which represents whether the ATO level is l of Train j in Section k or not.
These assumptions of ATO are based on Hou et al. [4]

4.2 Moving Block
In this study, if a train approaches the preceding train, the moving block will activate
automatic brakes for the train to prevent collisions. This follows the scheme of CBTC [10]
we described in Section 3. However, these braking behaviors are different up to sections and
the position relationship of trains. In this paper, we focus on the sections with terminal
stations. Therefore, we divide the runs of trains into two large patterns below with reference
to Kawazoe et al. [5] and for each pattern, we assume how a train can approach the preceding
train and how the moving block auto brakes work.

Pattern (TA): In the sections with terminals (We call them “terminal sections” hereafter),
we assume when a train departs from Station N − 1 (up) or 2 (down), after the preceding
arrived at Terminal |N | (up) or 1 (down). As Fig. 3a, in terminal sections, there are
railroad switches to change track Lu (m) in front of the terminal to the other and turn
around in the opposite direction. In the example of Fig. 3a, if the following train j stops
and waits covering or running over a railroad switch, the preceding train j − 4 will not
be able to turn around and j will stay unable to reach the terminal. Therefore, in this
pattern, if two trains are dwelling at the terminal, the following train will have to stop in
front of the switch. Moreover, to ensure that the entire train stops in front of the switch,
the train has to set the stop target Ls (m) before the switch. Ls means the minimum
limit of the distance to spare from the stop target, which keeps the safety of trains even
if considering the braking distance error of auto brakes [10] [9]. In summary, as Fig.3a
shows, totally the following can approach up to Ls + Lu (m) in front of the terminal.
Pattern (TB): In terminal sections, we assume when a train departs from Station 2 or
N − 1 before the preceding arrived at Terminal 1 or |N |. In this pattern, the preceding
train also might stop as (TA). If so, in the example of 3b, the following train j can
approach up to more Ls (m) in front of the preceding j − 2 stopping as (TA) and wait for
j − 6. In addition, the limited distance to spare Ls is also applied to the stop target in
front of the stopping preceding train. In other words, j can approach up to more Ls + Lt

(m) in front of the stopping position of (TA). Lt means the constant length of one train.
Therefore, totally j can approach up only to 2Ls + Lt + Lu (m) in front of the terminal,

ATMOS 2022

10:6 MIP Rescheduling in Bidirectional Moving Block and ATO

as Fig. 3b shows. In addition, in this study, we make two simplifications in Pattern (TB).
First, we assume that train j always only can approach up to just 2Ls + Lt + Lu (m)
behind the terminal, when the preceding j − 2 is still on the way at the time j has to start
deceleration to stop with auto brakes. This is not up to whether the much earlier trains
j − 4 or j − 6 are still dwelling at the terminal at that time. Furthermore, in Pattern
(TB), two trains are running in one section at the same time. The second simplification
is that the number of trains running close together in one section is limited to two in this
study. We will formalize this assumption as a constraint in Section 5.

In the moving block, when the preceding train is stopping at the next station, the
following train approaches up to the limited distance, i.e., Ls (m) in this study, in front of
the preceding. Thereby the following can arrive at the next station immediately after the
preceding departs. The patterns above are based on this idea.

5 Constraints Description

In this study, we propose to formulate constraints about trains’ running in terminal sections
in bidirectional double-track lines with both a moving block and ATO, which we assumed
in Section 4. This allows trains to run with close distances between each other in terminal
sections, and turn around in the opposite direction at terminal stations. In this section,
we describe the formulation of running constraints based on the two patterns described in
Section 4.2.

5.1 Pattern (TA)
In Pattern (TA), j has to decide whether it stops with Ls + Lu in front of the terminal as
Fig.3a shows, due to the railroad switch. If we set the time of brake application as tT 1A(k,l),
we can further divide (TA) into these three cases for j below. “Beyond the switch” means in
the terminal or in the section between the railroad switch and the terminal.

(TA1): No trains are beyond the switch at tT 1A(k,l)
(TA2): 1 train is beyond the switch at tT 1A(k,l)
(TA3): 2 trains are beyond the switch at tT 1A(k,l)

In (TA1), j need not use the moving block brakes, and just takes ATO running time Rl
k,j to

the terminal. We can formulate this as Constraint (1) (up) or (2) (down).

taN,j − tdN−1,j = max(εl
N−1,jRl

N−1,j) (1)
ta1,j − td2,j = max(εl

1,jRl
1,j) (2)

On the other hand, in (TA2), j − 2 or r(j − 2) is still beyond the switch. If j − 2 does not
turn around and go to the depot, j need not use brakes to stop in front of the terminal. This
is because j can immediately enter the platform that is not the one where j − 2 is stopped.
Therefore, if r(j − 2) does not exist, j will just take ATO running time Rl

k to the terminal
as same as (TA1), i.e., the constraints for j are Constraint (1) and (2). However, if j − 2
returns in (TA2), the constraint has to be made to prevent the collision of j and r(j − 2). In
this model, if r(j − 2) already has departed from the terminal at tT 1A(k,l), j shall wait for
that r(j − 2) passes the switch before arriving at the terminal (TA2-1). We set the time that
j stops as tT 2A(up,l) or tT 2A(down,l). Moreover, after j starts moving again, j has to runs
Ls + Lu and more Lt to arrive at the station. We set the constant time j runs Ls, Lu and
Lt as TLsLtLu, which is not up to j and j’s ATO level l. Hence, when we formulate them,
if in (TA2-1) j has to satisfy Constraint (3) (up) or (4) (down). tsd and tsu are the time

K. Kawazoe, T. Yamauchi, and K. Tei 10:7

constants which it takes from leaving each terminal to passing the switch. Otherwise, i.e.,
if r(j − 2) is still dwelling at the terminal at tT 1A(k,l), j shall arrive at the terminal before
r(j − 2) departs from the terminal (TA2-2). Hence, when we formulate them, in (TA2-2) j

has to satisfy Constraint (1) and (5) (up), or (2) and (6) (down).

taN,j ≥ max(tdN,r(j−2) + tsd, tdN−1,j + εl
N−1,jtT 2A(up,l)) + TLsLtLu (3)

taN,j ≥ max(td1,r(j−2) + tsu, td2,j + εl
1,jtT 2A(down,l)) + TLsLtLu (4)

taN,j ≤ tdN,r(j−2) (5)
ta1,j ≤ td1,r(j−2) (6)

Moreover, in (TA3), j − 4 or r(j − 4) is also still beyond the switch in addition to j − 2
or r(j − 2). In this pattern, j has to stop with Ls + Lu to the terminal and the wait for the
departure of r(j − 4). If r(j − 4) does not exist, j can start to move again to the terminal
immediately after j −4 departs from the terminal to the depot. Therefore, when we formulate
them, if r(j − 4) does not exist, in (TA3) j has to satisfy (7) (up) or (8) (down). On the
other hand, if r(j − 4) exists, j shall wait for that r(j − 4) passes the switch before arriving
at the terminal. Hence, when we formulate them, if r(j − 4) exists, in (TA3) j has to satisfy
Constraint (9) (up) or (10) (down). Furthermore, if j − 2 returns as r(j − 2), j shall arrive
at the terminal before r(j − 2) departs from the terminal as same as (TA2-2). Hence, j also
has to satisfy Constraint (5) (up) or (6) (down) as same as (TA2-2).

taN,j ≥ max(tdN,j−4, tdN−1,j + εl
N−1,jtT 2A(up,l)) + TLsLtLu (7)

ta1,j ≥ max(td1,j−4, td2,j + εl
1,jtT 2A(down,l)) + TLsLtLu (8)

taN,j ≥ max(tdN,r(j−4) + tsd, tdN−1,j + εl
N−1,jtT 2A(up,l)) + TLsLtLu (9)

ta1,j ≥ max(td1,r(j−4) + tsu, td2,j + εl
1,jtT 2A(down,l)) + TLsLtLu (10)

5.2 Pattern (TB)
In Pattern (TB), first of all, j does not leave N − 1 or 2 until the two earlier train j − 4
arrives at the terminal |N | or 1. This is by our assumption that the number of trains running
close together in one section is limited to two, mentioned in Section 4.2. We can describe
this as Constraint (11) below.

tdi,j > tai,j−4 (11)

Based on the above, in this pattern, j has to decide whether it stops with 2Ls + Lt + Lu in
front of the terminal as Fig.3b shows. If we set the time of brake application as tT 1B(k,l), we
can further divide (TB) into these four cases for j up to positions of trains at tT 1B(k,l) below.

(TB1): j − 2 has already arrived at the terminal, and no others are beyond the switch
(TB2): j − 2 has already arrived at the terminal, and another train is beyond the switch
(TB3): j − 2 is still on the way to the terminal, but no others are beyond the switch
(TB4): j − 2 is still on the way to the terminal and another train is beyond the switch

In (TB1), j shall arrive at the terminal before r(j − 2) departs from the terminal, and j need
not use brakes to stop in front of the terminal. This is because j can immediately enter the
platform that is not the one where j − 2 is stopped as same as cases of (TA2). Therefore, in
(TB1), j can run the ATO running time, i.e., Constraint (1) or (2). Furthermore, if r(j − 2)
exists, in (TB1), j also has to satisfy Constraint (5) (up) or (6) (down) as same as (TA2-2).

In (TB2), the situation is the same as (TA3), i.e., j − 4 or r(j − 4) is beyond the switch
in addition to j − 2 dwelling at the terminal. Therefore, in (TB2), the constraints which
train j has to satisfy branch conditionally as same as (TA3). Hence, if r(j − 4) does not

ATMOS 2022

10:8 MIP Rescheduling in Bidirectional Moving Block and ATO

exist, j has to satisfy Constraint (7) (up) or (8) (down). Otherwise, i.e., r(j − 4) exists, j

has to satisfy Constraint (9) (up) or (10) (down). Furthermore, if r(j − 2) exists, j also has
to satisfy Constraint (5) (up) or (6) (down).

However, in (TB3), j − 2 is still on the way to the terminal at tT 1B(k,l). Therefore, j

need use brakes to stop with 2Ls + Lt + Lu in front of the next station. This is because
of the simplification we mentioned when we describe Pattern (TB) in Section 4.2. we set
the time that j stops as tT 2B(up,l) or tT 2B(down,l). Then, after j wait for arrival of j − 2 at
the terminal, j starts moving again, and j has to runs 2Ls + Lt + Lu and more Lt to arrive
at the station. We set the constant time j runs 2Ls + 2Lt + Lu as T2Ls2LtLu, which is not
up to j and j’s ATO level l. Hence, when we formulate them, if in (TB3) j has to satisfy
Constraint (12) (up) or (13) (down). Furthermore, if r(j − 2) exists, in (TB3), j also has to
satisfy Constraint (5) (up) or (6) (down) as same as (TB2) and so on.

taN,j ≥ max(taN,j−2, tdN−1,j + εl
N−1,jtT 2B(up,l)) + T2Ls2LtLu (12)

ta1,j ≥ max(ta1,j−2, td2,j + εl
1,jtT 2B(down,l)) + T2Ls2LtLu (13)

Finally, in (TB4), j − 4 or r(j − 4), and sometimes also j − 6 or r(j − 6) is also still
beyond the switch in addition to the situation of (TB3). In this pattern, j has to stop with
2Ls + Lt + Lu to the terminal and wait for both of the departure of j − 4 or r(j − 4), and
the arrival of j − 2. If r(j − 4) does not exist, j can start to move again to the terminal
immediately after j − 4 departs to the depot and j − 2 arrives at the terminal. when we
formulate them, if r(j − 4) does not exist, in (TB4) j has to satisfy Constraint (14) (up) or
(15) (down). On the other hand, if r(j − 4) exists, j shall wait for that r(j − 4) passes the
switch before arriving at the terminal. Hence, when we formulate them, if r(j − 4) exists, in
(TB4) j has to satisfy Constraint (16) (up) or (17) (down). Furthermore, if r(j − 2) exists, j

also has to satisfy Constraint (5) (up) or (6) (down) as same as (TB3) and so on.

taN,j ≥ max(taN,j−2, tdN,j−4, tdN−1,j + εl
N−1,jtT 2B(up,l)) + T2Ls2LtLu (14)

ta1,j ≥ max(ta1,j−2, td1,j−4, td2,j + εl
1,jtT 2B(down,l)) + T2Ls2LtLu (15)

taN,j ≥ max(taN,j−2, tdN,r(j−4) + tsd, tdN−1,j + εl
N−1,jtT 2B(up,l)) + T2Ls2LtLu (16)

ta1,j ≥ max(ta1,j−2, td1,r(j−4) + tsu, td2,j + εl
1,jtT 2B(down,l)) + T2Ls2LtLu (17)

6 Evaluation

In this section, we implemented a new MIP model with new constraints we formulated in
Section 5. This model is the rescheduling model considering both the moving block and ATO
in bidirectional double-track lines, and we call this “our model” below. Then, we executed
our model on the MIP solver CPLEX. We conducted experiments with our model to answer
two research questions.
RQ1 How much is the total delay reduced by our constraints of the moving block?

As we mentioned in Section 3, a moving block is said to be effective in reducing delays
due to running with close distances between trains. We evaluate how this effect can be
seen in bidirectional double-track lines with ATO. To do this, in Section 6.2 we compared
the total delay of all trains at all stations of the solution of our model with the model of
the baseline without a moving block in eight different delay scenarios (Experiment 1).

RQ2 How long does it take to run the model?
We evaluate the calculation time of our model to get solutions. To do this, in Section 6.3
we measured the calculation time for the eight delay scenarios (Experiment 2).

K. Kawazoe, T. Yamauchi, and K. Tei 10:9

6.1 Experiment Setting

In this subsection, we describe the model implementation, and the line data to be applied
in the experiments. In addition, for experiments, we used a PC with Intel Core i7-7500U,
8GB RAM, and Windows 10 64-bit version. In this PC, we use CPLEX Optimization Studio
12.10.0 Academic Edition (IBM) as a MIP solver. We call this CPLEX below.

For experiments, we implemented our model with new constraints mentioned in Section
5. As for the objective function, We set Tdelay as that of our model in order to evaluate
RQ1. Tdelay is the sum of the delay time of arrival and departure compared with the original
schedule for all trains at all stations. We write the arrival and departure time of the original
schedule as Tdi,j and Tai,j , and describe Tdelay as Equation (18).

Tdelay =
∑
i,j

(tai,j − Tai,j) + (tdi,j − Tdi,j) (18)

As for the constraints in our model, they are combinations of the parts of constraints based
on Hou et al. [4] and Kawazoe et al. [5], and new constraints which we formulated in Section
5. Specifically, the constraints consisting the model are as follows.

Constraint (1)-(17) for trains’ running in terminal sections we formulated in Section 5.
Order constraints of arrival and departure, and constraints about running of trains in
not-terminal sections. These constraints are based on the model of Kawazoe et al. [5],
which we described as Constraint (19)-(27) in Appendix B.1 and B.2.
The other constraints about selecting ATO levels, dwelling time, and relationship between
the original schedule and the rescheduled schedule. These constraints based on the model
of Hou et al. [4], which we described as Constraint (28)-(32) in Appendix B.3.

To implement this model, we used OPL [6] which is developed to be specialized to describe
input models of CPLEX. In addition, only when the implementation of our model, we defined
true or false valuables which judge the pattern branches of each train in each section, and
made the solver also outputs the solutions of those variables. Thereby we can identify into
which pattern from (TA1) to (TB3) in Section 5 each train branches at each section from the
rescheduling solution we got. Furthermore, we also implemented the baseline model without
considering a moving block to be compared with our model in experiments. The objective
function of the baseline is also Tdelay, and the constraints of that are changed to be applied
to bidirectional double-track lines as it is from constraints of Hou et al. [4]

Next, we describe the data of the railway line to be applied below. In the experiments,
we applied the models to an imaginary metropolitan subway line with four stations, i.e.,
|M |=4 and |K|=3. Within the assumed time period, we assumed ten services running in the
line, i.e., |N |=10, whereas we assumed six physical trains. Therefore, we assumed that four
of them each run once as a turnaround train in the opposite direction as r(1) = 8, r(3) = 10,
r(2) = 7, and r(4) = 9. We set the original schedule with no delays as follows; the intervals
of arrivals and departures between two consecutive trains are 155 seconds at all stations. In
addition, the number of ATO levels |L| is 5 in each section. In the original schedule, the
ATO level of every train is set to l=2 in all sections. As for the settings of the other detailed
constants, we describe them in Appendix C. Furthermore, we inputted the delay information
of each delay scenario for every model execution. Each delay information consists of a set
of three values: the station where the primary departure delay caused dl, the train whose
departure primary delayed dt, and td which is the amount of the departure delay time of dt

at dl.

ATMOS 2022

10:10 MIP Rescheduling in Bidirectional Moving Block and ATO

Table 2 Tdelay (s), its reduction rate, and execution time (s) of delay scenarios.

Scenario Tdelay(s) Exec. time (s)
No. (dl,dt,td) Baseline Our model Reduction (%) Baseline Our model
1 (1,1,200) 4022 3222 19.9 0.13 88
2 (2,1,200) 3776 2868 24.0 0.09 84
3 (1,3,200) 3906 2810 28.1 0.09 33
4 (2,3,200) 3430 2445 28.7 0.11 21
5 (1,1,400) 16854 11948 29.1 0.08 1639
6 (2,1,400) 15463 10462 32.3 0.06 1083
7 (1,3,400) - 10608 - - 83
8 (2,3,400) - 8183 - - 43

6.2 Experiment 1: Delay Reduction
In Experiment 1 (referred to as “EX1” hereafter), we ran our model and the baseline on
CPLEX with the same eight delay scenarios. From this experiment, we evaluated our model
to answer RQ1. We set eight delay scenarios as dl = 1 or 2, dt = 1 or 3 and td = 200 or 400
(s). This setting is to evaluate the difference of solutions between if dl is a terminal station
and ones otherwise, and also between if dt is the first train and otherwise in the assumed
time period. In addition, we want to evaluate the effect of a moving block for a short delay
such as a several minutes. Also considering this, we set the value of td as 200 (s) and 400 (s)
in order to evaluate the difference of solutions up to the amount of the first delay.

We show the result of EX1 as the left side of Table 2. In Table 2, we wrote down the
values of Tdelay gotten from two models, and the reduction rate from the baseline to our
model in each delay scenario. As for from Scenario No. 1 to No. 6, we could got the solution
from both of two models, and the reduction rates are from about 20% to over 30% in all of
them. As for Scenario No. 7 and No. 8, we could got the rescheduling solution only from our
model. Moreover, with same td, when dl is 1 and dt is 1, the reduction rate is a little smaller
than otherwise. On the other hand, with same dl and dt, The larger td, the smaller rate. In
addition, we have confirmed that the rescheduled train schedule and solutions of decision
variables got from each model satisfy all constraints of each model in all delay scenarios in
which we could get the solutions.

6.3 Experiment 2: Calculation Time
In Experiment 2 (referred to as “EX2” hereafter), we measured and compared the CPLEX
calculation time of our model and the baseline to get the solution. In this EX2, we used
the same eight delay scenarios as EX1 in order to evaluate the difference in the calculation
time between different dl, dt, and td. In addition, we used the average time displayed on the
API of CPLEX after execution as calculation time. This is because, due to the nature of
CPLEX, there is a slight variation in computation time per execution. We show the result
of EX2 on the right side of Table 2. The time values of Scenario No. 5 and No. 6 are the
averages of five executions, and the ones of the others are averages of ten executions. As
Table 2, although the baseline takes less than 1 second to get the solution in all six scenarios
from No. 1 to No. 6, our model takes more than 20 seconds at least to get the solution in
the same scenarios. Moreover, with same td, when dl is 1 and dt is 1, the calculation time is
longer than otherwise. On the other hand, with same dl and dt, the larger td, the longer
calculation time. Especially, It took more than 1000 seconds to get the solution in No. 5 and

K. Kawazoe, T. Yamauchi, and K. Tei 10:11

No. 6.averages of ten executions. Although the baseline takes less than 1 second to get the
solution in all of six scenarios from No. 1 to No. 6, our model takes more than 20 seconds at
least to get the solution in the same scenarios. Moreover, with same td, when dl is 1 and dt

is 1, the calculation time is longer than otherwise. On the other hand, with same dl and dt,
the larger td, the longer calculation time. Especially, It took more than 1000 seconds to get
the solution in No. 5 and No. 6.

7 Discussions

First, we conclude RQ1: how much the total delay is reduced by our constraints of the
moving block. In six scenarios from No.1 to No.6 in which we got solutions from both two
models in EX1, we confirmed the reduction of total delay for about from 20% to 30% in our
model compared with the baseline. Seeing the detailed branching patterns of their solutions,
no less than one train run branching into (TB), i.e., patterns of running with especially
close distances with the preceding train, in the terminal section in all of the six scenarios.
All arrivals and departures of trains at the terminal after running with (TB) of our model
were about 30 to 60 seconds earlier than ones of the baseline. Therefore, it can be said
that running with closer distances with the preceding train branching into such assumed
patterns made the departures and arrivals earlier due to the moving block we assumed. In
the discussions above, we confirmed the delay reduction we saw in the six scenarios is the
effect of our model with the moving block. Furthermore, even in No. 7 and No. 8 our model
could get solutions whereas the baseline could not. The reason for this could be that the
baseline did not allow some trains to select one ATO level in some sections due to constraints
keeping long distances with each other, whereas our model allowed all trains to run with
more close distances with each other, and every train could select one ATO level in each
section. In addition, from the result of EX1, it can be said the larger number of delayed
trains, the smaller the reduction rate. It can be thought this is because, if the number of
trains or sections to be considered for delay reduction is large, the reduction will need to be
more spread out at each train and section. Moreover, it can be also said the larger the first
delay, the smaller the reduction rate. It can be thought this is because, if the first delay is
larger, our model can enlarge the range of reduction of each train’s delay in each section.

Next, we conclude RQ2: how long it does take to run the model. We confirmed our model
takes more than 20 seconds at least to get the solution in all scenarios in EX2, although the
baseline takes less than 1 second in each. The reason for this could be the difference of the
number of decision variables whose solutions have to be got with the solver. The baseline has
less than 500 decision variables in all scenarios, whereas our model has over 9000 decision
variables. This is because our model includes variables representing which pattern each train
branches into in each section, as we mentioned in Section 6.1. In addition, from the result of
EX2, it can be said the larger number of delayed trains, the longer the calculation time. It
can be thought this is because, if the number of delayed trains becomes larger, the number
of sections in which the solver has to decide which pattern the successors of such trains
branch into will increase. Moreover, it can be also said the first delay is larger, the longer
the calculation time. The reason for this could be that the range of solution candidates for
rescheduled arrival and departure times will be enlarged if the first delay becomes larger. As
for No. 5 and No. 6, it can be thought that the combination of these two factors caused the
calculation time to rise exponentially. These two values of calculation time are more than
10 minutes larger than td. Thus, refining the design of our model to reduce the number of
variables and shorten calculation time is a future challenge.

ATMOS 2022

10:12 MIP Rescheduling in Bidirectional Moving Block and ATO

8 Related Work

From the discussions of Section 7, if we apply our model to a real railway line with a larger
size than the sizes of the imaginary small line we used in experiments in Section 6, it is
expected that it takes more calculation time than ones in Table 2. Thereby we introduce the
study [8] as related work. This study is to divide a rescheduling problem in a large railway
line by sections or time periods and solve it as a superposition of smaller MIP problems.
Combining this method with our model, it can be thought that it is possible to apply our
model to a real large railway line keeping calculation time shorter.

9 Conclusions

The purpose of this study is to formalize train rescheduling considering both a moving
block and ATO in bidirectional double-track railway lines as a MIP model. To achieve this
purpose, we proposed to formulate constraints for trains’ running in terminal sections of a
bidirectional double-track line. We implemented an MIP model by integrating our constraints
with the models proposed in the previous study [4] [5]. We demonstrated the feasibility of
our approach by applying it to a bidirectional double-track line with eight delay scenarios.
In these scenarios, generated schedules of our approach reduced the total delay from 20%
to 30% than one from the baseline, whereas the computation time rose from less than 1
second to about 20 seconds at least. In future work, We will refine the design of our model
of this study to reduce the number of variables and shorten calculation time and apply it to
larger railway lines and longer time periods than the experiments we did. Furthermore, our
assumption of the moving block has two simplifications mentioned in Section 4.2. Therefore,
removing them and incorporating assumptions of more complex dynamics of a moving block
into the model is another future challenge.

References
1 Valentina Cacchiani, Dennis Huisman, Martin Kidd, Leo Kroon, Paolo Toth, Lucas Veelenturf,

and Joris Wagenaar. An overview of recovery models and algorithms for real-time railway
rescheduling. Transportation Research Part B: Methodological, 63:15–37, 2014. doi:10.1016/
j.trb.2014.01.009.

2 Wei Fang, Shengxiang Yang, and Xin Yao. A survey on problem models and solution approaches
to rescheduling in railway networks. IEEE Transactions on Intelligent Transportation Systems,
16(6):2997–3016, 2015. doi:10.1109/TITS.2015.2446985.

3 Zhenhuan He. Research on improved greedy algorithm for train rescheduling. In 2011 Seventh
International Conference on Computational Intelligence and Security, pages 1197–1200, 2011.
doi:10.1109/CIS.2011.265.

4 Zhuopu Hou, Hairong Dong, Shigen Gao, Gemma Nicholson, Lei Chen, and Clive Roberts.
Energy-saving metro train timetable rescheduling model considering ato profiles and dynamic
passenger flow. IEEE Transactions on Intelligent Transportation Systems, 20(7):2774–2785,
2019. doi:10.1109/TITS.2019.2906483.

5 Kosuke Kawazoe, Takuto Yamauchi, Kenji Tei, Norio Tomii, and Shinichi Honiden. Applying
mip train traffic rescheduling model with automatic train control to moving block systems
(japanese edition). Journal of Information Processing (Japanese Edition), 63(3), 2022. doi:
10.20729/00217476.

6 Philippe Laborie, Jérôme Rogerie, Paul Shaw, and Petr Vilím. Ibm ilog cp optimizer for
scheduling. Constraints, 23(2):210–250, 2018. doi:10.1007/s10601-018-9281-x.

7 Leonardo Lamorgese, Carlo Mannino, Dario Pacciarelli, and Johanna T. Krasemann. Train
Dispatching. Springer, 2018. doi:978-3-319-72153-8_12.

https://doi.org/10.1016/j.trb.2014.01.009
https://doi.org/10.1016/j.trb.2014.01.009
https://doi.org/10.1109/TITS.2015.2446985
https://doi.org/10.1109/CIS.2011.265
https://doi.org/10.1109/TITS.2019.2906483
https://doi.org/10.20729/00217476
https://doi.org/10.20729/00217476
https://doi.org/10.1007/s10601-018-9281-x
https://doi.org/978-3-319-72153-8_12

K. Kawazoe, T. Yamauchi, and K. Tei 10:13

8 Leonardo Lamorgese, Carlo Mannino, and Mauro Piacentini. Advances and Trends in Optim-
ization with Engineering Applications. Society for Industrial and Applied Mathematics, 2017.
doi:10.1137/1.9781611974683.ch6.

9 N. Miyaguchi, D. Uchiyama, I. Inaba, Y. Baba, and N. Hiura. The radio-based train control
system atacs. In WIT Transactions on The Built Environment, volume 155, pages 175–183,
2015. doi:10.2495/CRS140151.

10 Robert D. Pascoe and Thomas N. Eichorn. What is communication-based train control? IEEE
Vehicular Technology Magazine, 4(4):16–21, 2009. doi:10.1109/MVT.2009.934665.

11 Juliette Pochet, Sylvain Baro, and Guillaume Sandou. Supervision and rescheduling of a mixed
cbtc traffic on a suburban railway line. In 2016 IEEE International Conference on Intelligent
Rail Transportation (ICIRT), pages 32–38, 2016. doi:10.1109/ICIRT.2016.7588547.

12 Juliette Pochet, Sylvain Baro, and Guillaume Sandou. Automatic train supervision for a cbtc
suburban railway line using multiobjective optimization. In 2017 IEEE 20th International
Conference on Intelligent Transportation Systems (ITSC), pages 1–6, 2017. doi:10.1109/
ITSC.2017.8317670.

13 Kei Tamura, Keisuke Sato, and Norio Tomii. A train timetable rescheduling mip formulation
with additional inequalities minimizing inconvenience to passengers. The IEICE Transactions
on Information and Systems, 97(3):393–404, 2014.

14 Yihui Wang, Bing Ning, Fang Cao, Bart De Schutter, and Ton J.J. van den Boom. A
survey on optimal trajectory planning for train operations. In Proceedings of 2011 IEEE
International Conference on Service Operations, Logistics and Informatics, pages 589–594,
2011. doi:10.1109/SOLI.2011.5986629.

15 Chao Wen, Ping Huang, Zhongcan Li, Javad Lessan, Liping Fu, Chaozhe Jiang, and Xinyue
Xu. Train dispatching management with data- driven approaches: A comprehensive review
and appraisal. IEEE Access, 7:114547–114571, 2019. doi:10.1109/ACCESS.2019.2935106.

16 Peijuan Xu, Dawei Zhang, Jingwei Guo, Dan Liu, and Hui Peng. Integrated train rescheduling
and rerouting during multidisturbances under a quasi-moving block system. Journal of
Advanced Transportation, 2021:1–15, April 2021. doi:10.1155/2021/6652531.

17 Jing Xun, Bin Ning, Ke-Ping Li, and Tao Tang. An optimization approach for real-time
headway control of railway traffic. In 2013 IEEE International Conference on Intelligent Rail
Transportation Proceedings, pages 25–31, 2013. doi:10.1109/ICIRT.2013.6696262.

18 Darja Šemrov, R. Marsetič, Marijan Zura, Ljupco Todorovski, and Aleksander Srdić. Rein-
forcement learning approach for train rescheduling on a single-track railway. Transportation
Research Part B Methodological, 86:250–267, April 2016. doi:10.1016/j.trb.2016.01.004.

A Assumptions In On-the-way Sections

In this appendix section, we describe the assumptions of the model of Kawazoe et al. [5]
to describe constraints in Appendix B.1, which we used to implement our model in Section
6.1. In the model of Kawazoe et al. [5], they divided the runs of trains in the unidirectional
single-track lines into two large patterns below, and for each pattern, they assumed how a
train can approach the preceding train and how the moving block auto brakes work. We
rewrite and describe these two patterns according to assumptions in Section 4.1.

Pattern (OA): In the on-the-way sections, we assume when the train departs from the
station after the preceding arrived at the next. As Fig. 4a shows, in this pattern, the
following train can approach up to Ls (m) behind the stopping at the next.
Pattern (OB): In on-the-way sections, we assume when the train departs from the station
before the preceding arrived at the next. In this pattern, the following train can approach
up to Ls (m) behind the preceding as same as (OA). However, in this pattern, the
preceding also might stop as (OA) to prevent the collision with one earlier train. If so,

ATMOS 2022

https://doi.org/10.1137/ 1.9781611974683.ch6
https://doi.org/10.2495/CRS140151
https://doi.org/10.1109/MVT.2009.934665
https://doi.org/10.1109/ICIRT.2016.7588547
https://doi.org/10.1109/ITSC.2017.8317670
https://doi.org/10.1109/ITSC.2017.8317670
https://doi.org/10.1109/SOLI.2011.5986629
https://doi.org/10.1109/ACCESS.2019.2935106
https://doi.org/10.1155/2021/6652531
https://doi.org/10.1109/ICIRT.2013.6696262
https://doi.org/10.1016/j.trb.2016.01.004

10:14 MIP Rescheduling in Bidirectional Moving Block and ATO

(a) Approaching when (OA) in on-the-way sections. (b) Approaching when (OB) in on-the-way sections.

Figure 4 Assumed approaches due to the assumed the moving block in on-the-way sections.

totally the following can approach up to just 2Ls + Lt (m) behind the next station, as
Fig. 4b shows. In addition, Kawazoe et al. [5] made the same simplification as (TA).
In the example of 4b, they assumed that train j always only can approach up to just
2Ls + Lt (m) behind the next station, when the preceding j − 2 is still on the way at the
time j has to start deceleration to stop with auto brakes. This is not up to whether the
one earlier j − 4 is still stopping at the next station then.

B Constraints Based On Previous Models

In this appendix section, we describe the constraints based on previous models of [4] and [5].
These constraints are combined with our new constraints in Section 5, in order to implement
our model in Section 6.1.

B.1 Running Constraints in On-the-way Sections
In Section 5, we formulated constraints for trains’ running at terminal sections in bidirectional
double-track lines. On the other hand, Kawazoe et al. [5] formulated constraints of trains’
running in unidirectional single-track lines, which are based on their moving block assumptions
we mentioned in Appendix A. For on-the-way sections in our model, we use constraints
rewritten from these constraints in their model according to our assumptions in Section 4.1.
We describe those rewritten constraints following each of the two patterns mentioned in
Appendix A.

B.1.1 Pattern (OA)
In Pattern (OA), the train j departs from the station after the preceding j − 2 arrived at the
next station. In this pattern, j has to decide whether it applies the brakes to stop with Ls

to the next as Fig.4a shows. Kawazoe et al. [5] set the time of brake application as t1A(k,l),
and they further divided (OA) into these two cases for j below.

(OA1): j − 2 already leaves the next station at t1A(k,l)
(OA2): j − 2 is still stopping at the next at t1A(k,l)

In (OA1), j need not use brakes to stop in front of the next station. Therefore, j just takes
ATO running time Rl

k to the next station. This is as the same as (TA1) in Section 5.1, and
this can be formulated as Constraint (19) (up) or (20) (down).

tai+1,j − tdi,j = εl
k,jRl

k,j (19)
tai,j − tdi+1,j = εl

k,jRl
k,j (20)

On the other hand, in (OA2), j need use brakes to stop with Ls in front of the next
station, and wait for the departure of j − 2. j can arrive at next station after both of that j

K. Kawazoe, T. Yamauchi, and K. Tei 10:15

stops at once and the departure of j − 2. They set the time j stops as t2A(k,l). Furthermore,
after j starts moving again, j has to runs Ls and the length of j itself Lt to arrive at the
station. They set the constant time j runs Ls and Lt as TLsLt, which is not up to j and j’s
ATO level l. Putting all of them together, in (OA2) j has to satisfy Constraint (21) (up) or
(22) (down).

tai+1,j ≥ max(tdi+1,j−2, tdi,j + εl
k,jt2A(k,l)) + TLsLt (21)

tai,j ≥ max(tdi,j−2, tdi+1,j + εl
k,jt2A(k,l)) + TLsLt (22)

B.1.2 Pattern (OB)
In Pattern (OB), j departs from the station before j − 2 arrived at the next station. In this
pattern, j has to decide whether it applies the brakes to stop with 2Ls + Lt to the next
as Fig.4b shows. Kawazoe et al. [5] set the time of brake application as t1B(k,l), and they
further divided (OB) into these two cases for j below.

(OB1): j − 2 already arrived at the next station at t1B(k,l)
(OB2): j − 2 is still on the way to the next at t1B(k,l)

In (OB1), j need not use brakes at t1B(k,l). j just has to use brakes to stop as same as (OA2)
at t1B(k,l), in order to wait for the departure of j − 2 from the next station. Therefore, in
(OB1), the constraint which j has to satisfy is the same one as (OA2), i.e., Constraint (21)
or (22).

On the other hand, in (OB2), j need use brakes to stop with 2Ls + Lt in front of the
next station. This is because of simplification of Kawazoe et al. [5] we mentioned when we
describe Pattern (OB) in Appendix A. If j − 4 which is the preceding of j − 2 is still on the
way to the next station at t1B(k,l), j has to wait the departures of both of j − 4 and j − 2.
j − 2 will arrive at the next station after j − 4 leave there. At the same time, j starts to
move, runs Ls + Lt and stops again to wait for j − 2 as same as (OA2). Putting all of them
together, in (OB2) j has to satisfy Constraint (23) (up) or (24) (down).

tai+1,j ≥ max(tdi+1,j−4 + TLsLt, tdi+1,j−2) + TLsLt (23)
tai,j ≥ max(tdi,j−4 + TLsLt, tdi,j−2) + TLsLt (24)

B.2 Order Constraints
Here, we describe the constraints which keeps orders of trains. These constraints are also
rewritten from the constraints in the model of Kawazoe et al. [5] according to assumptions
in Section 4.1, which has double tracks and bidirectional operation.

tdi,j > tdi,j−2 (25)
tai,j > tai,j−2 (26)

If i is not the terminal station, then

tai,j > tdi,j−2 (27)

Constraint (25) and (26) mean the arrival and departure of each train is earlier than one
of its preceding train at any station in the lines. Constraint (27) means the arrival of each
train at any station excluding the terminal is earlier than the departure of its preceding train
from that station.

ATMOS 2022

10:16 MIP Rescheduling in Bidirectional Moving Block and ATO

B.3 Other Constraints
Here, we describe the other constraints to use in our model mentioned in Section 6.1. These
constraints are rewritten from the constraints in the model of Hou et al. [5] according to
assumptions in Section 4.1, which has double tracks and bidirectional operation.

First, any train must satisfy the one ATO level in each section. This can be formulated
with ϵl

k,j as below.∑
l

ϵl
k,j = 1 (28)

Next, any train must satisfy the range of the dwelling time length at each station. Using
the maximum allowed dwelling time constants Dwmax

i and the minimum ones Dwmin
i , this

dwelling time range can be formulated as these constraints below.

tdi,j − tai,j ≥ Dwmin
i (29)

If i is not dl or j is not dt, then

tdi,j − tai,j ≤ Dwmax
i (30)

Finally, any train cannot depart from and arrive at each station before the original time
schedule Tdi,j , Tai,j . This can be formulated as these constraints below.

tai,j ≥ Tai,j (31)
tdi,j ≥ Tdi,j (32)

In addition, they added these constraints to minimize the deviation between the original
timetable and the rescheduled timetable [4].

C Details Of Experiment Setting

In this appendix section, we describe the details of the experiment setting we described in
Section 6.1.

C.1 ATO and Moving Block
Here, we describe detailed assumptions and values of constants about ATO and the moving
block to implement our model and do experiments in Section 6. If Train j runs the whole
of Section k following ATO Level l without the moving block auto brakes, it takes Rl

k,j (s)
as Constraint (19) and (20). we set the values of ATO running time Rl

k,j as Table 3 shows.
Furthermore, we set the simple profile of this ATO running in our experiments as follows.

After departure from any station, any train accelerates with a constant rate rac=1.0
(m/s2) in any ATO level. Each ATO level has a unique ATO maximum speed V max

k,l in
each section. The smaller the number of “l”, the larger the value of V max

k,l . Any train
accelerates until the speed of the train reach V max

k,l .
After the acceleration, any train keeps V max

k,l until it approaches the next station, unless
the moving block automatic brakes are activated as defined in Section 4.2.
When any train approaches the next station, it slows down at a constant deceleration
rate rde=1.0 (m/s2) and stops at the next station in any ATO level.

K. Kawazoe, T. Yamauchi, and K. Tei 10:17

Table 3 Values of Rl
k,j (s).

k l = 1 l = 2 l = 3 l = 4 l = 5
1 63 73 83 93 118
2 105 115 125 135 160
3 123 133 143 153 178

Table 4 Values of xk (m) and V max
k,l (m/s).

V max
k,l

k xk l = 1 l = 2 l = 3 l = 4 l = 5
1 839 19.12 14.29 11.78 10.12 7.60
2 1564 17.97 15.75 14.10 12.80 10.46
3 1649 15.31 13.83 12.65 11.66 9.80

In this setting, the following quadratic equation holds for V max
k,l using Ri

k,j and the constant
length of each section xk.

xk =
V max

k,l
2

2rac
+

V max
k,l

2

2rde
+ V max

k,l (Ri
k,j −

V max
k,l

rac
−

V max
k,l

rde
) (33)

We can set the values of V max
k,l by solving this equation. We shows the setting of xk and

V max
k,l in Table 4. In addition, the value setting of Ri

k,j and xk is with reference to the
experiment setting of Hou et al. [4]

Moreover, we set the moving block deceleration rate as Constant rmbs=1.0 (m/s2). We
also set the constant lengths Ls, Lt, and Lu as all 120 (m). From these constants and V max

k,l

above, we can calculate and set the time of starting brake application of the moving block to
stop with a unique distance in front of the next station up to each of Pattern (TA), (TB),
(OA), and (OB) in Section 5 and B.1. For example, when Train j runs in Pattern (TA2-1) in
Section 5.1, j has to stop with Ls + Lu (m) in front of the terminal and wait for r(j − 2). In
this situation, when j can start braking application after its speed reaches V max

k,l , the time
from departure from the last station to starting brake application is tT 1A(k,l), and we can
calculate and set tT 1A(k,l) as follows.

tT 1A(k,l) =
V max

k, l

rac
+

xk − (Ls + Lu) − (V max
k, l)2

2rmbs
− (V max

k, l)2

2rac

V max
k, l

(34)

On the other hand, when j has to start braking application before its speed reaches V max
k,l ,

we can calculate and set tT 1A(k,l) as follows.

tT 1A(k,l) =
√

2(xk − (Ls + Lu)) rmbs

rac(rmbs + rac) (35)

Table 5 Values of Dwmax
i (s) and Dwmin

i (s).

i 1 2 3 4
Dwmax

i 105 90 90 100
Dwmin

i 40 25 25 40

ATMOS 2022

10:18 MIP Rescheduling in Bidirectional Moving Block and ATO

These calculations are with reference to Kawazoe et al. [5] Similarly, we can calculate and
set the values of tT 1B(k,l) in Pattern (TB), t1A(k,l) in Pattern (OA), and t1B(k,l) in Pattern
(OB). Furthermore, from tT 1A(k,l), we can also calculate and set tT 2A(k,l) in Constraint (3)
as follows. In addition, this tT 2A(k,l) is the time when a train stops with Ls + Lu (m) in
front of the terminal.

tT 2A(k,l) = tT 1A(k,l) +
V max

k,l

rmbs
(36)

Similarly, we can calculate and set the values of tT 2B(k,l) in Pattern (TB) and t2A(k,l) in
Pattern (OA).

In addition to them, we set the time constants of TLsLtLu=35 (s) used in Constraint
(3), T2Ls2LtLu =45 (s) used in Constraint (12), and TLsLt=25 (s) used in Constraint (21).
Furthermore, we also set the times of tsd and tsu used in Constraint (3) and (4). They are
the times which it takes from leaving each terminal to passing the switch. For simplification,
in our experiments, we set them as constants which it takes from leaving each terminal to
passing the switch in ATO level 5, i.e., the level with the lowest V max

k,l . Therefore, it can be
said that the train has already passed the switch whatever its ATO level it is when tsd or tsu

passed after departure from the terminal. With this simplification, we calculated and set the
times as tsd = 37.55 (s) and tsu = 48.00 (s).

C.2 Other Constants
Here, we show the other values of constants to use to implement our model and do experiments
in Section 6. They are Dwmax

i and Dwmin
i , which are constants of the range of dwelling

time at stations. We show the setting of Dwmax
i and Dwmin

i in Table 5. The value setting
them is with reference to the experiment setting of Hou et al. [4]

Does Laziness Pay Off? - A Lazy-Constraint
Approach to Timetabling
Torsten Klug1 !

LBW Optimization GmbH, Berlin, Germany

Markus Reuther !

LBW Optimization GmbH, Berlin, Germany

Thomas Schlechte !

LBW Optimization GmbH, Berlin, Germany

Abstract
Timetabling is a classical and complex task for public transport operators as well as for railway
undertakings. The general question is: Which vehicle is taking which route through the transportation
network in which order? In this paper, we consider the special setting to find optimal timetables for
railway systems under a moving block regime. We directly set up on our work of [8], i.e., we consider
the same model formulation and real-world instances of a moving block headway system. In this
paper, we present a repair heuristic and a lazy-constraint approach utilizing the callback features
of Gurobi, see [3]. We provide an experimental study of the different algorithmic approaches for
a railway network with 100 and up to 300 train requests. The computational results show that
the lazy-constraint approach together with the repair heuristic significantly improves our previous
approaches.

2012 ACM Subject Classification Mathematics of computing → Combinatorial optimization

Keywords and phrases Moving Block, Railway Track Allocation, Timetabling, Train Routing

Digital Object Identifier 10.4230/OASIcs.ATMOS.2022.11

1 Introduction

We consider the general timetabling problem GTTP presented in [8]. In this problem the
decisions to make are:

Which train request is cancelled and not routed?
Which route over time does a train take through the network to meet its requested time
intervals?
Where and how does overtaking take place, i.e., where does deceleration, waiting on a
side track, and acceleration take place?

The literature on timetabling is overwhelming as the numerous Chapters in [1] document,
see the surveys by [4] and [2] and the significant and recent works [5] and [6]. However, for
moving block systems, i.e., trains running in braking distance, less papers are published,
e.g., [9] and [8]. In this paper, we consider the model formulation presented in [8] without
modifications. We directly setup on the multi-layer graph structure based on a velocity
expansion and the definition of competitions in order to resolve conflicts between trains, i.e.,
by using disjunctive tandem and opposite headway constraints. We will give a very compact
presentation of the mixed-integer programming model in Section 2, see [8] for the details.
In the current follow-up paper, we exclusively focus on the solution methodology. The
contribution of this paper is to discuss and compare different algorithmic approaches that we
present in Section 3, i.e., using lazy-constraints and a primal repair heuristic. In particular,

1 corresponding author

© Torsten Klug, Markus Reuther, and Thomas Schlechte;
licensed under Creative Commons License CC-BY 4.0

22nd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2022).
Editors: Mattia D’Emidio and Niels Lindner; Article No. 11; pp. 11:1–11:8

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:klug@lbw-optimization.de
mailto:reuther@lbw-optimization.de
mailto:schlechte@lbw-optimization.de
https://orcid.org/0000-0001-5317-7596
https://doi.org/10.4230/OASIcs.ATMOS.2022.11
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

11:2 A Lazy-Constraint Approach to Timetabling

in Section 4 we show the effects of these enhancements on the entire solution process. We
provide computational results for a railway network with 100, 200 and 300 requested trains.
The results demonstrate that the new algorithmic add-ons halve the runtime on average and
allow to solve larger instances to optimality.

2 Model

Let us revive the notation used in [8] for the binary variables: ya, a ∈ A to represent routing
decision via arcs of the velocity-expanded graph D = (V, A), xr1≺r2

e for the order of two
trains r1, r2 on an infrastructure edge e, slacks u to allow cancelling train requests, and
the continuous variables t to model departure and arrival times. Let A, B, C, D, I, N, G be
appropriate matrices and d, f, g vectors, respectively, to represent the MIP model for the
GTTP defined in [8]. A compact MIP formulation is then:

min cT
u u+cT

t t + cT
y y (1)

Iu + Ny = d (routing) (2)
At + By ≤ f (timing) (3)
Ct + Dy +Gx ≤ g (headway) (4)

The constraints partition into three parts: the routing part (2) that models train
cancellations and the y-flow throw the velocity-expanded graph; the timing part (3) that
combines time and flow variables to model running times meeting departure and arrival
time windows at requested stops; the headway constraints (4) that ensure the minimal safety
headway distances between the train’s paths.

The headway constraints are the crucial part that couples the different train requests
into one integrated optimization problem. Without these the problem decomposes into
independent routing problems for each train.

In reality, most of the headway constraints are automatically satisfied by the network’s
shape and the request set. In fact, only a few of those constraints become intrusive, which
motivate their handling by a lazy-constraint approach.

Consider the following example representation of a headway constraint:

tr1 +
∑
...

ha yr1
a ≤ tr2 + M ·

(
3 − xr1≺r2

e −
∑
...

yr1
a −

∑
...

yr2
a

)
(5)

The constraint (5) is defined for the request pair (r1, r2) and the infrastructure edge
e. The big-M constraint becomes active if and only if r1 goes first (xr1≺r2

e = 1) and both
requests route via edge e, i.e.,

∑
ya

r1 = 1 and
∑

ya
r2 = 1. The minimal required headway

time between time variables tr1 and tr2 is denoted by ha. Thus, enough spacing between
different train events is triggered if the constraint becomes active.

In that construction, three nearly independent situations, i.e., the specific request order
on e and the two routing decisions need to come together, to activate the constraint. We
exploit this structure by releasing one of three situations to deactivate, i.e., repair, a violated
headway constraint. The repair heuristic presented in Section 3 is based on this idea.

3 Algorithmic Add-Ons

Due to the constantly evolving power of MIP solvers, solving sequences of relaxed MIP
formulations, in that we temporarily give up some missing constraints, are a way to solve
large scale models. In each MIP iteration we resume at least one or more of the missing

T. Klug, M. Reuther, and T. Schlechte 11:3

constraints if we detect violations. See, e.g., [7] for the TSP. A similar concept is the iterative
MIP approach used in [8] applied to timetabling. This seems to be a promising approach if
two key properties are present:

the missing set of constraints is too large (or even exponentially growing w.r.t. the input
size) to be handled directly and
only a few of the missing constraints are relevant to cut-off enough infeasibilities to obtain
a feasible primal solution within only some MIP iterations.

In this Section we present a straight-forward enhancement of this approach by using lazy-
constraints. The obvious motivation behind this is that if several MIP iterations are needed,
the explored branch-and-bound trees sum up and the computational effort

3.1 Recall the Iterative MIP Approach (BC)
Let us briefly recall the branch-and-cut motivated sequential MIP approach (BC) used in [8]:
The method starts with the MIP formulation as presented in Section 2, but without the
ordering variables xr1≺r2

e and without the headway constraints (4). We denote this relaxed
MIP by RMIP. Solving RMIP always provides an integer feasible routing which may violate
some headway constraints. If no headway constraint is violated, we already found an optimal
solution of GTTP. Otherwise, we determine all violated headway constraints including
required train ordering variables and add them to the model (simultaneous constraint and
variable generation). A violation, i.e., a headway conflict, belongs to a specific location
(node or edge) and velocity. To save iterations, we always add all headway constraints for all
possible velocity levels. We call the subset of headway constraints for a location and request
pair with all possible velocity combinations a competition. We then continue solving the
resulting RMIP and repeat the process until an optimal solution to GTTP is found. The
computational results in [8] already shown that this approach terminates much faster and
with a much smaller model than the full GTTP model.

3.2 Lazy-Constraint Approach (LAZY)
The lazy-constraint approach makes use of the Gurobi lazy-constraint callback. The method
starts with the MIP formulation GTTP without the headway constraints (4). We denote
these relaxed sub-models with only restricted subsets of headway constraints by RMIP. In
contrast to BC, for technical reasons all ordering variables xr1≺r2

e are added in advance (even
if they have effect). Whenever Gurobi determines a feasible integer solution for RMIP in
its branch-and-bound algorithm (or already at the root node), the lazy-constraint callback is
called. In the callback we check the current solution and determine the violated headway
constraints in the same manner as described in 3.1 for the BC case. If no violated headway
constraint is found then the solution is feasible for GTTP. Otherwise, all headway constraints
of the superordinate competitions are added as lazy-constraints to RMIP. This procedure
proceeds and terminates with an optimal solution for the GTTP.

3.3 Primal Repair Heuristic (PRH)
Both of the previous approaches check a given feasible solution of the relaxation RMIP
and add violated headway constraints. We observed that after a couple of iterations the
number of violated headway constraints decrease significantly. Nevertheless, the solution of
the previous iteration is cut off and the MIP solver has problems to find a feasible primal
solution satisfying the newly added headway constraints. To give a little help, we implement
the following primal repair heuristic PRH that derives a global primal feasible solution as
follows.

ATMOS 2022

11:4 A Lazy-Constraint Approach to Timetabling

Let (u′, y′, x′, t′) be a feasible solution fo the relaxation RMIP and V be the set of train
requests for that a violated headway constraint was detected. Let H be set of the violated
headway constraints. We construct a conflict graph with a node for all train requests and an
edge between two nodes if there exists a constraint in H for the corresponding train request
pair. We chose a maximal stable set S in this graph. Then the following applies:

each isolated node of the conflict graph is an element of S,
for each pair r1, r2 ∈ V that is part of the same headway constraint in V at most one of
the corresponding nodes is an element of S.

If we cancel all train requests, i.e, by setting the slack variable ur to 1, that are not in the
stable set S, then a primal feasible solution (u, y, x, t) of GTTP is defined as follows:

t = t′, x = x′, y =
{

yr
a = (yr

a)′, r ∈ S

yr
a = 0, otherwise

, u =
{

ur = (ur)′, r ∈ S

ur = 1, otherwise
(6)

It is easy to see that the routing and timing constraints are satisfied. In Section 2 we
already mentioned that a headway constraint can be deactivated if the variables ya of one of
the involved requests are set to zero. This is guaranteed by the stable set construction and
hence all determined headway constraints are satisfied. Since all violated headway constraints
are determined the constructed solution is also globally feasible.

4 Computational Results

In this section we discuss the computational results and give answers to the following
questions:

What is the impact of the primal repair heuristic PRH?
Does the lazy-constraint callback outperform the iterative approach?

We consider three sets of instances with an increasing number of train requests from 100
to 300. The OneHND testset is exactly the same as in [8] and consists of 10 scenarios with
100 trains. The TwoHND and ThreeHND testsets consist of 5 scenarios with 200 trains
and 3 scenarios with 300 trains, respectively. The testsets have the same data basis with an
increasing time horizon. Concrete numbers and more details on the railway application can
be found in [8]. All tests were executed on a Intel(R) Xeon(R) Gold 5122 CPU @ 3.60GHz
with 90 GB RAM. We use Gurobi 9.51 as MIP solver with up to 4 threads. The time limit
was 12 hours. The maximal optimality gap is set to 10−4.

We compare four algorithms. These are the approaches BC and LAZY without the primal
repair heuristic and its variants with the primal repair heuristic PRH. The variants with
PRH are denoted by BC-P and LAZY-P, respectively. Table 1 shows the aggregated results
for the different algorithm variants and all testsets. The first column lists the considered
algorithm followed by the testset in column two. The third column indicates the number of
scenarios that could be solved to optimality and the number of scenarios in the testset. The
next four columns give the minimum, maximum, average and summed up computation times
in seconds. Finally, the last two columns denote the average number of branch-and-bound
nodes and the average number of generated headway constraints. In the case of BC the
number of branch-and-bound nodes is the sum over all BC iterations.

The results of Table 1 highlight the performance boost by the primal repair heuristic, i.e,
comparing the summed up and average computation time in seconds of BC with BC-P and
LAZY with LAZY-P, respectively. We restrict the evaluation of the repair heuristic to the
OneHND testset because without PRH the major part of the greater scenarios could not

T. Klug, M. Reuther, and T. Schlechte 11:5

Table 1 Summary of the results for the different algorithm variants and testsets.
al

go
rit

hm

te
st

se
t

#
op

tim
al

computation time #
B

&
B

no
de

s

#
he

ad
w

ay
s

min max average sum average average

BC OneHND 10/10 6 837 207 2070 3731 2293
BC-P OneHND 10/10 6 389 111 1111 1760 2042
LAZY OneHND 10/10 7 862 261 2606 22485 3270
LAZY-P OneHND 10/10 8 151 99 991 4463 2393

BC-P TwoHND 4/5 127 43201 8125 48753 123623 8651
LAZY-P TwoHND 5/5 217 17247 3765 22589 68415 10691

BC-P ThreeHND 2/3 1857 43201 13701 54804 201874 15471
LAZY-P ThreeHND 3/3 1203 12691 5147 20587 70133 17334

be solved to optimality within the 12 hour time limit. Both approaches benefit from using
PRH, so that the total and average runtime is halved. For the lazy-constraint approach the
repair heuristic is crucial, since LAZY is notable slower than BC. In all scenarios where BC
wins Gurobi needs a reasonable time to provide a primal feasible solution and therefore the
branch-and-bound tree becomes large. The repair heuristic fixes this issue and significantly
reduces the tree size especially for the larger and more complex scenarios.

The superiority of the lazy-constraint approach increases with the problem size. LAZY-P
is 12 seconds faster on average for the OneHND testset. For the TwoHND and ThreeHND
testset LAZY-P requires less than half of the computing time of BC-P. Furthermore LAZY-
P is able to solve all scenarios to optimality. This is not the case for BC-P with two scenarios
that cannot be solved to optimality within the time limit. The number of generated headway
constraints are in the same range for both approaches. In comparison to BC-P the number
of branch-and-bound nodes of LAZY-P is on average 45% smaller for the TwoHND testset
and 65% smaller for the ThreeHND testset. Since the iterative branch-and-cut approach
restarts the branch-and-bound procedure at each iteration the restart overhead sums up
with the problem size. The lazy-constraints approach add the generated headway constraints
within the branch-and-bound procedure and do not have to create already explored subtrees
again.

The detailed results for the single scenarios can be found in Table 2 and Table 3. The first
column gives the unique scenario id. It follows the algorithm; the average computation time
in seconds; the number of routed requests; the final objective value; the final optimality gap
in percent and; the number branch-and-cut iterations. Finally, the last two columns denote
the number of branch-and-bound nodes and the number of generated headway constraints.
As before the number of branch-and-bound nodes is the sum over all iterations of BC.

The following two extreme cases give a hint when which algorithm should be used.
Considering scenario 35 in Table 3 the number of iterations and the number of branch-and-
bound nodes for algorithm BC-P is 19. This means Gurobi can find the optimal solution of
the relaxed problem at the root node of each iteration and is therefore faster than LAZY-P.
In contrast to that scenario 42 could be solved by LAZY-P within the time limit and needs
less than 25% of the branch-and-bound nodes of BC-P. Furthermore BC-P only provides a
solution with a gap of about 25% within the time limit.

ATMOS 2022

11:6 A Lazy-Constraint Approach to Timetabling

Table 2 Detailed results for the OneHND testset.

sc
en

ar
io

al
go

rit
hm

co
m

pu
ta

tio
n

tim
e

#
re

qu
es

ts
ro

ut
ed

ob
je

ct
iv

e

ga
p

in
pe

rc
en

t

#
B

C
ite

ra
tio

ns

#
B

&
B

no
de

s

#
he

ad
w

ay
co

ns
tr

ai
nt

s

25 BC 35 99 12657.77 0.00 15 15 869
25 BC-P 16 99 12657.83 0.00 7 7 791
25 LAZY 184 99 12662.75 0.04 8579 2177
25 LAZY-P 83 99 12660.46 0.02 2887 1434
26 BC 6 96 41821.69 0.46 5 3 131
26 BC-P 6 96 41821.69 0.46 5 2 131
26 LAZY 7 96 41821.69 0.00 168 290
26 LAZY-P 8 96 41821.69 0.00 157 441
27 BC 69 98 22049.13 0.27 15 10 1449
27 BC-P 46 98 22049.13 0.00 15 13 1401
27 LAZY 98 98 22050.33 0.01 4581 2638
27 LAZY-P 118 98 22051.19 0.01 6221 2323
28 BC 137 98 22112.66 0.00 23 1572 2471
28 BC-P 25 98 22116.17 0.02 10 10 1592
28 LAZY 94 98 22113.25 0.00 3577 2545
28 LAZY-P 141 98 22114.91 0.01 7201 3270
29 BC 63 97 32025.42 0.01 16 16 2530
29 BC-P 87 97 32022.49 0.00 24 23 2833
29 LAZY 91 97 32024.66 0.01 6116 2664
29 LAZY-P 72 97 32023.32 0.01 2526 2079
30 BC 234 96 42241.08 0.01 25 5358 2695
30 BC-P 389 96 42238.54 0.00 39 9975 2895
30 LAZY 251 96 42239.90 0.00 16111 3798
30 LAZY-P 107 96 42238.75 0.00 5310 2784
31 BC 119 97 32001.54 0.00 22 1946 1853
31 BC-P 25 97 32003.22 0.01 10 10 1305
31 LAZY 622 97 32004.12 0.01 65958 5313
31 LAZY-P 120 97 32006.99 0.02 6624 2724
32 BC 520 96 42086.50 0.01 43 8344 5604
32 BC-P 110 96 42081.67 0.00 24 144 4016
32 LAZY 328 96 42085.64 0.01 28405 5405
32 LAZY-P 116 96 42081.06 0.00 4968 3552
33 BC 49 98 22120.64 0.00 15 244 1724
33 BC-P 108 98 22120.52 0.00 21 1117 2052
33 LAZY 70 98 22121.11 0.00 2880 2200
33 LAZY-P 75 98 22123.11 0.01 3006 2205
34 BC 837 97 32249.30 0.01 32 19800 3604
34 BC-P 297 97 32249.54 0.01 23 6299 3399
34 LAZY 862 97 32252.74 0.02 88479 5668
34 LAZY-P 151 97 32251.90 0.02 5730 3121

T. Klug, M. Reuther, and T. Schlechte 11:7

Table 3 Detailed results for the TwoHND and ThreeHND testset.

sc
en

ar
io

al
go

rit
hm

co
m

pu
ta

tio
n

tim
e

#
re

qu
es

ts
ro

ut
ed

ob
je

ct
iv

e

ga
p

in
pe

rc
en

t

#
B

C
ite

ra
tio

ns

#
B

&
B

no
de

s

#
he

ad
w

ay
co

ns
tr

ai
nt

s

35 BC-P 127 194 65095.85 0.01 19 19 1761
35 LAZY-P 217 194 65096.47 0.00 3782 2061
36 BC-P 1133 194 64318.40 0.00 24 15660 6480
36 LAZY-P 1577 194 64318.14 0.00 30173 9938
37 BC-P 1701 191 94415.08 0.00 27 23445 6291
37 LAZY-P 1306 191 94414.63 0.00 28094 8543
38 BC-P 2038 192 84379.15 0.00 35 24424 8097
38 LAZY-P 1597 192 84382.17 0.00 34120 9792
39 BC-P 43201 193 74940.93 13.31 55 554568 20628
39 LAZY-P 17247 194 64974.44 0.01 245908 23121

40 BC-P 3664 291 96779.69 0.00 29 44368 9585
40 LAZY-P 1731 291 96789.00 0.01 21190 10995
41 BC-P 6083 286 146914.49 0.00 26 79033 13465
41 LAZY-P 4962 286 146910.75 0.00 60731 17082
42 BC-P 43201 289 117369.01 25.42 55 482222 23363
42 LAZY-P 12691 292 87548.56 0.01 128479 23926

Finally, we answer the question: Does Laziness Pay Off? Our computational experiments
indicate that the answer is yes with two minor restrictions. First, the problem size or
complexity must be large enough and second a primal heuristic is needed, such as the
presented simple repair heuristic PRH. Under these conditions, we conclude that the lazy-
constraint approach outperforms the iterative branch-and-cut approach on the large instances
considered.

References

1 Ralf Borndörfer, Torsten Klug, Leonardo Lamorgese, Carlo Mannino, Markus Reuther, and
Thomas Schlechte, editors. Handbook of Optimization in the Railway Industry, volume 268.
Springer, 2018. doi:10.1007/978-3-319-72153-8.

2 Valentina Cacchiani, Dennis Huisman, Martin Kidd, Leo Kroon, Paolo Toth, Lucas Veelenturf,
and Joris Wagenaar. An overview of recovery models and algorithms for real-time railway
rescheduling. Transportation Research Part B: Methodological, 63:15–37, 2014. doi:10.1016/
j.trb.2014.01.009.

3 Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2022. URL: https://www.
gurobi.com.

4 Steven S. Harrod. A tutorial on fundamental model structures for railway timetable op-
timization. Surveys in Operations Research and Management Science, 17(2):85–96, 2012.
doi:10.1016/j.sorms.2012.08.002.

ATMOS 2022

https://doi.org/10.1007/978-3-319-72153-8
https://doi.org/10.1016/j.trb.2014.01.009
https://doi.org/10.1016/j.trb.2014.01.009
https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.1016/j.sorms.2012.08.002

11:8 A Lazy-Constraint Approach to Timetabling

5 Leonardo Lamorgese and Carlo Mannino. An exact decomposition approach for the real-time
Train Dispatching problem. Operations Research, 63:48–64, 2015. doi:10.1287/opre.2014.
1327.

6 Bianca Pascariu, Marcella Samà, Paola Pellegrini, Andrea D’Ariano, Joaquin Rodriguez, and
Dario Pacciarelli. Effective train routing selection for real-time traffic management: Improved
model and aco parallel computing. Computers & Operations Research, 145:105859, May 2022.
doi:10.1016/j.cor.2022.105859.

7 Ulrich Pferschy and Rostislav Staněk. Generating subtour elimination constraints for the TSP
from pure integer solutions. Central European Journal of Operations Research, 25(1):231–260,
February 2016. doi:10.1007/s10100-016-0437-8.

8 Thomas Schlechte, Ralf Borndörfer, Jonas Denißen, Simon Heller, Torsten Klug, Michael
Küpper, Niels Lindner, Markus Reuther, Andreas Söhlke, and William Steadman. Timetable
optimization for a moving block system. Journal of Rail Transport Planning & Management,
22:100315, June 2022. doi:10.1016/j.jrtpm.2022.100315.

9 Peijuan Xu, Francesco Corman, Qiyuan Peng, and Xiaojie Luan. A train rescheduling model
integrating speed management during disruptions of high-speed traffic under a quasi moving
block system. Transportation Research Part B, 104:638–666, 2017. doi:10.1016/j.trb.2017.
05.008.

https://doi.org/10.1287/opre.2014.1327
https://doi.org/10.1287/opre.2014.1327
https://doi.org/10.1016/j.cor.2022.105859
https://doi.org/10.1007/s10100-016-0437-8
https://doi.org/10.1016/j.jrtpm.2022.100315
https://doi.org/10.1016/j.trb.2017.05.008
https://doi.org/10.1016/j.trb.2017.05.008

REX: A Realistic Time-Dependent Model for
Multimodal Public Transport
Spyros Kontogiannis #

Computer Science & Engineering Department, University of Ioannina, Greece
Computer Technology Institute & Press “Diophantus”, Rion, Greece

Paraskevi-Maria-Malevi Machaira #

Department of Computer Engineering & Informatics, University of Patras, Greece
Computer Technology Institute & Press “Diophantus”, Rion, Greece

Andreas Paraskevopoulos #

Department of Computer Engineering & Informatics, University of Patras, Greece
Computer Technology Institute & Press “Diophantus”, Rion, Greece

Christos Zaroliagis #

Department of Computer Engineering & Informatics, University of Patras, Greece
Computer Technology Institute & Press “Diophantus”, Rion, Greece

Abstract
We present the non-FIFO time-dependent graph model with REalistic vehicle eXchange times (REX)
for schedule-based multimodal public transport, along with a novel query algorithm called TRIP-based
LAbel-correction propagation (TRIPLA) algorithm that efficiently solves the realistic earliest-arrival
routing problem. The REX model possesses all strong features of previous time-dependent graph
models without suffering from their deficiencies. It handles non-negligible exchanges from one vehicle
to another, as well as supports non-FIFO instances which are typical in public transport, without
compromising space efficiency. We conduct a thorough experimental evaluation with real-world data
which demonstrates that TRIPLA significantly outperforms all state-of-the-art query algorithms for
multimodal earliest-arrival routing in schedule-based public transport.

2012 ACM Subject Classification Theory of computation → Shortest paths; Mathematics of
computing → Graph algorithms; Applied computing → Transportation

Keywords and phrases multimodal journey planning, REX model, TRIPLA query algorithm,
schedule-based timetables

Digital Object Identifier 10.4230/OASIcs.ATMOS.2022.12

Funding This work was supported by the Operational Program Competitiveness, Entrepreneurship
and Innovation (co-financed by EU and GR national funds), under project i–Deliver (T2EDK-03472).

1 Introduction

Nowadays, a plethora of applications allows commuters to plan their journeys using public
transport. The journey planning (JP) problem refers to the computation of optimal journeys
as a real-time response to routing queries. The most realistic version of this problem, known
as multimodal journey planning (MJP) problem, supports a combination of different transport
modes (bus, metro, train, tram, walking, etc.). MJP provides optimal journeys from an
origin A to a destination B, in schedule-based multimodal public-transport systems, which
meet one or more optimization criteria. The most commonly used criteria are the earliest
arrival (EA) and the minimum number of vehicle exchanges, a.k.a. the minimum number of
transfers (MNT). The corresponding variants of the problem are MJPEA (for earliest-arrivals)
and MJPMNT (for minimum-number-of-transfers).

© Spyros Kontogiannis, Paraskevi-Maria-Malevi Machaira, Andreas Paraskevopoulos, and Christos
Zaroliagis;
licensed under Creative Commons License CC-BY 4.0

22nd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2022).
Editors: Mattia D’Emidio and Niels Lindner; Article No. 12; pp. 12:1–12:16

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kontog@uoi.gr
https://orcid.org/0000-0002-8559-6418
mailto:machaira@ceid.upatras.gr
mailto:paraskevop@ceid.upatras.gr
https://orcid.org/0000-0002-6981-5625
mailto:zaro@ceid.upatras.gr
https://orcid.org/0000-0003-1425-5138
https://doi.org/10.4230/OASIcs.ATMOS.2022.12
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

12:2 REX: A Realistic Time-Dependent Model for Multimodal Public Transport

A schedule-based public transport system consists of a timetable that contains the departure
and arrival times of the scheduled vehicles. The challenge in designing schedule-based public
transport systems is the modelling of the timetable information so that optimal journey-
planning queries can be efficiently answered. In the scenario under consideration, a centralised
server accessible to every customer has to respond, in real-time, to a stream of optimal-journey
queries. The goal is to model timetable information in order to reduce the average response
time for a query. The most common approaches use a preprocessing stage that constructs the
data structure used to represent the timetable information. As for representing schedule-based
public-transport instances, there are two main axes which have been considered.

The first axis concerns the type of travel-time. The simplified travel-time approach assumes
that the vehicle exchanges within stations take negligible time and the FIFO property holds
for all the connections between stations. The realistic travel-time approach allows the vehicle
exchanges within stations to require non-negligible time, and also allows the existence of
non-FIFO connections between stations (e.g., due to passing-by trains of different speeds).

The second axis concerns the graph model used to represent the timetables. The time-
dependent graph model [2, 11, 13, 14, 18] is more compact, in the sense that the stations
correspond to graph nodes. The time-expanded graph model [10, 15, 21, 22] allows for a more
detailed representation of the timetable, by allocating, not just stations, but timestamped
stations to the vertices of the graph. Due to the temporal characteristics of the vertices,
the resulting graph is acyclic, allowing for quite simple query algorithms. The size of the
representation blows up in this case, since there are several timestamped copies of the same
station, each representing a different departure/arrival event in the timetable of the station.

Our focus in this paper is the study of time-dependent graph models for schedule-based
public-transport instances. Two characteristic representatives of this family are the BJ [2],
and the PSWZ [18] models. We present the non-FIFO time-dependent graph model with
REalistic eXchange times (REX), which aims to combine the strong features of the BJ and
the PSWZ models, without suffering from their deficiencies. In particular, REX allows for
non-negligible transfer times, as in the PSWZ model, but without increasing the size of the
time-dependent graph: each station is represented by a single vertex, and there is an arc
between two nodes when at least one elementary connection (irrespectively of the vehicle
types using it) exists between them, as in the BJ model. Of course, there is a price to pay
for this enhancement: the Dijkstra-like label-setting query algorithm no longer works as such.
To tackle this problem, we also propose a novel query algorithm, called the TRIP-based
LAbel correcting (TRIPLA) algorithm that solves MJPEA even when the FIFO property is
violated by some arcs. This is a label-correcting shortest-path algorithm, which nevertheless
conducts a targeted label correction, via an appropriate data structure that we maintain at
the vertices and a novel label-correction propagation (LCPROP) phase that TRIPLA uses to
update the vertex labels when a delay occurs.

2 Preliminaries

Schedule-based public-transport networks are described by timetable information. Timetables
consist of scheduled trips described by their sequence of stops and the corresponding departure
and arrival times. More formally, a timetable T is a tuple (Z, B, C), where Z is the set of
public-transport vehicles, B is the set of stops (or stations), and C is the set of elementary
connections. Each elementary connection is a tuple c = (Z, Sd, Sa, td, ta). For each attribute
x of an elementary connection c ∈ C, its value is denoted by x(c). Therefore, c ∈ C represents
the journey of a particular vehicle Z(c) ∈ Z which departs from the origin-stop Sd(c) ∈ B at

S. Kontogiannis, P.-M.-M. Machaira, A. Paraskevopoulos, and C. Zaroliagis 12:3

(departure) time td(c), and arrives at the destination-stop Sa(c) ∈ B at (arrival) time ta(c),
with no intermediate stop. The journeys are considered to be periodic, with period Tp, which
may vary from one day to one week. It is assumed that every connection’s travel-time and
every stop’s transfer-time is less than Tp, while the a time unit of 1 minute is considered.

In the time-dependent graph model, timetables are represented by a weighted graph
G = (V, E), whose vertex set V represents (possibly timestamped copies of) stations and E

represents (either single, or bundles of) elementary connections between stations. Eu ⊆ E is
the subset of outgoing arcs from u ∈ V . We denote by π[u](ts), the label of u for a (tentative)
presence-time at u ∈ V , given that the presence time at the origin s is ts. Clearly, π[u](ts)
cannot be considered as a departure-time from u for all the elementary connections emanating
from it, for commuters starting their journey from s at time ts (or later). Transfer-times
within u should also be taken into account, in case that commuters have to exchange vehicles
to continue their trip. In addition, δ[u](ts) denotes the earliest presence-time at u that would
eventually be returned by a time-dependent shortest-path algorithm.

Given two time values t and t′, the function ∆(t, t′) ∈ [0, Tp) computes the duration of
the interval [t, t′], taking into account the periodicity of reported times, as well as the fact
that each reported time value concerns either the current or the next period:

∆(t, t′) =
{

t′ − t if t′ ≥ t

Tp + t′ − t otherwise.
(1)

The travel-time ∆(c) of an elementary connection c is the elapsed time between the
departure from its origin and the arrival at its destination, i.e., ∆(c) = ∆(td(c), ta(c)).

In the models described below, each elementary connection c is associated with an arc
e = (u, v) ∈ E, while C(e) denotes the set of elementary connections associated with e. The
duration D[c](tu) of the elementary connection c depends on the (tentative) presence-time tu at
u, and the corresponding travel-time for c: ∀tu ≥ 0, D[c](tu) = ∆(tu, td(c)) + ∆(td(c), ta(c)) .

At any station B ∈ B, it is possible for a commuter to be transferred from one vehicle
to another. The transfer-time for this exchange of vehicles is station-specific, and is given
by the value trans(B). Such a transfer is only meaningful if the time-difference of the
departure-time of the outgoing vehicle from B minus the arrival-time of the incoming vehicle
at B, along the journey of the commuter, is at least equal to trans(B). An itinerary of a
timetable T is a sequence of elementary connections P = (c1, c2, .., ci, ci+1, ..., ck), where for
each i = 2, 3, .., k, Sa(ci−1) = Sd(ci) and also

∆(ta(ci−1), td(ci)) ≥

{
0 if Z(ci−1) = Z(ci)
trans(Sa(ci−1)) otherwise.

(2)

According to the itinerary P , a commuter departs from station Sd(c1) at time td(c1) and
arrives at station Sa(ck) at time ta(ck). If the commuter’s presence-time at Sd(c1) is tu,
then the corresponding travel-time of P is defined as follows: ∆[P](tu) = ∆(tu, td(c1)) +
∆(td(c1), ta(ck)). A trip J = (c1, c2, ..., ck) is a special case of an itinerary that is performed
by only one vehicle. Thus, it must hold that ∆(ta(ci−1), td(ci)) ≥ 0 and Z(ci−1) = Z(ci), for
each 2 ≤ i ≤ k. A route is a subset of trips in the timetable which follow exactly the same
sequence of stops, obviously at different times.

A timetable query is defined by a tuple (S, T, ts) where S ∈ B is the departure station,
T ∈ B is the arrival station, and ts is the presence-time at S. As mentioned above, the most
commonly used optimization criteria for the MJP problem are the earliest arrival (EA) and
the minimum number of transfers (MNT), that define the following variants.

ATMOS 2022

12:4 REX: A Realistic Time-Dependent Model for Multimodal Public Transport

Earliest Arrival Multimodal Journey Planning Problem (MJPEA): The goal is to find an
itinerary that may depart from S no earlier than the presence-time ts at S, and arrives
at T as early as possible.
Minimum-Number-of-Transfers Multimodal Journey Planning Problem (MJPMNT): The
goal is to find an itinerary that departs from S no earlier than the presence-time ts at S,
and arrives at T with the minimum number of vehicle exchanges.

In this work we focus on the realistic variant of MJPEA which considers non-negligible
transfer-times and allows for the existence of non-FIFO arcs.

3 Existing Models and State-Of-Art Review

We summarize the basic characteristics and a comparison of the two most prevalent schedule-
based time-dependent graph models, BJ [2] and PSWZ [18], along with their query algorithm.

3.1 The BJ Model
The time-dependent graph G = (V, E) consists of nodes representing stations, and arcs
e = (A, B) ∈ E from station A to station B, if there exists in the timetable at least one
elementary connection from A to B.

Figure 1 The BJ model representation of a network with 3 stations, X, Y and Z, k elementary
connections (c1, c2, c3, . . . , ck) from Z to Y , and d elementary connections (c′

1, c′
2, c′

3, . . . , c′
d) from Y

to X. The transfer-times between vehicles take negligible time.

The transfers between vehicles within a station are assumed to take zero time. The
earliest-arrival time of an arc e = (A, B) is computed “on the fly” and is given by a function
f(A,B)(tA) = tB , where tA is the presence-time at A and tB ≥ tA is the earliest-arrival time
at B. All the elementary connections across e = (A, B) are maintained in an array whose
entries consist of tuples of the form c = (td, ta, Z). Figure 1 illustrates an example of the
time-dependent model. The BJ model makes the assumption, also known as the FIFO
property, that overtaking of vehicles along an arc is not allowed. More formally:

▶ Assumption 1 (FIFO Arcs). For any two given stations A and B, there are no two vehicles
leaving A and arriving to B such that the vehicle that leaves A second arrives first at B.

3.2 The PSWZ model
The PSWZ model is an extension of the BJ model and is also based on a time-depended
digraph G = (V, E), which is called the vehicle-route graph. The vehicle exchanges at stations
are now allowed to take (either constant, or varying) non-negligible times. For simplicity
we consider the case of constant transfer-time per station. In the PSWZ model the set of

S. Kontogiannis, P.-M.-M. Machaira, A. Paraskevopoulos, and C. Zaroliagis 12:5

Figure 2 The PSWZ model representation of a network that contains three stations and two
routes. Nodes X, Y and Z are station nodes. Nodes pZ

0 , pZ
1 , pY

0 , pY
1 and pX

1 are route nodes. The
example considers two routes starting from Z, represented by the route nodes pZ

0 and pZ
1 . Moreover,

there is a route which ends at Y , represented by py
0 , and one passing-by route represented by py

1 .
Finally, one route ends at X, represented by pX

1 . The transfer-arcs are coloured blue, whereas the
red arcs represent route 0 (from Z via Y to X), and the green arcs the represent route 1 (from Z to
Y) .

vehicles is divided in vehicle routes, where two vehicles belong to the same route if they
pass through exactly the same sequence of stations, probably at different times within a day.
For each station that a route stops by, the vehicle-route graph contains a node to indicate
that event, called a route node. Moreover, the vehicle-route graph contains station nodes
corresponding to stations. The arcs are distinguished in three different types: route arcs
between route nodes of the same route, transfer arcs from a route node to a station node,
and boarding arcs from a station node to a route node. The cost of route arcs is assigned “on
the fly”, while the cost of the transfer and boarding arcs are predetermined. In particular,
the arrival-time of a route arc e = (pA

i , pB
i) is given by f(pA

i
,pB

i
)(tA) = tB where tB is the time

that pB
i will be reached, given that pA

i was reached at time tA. Its cost is then ∆(tA, tB). A
transfer-arc (A, pA

i) from a station-node A to a route node pA
i has cost equal to trans(A). A

boarding arc (pA
i , A) from a route node pA

i to a station node A has zero cost. The elementary
connections from a station to another are maintained in a separate array per route arc,
ordered in increasing departure times.

The PSWZ model is based on the following FIFO assumption.

▶ Assumption 2 (FIFO Vehicle Routes). There exist no two vehicles Z1, Z2 ∈ Z belonging to
the same vehicle-route such that the (slow) vehicle Z1 departs earlier than the (fast) vehicle
Z2 from a station A but it arrives later than Z2 at the next station B along the route.

If this assumption is violated, the PSWZ model can enforce it by introducing new vehicle
routes, one for each different speed class, where all vehicles follow the same schedule as
before. Figure 2 illustrates an example of this model.

3.3 Query algorithm for BJ and PSWZ models
The query algorithm used by both models is a variant of Dijkstra’s algorithm [6] which solves
the simplified version (i.e., when Assumption 1 holds) of MJPEA in the BJ model, and the
realistic version (i.e., when Assumption 2 holds) of MJPEA in the PSWZ model.

ATMOS 2022

12:6 REX: A Realistic Time-Dependent Model for Multimodal Public Transport

In particular, given a query (S, T, ts), the query algorithm is a time-dependent variant
of Dijkstra’s algorithm (we call it TDD): Initially the presence-time label π[S](ts) of the
origin-station S is initialized to ts, and all other labels are set to infinity. The costs of
the transfer and boarding arcs in the PSWZ model are all predetermined. The costs of
each time-dependent arc e = (A, B) (i.e., every arc in the BJ model, only route arcs in the
PSWZ model) is computed “on the fly”, when its tail A is selected by TDD for settling
its label. The label π[A](ts) of A is optimal when it is chosen to be settled, due to the
correctness of TDD in time-dependent graphs whose arc costs obey the FIFO property:
δ[A](ts) = π[A](ts). The minimum travel-time D[e](π[A](ts)) = minc∈C(e){ D[c](π[A](ts)) }
of arc e is then easily computed. TDD considers updating the label of B, due to the relaxation
of e: π[B](ts) = min { π[B](ts) , π[A](ts) + D[e](π[A](ts)) } .

It is also known, due to Assumptions 1 and 2, which is the next elementary connection to
be used to reach node B via A along the particular arc e = (A, B), as early as possible: the
first one that departs no earlier than the presence-time π[A](ts) at A. This connection can be
easily found by conducting a binary search on the array C(e), whose elementary connections
are ordered in non-decreasing departure-times.

The time complexity of the above algorithm is O(m log(W) + n log(n)) [18], where n and
m are the number of nodes and the number of arcs of the time-dependent graph, respectively,
and W is the maximum number of elementary connections of an arc.

3.4 Comparison of BJ vs PSWZ and Other Approaches
Both models have their strengths and weaknesses. The BJ model is based on a digraph
where each node represents a station and each arc between two nodes represents the existence
of at least one elementary connection between them. The PSWZ model, on the contrary,
considers a digraph which contains, in addition to station nodes, route nodes and route arcs
that correspond to elementary connections for a given route, and transfer and boarding arcs
connecting station nodes with route nodes. In particular, assume that we have a timetable
involving a set B of stations and a set C of elementary connections is given. The BJ model
considers a time-dependent digraph (VBJ , EBJ) with |VBJ | = |B| vertices and |EBJ | ≤ |C|
arcs. The PSWZ model, on the other hand, considers a digraph (VP SW Z , EP SW Z) with
|VP SW Z | ∈ |B| + O(|C|) vertices and |EP SW Z | ∈ O(|B| + |C|) arcs: each station S ∈ B

corresponds to a station-node vS and to a constant number of route-nodes pS
i , for all the

passing-by routes from S; S also induces a constant number of transfer and boarding arcs
between vS and each of pS

i . Finally, the number of route-arcs is, again, at most |C|.
The space and query-time requirements in the PSWZ model are still linear in the size of

the timetable, but clearly larger than those in the BJ model. On the other hand, the extra
nodes and arcs in the PSWZ model make the model more realistic, since it can handle both
non-negligible transfer times and violations of the FIFO property when moving from one
station to another (possibly via vehicles of different types). The simplicity of the BJ model
(and thus smaller space and query-time requirements) is due to the fact that it neglects
transfer times and assumes universal enforcement of the FIFO property, for all pairs of
stations connected by at least one elementary connection. These assumptions make the
BJ model not applicable in real-world instances. In conclusion, the BJ model is simpler,
lighter and faster than the PSWZ model, but the PSWZ model overcomes the BJ model in
applicability, because it handles more realistic scenarios.

Other approaches of public transport networks representation concern vector-based models.
Characteristic representatives are RAPTOR [4] that works in rounds where in the i-th round
it discovers the earliest arrival time to every stop by using at most i − 1 transfers, CSA [5]

S. Kontogiannis, P.-M.-M. Machaira, A. Paraskevopoulos, and C. Zaroliagis 12:7

that assumes that the time table is not cyclic – there are no connections after midnight – and
scans a single array of connections containing traveling events sorted in ascending order of
departure time, and Trip-Based Routing [23] which requires the precomputation of transfers
between traveling events and also works in rounds, where each round scans segments of trips
that are reached in the previous round. The basic advantage of vector-based models relies
on the vector-cache-friendly processing of the traveling events. In this work we focus only on
graph-based models.

4 A novel time-dependent graph model

In this section we present the non-FIFO time dependent graph model with REalistic vehicle
eXchange times (REX), which aims to keep the simplicity of the digraph in the BJ model, but
also to support the existence of non-negligible transfer times between stations and non-FIFO
abiding arcs. The ambition of REX is to guarantee the strong points of both BJ and PSWZ
models, without suffering from their weaknesses.

Since the FIFO property is not a precondition for our time-dependent digraph, we can
no longer use TDD as our query algorithm. We therefore present a novel label-correcting
query algorithm, called TRIPLA, that computes optimal earliest-arrival routes within our
model. Clearly, since REX insists on the simplicity of the graph, more work has to be done
by TRIPLA. Nevertheless, rather than conducting blind label-corrections until optimality is
reached, TRIPLA uses a novel label-correction propagation process, which conducts targeted
label corrections only across affected routes in the digraph, upon improving the label of a
particular node. In the rest of this section we first present the REX model, then we continue
with the description of the TRIPLA query algorithm.

4.1 The REX model
REX is based on the time-dependent graph G = (V, E) of the BJ model [2]. We add three ad-
ditional attributes to each elementary connection of BJ: c = (Sd, Sa, td, ta, Z, tr, pnext, pprev).
The attribute pnext(c) (resp. pprev(c)) is a pointer indicating the next (resp. previous)
elementary connection c′ (resp. c′′) along the same trip with c using the same vehicle
(Z(c′) = Z(c) = Z(c′′)), or is set to null when no such connection exists. As for tr(c), it
indicates a tentative estimation of the earliest-arrival time at Sd(c) using the particular
vehicle Z(c) considered by c. The initial value of tr(c) is set to ∞ and changes “on the fly”
when the previous elementary connection c′ = pprev(c) is relaxed.

REX maintains the set C(e) of all elementary connections for e = (A, B) in an array
ConnectionArraye, which is ordered in non-decreasing arrival-times at B, rather than
departure-times from A (as in the BJ and the PSWZ models). For any given elementary
connection c ∈ C(e) along an arc e = (A, B), the boarding-time tx(A) on Z(c) after a vehicle
exchange at A is station-dependent and is computed as tx(A) = π[A](ts) + trans(A). On
the other hand, all commuters arriving at A with the vehicle Z(c) do not need to make a
vehicle exchange in order to get on-board and continue their itinerary with c. Therefore,
their on-board-time in that case is exactly the value tr(c), which may only have a finite value
if at least one route has been discovered that departs from the origin and has already used
some previous elementary connection of the vehicle Z(c). Otherwise, tr(c) = ∞.

The arrival-time at B via the elementary connection c ∈ C(e) is computed by the function
gc(tx(A)) as gc(tx(A)) = min { tx(A) + D[c](tx(A)) , tr(c) + D[c](tr(c)) } . This function
considers two different scenarios for commuters willing to use c as the next leg of their
itineraries. They have either hopped on the vehicle Z(c) earlier than station Sd(c), or

ATMOS 2022

12:8 REX: A Realistic Time-Dependent Model for Multimodal Public Transport

they will do it exactly at this station. Since we refer to the same elementary connection c,
involving the same vehicle but possibly for different periods of the timetable, the function
fc(t) = t + D[c](t) = ta(c) + k · Tp, k · Tp + td(c) ≥ t > (k − 1) · Tp + td(c) is a non-decreasing
step function. Therefore, gc(tx(A)) is also non-decreasing. The arrival-time at B via any
connection of e = (A, B), as a function of the boarding time tx(A) within A (after a vehicle
exchange) is then fe(tx(A)) = minc∈C(e) { gc(tx(A)) } .

Besides the connection arrays (for arcs), we also introduce a new data structure per node,
the Index Array (cf. Figure 3). For each A ∈ V , we consider the sets EA = { (A, Xi) ∈
E : 1 ≤ i ≤ k } of outgoing arcs, NA =

⋃
e∈EA

C(e) of elementary connections departing from
A, and IA =

⋃
c∈NA

{ td(c) } of departure-events at A. Then, IndexArrayA contains pairs
⟨tδ, Ptδ

⟩ where tδ ∈ IA is a departure-event and Ptδ
is an array of (pointers to) elementary

connections: ∀e ∈ EA, Ptδ
[e] indicates the first elementary connection in ConnectionArraye

having td(c) ≥ tδ. The number of the pairs in IndexArrayA is equal to |IA|. The pairs of
IndexArrayA are ordered in increasing departure-events tδ. The number of (pointers to)
elementary connections in each array Ptδ

is |EA|.
Given the presence time tx(A) at station A (after having already gone off-board from the

previous vehicle), IndexArrayA allows the computation of the first elementary connection
ci ∈ ConnectionArray(A,Xi), for each outgoing arc from A, having td(ci) ≥ π[A](ts). This
computation requires only one binary search in IndexArrayA, so as to find the earliest
departure event tδ ≥ π[A](ts). Then, the elementary connection ci = Ptδ

[(A, Xi)] has the
earliest-arrival time at Xi according to the schedule, among all connections of (A, Xi) with
departure time at least π[A](ts). This is because ConnectionArray(A,Xi) is ordered by
non-decreasing arrival times at Xi. All the index arrays of the stations are precomputed
during a prepossessing phase. Their preprocessing-space requirement is linear in the size of
the time-dependent graph, assuming that each node A has a constant number |IA| ∈ O(1) of
departure events during the entire period [0, Tp) of the timetable:

∑
A∈V |IA| · (|EA| + 1) ∈

O(1) ·
∑

A∈V (|EA| + 1) = O(|E| + |V |) . In the worst case, there exist Tp departure events at
each node, |IA| ≤ Tp, implying worst-case space O(Tp · (|E| + |V |)).

Finally, we construct the CheckArray data structure for the arcs, whose role is to jointly
describe chains of elementary connections (comprising trips) along which our query algorithm
will have to perform (targeted) label-correction propagations for the attributes tr(c) of these
connections. In particular, for e = (A, B) ∈ E, the array CheckArraye is initially empty,
and is augmented with elementary connections during the query algorithm’s execution. For
two incident arcs e = (X, Y) and e′ = (Y, Z), the elementary connection c ∈ C(e) is appended
to CheckArraye when, for the next elementary connection c′ = pnext(c) ∈ C(e′) along the
trip of Z(c), the query algorithm is in position to conclude that the boarding time tx(Z) at
Z is suboptimal, that is, Z could have been reached earlier if c had been relaxed before c′.

Consider the following example (Figure 4): Assume that a 1-minute time unit is used, and
Tp = 1440. B is settled before A and C, since the π[B](ts) = 4 < π[C](ts) = 15 < π[A](ts)
= ∞, and has boarding time (after vehicle exchange) tx(B) = π[B](ts) + trans(B) = 12.
Assume that B realizes that tr(c21) = ∞ and tr(c23) = ∞, i.e., the vehicles M and K have
not been considered yet by some of its predecessor stations for the routes of M and K.
Unavoidably, these two vehicles may be used only afteran exchange of vehicles at station B:
gc21(12) = min{12+D[c21](12)), ∞} = 1450, and gc23(12) = min{12+D[c23](12), ∞} = 1454.
If, on the other hand, c11 and c14 become relaxed at some time after the settlement of B, then
it would hold that tr(c21) = 8 and tr(c23) = 11. As a result, the valuations of gc for the two
connections has to be updated accordingly: gc21(12) = min{12 + D[c21](12), 8 + D[c21](8)} =

S. Kontogiannis, P.-M.-M. Machaira, A. Paraskevopoulos, and C. Zaroliagis 12:9

Figure 3 The index array of a node A. For tδ = 7, the (pointer to the) elementary connection
ci = P7[(A, Xi)] indicates the first (in order of ConnectionArray(A,Xi)) connection having an eligible
departure time td(ci) ≥ 7, therefore also providing the earliest arrival time at Xi among eligible
connections .

10 < 1450 and gc23(12) = min{12 + D[c23](12), 11 + D[c23](11)} = 14 < 1454. Therefore,
upon settlement of B, CheckArraye1 should be augmented with c11 and c14 so that, if these
two connections are ever relaxed in the future, the changes in the values tr(c11) and tr(c14)
are updated accordingly. As for c15, since tr(c15) ≥ 13 > tx(B) = 12, there is no need to be
added in CheckArraye1 .

4.2 TRIPLA: Query algorithm for REX

We present now the TRIP-based LAbel-correction propagation (TRIPLA) query algorithm
for MJPEAP , in the REX model. Due to possible violation of the FIFO property, TRIPLA
cannot be a label-setting algorithm. Nevertheless, it is built as a time-dependent variant of
Dijkstra’s algorithm, with a priority queue storing each node A with its label (presence-time)
π[A](ts), and relaxes (possibly more than once) elementary connections of arcs using the
auxiliary data structures described in Section 4.1, according to an appropriate label-correction
propagation (LCPROP) phase.

Given an EA query (S, T, ts), the algorithm, after an initialization phase, executes a
number of iterations until the destination station is extracted from the priority queue. Here
is the high-level description of TRIPLA.

Initialization. S is inserted into the priority queue with label π[S](ts) = ts, and the
transfer-time of S is set to trans(S) = 0.

Iteration. A new node A is extracted from the priority queue. The earliest arrival time
δ[A](ts) at station A, as we prove later, is equal to π[A](ts) and therefore A is settled.
Consequently, all the outgoing arcs from A are scanned. For each e := (A, B) ∈ E s.t. B has
not been settled yet, a relaxation phase starts. Otherwise, the label-correction propagation
(LCPROP) phase starts. TRIPLA returns the earliest arrival time to T when T is settled.

ATMOS 2022

12:10 REX: A Realistic Time-Dependent Model for Multimodal Public Transport

Figure 4 Example of CheckArrays .

We shall now describe the relation and label-correction propagation phases.

Relaxation phase. Let e = (A, B) ∈ E. Since the FIFO property does not apply, an
elementary connection that departs first from A is not necessarily the one that arrives first
at B. Therefore, multiple elementary connections of an arc must be now relaxed. If ci =
ConnectionArraye[i] (1 ≤ i ≤ k) is the first elementary connection of ConnectionArraye

having departure time td(ci) ≥ π[A](ts), then the elementary connections towards B that
have to be relaxed are in the ordering ⟨ci, ci+1, ..., ck, c1, c2, ..., ci−1⟩, up to an elementary
connection cp, where 1 ≤ p ≤ k, such that cp is the first elementary connection within the
ordering for which π[A](ts) + D[cp](π[A](ts)) ≥ tx(B) = π[B](ts) + trans(B).

With a binary search in IndexArrayA, TRIPLA can locate ci. It then sequentially scans
the connections of ConnectionArraye, until cp is discovered. Consequently, the arrival-time
of ci is computed and the connection to follow (along the same trip) c′

i = pnext(ci), if it
exists, updates its attribute tr(c′

i) accordingly.

Let the arcs e1 = (A, B), e2 = (B, C), e3 = (C, D) and the elementary connections
c1 ∈ C(e1), c2 ∈ C(e2), c3 ∈ C(e3) where pnext(c1) = c2 and pnext(c2) = c3. The arrival-time of
c2 at C is updated as wc2 = gc2(tx(B)) = min{ D[c2](tx(B)) + tx(B), D[c2](tr(c2)) + tr(c2) }
where tr(c2) is the on-board arrival-time of c2 to B using vehicle Z(c2) = Z(c1) (i.e., without
vehicle exchange), and tx(B) = π[B](ts) is the boarding time (after vehicle exchange) at B.
So long as π[A](ts) > π[B](ts), B may be extracted from the priority queue only before A,
and thus the relaxation of c2 would take place before tr(c2) is computed, i.e., tr(c2) = ∞ at
that time. Let t′

r(c2) be the optimal value of the on-board arrival-time of Z(c2) at B, and w′
c2

be the corresponding arrival-time of c2 at C. If it holds tx(B) = π[B](ts)+ trans(B) > t′
r(c2),

then wc2 ≥ w′
c2

, due to the monotonicity of gc:

S. Kontogiannis, P.-M.-M. Machaira, A. Paraskevopoulos, and C. Zaroliagis 12:11

tr(c2) = ∞ > tx(B) > t′
r(c2) ⇒ D[c2](tx(B)) + tx(B) ≥ D[c2](t′

r(c2)) + t′
r(c2)

⇒ gc2(tx(B)) = min
{

D[c2](tx(B)) + tx(B),
D[c2](tr(c2)) + tr(c2)

}
≥ g′

c2
(tx(B)) = min

{
D[c2](tx(B)) + tx(B),
D[c2](t′

r(c2)) + t′
r(c2)

}
⇒ wc2 ≥ w′

c2

Hence, if wc2 ≥ w′
c2

then the arrival-time of c3 = pnext(c2) at D may be larger than the
earliest arrival-time at D via c3. Analogously, the arrival-time of c4 = pnext(c3) may also be
suboptimal, and so on. For that reason, a trip-based LCPROP phase follows, in order to
re-relax the affected elementary connections and update the label of any affected node in the
priority queue so that no node with suboptimal label is extracted.

When an elementary connection c is relaxed, TRIPLA checks if all the following re-
relaxation conditions (RC) hold at the same time, in order to conclude whether its own
arrival-time at the arrival-node is potentially suboptimal:

RC1(c) The elementary connection c′ = pprev(c) has not been relaxed yet: tr(c) = ∞.
RC2(c) The arrival-time of c at Sa(c) would become smaller, if no transfer at Sd(c) occurs:

gc(tx(Sd(c))) > gc(π[Sd(c)](ts)).
RC3(c) The optimal arrival-time via c at station Sa(c) would be smaller than the boarding-

time (after vehicle exchange) at Sa(c): w′
c < tx(Sa(c)) = π[Sa(c)](ts) + trans(Sa(c)).

If all these conditions hold for c, then c′ = pprev(c) is inserted into CheckArraye′ , where
c′ ∈ C(e′), in order to be processed by LCPROP as soon as Sd(c′) is settled.

Label-correction propagation phase. In the LCPROP phase for e′, TRIPLA computes the
arrival-time of c′ using the function gc′(tx(Sd(c′))), and it updates then accordingly the value
of tr(c). TRIPLA also checks if the Conditions RC1-2-3 hold for c′ this time and, if this
is the case, it inserts its preceding connection along the trip of Z(c′) to the corresponding
CheckArray. The LCPROP phase recomputes the arrival-time of of c, wc = gc(tx(Sd(c))),
and updates accordingly tr(c′′), where c′′ = pnext(c). It then recomputes the arrival-time
of c′′ and updates accordingly tr(pnext(c′′)), and so on. The LCPROP phase stops when
an elementary connection c̃ is considered which provides clearly suboptimal arrival-time at
its arrival-node (i.e., tx(Sa(c̃)) ≤ ta(c̃), or Sa(c̃) has not been settled yet. In the latter case,
the arrival-station has not been extracted from the priority queue yet, thus the elementary
connections emanating from it are not affected (their arrival-times have not been computed
yet). Before ending LCPROP, tr(c̃) is also computed, and π[Sa(c̃)](ts) is updated if necessary.

We illustrate the LCPROP phase regarding the re-relaxation of certain arcs through the
example of Figure 5, where a 1-minute time unit is considered, and Tp = 1440. Consider
the arcs e1 = (A, B), e2 = (B, C), e3 = (C, D), e4 = (D, X), e5 = (X, Q), the elementary
connections c1, c2, c3, c4, c5, where ci ∈ C(ei), 1 ≤ i ≤ 5, and the trip P = ⟨c1, c2, c3, c4, c5⟩
from A to Q. The transfer times are shown below the station-nodes. The departure-times td,
the arrival-times ta and the vehicles Z of the connections are shown on the right in Figure 5.
The presence time at the origin-node S is ts = 2. At a certain point during the execution of
TRIPLA, the labels of the nodes A, B, C, D, X, Q are also shown in Figure 5. When B is
extracted from the priority queue, tr(c2) is still ∞ because A is not settled yet. Therefore, a
transfer must occur at B and the boarding time at B is tx(B) = 25 > td(c2) = 21. TRIPLA
will then relax c2 with arrival-time wc2 = gc2(25) = min{D[c2](25) + 25, ∞} = 1464 , and will

ATMOS 2022

12:12 REX: A Realistic Time-Dependent Model for Multimodal Public Transport

Figure 5 A trip P = ⟨c1, c2, c3, c4, c5⟩ from A to Q, whose elementary connections are shown
in the table. The transfer-time per station is indicated by trans. At a certain point during the
algorithm’s execution, the labels of the nodes get the values shown in the figure.

also update c3 with tr(c3) = 1464. TRIPLA will also insert c1 to CheckArraye1 , since c2
fulfills all the Re-relaxation Conditions. Node C will be extracted next from the priority queue.
Its boarding time (after vehicle exchange) is tx(C) = 26. TRIPLA will relax c3 with the arrival-
time wc3 = gc3(26) = min{D[c3](26) + 26, D[c3](1464) + 1464} = 1467 and thus, c4 will be
updated with tr(c4) = 1467. Consequently, TRIPLA will relax c4 with the arrival-time wc4 =
gc4(1467) = min{D[c4](1467) + 1467, ∞} = 1469 and will also update c5 with tr(c5) = 1469.
Observe that, after the relaxation of c4, X will still have label π[X](ts) = 50 instead of 29,
because tr(c4) = 1467 and not 27. Node D will be extracted next from the priority queue. Its
boarding time (after vehicle exchange) is tx(D) = 19+9 = 28. TRIPLA will relax c4 with the
arrival-time wc4 = gc4(28) = min{28+D[c4](28), 1467+D[c4](1467)} = 1469 and thus, c5 will
be updated with tr(c5) = 1469. Consequently, since tx(X) = 50 + 5 = 55, TRIPLA will relax
c5 with the arrival-time wc5 = gc5(55) = min{55 + D[c5](55), 1469 + D[c5](1469)} = 1470 .

Now is the time for A to be extracted from the priority queue. TRIPLA computes the arrival-
time of c1 and updates accordingly tr(c2) = 23. All the subsequent elementary connections
of c1 along the same trip must be re-relaxed with as follows: wc2 = 24 ⇒ tr(c3) = 24,
wc3 = 27 ⇒ tr(c4) = 37, wc4 = 29 ⇒ tr(c5) = 29. Since X has not been settled yet, the
LCPROP phase updates also its label: π[X](ts) to 29. As a consequence, before being
extracted, station X has its own label corrected to the optimal value.

For more details on the pseudocode of TRIPLA, its proof of correctness, the O(1) time-
complexity of LCPROP and the O(m + n log(n)) time-complexity of TRIPLA for real-world
instances, the reader is deferred to the full version of this paper.

5 Experimental Evaluation

In this section, we present the experimental evaluation of the TRIPLA algorithm. All
the experiments have been performed on a workstation equipped with an Intel Xeon CPU
E5-2643 v3 3.40 GHz and 256 GB RAM. All algorithms were implemented in C++ and
compiled with gcc (v7.5.0, optimization level O3) and Ubuntu Linux (18.04 LTS). The input
data used to implement the multimodal transport networks are (a) timetable data sets in
the General Transit Feed Specification (GTFS) format, containing various means of public
transport, and (b) road and pedestrian network data sets in the Open Street Map (OSM)
format. The integrated networks concern the metropolitan areas of Athens, Rome, London,
Berlin and Switzerland. The source of the timetable data for London is [17], for the rest is
[16]. The source of the pedestrian network is [12].

S. Kontogiannis, P.-M.-M. Machaira, A. Paraskevopoulos, and C. Zaroliagis 12:13

Table 1 contains detailed information concerning the input timetables. It contains the
number of stations |B| and the number of elementary connections |C| between stops (a proxy
size), along with the number of nodes |V | and arcs |E| of the graph-based models REX
and MDTM [7], which is the most efficient time-expanded model. The departure time for a
query is within 1, 2 or 7 days. The timetable time period of the connection sets is the valid
departure period plus two days, starting from Monday. It is evident from Table 1 that the
graph of REX is much smaller than that of MDTM. The corresponding Table for maximum
walking time 600secs, is included in the full version of this paper.

Table 1 Benchmark instances and sizes of corresponding graphs; restricted walking: 300 sec.

Period Map |B| |C| Transfers MDTM REX

|V | |E| |V | |E|

One day

Athens 6771 2178677 27734 2185448 6506253 6771 31980
Rome 6883 2551316 27972 2558199 7592671 6883 33606
London 19706 13391869 81798 13411575 39901166 19706 96436
Berlin 27917 4222929 73445 4250846 12530654 27917 110339
Switz. 26757 6639655 36112 6666412 19412126 26757 84847

Two days

Athens 6771 2904772 27734 2911543 8665372 6771 31980
Rome 6893 3402181 28424 3409074 10115850 6893 34071
London 19706 17839626 81836 17859332 53125144 19706 96468
Berlin 27920 5630882 73461 5658802 16683977 27920 110372
Switz. 26805 8855105 36268 8881910 25877261 26805 85225

Seven days

Athens 7041 4603557 28524 4610598 13717448 7041 32971
Rome 6917 5502358 28576 5509275 16343179 6917 34405
London 19706 29979408 82216 29999114 89224052 19706 96854
Berlin 28096 8794883 74933 8822979 26021451 28096 112345
Switz. 27468 14252368 38008 14279836 41586992 27468 90422

Our implementation is engineered by applying a series of algorithmic optimizations, the most
important of which which we present next. Further optimizations and extensions of REX
and TRIPLA, such as heuristic methods aiming to boost the performance of TRIPLA (one
trying to avoid unnecessary binary searches in our data structures, and one that tries to
accelerate TRIPLA in the rationale of ALT [8]) including the integration of walking, are
described in the full version of the paper.

Graph representation: A static forward-star array-based and cache-friendly variant of the
PGL library [9] was used for the graph representation.
Priority queue: For Dijkstra-based algorithms, we used as priority queue Sanders’ cache-
friendly implementation1 of the sequence heap [19].
Vertex reordering: Similar to well-known observations concerning performance enhance-
ments on Dijkstra-based core processing steps [3, 20], we reorder the vertices of the
graph so that neighboring vertices are located in adjacent memory blocks. This way, the
cache misses and run time are decreased. That re-ordering is formed with respect to a
combination of DFS and BFS traversal of the graph.
Data allocation: We order the required data (e.g., distances, predecessors, and time event
containers) of all the algorithms for each vertex and arc, to enforce a contiguous memory
allocation and thus decrease the cache misses on memory access operations.

1 http://algo2.iti.kit.edu/sanders/programs/spq

ATMOS 2022

http://algo2.iti.kit.edu/sanders/programs/spq

12:14 REX: A Realistic Time-Dependent Model for Multimodal Public Transport

The experimental evaluation compares TRIPLA with some of the fastest state-of-art
routing algorithms (CSA [5], ULTRA+CSA [1] and MDTM-QH-ALT [7]). The input for
ULTRA preprocessing are the limited walking graphs. For each input we generated 10, 000
random queries, and reported average execution times (in ms). Table 2 shows the performance
of the algorithms when the departure time of a query is within one day, two days or seven
days, to demonstrate how the increment of the timetable period affects query times. We
observe that TRIPLA has faster average query times in all cases. Especially in Switzerland,
TRIPLA is at least 2.5 times faster than all other algorithms.

Table 2 Experimental evaluation of query algorithms when the department time is within 1, 2, or
7 days. Optimisation criterion: earliest arrival time; maximum walking time: either 300 or 600 secs.

Map QT [ms] - 1d QT [ms] - 2d QT [ms] - 7d
Algorithm (300) (600) (300) (600) (300) (600)

A
th

en
s CSA 1.52 6.88 1.52 6.69 2.07 7.54

ULTRA + CSA 0.43 0.64 0.47 0.67 1.12 0.89
MDTM-QH-ALT 0.72 0.93 0.81 1.00 1.14 1.36
TRIPLA 0.31 0.49 0.32 0.49 0.52 0.69

R
om

e

CSA 1.59 5.54 1.63 5.76 1.76 6.06
ULTRA + CSA 0.59 0.72 0.67 0.80 0.85 0.85
MDTM-QH-ALT 0.97 1.17 1.04 1.24 1.29 1.50
TRIPLA 0.44 0.62 0.44 0.61 0.62 0.74

Lo
nd

on

CSA 10.32 78.39 10.55 80.34 11.52 86.13
ULTRA + CSA 3.61 4.17 3.81 4.31 4.45 4.80
MDTM-QH-ALT 2.17 2.96 2.48 3.02 3.11 3.18
TRIPLA 0.98 1.60 1.04 1.43 2.34 1.89

B
er

lin

CSA 2.80 15.01 3.02 15.36 4.41 18.14
ULTRA + CSA 3.34 3.47 3.56 3.70 5.10 5.28
MDTM-QH-ALT 7.19 8.11 7.90 8.84 8.70 9.57
TRIPLA 2.71 3.46 2.78 3.55 3.74 4.57

Sw
itz

. CSA 5.08 6.66 5.38 6.85 8.00 9.14
ULTRA + CSA 5.52 5.34 5.85 5.56 8.60 7.87
MDTM-QH-ALT 4.48 4.83 5.07 5.48 6.50 6.49
TRIPLA 1.75 1.89 1.62 1.71 2.58 2.52

6 Conclusions and Future Work

In this work, the REX model for multimodal route planning in schedule-based public transport
systems is presented, along with a novel query algorithm, TRIPLA, that efficiently solves
the realistic earliest-arrival routing problem. An extensive experimental study on real-world
benchmark instances demonstrates that TRIPLA outperforms the state-of-the-art multimodal
route planners.

We are currently working on another novel query algorithm, that exploits the REX model
to solve the multicriteria variant of the routing problem in schedule-based public-transport
systems with walking transfers, where apart from the earliest-arrival objective, the commuters
also care for minimizing the number of vehicle exchanges.

References
1 Moritz Baum, Valentin Buchhold, Jonas Sauer, Dorothea Wagner, and Tobias Zündorf. Unlim-

ited transfers for multi-modal route planning: An efficient solution. In 27th Annual European

S. Kontogiannis, P.-M.-M. Machaira, A. Paraskevopoulos, and C. Zaroliagis 12:15

Symposium on Algorithms (ESA 2019), volume 144 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 14:1–14:16. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2019. doi:10.4230/LIPIcs.ESA.2019.14.

2 Gerth Stølting Brodal and Riko Jacob. Time-dependent networks as models to achieve fast
exact time-table queries. Electronic Notes in Theoretical Computer Science, 92:3–15, 2004.
doi:10.1016/j.entcs.2003.12.019.

3 Daniel Delling, Andrew V Goldberg, Andreas Nowatzyk, and Renato F Werneck. Phast:
Hardware-accelerated shortest path trees. In IEEE International Parallel & Distributed
Processing Symposium (IPDPS), pages 921–931. IEEE, 2011. doi:10.1109/IPDPS.2011.89.

4 Daniel Delling, Thomas Pajor, and Renato F Werneck. Round-based public transit routing.
Transportation Science, 49(3):591–604, 2015. doi:10.1287/trsc.2014.0534.

5 Julian Dibbelt, Thomas Pajor, Ben Strasser, and Dorothea Wagner. Connection scan algorithm.
Journal of Experimental Algorithmics (JEA), 23:1–56, 2018. doi:10.1145/3274661.

6 Edsger W Dijkstra et al. A note on two problems in connexion with graphs. Numerische
mathematik, 1(1):269–271, 1959. doi:10.1007/BF01386390.

7 Kalliopi Giannakopoulou, Andreas Paraskevopoulos, and Christos Zaroliagis. Multimodal
dynamic journey-planning. Algorithms, 12(10):213, 2019. doi:10.3390/a12100213.

8 Andrew V Goldberg and Chris Harrelson. Computing the shortest path: A search meets graph
theory. In SODA, volume 5, pages 156–165, 2005. doi:10.1145/1070432.1070455.

9 Georgia Mali, Panagiotis Michail, Andreas Paraskevopoulos, and Christos Zaroliagis. A
new dynamic graph structure for large-scale transportation networks. In 8th International
Conference on Algorithms and Complexity, volume 7878, pages 312–323. Springer, 2013.
doi:10.1007/978-3-642-38233-8_26.

10 Matthias Müller-Hannemann and Karsten Weihe. Pareto shortest paths is often feasible in
practice. In International Workshop on Algorithm Engineering, volume 2141, pages 185–197.
Springer, 2001. doi:10.1007/3-540-44688-5_15.

11 Karl Nachtigall. Time depending shortest-path problems with applications to railway networks.
European Journal of Operational Research, 83(1):154–166, 1995. doi:10.1016/0377-2217(94)
E0349-G.

12 OpenStreetMap datasets. https://download.geofabrik.de/europe.html.
13 Ariel Orda and Raphael Rom. Shortest-path and minimum-delay algorithms in networks

with time-dependent edge-length. Journal of the ACM (JACM), 37(3):607–625, 1990. doi:
10.1145/79147.214078.

14 Ariel Orda and Raphael Rom. Minimum weight paths in time-dependent networks. Networks,
21(3):295–319, 1991. doi:10.1002/net.3230210304.

15 Stefano Pallottino and Maria Grazia Scutellà. Dual algorithms for the shortest path tree
problem. Networks: An International Journal, 29(2):125–133, 1997. doi:10.1002/(SICI)
1097-0037(199703)29:2<125::AID-NET7>3.0.CO;2-L.

16 Public transport datasets. https://transitfeeds.com.
17 Public transport london dataset - benchmark. https://files.inria.fr/gang/graphs/

public_transport.
18 Evangelia Pyrga, Frank Schulz, Dorothea Wagner, and Christos Zaroliagis. Efficient models for

timetable information in public transportation systems. Journal of Experimental Algorithmics,
12:2.4.1–2.4.39, 2007. doi:10.1145/1227161.1227166.

19 Peter Sanders. Fast priority queues for cached memory. In Workshop on Algorithm Engineering
and Experimentation, pages 316–321. Springer, 1999. doi:10.1145/351827.384249.

20 Peter Sanders, Dominik Schultes, and Christian Vetter. Mobile route planning. In
European Symposium on Algorithms (ESA), pages 732–743. Springer, 2008. doi:10.1007/
978-3-540-87744-8_61.

21 Frank Schulz, Dorothea Wagner, and Karsten Weihe. Dijkstra’s algorithm on-line: An empirical
case study from public railroad transport. In International Workshop on Algorithm Engineering,
pages 110–123. Springer, 1999. doi:10.1007/3-540-48318-7_11.

ATMOS 2022

https://doi.org/10.4230/LIPIcs.ESA.2019.14
https://doi.org/10.1016/j.entcs.2003.12.019
https://doi.org/10.1109/IPDPS.2011.89
https://doi.org/10.1287/trsc.2014.0534
https://doi.org/10.1145/3274661
https://doi.org/10.1007/BF01386390
https://doi.org/10.3390/a12100213
https://doi.org/10.1145/1070432.1070455
https://doi.org/10.1007/978-3-642-38233-8_26
https://doi.org/10.1007/3-540-44688-5_15
https://doi.org/10.1016/0377-2217(94)E0349-G
https://doi.org/10.1016/0377-2217(94)E0349-G
https://download.geofabrik.de/europe.html
https://doi.org/10.1145/79147.214078
https://doi.org/10.1145/79147.214078
https://doi.org/10.1002/net.3230210304
https://doi.org/10.1002/(SICI)1097-0037(199703)29:2<125::AID-NET7>3.0.CO;2-L
https://doi.org/10.1002/(SICI)1097-0037(199703)29:2<125::AID-NET7>3.0.CO;2-L
https://transitfeeds.com
https://files.inria.fr/gang/graphs/public_transport
https://files.inria.fr/gang/graphs/public_transport
https://doi.org/10.1145/1227161.1227166
https://doi.org/10.1145/351827.384249
https://doi.org/10.1007/978-3-540-87744-8_61
https://doi.org/10.1007/978-3-540-87744-8_61
https://doi.org/10.1007/3-540-48318-7_11

12:16 REX: A Realistic Time-Dependent Model for Multimodal Public Transport

22 Frank Schulz, Dorothea Wagner, and Christos Zaroliagis. Using multi-level graphs for timetable
information in railway systems. In Workshop on Algorithm Engineering and Experimentation,
pages 43–59. Springer, 2002. doi:10.1007/3-540-45643-0_4.

23 Sascha Witt. Trip-based public transit routing. In Nikhil Bansal and Irene Finocchi, editors,
Algorithms - ESA 2015 - 23rd Annual European Symposium, Patras, Greece, September 14-16,
2015, Proceedings, volume 9294 of Lecture Notes in Computer Science, pages 1025–1036.
Springer, 2015. doi:10.1007/978-3-662-48350-3_85.

https://doi.org/10.1007/3-540-45643-0_4
https://doi.org/10.1007/978-3-662-48350-3_85

Passenger-Aware Real-Time Planning of Short
Turns to Reduce Delays in Public Transport
Julian Patzner #

Martin-Luther-Universität Halle-Wittenberg, Germany

Ralf Rückert #

Martin-Luther-Universität Halle-Wittenberg, Germany

Matthias Müller-Hannemann #

Martin-Luther-Universität Halle-Wittenberg, Germany

Abstract
Delays and disruptions are commonplace in public transportation. An important tool to limit the
impact of severely delayed vehicles is the use of short turns, where a planned trip is shortened in
order to be able to resume the following trip in the opposite direction as close to the schedule as
possible. Short turns have different effects on passengers: some suffer additional delays and have
to reschedule their route, while others can benefit from them. Dispatchers therefore need decision
support in order to use short turns only if the overall delay of all affected passengers is positively
influenced. In this paper, we study the planning of short turns based on passenger flows. We
propose a simulation framework which can be used to decide upon single short turns in real time.
An experimental study with a scientific model (LinTim) of an entire public transport system for the
German city of Stuttgart including busses, trams, and local trains shows that we can solve these
problems on average within few milliseconds. Based on features of the current delay scenario and the
passenger flow we use machine learning to classify cases where short turns are beneficial. Depending
on how many features are used, we reach a correct classification rate of more than 93% (full feature
set) and 90% (partial feature set) using random forests. Since precise passenger flows are often not
available in urban public transportation, our machine learning approach has the great advantage of
working with significantly less detailed passenger information.

2012 ACM Subject Classification Applied computing → Transportation

Keywords and phrases Public Transportation, Delays, Real-time Dispatching, Passenger Flows

Digital Object Identifier 10.4230/OASIcs.ATMOS.2022.13

Funding This work has been partially supported by DFG under grant MU 1482/7-2.

1 Introduction

Public transport is used by millions of people every day. It is of great importance for meeting
mobility needs and achieving sustainability goals. However, its attractiveness suffers from
disruptions and delays that increase travel times for passengers and lead to their frustration.
The task of real-time dispatching is therefore to minimize the effects of disruptions. In
general, there are a couple of control actions which can be used to mitigate delays.

In this paper, however, we will focus specifically on scenarios where single vehicles are
excessively delayed. Such delays may be due to many kinds of problems, for example technical
problems with the engine or the signaling system, temporarily blocked track or road sections,
and the like. If such a heavily delayed vehicle is planned for subsequent (return) trips on the
same line, the delay may propagate over quite some time. In such a scenario it might be
advisable to consider the possibility of introducing a short turn to reduce the vehicle delay.
Executing a short turn means that the current trip of the vehicle is prematurely terminated
at some stop. Afterwards, the same vehicle reverses direction and resumes with the follow-up
trip from this stop. That means, all intermediate stops till the terminus of the line are

© Julian Patzner, Ralf Rückert, and Matthias Müller-Hannemann;
licensed under Creative Commons License CC-BY 4.0

22nd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2022).
Editors: Mattia D’Emidio and Niels Lindner; Article No. 13; pp. 13:1–13:18

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:julian.patzner@student.uni-halle.de
mailto:ralf.rueckert@informatik.uni-halle.de
https://orcid.org/0000-0002-6307-2189
mailto:matthias.mueller-hannemann@informatik.uni-halle.de
https://orcid.org/0000-0001-6976-0006
https://doi.org/10.4230/OASIcs.ATMOS.2022.13
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

13:2 Passenger-Aware Real-Time Planning of Short Turns

Figure 1 Sketch of both possibilities of a short turn scenario. A vehicle has a delay at its
second stop. The left part shows the regular scenario without short turn. In this case, the delay
is propagated to the following ten stops. On the right side is the scenario where a short turn is
executed at the fifth stop of the line. Some passengers must use alternate routes to their target
during a short turn (green) while other passengers (blue) benefit.

skipped in both directions. Ideally, the planned vehicle schedule can be restored in this way.
Clearly, a short turn negatively affects all passengers currently using the vehicle, and those
who wanted to board at some of the skipped stops. On the other hand, other passengers
take advantage if the delay is reduced for subsequent trips. Figure 1 provides a systematic
sketch of such a scenario. For a passenger-aware control strategy, dispatchers therefore need
decision support in order to use short turns only if the overall delay of all affected passengers
is reduced. Formally, we would like to support solving the following decision problem:

Short turn dispatching problem. Given a timetable T , a corresponding vehicle schedule S,
a passenger flow pf , a delay scenario with delay predictions delay and a heavily delayed
trip tr (i.e. with a delay exceeding some threshold parameter), decide whether there is a
suitable opportunity to introduce a short turn in order to reduce overall vehicle and passenger
delays (and select the one with best utility).

We consider the following general workflow (Figure 2): There is a central dispatching
centre monitoring the delay scenario in real-time, i.e., the current delay status of every vehicle
in the public transport system. Based on this delay information, a propagation model is used
which predicts how the delay of each vehicle will evolve over time. Whenever some vehicle
is heavily delayed, possible candidate stops for executing a short turn are identified and
checked for their feasibility, i.e. technical requirements on the infrastructure like necessary
switches for trains or turning options for busses have to be fulfilled. All potentially suitable
candidates then have to be evaluated. In each case, the two alternatives of executing or not
executing a short turn must be simulated with their consequences on all affected passengers.
Finally, the best alternative is chosen.

Contribution. We propose a simulation framework for solving the short turn dispatching
problem. An essential component of our framework are passenger flows. While high quality
estimations of passenger flows based on ticket data are available in long-distance train traffic,
data availability is much worse in local public transport for trams, busses, and local trains.
More and more, automated fare collection data and automated passenger count systems can
be used to infer passenger flows. However, it is still challenging to infer correct passenger

J. Patzner, R. Rückert, and M. Müller-Hannemann 13:3

Figure 2 Steps in an online framework recommending short turns.

destinations from these data. We go a step further by assuming that sufficiently precise
passenger flow data is available. That means, for each passenger we know exactly the intended
route, i.e. the sequence of planned trips. In particular, we know the planned arrival time at
the destination according to schedule. The main advantage of considering precise passenger
routes is that we can take care of each individual passenger in case of disruptions. Thus, when
solving the short turn dispatching problem, we can calculate the effect on the passenger’s
delay for both scenarios (executing a short turn or not). Moreover, based on the decision, we
can recommend alternative routes that will get the passenger to the desired destination on a
route minimizing a cost function, for example, reaching the destination as quickly as possible.
Within our simulation, the bulk of the work is therefore the computation of optimal routes
in an online scenario for all affected passengers. Though we have to solve many shortest path
routing queries, we still achieve an excellent performance. In computational experiments
with a public transport network for the German city of Stuttgart we can solve the short turn
decision problem on average within few milliseconds, i.e. fast enough for real-time use.

We further analysed in which cases short turns are beneficial. We observe a clear
correlation between beneficial short turns and multiple indicators that we can compute before
the rerouting process of the simulation starts. Since our assumptions on the availability
of precise passenger flows may be way too strong for urban public transportation, we try
to relax them and work with significantly less detailed passenger information. Our second
contribution uses machine learning (ML) techniques in order to classify cases where short
turns are advantageous. To this end, we carefully selected a few features of the current delay
scenario and the passenger flow to train an ML model. The best classification rate could be
achieved with random forests. For the full feature set we obtain correct predictions in more
than 93% of all cases. We also experimented with a smaller feature set using only partial
information. Here we still get a success rate of more than 90%.

Related work. The importance of taking the passenger perspective into account has been
stressed by Parbo et al. [18]. Our simulation framework for the real-time decision support
of short turns is inspired by the PANDA framework for wait-depart decisions in delay
management for long distance trains [14, 21]. The optimal capacity-aware rerouting of
passengers after train cancellations has been considered in [13].

Ge et al. [4] provide a survey on disturbances in public transport and approaches to cope
with them in planning and operations. Likewise, the review by Gkiotsalitis et al. [5] discusses
several real-time control measures, including vehicle holding, stop-skipping, speed control,
rescheduling, interlining, rerouting, and boarding limits. Wang et al. [26], for example, study
the adjustment of dwell times and running trains on different speed levels as control actions.

The use of short-turning within real-time optimization has first been studied in Shen
and Wilson [25]. They provide a non-linear mixed integer programming formulation that
simultaneously tries to optimize holding times, stop skipping and short turns. They report

ATMOS 2022

13:4 Passenger-Aware Real-Time Planning of Short Turns

experimental results with a single line (Boston, MA). Similarly, Nesheli et al. [16] combine
mixed integer programming with a simulation framework. A case study for Auckland, New
Zealand, based on three bus routes shows quite promising results. Our approach differs in
several respects. First, Nesheli et al. allow short turns only if the vehicle has passed the
last transfer point in the current direction. In contrast, we do not impose such a restriction.
Second, Nesheli et al. assume that passengers disadvantaged by short turning may either
walk to their intended destination or wait for the next vehicle on the line. We are more
flexible by assuming that stranded passengers switch to an optimal alternative route to
reach their final destination. This, of course, requires a much higher computational effort for
finding these routes. Finally, our analysis is based on much larger networks. Liu et al. [10]
study a short turn strategy for bus operations based on origin-destination (OD) data, but
without taking actual delays into account. Note that short turning does not apply to each
public transport line. In particular, ring or circle lines require other control actions [8].

To deal with both spatial and temporal peak periods of demand, the planning of short
turns has also been considered as part of the strategic planning phase as a means to balance
capacity and demand and so to mitigate crowding [1, 12].

Passenger flow prediction is an area of active research. For example, Kang et al. [6] study
how to use automated fare collection data for generating OD matrices. Liu and Chen [9],
Luo et al. [11], and Nagaraj et al. [15] present deep learning approaches for passenger flow
prediction in bus transit systems. We therefore expect the quality of the available passenger
flows for real-time dispatching to improve continuously.

Overview. The remainder of this paper is structured as follows. In Section 2, we describe
in detail our simulation framework for the short turn dispatching problem. Results of our
experimental study with the public transport network of the city of Stuttgart are presented
in Section 3. Afterwards, in Section 4 we explain our machine learning approach for deciding
upon short turns and present corresponding computational results. Finally, in Section 5, we
conclude with a short summary and an outlook.

2 Short Turns During Daily Operation

In this section, we first provide the basic background for our simulation framework and then
describe in detail how the short turn dispatching problem is solved.

2.1 Basic Model
Public transport infrastructure. The public transport infrastructure consists of stops and
direct connections between them. These can be roads in bus transportation or the tracks in
rail, tram or underground transportation. This network is usually called public transportation
network (PTN). A line is a path in this network, i.e. a sequence of stops and direct connections
between them.

Timetables and event-activity networks. A public transport timetable can be modeled as
an event-activity network N = (E ,A) [24, 14] which contains nodes (events e ∈ E) for every
arrival or departure of a vehicle at a stop and directed edges (activities a ∈ A) between them.
For every major relationship between events there is a special type of activity. Every type of
activity is directed and goes either from departure to arrival dep→ arr or arr → dep. The
relevant types of activities are:
drive (dep→ arr) an activity of a vehicle driving from one stop to another,
wait (arr → dep) a dwelling activity of a vehicle,

J. Patzner, R. Rückert, and M. Müller-Hannemann 13:5

transfer (arr → dep) an activity for passengers representing a possible interchange between
vehicles (usually including a footpath),

turnaround (arr → dep) an activity of a vehicle to reach its next trip.

A trip is a path of drive and wait activities that needs to be operated by a single vehicle.
The vehicle schedule assigns to each trip a vehicle with a certain capacity, specifying the
maximum number of passengers who can use it simultaneously. The vehicle schedule implies
the turnaround activities in the event-activity-network.

Each event is equipped with several timestamps, specifying the planned time according
to the timetable and the realized or estimated time with respect to the real situation. The
time difference of events connected by activities yields the planned or actual duration for the
activity. Under optimal conditions some activities may be performed faster. For activity a,
the lower bound La specifies the minimum execution time of the activity. A delayed vehicle
can reduce its delay if the scheduled duration of an activity is larger than its lower bound.
The difference in time is called slack or buffer.

Delay propagation. For real-time dispatching decisions it is necessary to maintain an up-to-
date and consistent internal model of the current delay scenario and estimated timestamps
for future events. Hence, in a live system vehicles will regularly send their GPS coordinates.
From these data, current status information and delays can be inferred. For our simulation
framework, we can simulate such a stream of messages as well as artificial delay scenarios.
Delays are propagated along the activities in the network. In the basic model, delays are
transferred along drive, wait and turnaround activities, but available slack is used to reduce
positive delays. It is assumed that vehicles never depart before their planned departure
time. Delays may also be propagated along transfer activities if delay management uses
waiting time rules between trips. More sophisticated propagation algorithms may also use
the available free vehicle capacity and the number of boarding and leaving passengers to
estimate actual dwell times and to model phenomena like bus bunching.

Passenger Model. After the event-activity network is constructed passenger flows are
generated. For our networks there is an origin-destination matrix specifying demand. Every
passenger has a starting location, target location, and a preferred time of departure. A
route (or journey) of a passenger is a directed path in the event-activity network which
starts at the starting location and has to end at the target. Before the online simulation is
started passengers will select an initial route based on their demand and a utility function.
For simplicity, the utility function is here taken as a weighted sum of the travel time and
the number of transfers used, but can be customized within our framework. During the
simulation we use the following model how passengers behave, depending on their knowledge
about the current delay situation. In an online scenario source delays are revealed only step
by step, namely soon after they have occurred. An exception to this are changes of the
timetable caused by dispatching decisions that can be communicated once a decision is made.
In our model, passengers are informed about delays and change their routes according to
their utility function and certain rules:
1. Passengers are assumed to arrive at the very first stop of their route as planned. At that

point of time, they check the validity of the planned route and choose an optimal route
with respect to their utility function.

2. Once a passenger has entered a vehicle, he or she will stay on board of this trip till the
planned exit stop where they either reach their final destination or transfer to another
trip. That means, passengers are assumed not to change their route before they reach a
natural decision point, usually a transfer stop.

ATMOS 2022

13:6 Passenger-Aware Real-Time Planning of Short Turns

3. If a planned transfer is missed, the passenger selects a new route subject to the current
delay scenario.

4. If the current trip on the planned route is on time, a passenger will not switch to another
route that has become possible because of delays of other trips.

Note that rule (2) and (4) may result in sub-optimal passenger routes but such a behavior
seems natural for most passengers. One important aspect of this model is that in networks
where good alternatives are available rule (1) results in scenarios where delayed vehicles are
less occupied than initially planned.

2.2 Deciding Short Turns
Short turn model. Let t1 = (s1, s2, . . . , sn−1, sn) and t2 = (sn, sn−1, . . . , s2, s1) be two
consecutive trips of the same vehicle, where the sequence of stops in t2 appears in reversed
order. A short turn st is a turnaround activity from an arrival event from(st) of t1 to
a departure event to(st) of t2 at some non-terminal stops of t1. Every activity between
from(st) and the end of t1 and between the start of t2 and to(st) would be cancelled. A short
turn is thus a premature turnaround edge that is not part of the planned schedule, but rather
decided at short notice. Every passenger whose planned route includes a cancelled event has
to be rerouted, while other passengers benefit from the reduced delay. The following sections
explain how the (possible) benefit of a short turn is evaluated.

Detecting and filtering short turns. A short turn from an arrival event of trip t1 to a
departure event of trip t2 will be considered as a candidate if the departure event of trip t2
is sufficiently delayed, i.e. by more than a certain threshold δ, say, for example by at least 10
minutes. In order to recognize a potential short turn, we keep a list of trips exceeding this
threshold with respect to the current delay status. Entries in this list are sorted increasingly
by the time when the trip delay exceeds δ for the first time and processed in this order. The
simulation proceeds in discrete time steps of one minute. The current time of the simulation
is called simulation time. Some potential short turns are discarded before being evaluated.
First of all, they have to be technically feasible. In addition, a short turn between two trips
t1 and t2 is only relevant if no later short turn exists for which t2 can depart according to
schedule. In other words, the first relevant short turn candidate stf is the latest short turn
possibility for which t2 can depart according to schedule. Short turns at earlier stops of trip
t1 would be suboptimal, since more stops have to be cancelled and more passengers rerouted.
Later short turns, however, can not be prematurely excluded: while t2 would not be able
to depart according to schedule, they are less disruptive for the passengers and may be the
preferable option, especially if a large number of passengers want to enter or exit at a later
stop.

Note that due to the definition of a circulation edge all simulations of a short turn meet
requirements of the vehicle schedule (rolling stock), but do not contain any information about
the crew schedule. In practice, a short turn can not occur when necessary crew changes are
skipped.

Computation of scenarios. For every trip in the list of heavily delayed trips, the first
relevant short turn stf to this trip is calculated or updated after a delay has been recorded and
propagated. The event from(stf) is kept in a simple array of lists mapping the simulation
time to these departure events. This array is checked when the simulation time is updated. For
every event in the list corresponding to the current time, the following “decision” subroutine

J. Patzner, R. Rückert, and M. Müller-Hannemann 13:7

is called. This subroutine, formally described in Algorithm 1 (see Appendix A), recommends
whether trip t should execute a short turn. Since multiple short turns are in competition,
all of them have to be evaluated. Starting with the stop of the first relevant short turn stf ,
we evaluate the short turn at each stop of the trip. As a cost measure for a scenario we use
the total arrival delay of all passengers in the network, including a penalty of 300 seconds
for each transfer. Alternatively and without extra effort, we could also use the sum of the
squared arrival delays. To find the short turn with the largest reduction of the cost function,
an evaluation subroutine is called for every possible short turn of t, starting with stf (t). This
second subroutine will be explained in the following paragraph. New routes are calculated
for the affected passengers of a short turn. The decision subroutine saves these routes for
the best currently found short turn. At the end of the decision subroutine, the best found
short turn will be executed if the reduction of the cost function is larger than or equal to
some threshold θthr. The routes of the affected passengers and the changed times of the
affected trips are updated. For the efficient computation of optimal passenger routes, we
use a modified version of the connection scan algorithm (CSA)[2]. The algorithm has been
modified in order to calculate routes based on composite cost functions.

Evaluation of scenarios with distinct types of affected passengers. The evaluation
subroutine, described in Algorithm 2 (for a detailed pseudocode see Appendix A), calculates
the difference of cost function for executing and not executing the specific short turn st,
based on the state of the network at the time the decision subroutine is called. First, we
determine the sets of passengers affected by the potential short turn st. We differentiate four
different types of passengers. Table 4 in Appendix A provides a compact reference describing
these types and how they can be determined.

The first type contains passengers which would have part of their current route canceled
if the short turn is executed. Finding these passenger groups is simple: we trace the activity
edges of the current vehicle from from(st) to to(st) and put every passenger on these edges
in a set P−A. These passengers would have to be rerouted if the short turn is executed. It is
also possible that these passengers have a broken transfer between from(st) and to(st), in
which case a rerouting is required in both scenarios. The second type of passenger groups are
passengers whose routes are only possible because the current trip is delayed. This is only
possible for passengers who searched for their routes after the delay was announced. For
these groups the short turn might be detrimental: a transfer into a vehicle with improved
punctuality might become impossible if the transfer slack is too small. To find these passengers
we trace the vehicle starting with to(st). For every scanned event, we calculate the time
improvement of this event resulting from the short turn. We then iterate over the transfer
edges into the current event. If the slack of the transfer is zero or positive and smaller than
the time improvement at the event, we add the corresponding passengers to a set P−B .

The third type of passengers are those who currently have a broken transfer because of a
delay, but the broken transfer becomes possible again if the short turn is executed. Finding
these passengers is similar to finding the second type: we again trace the vehicle starting
with to(st) and calculate the time improvement at the current event. We then iterate over
the transfer edges out of the event. We only consider transfer edges of passengers which are
not in P−A or P−B . If the slack of the transfer edge is negative, meaning the transfer is not
possible in the current state of the network, we add the passengers corresponding to the
transfer edge to a set P+C if the absolute value of the transfer slack is smaller than or equal
to the time improvement of the current event. This is the case if the transfer is possible if
short turn is executed. These passengers would have to be rerouted if the short turn is not
executed.

ATMOS 2022

13:8 Passenger-Aware Real-Time Planning of Short Turns

Parallel to this, we consider the fourth type P+D of affected passengers: passengers whose
final arrival gets directly improved because of the short turn. This is the case if an event
is the final destination of a passenger. In this case, we directly add the time improvement
to a variable direct_cost_improvements. If a trip is delayed, passengers may search for
a better alternative route. In case the short turn is executed, a better alternative route
may still exist if the short turn doesn’t remove the entire delay. To calculate the direct
improvement, we first find the best alternative route according to current circumstances. We
then compare these alternative costs to the costs of the current route for both scenarios and
save the minimum of the two routes. For the scenario of executing the short turn, the time
improvement at the final arrival is subtracted from the costs of the current route. The direct
improvement of the short turn for the current passenger is the difference between these two
minima. This is described in Algorithm 2 (Appendix A).

Computing the benefit. In order to calculate the total difference of the cost function, we
compare both scenarios for each passenger found in the previous step. First, we calculate the
cost for every group for the case that the short turn is not executed. For this case, we have
to reroute the passengers in P+C and the passengers in P−A with broken transfers. For the
other passengers, we take the costs of their current routes. Only the remaining costs of the
routes are taken into account, starting at the current simulation time. After this step, we
undo the reroutings and execute the short turn. The skipped edges are marked as canceled
and the times of the subsequent trips are updated. In this scenario, P−A and P−B have to
be rerouted. The calculated routes for P−A are saved and returned. These will be applied
in case the current short turn is the best short turn of the decision subroutine. The new
routes for the other types of passenger groups are not saved because they lie in the future
and will be rerouted in a different subroutine of the simulation. Before returning the total
improvement of the network costs and the new routes, the network is reset.

3 Experiments

In this section, we describe our computational evaluation of the simulation framework for
short turns.

Experimental setup. The simulation is written in C++ and compiled with gcc 9.4.0, using
full compiler optimization, on Ubuntu 20.04. The experiments are run on an AMD Ryzen 7
5800X, clocked at 4.7 GHz during program execution, and 32 GB of 3600 MHz DDR4 RAM.

Public transportation network. We use realistic data for the public transportation network
of Stuttgart, provided in the LinTim format [22, 23], including passenger demand. The
Stuttgart instance [3] is a mixed network, consisting of train and bus lines. The network has
769 stops (or stations) and a passenger demand of 54 626 passengers per hour. During peak
traffic 780 vehicles start their trips per hour across 111 unique used lines. Their maximum
capacities reach from 70 passengers for busses up to 400 passengers for trams and up to
1000 for regional trains. Of the 780 trips per hour 556 are busses and 224 trains/trams. A
specific timetable and vehicle schedule with respect to the given passenger demand has been
optimized by the LinTim software.

Experiments 1 (single artificial delays). In order to evaluate the usefulness of short turns,
we have to generate delay scenarios. In the first experiment, we generate an artificial starting
delay for a single vehicle in the network. The delay is propagated along the trips of the

J. Patzner, R. Rückert, and M. Müller-Hannemann 13:9

vehicle. Each time the vehicle has a planned buffer time, the propagated delay is reduced
by that amount. We delay only one vehicle because we want to guarantee that passengers
are not influenced by other changes in the network unrelated to the evaluated short turn.
We simulate four hours of passenger travel. This simulation is repeated for each trip in the
network.

In order to capture how profitable a short turn is for a certain delay, we simulate a delay
in the range of 10 to 30 minutes, in steps of five. We only consider delays that do not result
in the delayed trip overtaking the next scheduled trip of the same line. We evaluate possible
short turns as described in Section 2. Because this experiment only features independent
delays, the resulting short turn recommendations guaranteed an optimum for the system.

For this and the following experiment, the penalty for a transfer was set to 300 seconds.
We assume a short turn takes 180 seconds to execute. In total, we simulated 6786 vehicle
delays for Stuttgart. We found 3343 short turns, 2232 of which reduce the accumulated cost
function when the acceptance threshold θthr is set to 0.

Experiment 2 (more realistic random delays). While the first experiment is deterministic
and has only one isolated source delay, the second experiment generates more realistic
scenarios featuring multiple simultaneous, but independent delays. We would like to point
out that our assumption of independent delays is clearly a simplification. In reality, there are
frequent cases where delays are correlated because of an underlying reason. Our simulation
framework would also work for more sophisticated delay scenarios. In this experiment, we
simulate four hours of traffic. Each trip receives a random start delay according to a discrete
delay distribution within a range of 0 to 10 minutes. Likewise, each driving activity receives
an extra delay with respect to a second delay distribution. Figure 6 shows the cumulative
distribution functions we used. The function is chosen so that 82% of starting events are not
delayed, and 97.1% of driving activities do not get an additional source delay. With these
probabilities, we used 10 independent runs to create a bigger data set of possible short turns
than in the deterministic experiment. The number of short turn candidates generated was
33,159.

In contrast to the first experiment, there is no guarantee that a recommended short turn
produces an optimal solution for the system. This is inherent to all online systems where
future delays are not known beforehand. Moreover, we ignore complex cases where several
heavily delayed vehicles should be considered in combination.

Results. General information about Experiment 1 is presented in Table 1. Note that delay
here means the delay of a vehicle at the start of the simulations. The actual delay at the
time of the short turn may be lower because of planned buffer times in the network. Note
that more than one trip might be evaluated in one simulation. If the starting delay is high,
it may propagate along multiple trips of a vehicle. The number of candidates decreases with
higher starting delays because we only consider delays that do not result in the delayed trip
overtaking the next scheduled trip of the same line.

It is expected that the average improvement increases as the starting delays increase.
The average improvement and the percentage of trips with positive short turns is rather high
for all starting delays. This can be explained by the fact that many trips are almost empty
near to the end of the line, if the terminal stop is not a hub for transfers to other lines.

For simulations with ten minutes of starting delay, the average number of passengers on
activities that would be cancelled by a short turn (with positive or negative improvement)
is 70.5, but the median is only 14. For 22.2% of all trips with short turns, the cancelled

ATMOS 2022

13:10 Passenger-Aware Real-Time Planning of Short Turns

Table 1 For different starting delays (in minutes), this table presents how many trips were delayed
(#trips), how many short turns were evaluated (#st evaluated), how many delayed trips with short
turn candidates exist (#trips with st candidates), how many of them are beneficial (#beneficial
st), and the average total improvement of costs for all passengers (avg improvement). The last two
columns only consider the best short turn of a trip.

delay #trips #st evaluated #trips with st candidates #beneficial st avg improvement
10 2518 1999 1214 784 152m 36s
15 1780 1856 801 536 187m 0s
20 1411 1309 481 312 187m 43s
25 1609 1868 574 405 336m 55s
30 954 982 273 195 464m 56s

activities were completely empty. One explanation for such a high number is that during
morning peak hours, most passengers travel to the city centre, while outbound trips in the
suburbs are not heavily loaded near to their terminus stop. Another main reason for so
many empty trip segments is that whenever a vehicle has a substantial delay and other lines
drive in the same direction, affected passengers take an alternative before the short turn is
considered.

The time-critical operation is the finding of new routes for passengers. Across both
experiments, each evaluation of a short turn takes 323.81 CSA queries on average, while the
average total runtime for a short turn evaluation is 143.25 ms. The average runtime for each
CSA query is 0.44 ms. This would enable a quick real-time evaluation of short turns, but in
praxis, the limiting factor is usually the available data.

Features correlating with short turn recommendations. Figures 3a and 3b show how
features of the scenarios correlate with the improvement in passenger utility if the short turn
is executed. The recovery time of a delayed vehicle is defined as the time it would take the
vehicle to completely eliminate its delay by utilizing buffer times within the timetable if no
short turn is performed. Figure 3a plots the recovery time against the benefit in minutes,
while in Figure 3b the known feature is the remaining delay of the vehicle at the stop before
a short turn is executed. Both figures show a certain correlation between the value of the
feature and the likelihood that the resulting short turn is beneficial. Figure 4a shows how
the difference in the number of passengers belonging to groups that will benefit from a short
turn and the non-beneficiaries correlating to the improvement in costs. Figure 4b shows that
the difference in the number of reroutings is also correlated with the improvement. When
multiple features indicate the affiliation of a scenario to the classes “recommend a short turn”
and “do not recommend a short turn” we may not need further expensive computational
effort to decide.

Further Evaluations. Figure 5 shows the fraction of beneficial short turns depending on the
threshold imposed for accepting a short turn. Since dissatisfaction of passengers who have to
suffer from short turns might outweigh the gain in punctuality for others, a threshold above
zero seems preferable in practice.

4 Machine Learning Short Turn Decisions

For our simulations, we assumed perfect knowledge of the passenger flow. This is unrealistic
for a practical scenario and we thus explore methods for the prediction of beneficial short
turns with less information. In particular, we no longer want to assume that we know

J. Patzner, R. Rückert, and M. Müller-Hannemann 13:11

●

●●●
●

●

●

●
●

●

●● ●

●

●
●

●

●

●
●

●

●

● ●●●

●
●●

●

●

●

●●

●

●●●●

●●●●●●●●●●●●

●●●● ● ●●●●
● ●●●● ●●●●●●●●

●

●

●

●

●

●
● ●● ●●●● ●

●
●●

●
●● ●●

●● ●

●
●●●
●●●

●

● ●
●

●●
●

●●

●● ●●● ●●● ●●●
●

●●●

●

● ●● ●●

●
● ●● ●

●●●●●●●

●

● ●
●

● ●● ●●●● ●●●●●●●
●

●●●● ●●●●●●●●●●●●●●●●
●● ●● ●

● ●●

●●●●●●●●

●●● ●

●● ●●
●●●● ● ●

● ●

●

●
●

●
●

●●●●
● ●● ●● ●●●●●●●●●●●●

●
●

●

●

●
●●●● ● ●●●●●●

●●
● ●

●
●●

●●
●●

●

●

●
●
●●●

●

●●● ●● ● ●● ●
●

●
●

●●●●
●●● ●

●●●
●

●

●●

●

●●●●●

●

●●●●●●

●

●

● ●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●
●●●●

●●●●

● ●●

●

●● ●●

●
●●●●●●

●●●●●●●● ●●●
●●

●

●●
●●●●

●
●● ●

●● ●

●

●●●●●●●● ●●
●●●● ●

● ●●●●

●

●●
●

●● ●●
●●

●

●
●●●●●●●●●●● ●● ●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●

●

●● ●●

●
●

●

●
●●●●●● ●● ●●● ●●●

●

●

● ●●

●
●

●

●

●
●

●●●●●●●●● ●●●●● ●●●●●●
●●

●

●

●

●

●

●
●●

●

●●
●

● ●● ●●● ●●

●

●● ●●●●

●●

● ●● ●●●●
●

●●●

●●● ●

●●●● ●
●

●●●●
●●●●●●●●●●●●●●●●●●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●●

●

●●●
●

●

●

●
●

●

●●●

●
●

●●

●●●●
● ●●●

●

●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●

●

●●●● ● ●●●

●
●

●●●
●

●
●

●● ●
●

●

●

●
●● ●●●● ●●●● ●●●● ● ● ●●●●● ●● ●●

●●●

●●●●
●● ●●●●●●●●●● ●●●●●

●●●●
● ●●●●●●●●●●●●●●
●● ●● ●● ●●●● ●●●●●● ●●●●

●●●●●●● ●●●●●

●

●

●

●
●

●

●●●●●●●●●● ●●●● ●
●

●●●● ●
● ●●

●

●

●

●

●●
●

●●● ●●

●
● ●

●
● ●

●●●

●

●

●●

●●●

●●
●

●
●● ●●
●

●

●

●

●
●●●

●

●
●

●

●●

●●

●
●

●●●
●

●●●

●●

●

●●●

●

●
●●

●● ●
●●●●

●

●

●●

●●●●

●●

●●●●●●

●●

●

●
●●

●
● ●

●

●●●

●

●●●

●

● ●●
●

●●
●
●

●●●●●●

●●

●●

●
●
●●

●●● ●
●●●● ●●●●●●●●

●
●● ●

●

●●● ●

●●
●

● ●●●

●●●●

●●●●●●●●

●

●●●

●●●●●●●●
●●●●

●

●●●

●●●●

●●●●

●●●●

●●

●

●

●

●●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●●●

●●●●●

●●

●
●

●

●●

●●

●

●

●●●

●

●●●●

●●●●● ●
●

●●

●●●●

●

●

●●●●

●●●●

●●●●

●●●●

●

●

●●
●

●

●

●

●●●
●
●
●●●
●●
●●
●●●●
●●●●●
●●●●●●●●●●●●

●●●

●

● ●

●

●

●●

●
●

●
●

●

●●●
●

●

●●

●
●

● ●●●
●

●

●
●

●●

● ●

●

●●●●●
●●●● ●●●●

●

●

●●●
●

●
● ●● ● ●●

●

●
●

●

●

●● ●

●●●●

●

●●●
●●●●

●

●

●● ● ●●●
●

●
●

● ● ●● ●●● ●●●● ●● ●

●

●

●
●

● ●
●●●●●

●

●

●

●

●● ●
● ●●●

●●●
●
●●

●●● ●● ●
●

●

●●
●

●

●
●

● ● ●●●●●●●

● ●●●

●● ●● ●● ●● ●●
● ●

●
●

●

●

●

●
● ●●●

●● ●●●

●

●

● ●●●
●

●●●●●

●●
●

●● ●
●

●● ●●● ●● ●●●
●●● ●

●●●
●

●
●●●● ● ●●

●●●

●

●

●●●●

●●

● ●

●

●● ●●
● ●

●●

●

●●
●● ●

●

●
●●

●

●●● ●

●

●●●
●

●

●

●
●

●
●

● ●
●●
●

●
● ●

●
● ●

●

● ● ●

●

●

●

●●

●

● ●

●
● ●

●

●
●

●●

●●

●●●

● ●●●● ●
●●

●

●
●●

● ●
●

●
●

●

●

●

●
●●

●

●

●

●
●

●
●● ●

●● ●
●

●
●●

●

●●●

●●
● ●●

●●

●
●

●

●
●

●
● ●

●

●
●

●

●●
●

●●
●● ●

●

● ●● ●

● ● ● ●

●

●

●

●●●

●

●●

●

●

●●●● ●●●●● ●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●●●●
●●● ●

●● ●●

●●●
●

●

●●

●

●●●●● ● ●●

●●●●

●●●● ●

●

●●●

●● ●

●
●

●
●

●●
●

●● ●● ●● ●● ●●● ●
●

●
●

● ●● ●● ●● ●● ●● ●●●
●●● ●

● ●●●

●

●●

●

●●●

●

●
●

●●

●
●

●

●

●

●
●

●

●●
●●

●
●●
●

●

●

●

●

●

●

●
●

●

●

●
● ●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●●

●
● ●●

●

●

●

●

● ●
●

●●●
●

●

●
●

●

●

●●

●
●●

●

●●

●

●

●

●●●●

●●

● ●●

●

●●●
●

●

●
●●

●●

●

●●●●

●

●

●●

● ●●●
●

●
●●●

●
●

●

●

●

●

●

●

●

●

● ●● ●
●

●●● ●●
●

● ● ●
●●●

●●● ●
●●● ●● ● ●

●●
●

●
●

●

●

●
●

●

●
●
●●

●
●
●
● ●●

●

●

●●

●●●● ●●●●●●●●●●●●
●

● ●
●

●●●●

●●
●

●

●

●

●

●

●●

●

●●

●●●

●

●●●

●

●

●
●●●●●●●●●●●●

●
●

●

●

●

●

●

●
●●●●
●●●●●●●● ●

●
●●

●●● ●●
●

●
●

● ●

●●

●

● ●
●●

●

●● ●

● ●

● ●
●

●●●●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●● ● ●●●
●

●●●
●

●

●

●

●●
●

●
●● ●● ●● ●●

●
●

●
●

●
●

●● ●● ●● ●●
●

●

●
● ●● ● ●●●

●
●●

●●
● ●●●● ●

●●●●

●

●

●

●●

●

●
●●

●

●

●
●
●

●

●
●

●

● ●●●

●
● ●●

●
●

●

●

●● ●

●●●

●
●●●●●

●
●●● ●

● ●● ●
●

●●●

●

●

●● ●●
●

●
●

●

●

●●

● ●● ●
●

●

●

●

● ●● ●●

●

●
●

●

●
●

●
●●●

●

●
●

●
●
●●

●●●
●

● ●●●● ●
●

●●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
● ●

●●●

●

●
●

●●

●

●

●● ●
●

●

●

●

●

●●

●

●

●●●● ●●●●
●●●

●● ●● ●●
●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

● ●

●

● ●●●●

●●●

●●● ●●

●
●
●

●●
●

●

●

●
●

●

●

●

●

●

●●
● ●●

●

●

●

●

● ●

●

●

●
●
●●● ●
●

●
●●

●
●

●
●

●
●

●

●●●●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●●
●

●●●

●●● ●
●

● ●●●
●

● ●

●

●
●●

●●

●
● ● ●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●●●

●

●

●

●
●

●●●●●●●●
●●●●

●
●●● ●● ●●● ●

●
●●

●

●
●

●

● ●
●●

●
●

●● ●

●

●

●

●
●

●
●

●●
●

●
●

●

●

●
●

●●●● ●●

●

● ●

●●
●

●
●

● ●

●

●
●● ●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●● ●
●

●

●
●

●

●

●●

●

●● ●
●

●●●● ●●●
●

●●●● ●●
● ●●● ●

●

●
●

●● ●
●●

●
●

● ●●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●
●●

●

●

●

●
●●●

●
●

●

● ●●●

●
●

●

●

●

● ●
●

●●
●

●●
●●●

●
●
●●●●

●
● ●●●

●

● ●●
●

●
●

●

●●

●

●
●

●●
●

● ●● ●●●
●

●
●●

●
●

●

●

●●● ●●●

●
● ●

● ●

●

●

●

●
●

●●●
●

● ●●
●

●
●●

●● ●●

●

●

●

●

●

●

●

●

●● ●● ●●
●● ●

●●

●● ●

●

● ●

●

●

●
●

●

●

●

●

●

● ●

●
●● ●

●
●

●● ●

●

●

●

● ●
● ●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●● ●●●
●

●●●

●
●

●
●

●
● ●● ●

●●●
●●
●

●

●
●

●

●

●

●
● ●●

●

●

●

●
●

●

●
●●

●●
●●●

●

●●

●●

●
●
●

● ●
● ●
●

●

●
● ●●

●
●

●

●

●

●●

●

●● ●
●●

●●

●

● ●

●

●

●
●

●●

●

●

●●●●●●●● ●
●

● ●
●

●
●

●

●

●

●

●

●

● ●●●●
●

●

●

●●●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

● ●

●

●

●

●
●●

●

●

●

● ●● ●

●●●

●

●●● ●●
●

●●●

●

●● ●

●
●

● ●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●●●

●

●
● ●●

●●●●●●●●

●●●●
●●●

●●●●
●
●
●● ●

●●● ●

●● ●

●

●

●

●
●

●●●
●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

● ●

●

●
●●

●●●

●
●● ●● ●● ●●

●

●

●
●

●
●
● ●

●

●

●
● ●

●

●

●

●●●
●●

●

●

●

●●
●●

●
●

●● ●●
●●

●
●

●●
●

●

●●

●

●●

●

●●

●

●
●

●
●

●

●

●

●

●
●

● ●
●

●●

●

●
●●●

●
●●●

●● ●●
●

●
● ●●

● ●
●

●

●
●

●

●

●

●

●●
●

●● ●

●
● ●

●
●

●
●

●

●

● ●
●

●
●

●●

●●

●●

●
● ●

●

●

●

●

●

●
●

●●●

●

●

●

●●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●●●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●●

●

●●●●● ● ●●●

●

●●

●

●
●

●

−5000

0

5000

10000

0 100 200
recovery time in mintues

im
pr

ov
em

en
t o

f t
ot

al
 c

os
t i

n
m

in
ut

es

(a) Correlation of the duration it takes to recover
the initial delay to improvement in costs.

●
●●

●●●
●●●
●●●
●●
●

●

●

●●

●

●

●●

●
●

●●●●●● ●●

●
●
●
●

●

●

●
●

●

●
●
●
●
●
●
●
●

●●●●●●●●
●
●●● ●●●●●●●●

●●●●●●
●● ●●●●●●●●●●●●●●

●●●

●

●●●

●

●●●

●●●●

●

●●●
●
●●●
●
●●●
●●
●●
●
●●
●

●

●●
●

●

●●
●

●●●
●

●

●●●
●●●●
●

●●●
●
●●●
●●

●●

●

●

● ●●
●

●●●●●●●●●●●
●
●●
●●
●● ●● ●

●●● ●●●●●●●●
●●
●●●● ●●●●●●●●●●●●●●●●● ●●●●● ●●●●

● ●●●●● ●●●●● ●●●●

● ●●
●●

● ●●
●●

● ●●
●●

● ●●●●● ●●●●● ●●●●● ●●●●●
●●●●●
●●●●●
●●●●●
●●●●

●●●●●●●●●●●

●●●●●
●
●●
●
●●
●

●●●●●●
●●●●
●●
●
●
●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●
●

●

●
●
●●
●
●●●

●
●●●●●

●●●●

●●●●
●●

●
●
●
●
●
●

●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●
●●

●
●
●
●●●●

●●●●

●
●

●●●●

●
●

●●●●●●●●●●

●●

●●●●●●●●●●●●

●

●●●● ●

●●

●

●●●●

●

●●●●
●
●●

●●●●

●

●●●●

●

●●●●

●

●●●
●

●

●●●
●

●●
●●
●●

●●●●●
●●●

●●● ●●

●●

●●●●
●●●●

●●
●●●●●●●●●●

●● ●●

●
●

●●●●

●●●●●●●●
●●●●●●

●●
●

●
●
●
●
●
●
●
●

●●
●●

●
●
●
●
●
●
●
●

●

●●●

●●●

●●●●●●●●●●●●●

●●

●●●●●●●●

●●
●●
●●

●
●●

●●●●
●●●

●
● ●●●●
●●

●●●●●●●●●●●●
●●●●●●

●

●

●

●

●

●

●

●

●
●●

●●
●
●
●
●●●●●●●

●●

●

●
●●●
●●●●●●●●●

●●
●

●●
●

●●●●●● ●●●●

●●●●
●●●●●●●●●●●●●●●●
●●

●
●
●
●
●
●

●
●

●

●●●

●●●●●●●●●

●●●

●●●
●●●
●●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●

●●●●●● ● ●●●●

●●●●●
●

●●●●●
●

●●

●●
●●●●

●
●●●●●●●●●●●●●●●

●●●●
● ●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●● ●●●●●●●●

●●●●●● ●
●●●

●●
●

●●●
●●●
●●●●●●

●●

●

●●

●
●●●

●●

●

●●

●

●●

●
●
●●●●●
●●
●●●

●●●

●●
●
●
●
●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●●

●
●

●●

●

●

●●

●
●

●●
●●

●●

●●

●●

●●

●●

●●

●●
●●●●●●●●●●

●●●●●●●●●●

●
●
●
●
●
●
●
●

●●●●
●
●
●●●

●●●●●●●●●●●
●
●●
●●●●●●●
●
●●●●●●●●●●●●●● ●
●●
●●●●
●●
●●●

●

●

●

●
●
●
●
●●●●●●●●●

●

●

●

● ●●●●●●●●

●●
●●

●●

●

●●
●●●●●●

●●●●●●●●●●●●●●●●

●
●
●
●
●
●
●
●

●

●

●
●

●

●

●

●

●●
●
●●●●●

●
●
●
●
●
●

●
●

●
●
●
●
●
●
●

●
●

●●
●●

●

●

●
●
●
●

●
●

●
●

●
●

●
●

●

●
●

●
●
●
●

●
●

●
●
●
●
●
●

●
●

●
●
●
●
●
●

●●

●●

●
●
●
●

●

●

●

●●
●

●

●

●
●
●
●
●
●

●
●

●
●
●
●
●
●

●

●

●●●●●●
●

●●

●●●●

●

●

●●●●

●●●●

●●●●●●●

●●

●

●
●
●

●

●
●
● ●●
●●●●●●
●● ●●
●● ●●

●
●

●
●

●
●
●
● ●●●●●● ●●●●

●●●●●●●●●● ●●●● ●●●● ●●●●●● ●●●●

●●
●

●●

●
●●●●
●
●●●●

●●

●●
●

●
●

●
●

●

●●
●

●●●
●●●

●
●
●
●
●
●

●
●
●
●
●
●
●
●

●●●●●●●●●
●
●
●
●
●
●
●

●●●●

●●●

●●●●●●●●●
●●●●

●●●
●●
●
●
●
●●●●

●
●●

●●● ●●
●
●●
●
●●
●

●
●
●

●
●
●

●
●
●

●
●
●●●●●●●●●●

●●●●●●●●●
●●

●

●●

●●●●●●●●●●●●
●

●●●●

●●

●
●●●●●●●●●●●●●●●

●

●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●● ●●●●●
●●●●●

●●●●●● ●

●●
●●●●●●●

●●
●●●●

●●●●●●●●
●●●●

●●●●
●●●●
●●●●

●●●●

●

●●●●

●

●●●●
●
●●●●
●
●●●●
●
●●●●
●●●●

●
●●●●

●

●●●●

●●
● ●●

●●

● ●●
●●

● ●●
●●

● ●●
●● ●●●●●●

●●●
●●●●

●●●●

●
●

●●●●●●●
●●●●●●●
●●●●●●●

●●●
●●●●●
●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●

●
●
●
●
●
●●
●●●

●
●

●●●●

●●●
●●●●●

●●●
●

●●●●
●●●

●●●

●
●
●

●●●●●

●
●

●

●●
●
●●
●●●
● ●●●●●●●

●●●
●●
●●●
●●

●●●

●
●

●●

●

●●

●
●

●●
●●●

●
●

●●
●●●

●
●

●●
●●●●●●
●●

●●
●● ●

●

●
●●●
●
●

●
●

●● ●●●●●●●●●●●●●●●

●●●
●
●

●●●●●●

●

●● ●●

●

●

●

●

●●●●●●●
●●
●●
●●●
●

●
●●●● ●●

●

●

●

●
●●●●●

●●●●●
●●●●●●●●●●

●● ●●●●●

●●●
●●

●●
●●

●

●●

●

●●●
●
●

●
● ●●●●●

●
●●●●●
●●●●●●●

●●●●●●
●●●●
●●●●●●
●●●

●
●

●
●
●

●●

●●

●●
●
●●

●●
●

●
●

●

●
●

●

●
●

●
●●●
●●●●●●

●●●
●●●●●●

●●●
●●●

●●●

●
●●●
●
●●●
●●●●

●

●●●●●●●●
●●
●●●●
●● ●●

●
●

●●●●●●
●●

●
●

●●●●
●

●●●●●

●

●

●●●
●●
●●

●●●
●●
●
●●●

●

●

●

●

●

●

●

●

●●●
●●

●
●●

●

●●

●

●●

● ●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●
●●●●●●

●●●●

●
●●●●

●

●●● ●●● ●●● ●●● ●●●●
●

●●●● ●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●●●●●●●

●●
●

●

●●
●
●

●● ●●●●

●●●

●●●
●
●●●●

●●●
●
●●●●●●●

●

●●●

●
●●●●●●●
●●●●
●

●●●●

●

●●●

●

●

●

●
●

●

●

●

●
●
●

●

●
●●●●
●●●

●●
●

●

●

●●

●●●
●

●
●
●

●●
●● ●

●
●●

●

●●

●

●

●

●●
●

●●● ●●
●
●

●

●●
●

●

●●●
●

●

●●
●

●

●●●

●●
●●

●

●

●

●●
●

●●
●
●●
●

●●

●●
●
●●
●

●●●

●●
●●

●●

●●

●●

●●

●●

●●
●

●
●

●●
●●●●●●●●●●

●●
●●
●●
●●

●●●●●●●●

●●

●●

●●●●

●●●●
●●●●

●●●
●●● ●●●●●

●●●

●●

●

●●●
●

●

●●●
●

●

●●●
●

●

●●●
● ●●●●●●●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●
●

●●

●
●●
●●●●

●●

●

●●

●

●●

●

●●

●
●●
●
●●
●●●

●

●

●●

●●●●
●●●●●●●●●●●●

●

●●● ●

●●
●
●●
●

●●●●●●

●●
●●●●●●●●
●●●●

●●●●●●●●

●●●●●●●●
●●●●●●●● ●●●●●●●●● ●●

●●●●●

●●●
●
●

●
●

●
●●●●

●

●
●
●

●

●

●

●●

●

●●

●●
●

●
●
●●
●
●●
●
● ●

●

●●●

●
●●
●●

●

●●● ●●

●
●

●
● ●

●

●●●
●●

●●●
●●

●●●
●●

●●
●●●●●●
●●

●●

●

●●●●●●●● ●●
●●
●

●

●●
●●
●

●
●●
●●
●

●

●
●
●
●●

●
●
●
●●

●
●
●
●●

●
●
●
●●

●
●●●

●

●●●

●

●●●●
●●●

●
●●●
●●●●
●●●●
●

●
●●

●

●●
●
●

● ●● ●
●●●●●

●●●●●●●●●●●●

●●●●

●

●●●
●
●

●

●●●

●

●●●
●●

●

●●●

●

●●●

●

●

●

●

●

●●●
●

●●●●

●

● ●●●●

●

● ●●●●

●

● ●●●●

●

● ●●●●

●●●
●●● ●●●
●
●●●
●

●●●
●●●

●
●●

●
●●●
●
●●●

●
●●●
●
●●●

●
●●●
●
●●●●●

●● ●

●

●

●

●

●

●

● ●
●●●●●

●●
●
●●
●
●●
●
●●●

●●●●●●●
●●

●●●●●●●●●

●●

●●●

●●●●●●

●●●●

●●●
●●●

●●●●

●●●●●●●●●●●●●●●●●●

●●●●●
●

●●●

●
●
●●●

●●●

●
●
●●●

●
●
●●●

●●
●●● ●

●●
●●
●●●
●
●●

●●
●

●●
●

●●●
●
●●

●●●
●
●●

●●●
●
●●

●

●●●● ●●
●

●●●●●●●●

●
●●●●●

●

●●●●●
●

●●●●●

●
●

●●●●●●

●
●
●●●
●

●●●●

●●●

●

●

●●●●
●●●●●●
●●●

●●●
●
●●●● ●●●

●●

●
●

●

●

●

●

●
●●●●●●●●●●●●
●●●

●●● ●●●●●●
●●●●

●

●●●

●●●
●

●●●

●●● ●●
●

●
●●

●●
●

●
●● ●●

●

●

●●
●

●
●● ●●●●

●●●

●●●●●

●●
●

●●
●

●●
●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●
●
●
●●
●

●
●
●
●
●

●●
●●●●●●

●●●●●

●
●●

●
●●
●
●
●●●

●
●
●

●●
●●●●
●●
●●
●●
●●
●●
●●

●●
●●
●●

●●

●●
●●●●●●●●●●

●●●●
●
● ●●●●
●
●

●
●

●●●
●●●
●●●
●●●

●

●●●

●

●●●

●

●●●

●

●

●●●

●

●
●●●●
●●●

●
●●●

●●

●
●●●

●●

●●●
●

●●●●

●●
●●●●

●

●

●

●●
●
●

●●
●
● ●●
●
● ●●
●
●

●

●
●
●
●
●
●
●

●●●
●●●
●●●●●●

●●
●●

●●

●●●
●●●●

●●●●

●●●●

●
●●
●
●●
●
●●
●
●●
●

●●●●●●
●●

●

●●

●

●●

●
●●●●

●●

●
●●●●●

●●●●●
●

●●●

●

●
●●

●

●

●●●

●

●●●
●

●

●●
●
●●
●●

●
●● ●

●●

●
●●
●●●●● ●●

●
●●● ●●

●
●●
●
●●●

●●●●●

●
●
●
●●●
●●●

●
●
●
●●●
●●●

●
●
●
●●●
●●● ●●●

●●●●●
●●●●●
●●

●●●

●
●● ●●

●●●
●●

●●●●
●
●●
●
●●●●●
●
●●

●●●●
●●●
●●●●
●●●●●●●

●●●●●●●

●●●●●
●●
●●●●●●●
●●●●
●

●

●●●

●●●
●●●●

●
●

●●●
●●●●●●

●●
●●●●●
●●●
●●
●●●●●
●●●

●●●
●

●

●●●

●●●
●●●●
●

●●●●

●
●●●
●●●●

●●●●●●●●

●●●●

●
●●●
●●●●

●●●

●
●●

●

●●●●

●●●
●●●●●●●

●
●

●
●

●●●●

●
●

●
●

●●●●

●
●

●
●

●●●●

●
●

●
●

●●●●
●●●●

●●●●

●● ●●●●

●
●

●●
●●●

●●●●

●●
●●●

●●●●

●●
●●●

●●●●●●●●●●

●●●●●
●
●
●
●

●
●
●
●

●
●
●
●

●
●
●
● ●

●●●●●
●
●●
●●●
●
●●

●
●●

●●●●●●●
●● ●●●

●

●●
●
●●●●
●
●●●●
●
●●●●

●●●●

●●●●●

●
●●

●●● ●●●
●●●●

●●●
●●●●

●●●●●●

●●●●

●●●●●●●●●●●●●●●●●●●●●
●
●●

●●●●●●●
●

●●
●●
●●
●●

●●●
● ●●● ●

●

●
●●●●●
●●●●●
●

●
●
●
●●●

●
●

●
●●●

●
●

●
●●●

●●●●

●● ●●●● ●● ●●●● ●● ●●●●
●● ●●●●

●●●

●●●
●
●
●
●

●●●
●
●
●
●

●●●●●●●●

●●●
●●●●●
●●●
●●●●●●●
●●●●●
●●●

●●●
●
●●●●●●●●●

●●
●●
●●

●

●

●●●●●● ●●●

●
●●● ●●●
●
●●●

●
●●●

●●●

●
●
●

●
●
●

●●●
●

●

●●
●
●
●

●●●
●●●●●●●●●

●
●●●

●
●●
●

●
●
●●
●

●
●
●●
●

● ●●●●●
●●● ●●●●

●●●●

●●

●●
●

●●●●●●
●●

●●●●●●●● ●●●

●●●●
●

●●●

●●●●
●

●●●
●

●●
●

●
●●●● ●●

●●

●●●

●

●●●●●●

●●●●●●

●
●●●●

●

●
●●●●

●●●●
●

●
●●●●

●

●●

●●

●

●●
●●

●
●
●

●
●●

●
●
●

●

●●

●●

●

●●●●●●●●

●●●
●●

●

●
●

●●●●●●●●

●
●●
●
●

●
●
●

●

●
●
●●
●●●●●

●
●

●●●●●
●●●●
●●
●●●●
●●
●●
●●

●●●●●●●

●

●●
●●●●●●●●●●

●●●●●●●●●●●●●● ●●●●●●●●●●●●●●

●
●
●●
●

●●

●●●●●
●●●●●
●●●●●
●●●●●

●

●●●

●

●●●

●

●●●●

●●●

●

●●●
●

●●●
●

●

●●●●

●

●
●●

●

●●●

●●●●
●

●●●● ●●●●

●
●●

●●

●

●

●
●
●●

●●●●●●●●

●●
●
●●
●
●●
●

●●
●

●●
●

●●
●
●●
●

●●
●

●●
●
●

●●●●●
●

●
●●●●●●●

●●●●
●●

●●●●●●●

●
●
●

●●
●

●●●
●●
●

●
●
●
●
●
●
●
●●●●●●●●● ●●

●

●
●●
●

●
●●
●

●
●●
●

● ●●●●●●●●●●●
●
●●●
●●● ●●●
●

●
●
●
●
●
●

●

●
●●●●
●●●●

●

●●●

●
●●●
●●●●●●

●

●

●●●
●●●●

●
●
●
●

●

●

●●
●

●●●●

●●●●

●

●●
●

●●●●

●●●
●●●●● ●●●
●●●
●●●

●

●●
● ●

●●

●

●●●●●● ●●●●●●●●●●

●●

●●

●●
●● ●●●●● ●●●●●●●●●

●●●●●●
●●●●●●

●

●
●●
● ●● ●

●
● ●●

●●
●●

●●●●●
●

●

●●●●●
●●

●

●●●●●
●●

●

●
●●●●

●●

●●●

●
●●●

●

●●●●●
●
●

●●●

●●
●●
●
●●

●●
●

●●
●●
●●●

●
●
●
●

● ●●●
●

●●●
●
●●
●
●●
●
●●

●
●●●
●
●

●
●●●●

●
●

●
●●●●

●
● ●

●●●●●●●●●● ●●●

●

●●

●

●●

●

●●
●●●

●●●●

●

●
●●●●

●
●

●●●●●●●

●● ●●●

●●●●●●●
●●●
●
●●
●
●●●●

●●

●●
●

●●

●●●
●

●●●●

● ●
●●●●●

●●●●●
●●

●
●
●

●

●

●
●

●●●●●

●●
●●●●

●●●●

●●●
●●

●●●●

●
●

●●●●●●●●●● ●●●●

●
●

●●●●●●●●●●●●●●

●●●
●●●●●

●●●
●●●●●

●●●
●●●●●

●●●
●●●●●

●●

●●
●

●●
●●●●●● ●

●●
●●
●

●●●●●●●●●●●●●
●●●
●●●●●

●●●●●●●●●●●●●●

●
●●●

●●
●

−5000

0

5000

10 20 30
remaining delay at short turn in minutes

im
pr

ov
em

en
t o

f t
ot

al
 c

os
t i

n
ut

ilit
y

m
in

ut
es

(b) Correlation between the delay at short turn
and improvement. Aligned points belong to
trips without buffer before the short turn.

Figure 3 Graphs showing basic information of scenarios correlating with benefit of improvement.

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●● ●

●

●
●

●

●

●

●
●

●

● ● ●●

●●●●●●●●●●●●

●●●●
● ●●

●
●

●
●

●●● ●● ●●
●●●●

●

●

●

●

●

●

●
● ●● ●● ● ●

●

●
●

●

●
●

●
●

●●●

●

●●●
● ●●

●

●
●

●

●●

●

●●

●●
●

●● ●●●● ● ●
●

●● ●

●

● ●● ●●

●

●
●

●●
●

● ●●●● ●

●

●
●

●

●●
●

●
●

●
●●●
●

●●●●

●

●●
●●●●
●●●●●●●● ●●●●

●●

●●
●

● ●

● ●●

●●●●
●●●●

●●●●

●●●●

●●●●
●

●

●
●

●

●

●

●

●

●●●●

●●●●●
●

●
●●●● ●●●● ●●

●

●

●

●

●

●●●●
●

●●
●●●●

●●

●●

●

●●

●●

●●

●

●

●

●

●●●

●

●●●
●●●

●
●●

●

●

●

●●●●

●●● ●

●
●

●

●

●

●●

●

●●●●
●

●

●●●●●●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●●●

●●
●●

●
●

●

●

●●
●
●

●

●
●●●●●

● ●●●●●●●●● ●

●●

●

●●

●●
●

●

●

●●
●

● ●●

●

●●●● ●
●●●●

●

● ●
●●

●

●
●●●●

●

●●
●

●
● ●
●

●●●

●●●●
●●●●●●●

●
●

●
● ●●●●●●●●●●●●●●●●●●●●

●
●

●● ●●●●● ●●

●

●●●●

●

●

●

●

●
●

●
●
● ●

●
●

●
●●
● ●●

●

●

●
●●

●

●

●

●

●

●●●●●●●●●●●●●●●●
●●●●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●● ●
●● ●

●

●

●●
●

●●●

●●

●
●●●

●
●●

●

●●●

● ●●●

●●●●●

●

●●●●

●
●●●●●●●●

●●●●●●●●●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●●●

●

●

●

●

●●●

●

●
●

●

●●●●

● ●●●

●

● ●

●●●●●●●●
●●●●

●●
●●

●●●●
●●● ●●●●●●●●●

●●
●
●●●●

●●

●
●

●

●

●●●●●
●

●
●

●

●

●●●

●

●

●

●
●●

●

●

●

●

●● ●●
● ● ● ●
●
●●

●
●
● ●●

●
●

●
●

●●
●

●
●

●●●

●●●●

●●●●●●●●●●●●
●● ●●●

●●●●

● ●●
●●●● ●●●●●●●●

●
●
●
●
●
●
●
●●●●●●●●●
●●●●

●● ●●●●●●●
●●●

●

●

●

●

●

●

●●●● ●
●

●
●●● ●●●●

●

●

●●
●

●
●

●
●

●

●

●

●

●

●●

●

●
●

●
●●

●

● ●

●

● ●

●●●

●

●

●
●●

●●

●

●

●
● ●●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●●

●

●

● ●●

●

●●●

●●

●

●●●

●

●

●●

●● ●

●●●●

●

●●

●●●●

●
●

●●
●●●●

●●

●

●

●●

●

●
●

●

●
●

●

●

●
●●

●

● ●
●

●

●●

●

●

●●
●●●●

●●

●●

●

●

●●

●●●●

●●●●●●●● ●●●●

●

●●
●

●

●●

●

●
●●●

●
●●●

●●●●
●●●●

●

●●●
●●●

●●

●

●

●●

●●
●●

●

●

●●●●

●●●●

●

●

●

●

●
●

●
●

●

●
●●

● ●

●
●

●●
● ●

●●● ●●

●
● ●
●●

●
● ● ●

●●●

●

● ●

●
●

●

●

●

●

●

●

●● ●
●

●

●●

●

●

●●●●

●

●

●

●

●
●

●
● ●●●●●

●●●●●●●●

●

●

●●●

●

●

●●●● ●●

●

●
●

●

●

●●●

●●● ●

●

●
●●

●●●●

●

●

●●
●

●
●●

●

●

●

●●
●
●

●
●

●
● ●●● ●● ●

●

●

●

●

●
●

●
●

●●●

●

●

●●●
●

● ●
●

●

●
●●

●

● ●

●●● ●●●
●

●

●●

●

●

●

●

● ●●● ●●● ●●

●
●●●

●●●●
●
●
●
●
●
●

●
●

●

●

●

●

●

●

● ●●●

●●
●

●
●

●

●

●
●●●

●

●●●●
●

●●

●

● ●●

●

● ● ● ●●● ● ● ●●

●●●
●

●
●●

●
●

●
●

●
●●●●

●
●

●

●

●

●
●●●

●●

●
●

●

●●●●

● ●

●●

●

●
●

●
●

●

●

●

●●

●

●
●
●●

●

●●●●●

●

●

●

●
●

●●

●

●

●
●

●
●●

●

●●●

●

●

●

●●

●

● ●

●

●●

●

●

●

●
●

●●

●●●

●
●●●●
●

●●

●

●

●●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

● ●●

●
● ●

●

●

●
●

●

●
●●

●●

●●
●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●●

●●●

●

●●●
●

●
●● ●

●

●

●

●●●

●

●

●

●●●●●●●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●●●●

● ●●●

●●●

●

●

●●

●

●
●●●

●
●

●●

●●●●

●●●●
●

●

●●
●

●● ●

●

●

●

●

●●

●

●● ●● ●● ●●●●
●

●

●

●

●

●● ●●●●●●●●●
●

●●

●●●●

● ●●●

●

●●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●
●●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

● ●●●

●●

● ●●

●

●●●

●

●

●

●●

●●

●

●●●●

●

●

●●

● ●
●●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●● ●
●

●

● ●
●

●
●

●

●

●

●● ●
●

●●
●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●●

●●●● ●●●●
●●●

●●●●●

●

●●

●

●
●● ●

● ●

●

●

●

●

●

●

●●

●

●
●

●●
●●●

●

●

●

●

●●●●●●●●
●●●●

●

●

●

●

●

●

●

●
●●●●

●●●●
●●●● ●

●

●●
●●●●

●

●

●

●

●

● ●

●
●

●

●
●

●●

●

●●
●

●●

● ●

●

●●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●
●●●

●
●●●

●

●

●

●●●

●

●

●
● ●●

●
● ●●

●

●

●

●

●

●

●●●● ●● ●●

●

●

●

●
●
●

●
●

●
●

●

●
●

●
●

● ●
●

●
●

●

●●●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

● ●●●

●

● ●
●

●

●

●

●
●

●

●
●

●

●

● ●●●●

●

●
●

●
●

●● ●
●

●

●●
●

●

●

●
●●●

●

●

●

●

●

●
●

●
●

●
●

●
●●

● ●
●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●●●

●

●●●●● ●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●● ●

●

●

●

●

●
●

●

●●●● ●●
●●

●●●

●
●● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●●●●

●●●

●
● ●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●● ●

●

●

●

●

●

● ●

●

●

●

●

●●●
●

●

●●

●

●

●

●

●

●

●

●●●●

● ●

●

●

● ●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●●

●●●
●

●

●
●●

●
●

● ●

●

●

●●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●●●

●

●

●

●

●●●●●●●●

●●●●

●

●
●

●
●

●●● ●●

●

●

● ●

●

●

●

●

●
●

●●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●● ●●

●

● ●

●●

●

●

●

● ●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●
●

● ●●●
●

●

● ●●●● ●●

●

●●
●● ●●

●

●

●● ●
●

●

●

●

●
●●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

● ●●●

●

●

●

●

●

●●
●

●
●

●

●●

●●●

●

●
●●●●

●

● ●●●

●

●●
●

●

●

●

●

●●

●

●

●

●
●

●

●●●
●●

●

●

●

●
●

●

●

●

●

●
●●●●
●

●

●●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●●
●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●
●

●●

●● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●

●

●●●

●

●

●

●

●

●●●
●

●
●●

● ●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●●

●●●

●

● ●

●●

●

●

●

●
●

●
●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●●●●●●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●● ●

●

●

●

●●●●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●●

●

●●●
●

●

●

●●●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●
●

●

●●●●
●●●●

●●●●

●●●

●●●●

●
●

●
● ●

●● ●●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

● ●●

●

●
●

●
● ●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●● ●

●
●

●

●

●

●●

●
●

●

●

●●
●

●

●●

●

●

●
●

●

●

●●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●●●

●

●●●

●
●

●
●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●● ●
●

●● ● ●
●

●

●

●

●

−2000

−1000

0

1000

2000

3000

−100 0 100 200 300 400
number of positivly affected − negatively affected

im
pr

ov
em

en
t o

f t
ot

al
 c

os
t i

n
m

in
ut

es

(a) The number of positively affected passengers
minus the negatively affected passengers.

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●
●

●

●

●

●
●

●

● ●●●

●●●●●●●●●●●●

●●●●
● ●●

●
●

●
●

●●●●● ●●
●●●●

●

●

●

●

●

●

●
●●●●●● ●

●

●
●

●

●
●

●
●

●●●

●

●●●
● ●●

●

●
●

●

●●

●

●●

● ●
●
●●●●●●● ●

●

●● ●

●

●●●●●

●

●
●

●●
●

● ●●●● ●

●

●
●

●

●●
●

●
●

●
● ●●
●

●●●●

●

●●
●●●●
●●●●●●●● ●●●●

●●

●●
●

● ●

● ●●

●●●●
●●●●

●●●●

●●●●

●●● ●
●
●

●
●

●

●

●

●

●

●●●●

●●●●●
●

●
●●●● ●●●●●●

●

●

●

●

●

●●●●
●

●●
●●●●

●●

●●

●

●●

●●

●●

●

●

●

●

●●●

●

●●●
● ●

●
●

●●

●

●

●

●●●●

●●●●

●
●

●

●

●

●●

●

●●●●
●

●

●●●●●●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●●●

●●
●●

●
●

●

●

●●
●

●

●

●
●●●●●

●●●●●●●●●● ●

●●

●

●●

●●
●

●

●

●●
●

●●●

●

●●●● ●
●●●●
●

●●
●●
●

●
●●●●

●

●●
●

●
● ●
●

●●

●

●

●●●●
●●●●●●●

●
●

●
●●●●●●●●●●●●●●●●●●●●●

●
●
●● ●●●●● ●●

●

●●●●

●

●

●

●

●
●

●
●

●●
●

●
●

● ●
●●●

●

●

●
●●

●

●

●

●

●

●●●●●●●●●●●●●●●●
●●●●●●

●

●

●

●

●

●

●
●

●

●
●

●

●●● ●
●●●

●

●

●●
●

●●●

●●

●
●●●

●
●●

●

●●●

●●●●

●●●●●

●

●●●●

●
●●●●●●●●

●●●●●●●●●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●●●

●

●

●

●

●

●

●●●

●

●
●
●

●●●●

● ●●●

●

● ●

●●●●●●●●
●●●●

●●
●●

●●●●
●●● ●●●●●●●●●●●

●
●●●●

●●

●
●

●

●

●●●● ●
●

●
●

●

●

●● ●

●

●

●

●
● ●

●

●

●

●

●●●●
●●
●●

●
●●
●

●
● ● ●

●
●

●
●

●●
●

●
●

●●●

●●●●

●●●●●●●●●●●●
●●●●●

●●●●

●● ●
●●●●●●●●
●●●●

●
●

●
●

●
●

●
●●●●●●●●●
●●●●

●●●●●●
●●●

●●●

●

●

●

●

●

●

●●●● ●
●

●
●●●●●●●

●

●

●●
●
●
●

●
●
●

●

●

●

●

●●

●

●
●

●
●●

●

●●

●

● ●

●●●

●

●

●●

●
●●

●●

●

●

●
● ●●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●●

●

●

●●●

●

●●●

●●

●

●●●

●

●

●●

●●●

●●●●

●

●●

●●●●

●
●

●●
●●●●

●●

●

●

●●

●

●
●

●

●
●

●

●

●
●●

●

● ●
●

●

●●

●

●

●●
●●●●

●●

●●

●

●

●●

●●●●

●●●●●●●●●●●●

●

●●
●

●

●●

●

●
●●●

●
●●●

●●●●
●●●●

●

●●

●●●

●●

●●●
●●●

●●

●

●

●

●●

●

●

●●●

●

●●

●●
●●

●

●

●●●●

●●●●

●●

●
●

●
●

●

●
●●

● ●

●
●

●●
●●

●●●●●

●
●●

●●
●

●●●
● ● ●

●●

●

●

● ●

●

●

●
●

●

●

●

●

●

●● ●
●

●

●●

●

●

●●●●

●

●

●

●

●
●

●
●

●

●●●●●

●●●●●●●●

●

●

●●●

●

●

●●●● ●●

●

●
●

●

●

●●●

●●●●

●

●
●●

●●●●

●

●

●●
●

●
●●

●

●

●

● ●
●
●
●
●

●
●● ●● ●● ●

●

●

●

●

●
●

●
●

●●●

●

●

●

●

●
●

●

● ●
●

●

●
●●

●

● ●

●●●●●●
●

●

●●

●

●

●

●

●●●●●●●●●

●
●●●

●●●●
●
●

●
●

●
●

●
●

●

●

●

●

●

●

● ●●●

●●
●

●
●

●

●

●
●●●

●

●●●●
●

●●

●

● ●●

●

●● ●●●●● ●●●

●●●
●

●
●●
●
●

●
●

●
●●●●

●
●
●

●

●

●
● ●●

●●

●
●

●

●●●●

● ●

●●

●

●
●

●
●

●

●

●

●●

●

●
●

● ●

●

●●●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●
●●

●

● ●●

●

●

●

●●

●

●●

●

●●

●

●

●

●
●

●●

●●●

●
●●●●

●

●●

●

●

●●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●●

●
●●

●

●

●
●

●

●
●●

●●

●●
●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●
●
●

●●

●●●

●

●●●
●

●
●●●

●

●

●

●●●

●

● ●

●

●

●●●●●●●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●●●●

●●●●

●●●

●

●

●●

●

●
●●●

●
●

●●

●●●●

●●●●
●

●

●●
●

●● ●

●

●

●

●

●●

●

●●●●●●●●●●
●

●

●

●

●

●●● ●●●●●●●●
●

●●

●●●●

●●●●

●

●●

●

●●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●
●●

●

●

●
●

●

●

●
●

●

●
●

●

●●

●

●

●

●●● ●

●●

●●●

●

●●●

●

●

●

●●

●●

●

●●●●

●

●

●●

●●
●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●● ●
●

●

● ●
●

●
●

●

●

●

●● ●
●

●●
●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●●

●●●● ●●●●
●●●
●●●●●

●

●●

●

●
●●●

●●

●

●

●

●

●

●

●●

●

●
●

●●
●

●

●●
●

●

●

●

●●●●●●●●
●●●●

●

●

●

●

●

●

●

●
●●●●

●●●●
●●●●●

●

●●
●●●●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●●

●

●●
●

●●

● ●

●

●●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●
●●●

●
●● ●

●

●

●

●

●

●

●●

●

●

●
● ●●

●
● ●●

●

●

●

●

●

●

●

●● ●● ●● ●●

●

●

●

●
●

●
●

●
●

●

●

●
●

●
●

● ●
●
●

●
●

●●●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

● ●●●

●

● ●
●

●

●

●

●

●
●

●

●
●
●

●

● ●●●●

●

●
●

●
●

●● ●
●

●

●●●

●

●

●
●●●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●●

●

●●●●●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●
●

●

●

●● ●

●

●

●

●

●

●
●

●

●

●●●●●●
●●

●●●

●
●● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●●●●

●●●

●
●●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●●

●

●

●

●

●●●
●

●

●●

●

●

●

●

●

●

●

●●●●

●●

●

●

●●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●●

●●●
●

●

●
●●

●
●

●●

●

●

●●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●● ●

●

●

●

●

●

●●●●●●●●

●●●●

●

●
●

●
●

●●●●●

●

●

●

● ●

●

●

●

●

●

●
●

●●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●● ●●

●

●●

●●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●●
●

●

● ●●● ● ●●

●

●●
●● ●●

●

●

●● ●
●

●

●

●

●
●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

● ●●●

●

●

●

●

●

●●
●

●
●

●

●

●●

●●●

●

●
●●●●

●

● ●● ●

●

●●
●

●

●

●

●

●●

●

●

●

●
●

●

●● ●
● ●

●

●

●

●
●

●

●

●

●

●
●●●●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●
●
●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●●
●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●
●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●●●

●

● ●●

●

●

●

●

●

●●●
●

●
●●

● ●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●●

●●●

●

●●

●●

●

●

●

●
●

●
●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●●●●●●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●● ●

●

●

●

●●●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●●

●●

●

●

●
●

●

●●●
●

●

●

●●●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●
●

●

●●●●
●●●●

●●●●

●●●

●●●●

●
●

●
● ●

●● ●●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

● ●●

●

●
●
●

● ●
●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●●●

●
●

●

●

●

●●

●
●

●

●

●●
●
●

●●

●

●

●
●

●

●

●●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●●●

●

● ●●

●
●

●
●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●●●

●
●●●

●

●
●

●

●

●

●

−2000

−1000

0

1000

2000

3000

−100 0 100 200 300 400
difference in number of reroutings

im
pr

ov
em

en
t o

f t
ot

al
 c

os
t i

n
m

in
ut

es

(b) Difference in reroutings.

Figure 4 Graphs showing basic basic information of scenarios correlating with benefit of improve-
ment of a short turn.

0.1

0.2

0.3

0.4

0.5

0 5 10
threshold of total benefit in hours

fra
ct

io
n

of
 b

en
ifi

ci
al

 s
ho

rt
tu

rn
s

(a) The fraction of beneficial short turns when
there is a threshold of gained total passengers
utility in hours. When the benefit for passengers
has to be greater than a total of 5h only 25% of
short turns are executed.

0.0

0.1

0.2

0.3

0.4

0.5

0 5 10
threshold of total benefit in minutes per passenger

fra
ct

io
n

of
 b

en
ifi

ci
al

 s
ho

rt
tu

rn
s

(b) The fraction of beneficial short turns when
there is a threshold of gained average passengers
utility of all passengers involved. When the
benefit for all passengers involved has to be
greater 5 minutes per passengers only 5% of
short turns are executed.

Figure 5 In our definition a short turn is beneficial if there is any improvement in passenger
utility. When dispatchers have a threshold for the minimum gained utility to execute a short turn
the fraction of beneficial short turn declines sharply.

ATMOS 2022

13:12 Passenger-Aware Real-Time Planning of Short Turns

passengers’ destinations. When we have easily computable features as input and their
simulated recommendation as output we can apply methods from supervised machine
learning to generate a model that predicts the recommendation without the computation of
the scenario. Here we continue our work with the data sets from the previous section to see
whether we can make predictions with a sufficiently high accuracy.

Defining features. The first step in this process of defining and producing features during
the regular analysis of a short turn scenario is the creation of a vector of those features for all
scenarios of our study. We selected 16 features that could be beneficial for machine learning
algorithms to predict whether a short turn should be executed. Features that might be useful
for the ML algorithms are the recovery time, the delay without the short turn, the number
of passengers on canceled events, and the number of passengers on events that will have a
smaller delay once the short turn is executed. For the machine learning of short turns, we
use the following set of features:

1. time difference until delay is recovered because of buffer times
2. current time of day
3. current delay of the vehicle when short turn is considered
4. time saved if short turn is executed
5. number of passengers inside vehicle when short turn is considered
6. planned number of passengers in the subsequent reversed trip at the current stop if short

turn is not executed
7. planned number of passengers in the subsequent reversed trip at the current stop if short

turn is executed
8. number of remaining stops of the trip until the regular turnaround edge
9. predicted number of delayed trips of the current vehicle

10. difference in number of rerouting operations when simulating both scenarios
11. number of passengers in P−A ∪ P−B with valid routes before short turn
12. number of passengers in P−A ∪ P−B with invalid routes before short turn
13. number of passengers in P+C

14. number of passengers in P+D

15. number of (unique) passengers on the subsequent reversed trip until delay is recovered
because of buffer times

16. number of (unique) passengers on the current vehicle until delay is recovered because of
buffer times (can be higher than the previous feature if multiple trips are affected by the
delay)
Note that the destination of passengers is not included in this data. This has the benefit

that when dispatchers have knowledge of the number of passengers inside their vehicles but
not their destinations, the predictions will still produce reliable results. The assumption
that we know everything about the passenger flow becomes less important from this point
forward. The set of 16 features is still more than the data a typical dispatcher would have at
their disposal.

To this end, we produced a restricted set of features that a dispatcher might generate
with little effort. These features are (1) the current delay of the vehicle before the short turn
is executed, (2) the duration how long it would take to recover the delay by only consuming
planned buffer times, (3) the number of minutes the delay is reduced by the short turn, (4)
how many stops until the trip is over, (5) how many passengers are inside the vehicle when
executing the short turn and (6) the estimated passenger demand of stops where the delay is
decreased by the short turn.

J. Patzner, R. Rückert, and M. Müller-Hannemann 13:13

0.85

0.90

0.95

1.00

0 1 2 3 4 5 6 7 8 9 10
minutes of delay

pr
ob

ab
ilit

y distribution
driving_delay

starting_delay

Figure 6 The cumulative distribution func-
tion for starting delay and driving delay func-
tion. The y-axis shows the probability that an
event gets a delay equal to or smaller than the
number of minutes at the x-axis.

●

●

●

●●
●●

0.900

0.925

0.950

0.975

1.000

experiment 1 experiment 2

av
er

ag
e

fra
ct

io
n

of
 c

or
re

ct
 p

re
di

ct
io

ns

model
all features

reduced features

Figure 7 Comparison of Experiment 1 and 2:
The average rate of correct predictions of a short
turn recommendation with full and reduced feature
sets.

Choosing platform and model. The process of creating a machine learning model has
become easier during the last few years. Once the input (features) and output (recommend-
ations) are stored in comma separate value files, a simple python script that uses a small
number of open-source libraries can create good classifications. For our purposes we only
needed NumPy [17] and the library scikit-learn [19]. There are many methods for creating a
machine learning model for the purpose of classification of the input vector in only two classes.
Nearest neighbor classification, support vector machines, and decision trees are examples of
well-known methods. We tested ten different methods from the scikit-learn library [20] for
creating a model and selected the model with the highest number of correct classifications
within 100 trails where we split our data into 80 percent training- and 20 percent testing
data. The data we used are all short turns simulated in Experiment 1 and 2.

The method that produced the best prediction on our data was the RandomForestClassifier
(93.73% correct classifications on average) of scikit-learn. This evaluation includes parameter
tuning as an alternative to using default parameters. However, the best parameters only
improved the quality of estimation by an insignificant margin of .2%

Other relatively good methods were DecisionTreeClassifier (2% gap to RandomForest-
Classifier) and the AdaBoostClassifier (4% gap to RandomForestClassifier). All other tested
methods did not consistently produce a classification rate above 90%.

Evaluating models for Experiment 1. To have sufficient data for the machine learning
process we combined experiments with different initial delays to one data set. We created
two models ’all features’ and ’partial features’ and trained the RandomForestClassifier with
the training data. It is important to consider how many scenarios in the training data belong
to the execute and do not execute-case. A classification data where 99% of all entries belong
to one class must have a different prediction quality (usually much higher than 99%) than a
classifier for data that has 50% of the training data belonging to one class. In our experiments,
we test with different initial delays from 10 to 30 minutes. In these scenarios, short turns are
beneficial in 66.52% of all cases. As mentioned earlier a short turn is beneficial as soon as
there is one second of utility gained from the short turn. In practice, a short turn may only
be executed if there is a sufficient gain (above some thresholds) in utility. The fraction of
beneficial short turns drops significantly when a threshold is applied (see Figure 5).

The median prediction quality of the combined model with “all features” is 93.73%.
This means that the process of predicting the right outcome of a short turn simulation
can be predicted by machine learning if detailed data about the situation, passengers and

ATMOS 2022

13:14 Passenger-Aware Real-Time Planning of Short Turns

Table 2 Distribution of recommended short
turn execution by simulation and classification
by random forest classifier.

Experiment 1 simulation
execute

simulation
no execution

prediction
execute 63.75% 3.50%

prediction
no execution 2.77% 29.98%

Table 3 Distribution of recommended short
turn execution by simulation and classification
by random forest classifier.

Experiment 2 simulation
execute

simulation
no execution

prediction
execute 47.95% 2.61%

prediction
no execution 3.64% 45.80%

their routes are available. In comparison, the median prediction quality of the combined
model with ‘‚†partial features’ is 93.22%. This means predicting the right outcome is still
relatively good, even when the amount of information is only limited to a correct delay
propagation/estimation, the number of counted passengers in the vehicle and knowledge
about the demand of the next line. Table 2 shows the confusion matrix for this classification.
We have 63.75% true positives and 29.98% true negatives, and only 3.50% false positives and
2.77% false negatives. The conclusion of this experiment is that for systems where delays are
rare, short turns are often beneficial and this fact can be predicted with high accuracy.

We would like to point out that our classifiers can only predict whether a short turn
candidate is beneficial, but not select the optimal short turn if several options exist. Choosing
the optimal short turn candidate is much harder for machine learning since it has to predict
the benefit using regression, and the essential comparison for a recommendation concerns
cases that share a significant number of features. The first attempt for this method produced
a prediction that could only determine the best of multiple beneficial short turns in 75.8% of
all cases using the XGBRegressor from scikit-learn.

Evaluating models for Experiment 2. Before looking at the results of Experiment 2 we
want to point out that it is harder to estimate the correct outcome than in Experiment 1 for
one particular reason. In Experiment 1 we had more large isolated delays which made short
turns more likely, namely in more than 66.52% of cases short turns were beneficial. Because
of the buffer included in the schedule, a fraction of the delays is made up when the vehicle
reaches stops where a short turn is possible. This can be seen in Figure 3b, where delays are
very often less than the initial 10 to 30 minutes. Experiment 2 has more mid-sized delays
(in the range 5 < x < 15), but the delays are generated anywhere during the journey. This
leads to a similar distribution of delays at possible short turns. The fraction of cases where
short turns are beneficial is 51.59% and lower than in Experiment 1. The median prediction
quality for the model with all features was 93.75% and thus as good as in Experiment 1
where delays were deterministic and isolated. Table 3 shows the confusion matrix for this
classification. With reduced features, the estimation quality drops to 90.50%. So even in
more realistic delay scenarios, the estimator predicts the correct short turn strategy with
good accuracy, when all features are used. The reduced features produce an estimation such
that it is likely that only 9 of 10 cases receive the correct prediction. For practical purposes,
this might not be enough for automation, but it is certainly helpful for a first indication of
whether a short turn is highly likely or unlikely to benefit passengers.

5 Conclusions and Outlook

We have presented a simulation framework for decision support of dispatchers in public
transport focusing on the planning of short turns for heavily delayed vehicles. Our experiments
have been conducted on a mid-size regional public transport network. Computation times

J. Patzner, R. Rückert, and M. Müller-Hannemann 13:15

turned out to be in the range of few milliseconds to decide whether a short turn would
be beneficial and for computing alternative routes for all passengers affected by such an
operation. For larger public transport systems and more dense passenger flows we expect that
our approach will scale quite well. This is due to the fact that vehicle capacities are bounded
and that the computational effort is more or less proportional to the number of rerouting
queries which have to be done. A similar study could also be carried out for long-distance
traffic. Again, we are confident that our findings can be transferred.

A reasonable extension of our model would be to include within the delay propagation
that dwell times depend on the number of boarding and alighting passengers. Our current
paradigm is that given circulation edges are binding because of a strict vehicle schedule.
Without this restriction, a short turn could also feature more complex scenarios where a
follow-up trip or other available vehicle resume the delayed future trip instead. More precisely,
instead of short-turning the heavily delayed vehicle, one could consider short-turning the
next vehicle on the line. The advantage could be that the first delayed vehicle is likely to be
crowded, while the following vehicle might carry by far less passengers. Such an operation is
slightly more complicated, but could be incorporated into our simulation framework, too.
However, it should be noted that these operations have a larger impact on the staff schedule.

For machine learning models for detailed heterogeneous networks with many different
types of vehicles and corresponding costs, capacities and possibilities for short turns, the
feature sets should also include those. The current machine learning model only separates
trains/tram and buses implicitly by the capacity of the vehicles.

Since we can make real-time decision support for waiting decisions and short turns it
would be interesting to include stop skipping and dispatching additional vehicles when delays
during peak traffic cause major problems concerning vehicle capacities. Supporting all of
these control actions jointly is also an intriguing challenge. The prediction of favorable short
turns succeeds satisfyingly well with the help of machine learning even if we exploit only
simple countable or previously collected passenger data. As information on passenger flows
and current delays is in practice always noisy and partially incomplete, the sensitivity of
short turn recommendations is worth studying in more detail in the future. A similar analysis
has been done for wait-depart decisions in PANDA[7]. Moreover, we could explore further
which features are required to have a robust classifier for recommending short turns.

References

1 C. E. Cortés, S. Jara-Díaz, and A. Tirachini. Integrating short turning and deadheading in
the optimization of transit services. Transportation Research Part A: Policy and Practice,
45(5):419–434, 2011. doi:10.1016/j.tra.2011.02.002.

2 J. Dibbelt, T. Pajor, B. Strasser, and D. Wagner. Connection scan algorithm. Journal of
Experimental Algorithmics, 23, March 2017. doi:10.1145/3274661.

3 Collection of open source public transport networks by DFG Research Unit “FOR 2083:
Integrated Planning For Public Transportation”, 2018. URL: https://github.com/FOR2083/
PublicTransportNetworks.

4 L. Ge, S. Voß, and L. Xie. Robustness and disturbances in public transport. Public Transport,
2022. doi:10.1007/s12469-022-00301-8.

5 K. Gkiotsalitis, O. Cats, and T. Liu. A review of public transport transfer synchronisation at
the real-time control phase. Transport Reviews, 2022. doi:10.1080/01441647.2022.2035014.

6 M. J. Kang, S. Ataeian, and S. M. Mahdi Amiripour. A procedure for public transit OD
matrix generation using smart card transaction data. Public Transport, 13:81–100, 2021.
doi:10.1007/s12469-020-00257-7.

ATMOS 2022

https://doi.org/10.1016/j.tra.2011.02.002
https://doi.org/10.1145/3274661
https://github.com/FOR2083/PublicTransportNetworks
https://github.com/FOR2083/PublicTransportNetworks
https://doi.org/10.1007/s12469-022-00301-8
https://doi.org/10.1080/01441647.2022.2035014
https://doi.org/10.1007/s12469-020-00257-7

13:16 Passenger-Aware Real-Time Planning of Short Turns

7 M. Lemnian, M. Müller-Hannemann, and R. Rückert. Sensitivity analysis and coupled
decisions in passenger flow-based train dispatching. In M. Goerigk and R. Werneck, editors,
16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and
Systems (ATMOS 2016), volume 54 of OpenAccess Series in Informatics (OASIcs), pages
2:1–2:15, Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:
10.4230/OASIcs.ATMOS.2016.2.

8 C. Liebchen, S. Dutsch, S. Jin, N. Tomii, and Y. Wang. The ring never relieves – response
rules for metro circle lines. Journal of Rail Transport Planning & Management, 23:100331,
2022. doi:10.1016/j.jrtpm.2022.100331.

9 L. Liu and R.-C. Chen. A novel passenger flow prediction model using deep learning methods.
Transportation Research Part C: Emerging Technologies, 84:74–91, 2017. doi:10.1016/j.trc.
2017.08.001.

10 R. Liu, H. Yu, P. Wang, and H. Yan. A short-turn dispatching strategy to improve the
reliability of bus operation. Journal of Advanced Transportation, Article ID 5947802, 2020.
doi:10.1155/2020/5947802.

11 D. Luo, D. Zhao, Q. Ke, X. You, L. Liu, D. Zhang, H. Ma, and X. Zuo. Fine-grained
service-level passenger flow prediction for bus transit systems based on multitask deep learning.
Trans. Intell. Transport. Sys., 22(11):7184–7199, 2021. doi:10.1109/TITS.2020.3002772.

12 S. Moon, S.-H. Cho, and D.-K. Kim. Designing multiple short-turn routes to mitigate
the crowding on a bus network. Transportation Research Record, 2675(11):23–33, 2021.
doi:10.1177/03611981211003899.

13 M. Müller-Hannemann, R. Rückert, and S. S. Schmidt. Vehicle capacity-aware rerouting of
passengers in delay management. In V. Cacchiani and A. Marchetti-Spaccamela, editors,
19th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization,
and Systems (ATMOS 2019), volume 75 of OpenAccess Series in Informatics (OASIcs),
pages 7:1–7:14, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
doi:10.4230/OASIcs.ATMOS.2019.7.

14 M. Müller-Hannemann and R. Rückert. Dynamic event-activity networks in public transporta-
tion — timetable information and delay management. Datenbank-Spektrum, 17:131–137, 2017.
doi:10.1007/s13222-017-0252-y.

15 N. Nagaraj, H. L. Gururaj, B. H. Swathi, and Y.-C. Hu. Passenger flow prediction in bus
transportation system using deep learning. Multimedia Tools Appl., 81(9):12519–12542, 2022.
doi:10.1007/s11042-022-12306-3.

16 M. M. Nesheli, A. Ceder, and T. Liu. A robust, tactic-based, real-time framework for public-
transport transfer synchronization. Transportation Research Procedia, 9:246–268, 2015. Papers
selected for Poster Sessions at the 21st International Symposium on Transportation and Traffic
Theory Kobe, Japan, 5-7 August, 2015. doi:10.1016/j.trpro.2015.07.014.

17 T. Oliphant. Numpy - the fundamental package for scientific computing with python, 2016.
URL: https://numpy.org/.

18 J. Parbo, O. Nielsen, and C. Prato. Passenger perspectives in railway timetabling: a literature
review. Transport Reviews, 36(4):500–526, 2016.

19 F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

20 F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Classifier comparison,
2022. URL: https://scikit-learn.org/stable/auto_examples/classification/plot_
classifier_comparison.html.

https://doi.org/10.4230/OASIcs.ATMOS.2016.2
https://doi.org/10.4230/OASIcs.ATMOS.2016.2
https://doi.org/10.1016/j.jrtpm.2022.100331
https://doi.org/10.1016/j.trc.2017.08.001
https://doi.org/10.1016/j.trc.2017.08.001
https://doi.org/10.1155/2020/5947802
https://doi.org/10.1109/TITS.2020.3002772
https://doi.org/10.1177/03611981211003899
https://doi.org/10.4230/OASIcs.ATMOS.2019.7
https://doi.org/10.1007/s13222-017-0252-y
https://doi.org/10.1007/s11042-022-12306-3
https://doi.org/10.1016/j.trpro.2015.07.014
https://numpy.org/
https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html
https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html

J. Patzner, R. Rückert, and M. Müller-Hannemann 13:17

21 R. Rückert, M. Lemnian, C. Blendinger, S. Rechner, and M. Müller-Hannemann. PANDA: a
software tool for improved train dispatching with focus on passenger flows. Public Transport,
9(1):307–324, 2017.

22 A. Schiewe, S. Albert, P. Schiewe, A. Schöbel, and F. Spühler. LinTim - Integrated Optimization
in Public Transportation. Homepage. https://lintim.net, 2020.

23 A. Schiewe, S. Albert, P. Schiewe, A. Schöbel, and F. Spühler. LinTim: An integrated
environment for mathematical public transport optimization. Documentation for version
2020.12. Technical report, TU Kaiserslautern, 2020. URL: https://nbn-resolving.org/urn:
nbn:de:hbz:386-kluedo-62025.

24 P. Serafini and W. Ukovich. A mathematical model for periodic scheduling problems. SIAM
Journal on Discrete Mathematic, 2:550–581, 1989.

25 S. Shen and N.H.M. Wilson. An Optimal Integrated Real-time Disruption Control Model for
Rail Transit Systems, pages 335–363. Springer Berlin Heidelberg, Berlin, Heidelberg, 2001.
doi:10.1007/978-3-642-56423-9_19.

26 Y. Wang, M. Zhang, S. Su, T. Tang, B. Ning, and L. Chen. An operation level based train
regulation model for a metro line. In 2019 IEEE Intelligent Transportation Systems Conference
(ITSC), pages 2920–2925, 2019. doi:10.1109/ITSC.2019.8916956.

A Algorithms

Algorithm 1 Decision Subroutine.

input : first possible short turn st_f of trip current_trip
best_st ← nil;
(best_cost_improvement, new_routes) ← (0, nil);
for shortturn st of current_trip starting with st_f do

(cost_improvement, temp_new_routes) ← evaluate(st);
if cost_improvement > best_cost_improvement then

best_st ← st;
(best_cost_improvement, new_routes) ← (cost_improvement,

temp_new_routes);
if best_cost_improvement > θthr then

execute best_st and update times;
for (group, new_route) in new_routes do

set route of group to new_route;
return

Table 4 Distinct types of passenger groups affected in short turn scenarios.

Type Description Selection

P−A
current route is canceled when
short turn is executed

put every passenger from canceled
event by short turn in this set

P−B
passengers that take advantage
of delayed vehicle with no short turn

select groups changing into the delayed
vehicle with slack smaller than the delay

P+C
groups suffering a broken transfer
when the short-turn is not executed

groups changing into delayed vehicle
but without groups from (P−A) and (P−B)

P+D
groups arriving earlier at their destination
with the vehicle after the short turn

any group with a final arrival event
improved by short-turn,
without (P−A) and (P−B)

ATMOS 2022

https://lintim.net
https://nbn-resolving.org/urn:nbn:de:hbz:386-kluedo-62025
https://nbn-resolving.org/urn:nbn:de:hbz:386-kluedo-62025
https://doi.org/10.1007/978-3-642-56423-9_19
https://doi.org/10.1109/ITSC.2019.8916956

13:18 Passenger-Aware Real-Time Planning of Short Turns

Algorithm 2 Evaluation Subroutine.

input : potential short turn st
initial_network_state ← snapshot of current network state;
init P−A, P−B , P+C as ∅;
new_routes ← ∅;
init direct_cost_improvements, costs_without_st, costs_with_st as 0;
deptime_improvement ←

to(st).currentTime - max(to(st).regularTime, from(st).currentTime + θdur);
for edge between from(st) and to(st) do

insert groups on edge into P−A

for event on vehicle starting with to(st) do
for group with valid ingoing transfer at event do

if transfer.slack ≤ min(deptime_improvement, event.currentDelay) then
insert group into P−B ;

negative_groups ← P−A ∪ P−B ;
for event on vehicle starting with to(st) do

for group ̸∈ negative_groups with event as final arrival event do
// group is of type P+D

arrival_improvement ← min(deptime_improvement, event.currentDelay);
find alternative route and save cost as alt_costs;
current_costs ← group.getCurrentRoute().getRemainingCosts();
min_no_st ← min(current_costs, alt_costs);
min_st ← min(current_costs - arrival_improvement, alt_costs);
direct_cost_improvements += (min_no_st - min_st);

for group ̸∈ negative_groups with invalid outgoing transfer at event do
if abs(transfer.slack) ≤ min(deptime_improvement, event.currentDelay)
then

insert group into P+C ;
all_affected_groups = negative_groups ∪ P+C ;
for group in P+C do

reroute group;
for group ∈ P−A with invalid transfer do

reroute group;
for group in all_affected_groups do

costs_without_st += group.getCurrentRoute().getRemainingCosts();
reset network to initial_network_state;
execute short turn and update times;
for group in P−A do

reroute group and save calculated route as new_route;
insert (group, new_route) into new_routes

for group in P−B do
reroute group;

for group in all_affected_groups do
costs_with_st += group.getCurrentRoute().getRemainingCosts();

reset network to initial_network_state;
total_cost_improvement =

direct_cost_improvements + costs_without_st - costs_with_st;
return (total_cost_improvement, new_routes)

Efficient Algorithms for Fully Multimodal Journey
Planning
Moritz Potthoff #

Karlsruhe Institute of Technology (KIT), Germany

Jonas Sauer #

Karlsruhe Institute of Technology (KIT), Germany

Abstract
We study the journey planning problem for fully multimodal networks consisting of public transit
and an arbitrary number of non-schedule-based transfer modes (e.g., walking, e-scooter, bicycle).
Obtaining reasonable results in this setting requires multicriteria optimization, making the problem
highly complex. Previous approaches were either limited to a single transfer mode or suffered from
prohibitively slow running times. We establish a fully multimodal journey planning model that
excludes undesirable solutions and can be solved efficiently. We extend existing efficient bimodal
algorithms to our model and propose a new algorithm, HydRA, which enables even faster queries.
On metropolitan and mid-sized country networks with walking and e-scooter as transfer modes,
HydRA achieves query times of around 30 ms, which is fast enough for interactive applications.

2012 ACM Subject Classification Theory of computation → Shortest paths; Mathematics of
computing → Graph algorithms; Applied computing → Transportation

Keywords and phrases Algorithms, Journey Planning, Multimodal, Multicriteria, Public Transit

Digital Object Identifier 10.4230/OASIcs.ATMOS.2022.14

Supplementary Material Source code is available at https://github.com/kit-algo/ULTRA.

Funding This research was funded by Deutsche Forschungsgemeinschaft under grant number WA
654/23-2.

1 Introduction

In modern transportation systems, passengers can choose from a wide variety of different
transport modes, such as public transit, bike-sharing or e-scooters. Finding journeys that
reasonably combine these modes requires multimodal journey planning algorithms. While
efficient algorithms exist for each mode individually, the combined multimodal problem is
much more challenging [2]. Existing solutions are either prohibitively slow or can only handle
restricted scenarios (e.g., limiting the number of available modes). In this work we study
journey planning in a fully multimodal network consisting of public transit plus an arbitrary
number of non-schedule-based transfer modes (e.g., walking, cycling, e-scooter).

Related Work. State-of-the-art journey planning algorithms for public transit networks
include RAPTOR [6], Connection Scan Algorithm [7], and Trip-Based Routing (TB) [16].
These algorithms typically Pareto-optimize two criteria: arrival time and the number of
used public transit trips. While they support limited walking between nearby stations, they
cannot be considered fully multimodal. It has been shown that incorporating an unrestricted
transfer mode can significantly reduce travel times [15], but this comes at the cost of increased
discomfort for the passenger. In order to capture this tradeoff, it is necessary to add a third
criterion that measures the discomfort associated with using the transfer mode [11]. Without
this criterion, interesting alternatives that avoid excessive use of the transfer mode will not
be found [5]. When considering multiple transfer modes, a combined discomfort criterion

© Moritz Potthoff and Jonas Sauer;
licensed under Creative Commons License CC-BY 4.0

22nd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2022).
Editors: Mattia D’Emidio and Niels Lindner; Article No. 14; pp. 14:1–14:15

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:moritz.potthoff@student.kit.edu
mailto:jonas.sauer2@kit.edu
https://orcid.org/0000-0002-7196-7468
https://doi.org/10.4230/OASIcs.ATMOS.2022.14
https://github.com/kit-algo/ULTRA
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

14:2 Efficient Algorithms for Fully Multimodal Journey Planning

for all modes is not sufficient, since some modes may not always be available (e.g., rented
bicycles), mode preferences vary between users, and users may have difficulties specifying
their preferences precisely [5]. Hence, multimodal journey planning requires one discomfort
criterion per transfer mode.

The most flexible multimodal multicriteria algorithm is MCR [5], an extension of
RAPTOR. It supports an arbitrary number of transfer modes and criteria, but becomes
prohibitively slow in complex scenarios. This is for two reasons: Firstly, the number of
Pareto-optimal solutions exhibits superlinear growth in the number of criteria. Secondly,
the transfer modes are explored using Dijkstra’s algorithm [8], which is comparatively slow.
Heuristics for MCR offer acceptable query speed but miss relevant journeys.

The first problem can be solved by computing the restricted Pareto set [4], which excludes
uninteresting journeys from the full Pareto set and can be computed quickly with a variant
of RAPTOR called BM-RAPTOR. The Dijkstra searches can be omitted by employing
ULTRA [3], a speedup technique which precomputes transfer shortcuts. In its original form, it
only supports bimodal networks (public transit plus one transfer mode) and two optimization
criteria (arrival time and number of trips). McULTRA [11] additionally optimizes the time
spent in the transfer mode as a third criterion. Multimodal restricted Pareto sets can be
computed with UBM-RAPTOR, which integrates BM-RAPTOR and McULTRA. Even faster
is UBM-TB, which replaces RAPTOR with McTB [11], an efficient three-criteria algorithm.
This allows the bimodal problem to be solved in milliseconds even on country-sized networks.

Contribution and Outline. We extend the results for bimodal networks in [11] to a more
general setting with an arbitrary number of transfer modes. Section 2 establishes basic
notation and introduces the algorithms which our work builds on. In Section 3, we establish
and discuss a realistic model for fully multimodal journey planning with an arbitrary number
of transfer modes, which we call the multimodal discomfort scenario. In addition to arrival
time and number of trips, we Pareto-optimize the time spent in each transfer mode as an
individual criterion. To ensure reasonable results, we exclude certain types of undesirable
solutions, such as journeys that switch between transfer modes in the middle of a transfer.

The multimodal discomfort scenario requires algorithms for an arbitrary number of criteria.
To enable efficient queries, we incorporate McULTRA transfer shortcuts. In Section 4, we
show that this can be done by running a three-criteria McULTRA shortcut computation
for each transfer mode individually, which only requires linear preprocessing effort in the
number of modes. We adapt existing query algorithms to our scenario in Section 5. This
enables the use of ULTRA-McRAPTOR to compute full Pareto sets and UBM-RAPTOR for
restricted Pareto sets. We do not adapt UBM-TB since there is no apparent way to extend
it to more than three criteria. Instead, Section 6 introduces UBM-HydRA, which combines
the advantages of RAPTOR and TB in scenarios with an arbitrary number of criteria. We
evaluate the performance of our algorithms on real-world multimodal networks with walking
and e-scooter as transfer modes in Section 7. On large metropolitan and mid-sized country
networks, UBM-HydRA achieves query times of around 30 ms, which is faster than the state
of the art by more than two orders of magnitude and enables interactive applications.

2 Preliminaries

Following the notation in [3, 13, 11], a multimodal network is a 5-tuple (S, T ,R, G,F)
consisting of a set of stops S, a set of trips T , a set of routes R, a directed, weighted transfer
graph G = (V, E), and a set of free transfers F . A stop v ∈ S is a location where passengers

M. Potthoff and J. Sauer 14:3

can board or disembark a vehicle. A trip T = ⟨ϵ0, . . . , ϵk⟩ ∈ T represents the ride of a
vehicle as a sequence of stop events. Each stop event ϵi represents a visit of the vehicle at
a stop v(ϵi) ∈ S with arrival time τarr(ϵi) and departure time τdep(ϵi). If passengers are
required to observe a departure buffer time before entering T via ϵi, this can be represented
by reducing τdep(ϵi) accordingly [17]. The i-th stop event of a trip T is denoted by T [i]. The
trips are partitioned into a set of routes R such that all trips of a route follow the same stop
sequence and no trip overtakes another. The unrestricted transfer graph G = (V, E) consists
of a set of vertices V with S ⊆ V, and a set of edges E ⊆ V × V . It can be traversed with
one of m different transfer modes. Traveling along an edge e = (v, w) in mode i requires
the transfer time τt(e, i). To ease notation, we represent all modes in a single graph instead of
using one graph per mode. If an edge e cannot be traversed with mode i, we set τt(e, i) =∞.
Additionally, the set F ⊆ S × S contains transfers which are “free” in the sense that the
time spent using them is not penalized via an optimization criterion. These represent short
transfers between nearby stops, e.g., to connect platforms belonging to the same station,
which are considered an unavoidable part of the public transit network. We require that F is
transitively closed and fulfills the triangle inequality. We also refer to the set of free transfers
as mode 0, but do not count it as one of the m transfer modes. The transfer time for a free
transfer e ∈ F is denoted by τt(e, 0).

Given source and target vertices s, t ∈ V, an s-t-journey represents the movement of a
passenger from s to t. A journey is an alternating sequence of trip legs (i.e., subsequences of
trips) and transfers (i.e., free transfers or paths in the transfer graph). It begins with an
initial transfer between s and the first trip leg, and ends with a final transfer connecting
the final trip leg to t. In between, trip legs are connected by intermediate transfers. Each
transfer is associated with the mode in which it is traversed. Switching between modes
within a transfer is not permitted. To represent the time overhead required by some modes
(e.g., renting and returning an e-scooter), a mode overhead ω(i) is added to the travel time
of each transfer in mode i ̸= 0.

Problem Statement. An s-t-journey J is evaluated with respect to m + 2 criteria: the
arrival time τarr(J) at t, the number of used trips |J |, and for each transfer mode, the transfer
time spent using that mode. A journey J weakly dominates another journey J ′ if J is not
worse than J ′ according to any criterion. If J is also strictly better than J ′ in at least one
criterion, we say that J strongly dominates J ′. For source and target vertices s, t ∈ V and a
departure time τdep, the objective is to compute a Pareto set of s-t-journeys that depart no
earlier than τdep. A full Pareto set J is a set of minimal size such that every feasible journey
is weakly dominated by a journey in J . An anchor Pareto set JA is a Pareto set for the two
criteria arrival time and number of trips. For each journey J ∈ J , its anchor journey A(J)
is the journey in JA with the highest number of trips not greater than |J |. Given a trip
slack σtr ≥ 1 and an arrival slack σarr ≥ 1, the restricted Pareto set [4] is defined as

JR := {J ∈ J | |J | ≤ |A(J)| · σtr and τarr(J)− τdep ≤ (τarr(A(J))− τdep) · σarr} .

This set contains all journeys from the full Pareto set whose arrival time and number of trips
do not exceed their respective slack compared to their anchor journey. Following [11], the
slacks are relative to the overall length of the journey rather than absolute values as in [4].

Algorithms. We conclude this section with an overview of the algorithms which our work
builds on. RAPTOR [6] Pareto-optimizes the two criteria arrival time and number of trips
in a public transit network with a transitively closed transfer graph. It operates in rounds,

ATMOS 2022

14:4 Efficient Algorithms for Fully Multimodal Journey Planning

where round i finds journeys with i trips by extending Pareto-optimal journeys with i− 1
trips. Each round consists of two phases: The route scanning phase collects and scans all
routes that visit stops which were updated in the previous round. This is followed by the
transfer relaxation phase, which relaxes the outgoing transfer edges of all stops that were
updated in the route scanning phase.

McRAPTOR [6] is a variant of RAPTOR that can optimize an arbitrary number of
criteria. For each stop v and round i, it maintains a bag Bi(v) of labels representing Pareto-
optimal journeys ending at v. Additionally, a best bag B∗(v) contains all Pareto-optimal
labels across all rounds. When a new label is found at a stop v in round i, it is compared
to B∗(v). If it is not dominated, it is merged into B∗(v) and Bi(v). During the scan for a
route R, the algorithm maintains a route bag Broute of labels which represent journeys that
end with a trip of R. Associated with each label ℓ ∈ Broute is its active trip T (ℓ), which
is the trip of R used by the corresponding journey. When the route scan visits a stop v,
journeys exiting the route at v are found by merging Broute into Bi(v). Then, for each label
in Bi−1(v), the algorithm finds the earliest trip T that can be entered at v, creates a label
with active trip T and merges it into Broute.

MCR [5] extends McRAPTOR for multimodal networks, replacing the transfer relaxation
phases with multicriteria Dijkstra searches on the unrestricted transfer graphs. For each
mode j and each vertex v, the algorithm maintains a Dijkstra bag Bj

Dij(v). When a label is
added at a stop v in the route scanning phase, it is also merged into Bj

Dij(v) and inserted
into the Dijkstra priority queue. When the Dijkstra search adds a label to the Dijkstra
bag Bj

Dij(v) of a stop v in round i, the label is also inserted into Bi(v).
Restricted Pareto sets can be computed with BM-RAPTOR [4], which operates in three

steps: First, a forward pruning search is run using two-criteria RAPTOR. This computes the
anchor set and, for each stop v and round i, an earliest arrival time −→τarr(v, i). The backward
pruning search performs one backward RAPTOR search per anchor journey in order to
compute a latest departure time ←−−τdep(v, i) per stop v and round i. These are used for pruning
by the McRAPTOR main search. Let K denote the maximum number of trips among all
anchor journeys. Any journey that arrives at a stop v with i trips later than←−−τdep(v, K ·σtr− i)
is discarded because it cannot be extended to a journey that meets the slack requirements.

ULTRA [3, 13] enables public transit algorithms that normally require a transitively closed
transfer graph to operate on a bimodal network with a single unrestricted transfer graph. To
this end, it employs a preprocessing phase which computes transfer shortcuts representing all
required intermediate transfers. This is done by enumerating journeys with at most two trips.
Journeys with exactly two trips and no initial or final transfer are called candidates, while all
journeys with at most two trips are called witnesses. If a candidate is not dominated by any
witness, a shortcut representing its intermediate transfer is generated. The algorithm used
to enumerate candidates and witnesses resembles performing an MCR search restricted to
two rounds for each source stop s ∈ S and each possible departure time at s. Additional
pruning rules are integrated to make the search more efficient. ULTRA can compute two
varieties of shortcuts: stop-to-stop shortcuts connecting pairs of stops are sufficient for most
query algorithms, while TB [3] requires event-to-event shortcuts between pairs of stop events.
While ULTRA only optimizes arrival time and number of trips, McULTRA [11] additionally
optimizes transfer time as a third criterion. A (Mc)ULTRA query explores initial and final
transfers with Bucket-CH [10, 9], a technique for one-to-many searches on road networks.
Then, a public transit algorithm of choice is run, using the precomputed shortcuts as the
transfer graph. Integrating BM-RAPTOR with McULTRA yields UBM-RAPTOR [11],
which computes restricted Pareto sets in a network with an unlimited transfer graph.

M. Potthoff and J. Sauer 14:5

3 Multimodal Discomfort Scenario

To ensure that our algorithms compute reasonable solutions, we define the multimodal
discomfort scenario. We assume that public transit is generally the fastest and most
comfortable available mode. Its main disadvantage is limited availability in rural areas and
outside of peak hours. The transfer modes can bridge gaps in poorly serviced areas, but
using them incurs discomfort, either because they are cumbersome (e.g., walking) or costly
(e.g., e-scooter, bike-sharing). Accordingly, passengers prefer to use public transit unless
using a transfer mode improves the arrival time or reduces the number of trips. As discussed
in Appendix A, this assumption excludes car-based modes. We capture the discomfort
associated with a transfer mode by penalizing the time spent using it. This requires one
additional criterion per mode. It is well known [5, 1, 4] that full Pareto sets for more than
two criteria are extremely large and contain many uninteresting journeys which are small
variations of other solutions. In practice, it is not sensible to show more than a few journeys
to the user. This motivates the approach of defining a subset of the full Pareto set (e.g., the
restricted Pareto set) which excludes some, but not necessarily all undesirable journeys and
can be computed quickly. Relevant solutions can then be selected in a post-processing step.

Supporting multiple transfer modes introduces new types of undesirable journeys. Most
crucially, allowing mode changes within a transfer would vastly increase the number of
Pareto-optimal journeys. Already in a single transfer with two available modes, it is possible
to switch between the two modes at any vertex along the transfer, and none of these options
dominates the others. Besides bloating the Pareto set with nearly identical journeys, this
would lead to an infeasibly high number of ULTRA transfer shortcuts. In practice, such
journeys are not attractive because changing modes in the middle of a transfer is cumbersome.
We therefore prohibit mode changes in order to remove uninteresting solutions from the
Pareto set and enable ULTRA as a speedup technique. One pattern which could be considered
a desirable mode change is walking between public transit stops and pickup/dropoff locations
for rented vehicles, such as e-scooters or bicycles. We do not treat this as a mode change
but rather a part of the overall e-scooter/bicycle transfer. Access and egress for these more
complex modes can be modeled directly in the transfer graph. For our experiments, we
assume that rented vehicles can be picked up and dropped off at any location. Access and
egress are modeled via the mode overhead, which is added to every transfer in the respective
mode. This prevents solutions with unrealistically short scooter or bicycle transfers.

Finally, we discuss the inclusion of the free transfer mode, which is intended for short,
“unavoidable” transfers. These transfers are still penalized indirectly via the number of
trips, but the (negligible) time spent using them is not counted towards the walking transfer
time. Modeling these transfers as part of the walking mode would lead to nonsensical
Pareto-optimal journeys, in which very short transfers are circumvented via detours to other
stops where no such transfers are necessary.

4 Adapting McULTRA

MCR can be easily adapted for the multimodal discomfort scenario, as we will show in
Section 5. In order to obtain faster algorithms, we omit the costly Dijkstra searches by
integrating ULTRA. So far, the most general ULTRA variant is McULTRA [11], which
supports one transfer mode and optimizes transfer time as a third criterion. A naive approach
for generalizing this to the multimodal discomfort scenario would be to extend ULTRA
to support an arbitrary number of criteria. To show that this is not necessary, consider a
candidate Jc processed by McULTRA. By definition, Jc includes at most one transfer leg and

ATMOS 2022

14:6 Efficient Algorithms for Fully Multimodal Journey Planning

v w
5

vr wr

vt wt

ω(j) 0 ω(j) 0
5

⇒

Figure 1 Construction of the virtual transfer graph to represent mode overheads. Public transit
trips are drawn in black, transfers of mode j in purple.

therefore uses at most one transfer mode i. Witnesses with non-zero transfer time in any mode
besides 0 or i cannot dominate Jc. This means we can decompose the preprocessing into one
three-criteria McULTRA computation per transfer mode, making the overall preprocessing
effort linear in m. The McULTRA computation for mode i only considers transfers in modes 0
and i. It is guaranteed to find all relevant candidates, as well as all witnesses except those
that use transfers of length 0 in a mode other than 0 or i. It is reasonable to assume that if
a transfer leg of length 0 exists in any transfer mode, then a corresponding free transfer also
exists in F . If this is not the case, McULTRA will fail to find some witnesses and potentially
generate superfluous shortcuts, but queries will remain correct.

To explore mode 0, McULTRA relaxes the outgoing free transfers of all updated stops
before each Dijkstra search. Since F is already transitively closed, no stop-to-stop shortcuts
need to be computed for it. Accordingly, journeys with free intermediate transfers are
considered witnesses. Event-to-event shortcuts for F can be computed with two-criteria
ULTRA using (S,F) as the transfer graph. Mode overheads are incorporated by constructing
a virtual transfer graph, as shown in Figure 1. Each stop v is split into a route vertex vr

and a transfer vertex vt. The two vertices are connected by directed edges −→ev = (vr, vt)
with τt(−→ev , j) = ω(j) and←−ev = (vt, vr) with τt(←−ev , j) = 0. Each edge (v, w) ∈ E in the original
transfer graph is replaced with an edge (vt, wt) between the respective transfer vertices.

To ensure correctness, ULTRA requires that every query can be answered with a Pareto-
optimal journey J such that every candidate subjourney of J is also Pareto-optimal. As
shown by Figure 2, this is no longer the case if mode changes within a transfer are prohibited.
In this example, the candidate Jc is dominated by a witness Jw that begins with an initial
transfer in some mode i. However, adding a transfer in another mode j ̸= i as a prefix
induces a mode change in Jw, making it infeasible and leaving Jc as the only alternative.
ULTRA will not generate a shortcut for the intermediate transfer of Jc and therefore fail
to find journeys that include this transfer. However, note that this only affects journeys
which would not be Pareto-optimal if mode changes were allowed. Since journeys with mode
changes are undesirable, the same is true of the journeys which they dominate. Typically,
such journeys include superfluous trip detours which only serve to circumvent the forbidden
mode change. Hence, while ULTRA in the multimodal discomfort scenario cannot guarantee
to find all Pareto-optimal journeys, the missed journeys are known to be undesirable.

5 RAPTOR-Based Query Algorithms

Existing McRAPTOR-based algorithms, namely MCR, ULTRA-McRAPTOR and UBM-
RAPTOR, can be applied in the multimodal discomfort scenario with some minor changes.
First, because mode changes within a transfer are prohibited, the pruning rules of
McRAPTOR must be adjusted. Journeys that end with a trip may dominate journeys
that end with a transfer, but not vice versa. This is because a transfer in mode i cannot be
followed by a transfer in any mode other than i, whereas a trip can always be followed by a

M. Potthoff and J. Sauer 14:7

u v

v2

w

w2

x

x2

y

y2

Figure 2 An example where McULTRA misses a necessary shortcut in the multimodal discomfort
scenario. Public transit trips are drawn in black, and transfers of two different modes in purple
and green, respectively. Journey J1 = ⟨u, v, w, x, y⟩ is optimal because the dominating journey J2 =
⟨u, v, v2, w2, x2, y2, y⟩ includes a prohibited mode change at v. However, the candidate J c =
⟨v, w, x, y⟩ for the shortcut (w, x) is dominated by the witness Jw = ⟨v, v2, w2, x2, y2, y⟩.

transfer. McRAPTOR can take this into account by maintaining two bags per vertex v and
round i: a trip bag Bi

trip(v) for labels ending with a trip, and a transfer bag Bi
trans(v) for

labels ending in a transfer. Accordingly, the algorithm also maintains two best bags B∗
trip(v)

and B∗
trans(v) per vertex v. When a route scan in round i generates a new label ℓ at a

vertex v, it is compared to B∗
trip(v), but not B∗

trans(v). If ℓ is not dominated by B∗
trip(v), it

is merged into Bi
trip(v). At the start of the transfer phase, Bi

trip(v) is merged into Bi
trans(v)

for each updated stop v. This represents a direct transfer between trips at v without using a
transfer mode. Finally, when a label at a vertex v is generated in the transfer phase, it is
compared to both B∗

trip(v) and B∗
trans(v). If it is not dominated by either bag, it is merged

into Bi
trans(v).

Incorporating free transfers and mode overheads is straightforward. Since the set F of
free transfers is transitively closed, no Dijkstra or Bucket-CH searches are required. It can be
explored simply by relaxing the outgoing transfers of all updated stops in each round, as done
by McRAPTOR. In ULTRA-based queries, the shortcuts already include the overheads. For
the initial and final transfers, they are added when evaluating the results of the Bucket-CH
searches. In MCR, the overhead is added when the Dijkstra searches are initialized: After
inserting a label into the trip bag Bi

trip(v) of a stop v in round i, the mode overhead ω(j) is
added before merging the label into the Dijkstra bag Bj

Dij(v) for mode j.
Computing restricted Pareto sets requires adapting the pruning searches of UBM-

RAPTOR to multiple transfer modes. Since they only optimize arrival time and number of
trips, a transfer is always traversed with the fastest available mode. Due to overheads and
limited availability of some modes, this is not necessarily the same mode for all transfers.
The pruning searches therefore identify the fastest mode for each transfer individually. For
initial and final transfers, this is done by merging the results of the Bucket-CH searches for
each mode, choosing the minimum distance for each stop. For the intermediate transfers, the
shortcut sets of all modes are merged, keeping the shortest shortcut in case of duplicates.

6 HydRA

In a bimodal scenario, event-to-event shortcuts enable the use of McTB, which is faster than
RAPTOR. McTB avoids maintaining Pareto sets by representing arrival time and number
of trips implicitly, leaving transfer time as the only remaining criterion. In the multimodal
discomfort scenario with an arbitrary number of criteria, this approach is no longer applicable.
We therefore propose HydRA (Hybrid Routing Algorithm), a new algorithm which is based
on McRAPTOR but incorporates some aspects of McTB. In particular, it uses event-to-event
shortcuts to reduce the search space and performs simpler, more cache-efficient route scans.
Since HydRA is intended for scenarios with four or more criteria, where full Pareto sets are
impractically large, we only design a variant for restricted Pareto sets, called UBM-HydRA.

ATMOS 2022

14:8 Efficient Algorithms for Fully Multimodal Journey Planning

Like UBM-TB [11], UBM-HydRA uses two-criteria TB to perform the pruning searches.
For each trip T and round i, these compute a forward reached index −→r (T, i) and a backward
reached index ←−r (T, i). The forward reached index −→r (T, i) indicates the index of the first
stop along T that is reachable from s with i trips. The backward reached index ←−r (T, i) is the
index of the last stop along T which can be entered such that t is reachable with i additional
trips and without exceeding the slack of the respective anchor journey. Additionally, for each
stop v and round i, the forward search computes the earliest arrival time −→τarr(v, i) among all
journeys that arrive at v via a trip and use i trips. Unlike the UBM-TB backward search, the
UBM-HydRA backward search also computes an analogous latest departure time ←−−τdep(v, i).

The main search is based on McRAPTOR but incorporates event-to-event shortcuts.
Initial and final transfers are handled as in ULTRA-McRAPTOR. Route scans in round 0
are mostly unchanged but incorporate the backward reached indices for pruning. Consider
a label ℓ with active trip T (ℓ) that is generated when entering a route R at its j-th stop.
If ←−r (T (ℓ), K · σtr) < j holds, ℓ cannot be extended to an s-t-journey without exceeding the
slack values, so it is discarded. When ℓ exits the route at a stop v with index k, the label
that is merged into the trip bag of v stores its exit event T (ℓ)[k]. Transfers in round i are
explored as follows. For each updated stop v and each newly added label with exit event ϵ

in Bi
trip(v), all outgoing shortcuts of ϵ are relaxed. For each shortcut (ϵ, ϵ′), a new label ℓ

is created which stores ϵ′ as its entry event. As in UBM-RAPTOR, ℓ is discarded if its
arrival time exceeds ←−−τdep(v(ϵ′), K · σtr − i). Otherwise, it is merged into Bi

trans(v(ϵ′)). The
dominance rules of both trip and transfer bags are adjusted: if two labels are equivalent in
all criteria but have different exit/entry events, both are kept.

The route scans for all rounds i > 0 make use of the computed entry events. For each
updated stop v and each newly added label with entry event T [j] in Bi−1

trans(v), T is scanned.
The last stop index where T can be entered without exceeding the slack is k :=←−r (T, K ·σtr−i).
Accordingly, T can be exited at all stop indices x with j + 1 ≤ x ≤ k + 1. For each such stop
index x, a new label with exit event T [x] is created and merged into the trip bag of v(T [x]).

Shortcut Augmentation. To compute correct reached indices, the TB pruning searches
replace the event-to-event shortcuts E t with a set E t

aug of augmented shortcuts. We briefly
restate a simplified version of the augmentation step introduced in [11]: For two trips T1, T2 of
the same route R ∈ R, we write T1 ⪯ T2 if τarr(T1[i]) ≤ τarr(T2[i]) for every index i along R.
Trips from different routes are not comparable via ⪯. An augmented shortcut (Ta[i], Tb[j])
is added to E t

aug if there is a shortcut (Tc[i], Tb[j]) ∈ E t with Tc ⪰ Ta. Especially for fast
transfer modes, this augmented shortcut set can become impractically large. We therefore
propose a limited shortcut augmentation step: Let Tc be the trip directly succeeding Ta in
the respective route. Then an augmented shortcut (Ta[i], Tb[j]) is inserted if (Tc[i], Tb[j]) ∈ E t.
Even later trips Td of the route are not checked for potential shortcuts. Thus, if a Pareto-
optimal journey J uses the shortcut (Td[i], Tb[j]) and the pruning search reaches Ta[i], it may
fail to enter Tb at j. However, since Td[i] has a significantly higher arrival time than Ta[i],
J is likely to exceed the arrival slack of its anchor journey. Therefore, we expect the error
caused by limiting the shortcut augmentation to be very small.

Furthermore, we add a filtering step that removes superfluous shortcuts which are created
by the augmentation procedure as introduced in [11]. A shortcut (Ta[i], Tb[j]) is superfluous
if there is another shortcut (Ta[k], Td[ℓ]) such that k ≥ i, Td ⪯ Tb and ℓ ≤ j. Consider a TB
pruning search with reached indices r(·). For each trip T , the search upholds the invariant
that r(T ′) ≤ r(T) for all T ′ ⪰ T . If the search reaches Ta[i], it will also reach T [k] and relax its
outgoing shortcuts, including (Ta[k], Td[ℓ]). Thus, Td[ℓ] is entered and r(Tb) ≤ r(Td) ≤ ℓ ≤ j

will hold after the search.

M. Potthoff and J. Sauer 14:9

Table 1 Sizes of the multimodal networks, including public transit, free transfers, unrestricted
transfer graphs, and transitive transfer graphs for evaluating the solution quality of McULTRA.

London Switzerland Stuttgart

Stops 19 682 25 125 13 584
Routes 1 955 13 786 12 351
Trips 114 508 350 006 91 304
Stop events 4 508 644 4 686 865 1 561 972
Free transfers 42 928 12 806 37 383
Vertices 181 642 603 691 1 166 604
Unrestricted edges 575 364 1 853 260 3 682 232
Transitive edges (Walking) 3 212 206 2 639 402 1 369 928
Transitive edges (Scooter) 2 374 294 2 432 366 1 558 234

7 Experiments

All algorithms were implemented in C++17 compiled with GCC 10.3.0 and optimization flag
-O3. Shortcut computations were run on a machine with two 64-core AMD Epyc Rome 7742
CPUs clocked at 2.25 GHz, with a turbo frequency of 3.4 GHz, 1024 GiB of DDR4-3200 RAM,
and 256 MiB of L3 cache. All other experiments were conducted on a machine with two
8-core Intel Xeon Skylake SP Gold 6144 CPUs clocked at 3.5 GHz, with a turbo frequency
of 4.2 GHz, 192 GiB of DDR4-2666 RAM, and 24.75 MiB of L3 cache.

Networks. We evaluated our algorithms on multimodal networks representing Switzerland,
Greater London and the greater region of Stuttgart, which were previously used to evaluate
ULTRA [3, 13] and McULTRA [11]. An overview of the networks is given in Table 1. The
public transit networks and free transfers for London and Switzerland networks were sourced
from Transport for London1 and a publicly available GTFS feed2, respectively. The Stuttgart
network was introduced in [14] and is based on proprietary data. To generate its free transfers,
we connected all stops within a geographical distance of up to 400 m and computed the
transitive closure. Unrestricted transfer graphs were taken from OpenStreetMap3, following
the methodology in [3, 13, 11]. We used walking and e-scooter as the available transfer
modes, assuming a constant speed of 4.5 km/h for walking and 15 km/h for scooter. We chose
mode overheads of 0 s for walking and 300 s for scooter. To evaluate the solution quality of
McULTRA, we compared it to using transitively closed intermediate transfer graphs, which
we created using the methodology described in [15]: We connected all pairs of stops whose
transfer time lies below a certain threshold with an edge and then computed the transitive
closure. As thresholds, we chose 9 min of walking and 3 min of scooter time for Stuttgart
and Switzerland, and 4 min of walking and 80 s of scooter time for London.

Preprocessing. Table 2 reports the results of the McULTRA shortcut computation, using
the same settings as in [11]. Because many short transfers are now covered by the free
transfer mode, the number of shortcuts per mode is slightly lower than in the bimodal setting.

1 https://data.london.gov.uk
2 https://gtfs.geops.ch/
3 https://download.geofabrik.de/

ATMOS 2022

https://data.london.gov.uk
https://gtfs.geops.ch/
https://download.geofabrik.de/

14:10 Efficient Algorithms for Fully Multimodal Journey Planning

Table 2 Multimodal McULTRA shortcut computation results. Times are formatted as h:mm:ss.

Network Variant Free Walking Scooter

Time # Shortcuts Time # Shortcuts Time # Shortcuts

London Stop – – 0:22:45 115 036 2:22:33 8 163 962
Event 0:00:27 10 404 923 0:29:33 11 422 382 2:36:58 126 877 333

Switzerland Stop – – 0:05:58 214 872 0:15:35 1 063 575
Event 0:00:09 5 884 998 0:07:09 13 193 976 0:17:44 26 446 770

Stuttgart Stop – – 0:03:46 110 199 0:09:57 739 022
Event 0:00:07 4 151 859 0:04:28 4 203 492 0:11:20 9 552 810

Table 3 Number |
−−→
E t

aug| of augmented forward shortcuts and |
←−−
E t

aug| of augmented backward
shortcuts. All values given in millions of shortcuts. Lim. refers to limited shortcut augmentation.

Network Lim. Free Walking Scooter

|
−−→
E t

aug| |
←−−
E t

aug| |
−−→
E t

aug| |
←−−
E t

aug| |
−−→
E t

aug| |
←−−
E t

aug|

London ◦ 33 36 31 36 1 545 1 643
• – – – – 223 220

Switzerland ◦ 13 14 44 44 157 155
Stuttgart ◦ 8 8 11 11 46 46

The preprocessing times are slightly higher because exploring the free transfer mode requires
additional time and incorporating the mode overheads increases the size of the network. The
number of augmented event-to-event shortcuts is listed in Table 3. As reported in [11], the
augmentation time is negligible compared to the shortcut computation time. For e-scooters
on the London network, the preprocessing time and the number of shortcuts are extremely
high. This is caused by the high number of Pareto-optimal labels per vertex bag. To reduce
this number, we implemented a heuristic version of McULTRA that discretizes the transfer
time criterion into buckets for the purpose of testing dominance. Let τt be the transfer time
of a label. Instead of using τt as the criterion for testing dominance, we use ⌊ τt

x ⌋, where x is
the bucket size. For our experiments, we set x = 300 s. As shown in Table 4, discretization
reduces the preprocessing time and the number of event-to-event shortcuts by a factor of 3.

Table 4 Impact of transfer time discretization on the McULTRA shortcut computation for
e-scooters on the London network. Times are formatted as h:mm:ss. |

−−→
E t

aug| and |
←−−
E t

aug| are the number
of augmented forward and backward shortcuts, respectively, measured in millions of shortcuts.

Variant Disc. Time # Shortcuts Full aug. Limited aug.

|
−−→
E t

aug| |
←−−
E t

aug| |
−−→
E t

aug| |
←−−
E t

aug|

Stop ◦ 2:22:33 8 163 962 – – – –
Stop • 0:43:33 3 971 836 – – – –
Event ◦ 2:36:58 126 877 333 1 545 1 643 223 220
Event • 0:48:03 48 942 757 585 637 84 82

M. Potthoff and J. Sauer 14:11

Table 5 Coverage of the exact Pareto sets by our algorithms for 10 000 random queries. ULTRA-
McRAPTOR is compared to the full Pareto set, all others to the restricted Pareto set. For each
metric, we report the mean coverage across all queries and the coverage of the 5th percentile. Disc.
refers to shortcut discretization.

Network Algorithm Disc. Exact coverage [%] Fuzzy coverage [%]

5th perc. Mean 5th perc. Mean

London

ULTRA-McRAPTOR ◦ 97.29 99.47 99.99 99.97
BM-RAPTOR ◦ 63.63 93.65 92.68 98.61
UBM-RAPTOR ◦ 100.00 99.74 100.00 99.95
UBM-RAPTOR • 93.02 98.93 99.98 99.94
UBM-HydRA ◦ 94.11 99.17 99.99 99.98
UBM-HydRA • 82.90 97.21 99.80 99.93

Switzerland

ULTRA-McRAPTOR ◦ 93.01 98.70 99.35 99.77
BM-RAPTOR ◦ 53.22 91.35 81.37 97.14
UBM-RAPTOR ◦ 95.13 99.28 99.98 99.94
UBM-HydRA ◦ 93.32 99.04 99.95 99.92

Stuttgart

ULTRA-McRAPTOR ◦ 83.09 96.39 94.34 99.06
BM-RAPTOR ◦ 52.85 91.74 81.43 97.29
UBM-RAPTOR ◦ 100.00 99.52 100.00 99.96
UBM-HydRA ◦ 69.98 96.16 99.95 99.78

Result Coverage. As shown in Section 4, McULTRA-based queries fail to find some Pareto-
optimal journeys which are dominated by journeys with mode changes. We already argued
that these journeys are undesirable. Nevertheless, we analyze the impact that their exclusion
has on the computed results by evaluating how well the exact Pareto set is covered by our
algorithms. We consider two coverage metrics. Exact coverage is the percentage of journeys
in the (full or restricted) Pareto set that are found by the algorithm, whereas fuzzy coverage
also accounts for similarity between journeys. If the algorithm does not find a journey J but
another journey J ′ that is almost as good or better in all criteria, we consider J well covered.
As in [5], we measure similarity using fuzzy logic. Given two parameters χ ∈ (0, 1) and ε > 0,
the fuzzy coverage of a journey J by another journey J ′ for a criterion c is defined as

cov(J, J ′) :=

exp
(

ln(χ)
ε2 (c(J)− c(J ′))2

)
if c(J) < c(J ′)

1 else.

The overall fuzzy coverage cov(J1, J2) is the minimum coverage across all criteria. The fuzzy
coverage of a journey J by a set of journeys J is cov(J,J) := max

J′∈J
cov(J, J ′). Finally, the

fuzzy coverage cov(J ,J ′) of a set of journeys J by another set of journeys J ′ is the mean
coverage by J ′ across all journeys in J . Following [5], the fuzzy parameters (χ, ε) are set
to (0.8, 60 s) for arrival time, (0.1, 1) for number of trips, and (0.8, 300 s) for transfer time.

Coverage results are reported in Table 5. Limited shortcut augmentation did not affect
the results in any of our experiments. For full Pareto sets, ULTRA-McRAPTOR achieves
an exact coverage above 96% and a fuzzy coverage above 99%. For restricted Pareto sets,
UBM-RAPTOR achieves an exact coverage above 99% on all networks and nearly perfect
fuzzy coverage. UBM-HydRA exhibits slightly lower coverage because it uses event-to-event
shortcuts, which are more fine-grained and therefore more prone to missing journeys. In

ATMOS 2022

14:12 Efficient Algorithms for Fully Multimodal Journey Planning

Table 6 Query performance for full Pareto sets, averaged over 10 000 random queries. Rnd. is
the number of performed rounds, while Jrn. refers to the number of computed journeys.

Network Algorithm Rnd. Jrn.
Time [ms]

Routes Transfers Total
Free Walking Scooter

London MCR 10.9 130.1 307.6 89.3 1 235.2 1 943.8 3 600.6
ULTRA-McRAPTOR 10.9 129.4 218.6 91.3 126.0 2 602.4 3 052.6

Switzerland MCR 18.5 209.4 1 785.3 101.4 3 874.0 4 462.8 10 264.0
ULTRA-McRAPTOR 18.5 206.2 1 641.6 119.2 449.4 1 528.4 3 775.0

Stuttgart MCR 12.0 215.3 1 249.2 343.3 6 605.8 8 259.3 16 481.3
ULTRA-McRAPTOR 12.0 206.9 1 005.3 414.9 579.1 2 686.6 4 701.4

stop-to-stop ULTRA, even if a candidate is missed, its shortcut is often represented by
another candidate which is found. This is less likely in the event-to-event variant. Still, on
London and Switzerland the exact coverage remains above 99% and the fuzzy coverage is
barely affected. The values are slightly lower for Stuttgart, but the fuzzy coverage remains
extremely high at 99.8%. Altogether, these results justify of our choice of prohibiting mode
changes in order to reduce the number of irrelevant solutions. While doing so introduces
some new, undesirable Pareto-optimal solutions, they are often discarded by McULTRA and
our experiments show that they are rare and well covered by other, more relevant solutions.

Another possibility to reduce the Pareto set and speed up queries would be to limit the
length of intermediate transfers. This would enable the use of a transitively closed transfer
graph and remove the need for a preprocessing step such as ULTRA. To demonstrate that
this negatively impacts the solution quality, we evaluated the coverage of BM-RAPTOR
using transitive intermediate transfers but unlimited initial and final transfers. The exact
coverage is still above 90% because most optimal journeys do not include long intermediate
transfers. Still, we observe a significant number of optimal journeys with long intermediate
transfers which are not well covered by other solutions with limited transfers.

On the London network, discretizing transfer time when testing dominance significantly
reduced the preprocessing time and the number of shortcuts. As expected, this noticeably
reduces the exact coverage, although it remains much higher than with transitive intermediate
transfers. The fuzzy coverage, however, remains excellent because missing shortcuts caused
by discretization are guaranteed to have similar alternatives.

Query Performance. We now evaluate the running times of our query algorithms, beginning
with ULTRA-McRAPTOR for full Pareto sets in Table 6. On Switzerland and Stuttgart,
ULTRA-McRAPTOR achieves a speedup of 3–4 over MCR. Since the performance gain of
ULTRA comes from speeding up the transfer phases, this is higher than the speedup of 2
observed in the bimodal scenario, where the transfer phase takes up a smaller share of the
running time. In the scooter mode, the speedup is limited due to the high number of stop-to-
stop shortcuts. For London, relaxing scooter shortcuts is in fact slower than a Dijkstra search,
causing the overall speedup to be marginal. Overall, the results demonstrate that computing
full Pareto sets is not practical due to the extremely high number of Pareto-optimal journeys.

We therefore investigate the performance for restricted Pareto sets, which is shown in
Table 7. The number of computed journeys is reduced to less than 30, which is manageable
for the algorithm but still more than can be shown to users. On Switzerland and Stuttgart,

M. Potthoff and J. Sauer 14:13

Table 7 Query performance for restricted Pareto sets with slack values σarr = σtr = 1.25, averaged
over 10 000 random queries. Rnd. is the number of performed rounds, while Jrn. refers to the
number of computed journeys. Disc. refers to shortcut discretization, Lim. to limited shortcut
augmentation.

Network Algorithm Disc. Lim. Rnd. Jrn. Time [ms]

Forward Backward Main Total

London

UBM-RAPTOR ◦ ◦ 2.2 25.4 60.3 12.3 41.3 113.8
UBM-RAPTOR • ◦ 2.2 25.4 33.9 7.3 26.1 67.3
UBM-HydRA ◦ ◦ 2.2 25.1 43.6 25.8 11.2 80.6
UBM-HydRA ◦ • 2.2 25.1 12.5 5.3 9.2 27.1
UBM-HydRA • • 2.2 24.9 9.3 3.6 7.4 20.3

Switzerland UBM-RAPTOR ◦ ◦ 3.5 27.0 28.8 4.3 22.5 55.6
UBM-HydRA ◦ ◦ 3.5 26.9 18.1 2.6 9.8 30.5

Stuttgart UBM-RAPTOR ◦ ◦ 2.6 18.0 22.2 5.4 22.0 49.5
UBM-HydRA ◦ ◦ 2.6 17.5 14.3 3.7 9.8 27.7

UBM-RAPTOR achieves a speedup of more than two orders of magnitude over MCR. On
London, the speedup is only 32, again due to the high number of scooter shortcuts.

HydRA significantly speeds up the main search due to its more efficient route scans.
Additionally, by using the more fine-grained event-to-event shortcuts, the number of explored
shortcuts per label is significantly reduced. For Switzerland and Stuttgart, the pruning
searches are also around 50% faster because they use TB instead of RAPTOR. On London,
this is not the case with full augmentation because the number of shortcuts becomes extremely
high. Limited augmentation solves this problem, improving the speedup over UBM-RAPTOR
to 4 without affecting the computed results. Shortcut discretization further improves the
query times by 41% for UBM-RAPTOR and 25% for UBM-HydRA, at the cost of a slight loss
in solution quality. Overall, the speedup of UBM-HydRA over MCR ranges from around 130
for London, where MCR performs the best, to 600 for Stuttgart. With query times of
around 30 ms, the performance is good enough for interactive applications.

8 Conclusion

We developed journey planning algorithms for fully multimodal networks with an arbitrary
number of transfer modes. To ensure reasonable results, we established the multimodal
discomfort scenario, which optimizes one discomfort criterion per transfer mode and prohibits
mode changes within a transfer. We showed that McULTRA can be adapted to this scenario
in a scalable fashion by preprocessing each mode independently. Besides adapting existing
query algorithms, we proposed HydRA, which carries over the advantages of TB into a
setting with an arbitrary number of criteria. Our experimental evaluation shows that our
algorithms achieve query times which are fast enough for interactive applications. Future
work could involve incorporating more complex transfer modes such as bike-sharing, which
require additional modelling [12]. Furthermore, HydRA is a promising candidate for efficiently
solving journey planning problems with other criteria, such as fare or vehicle occupancy.

ATMOS 2022

14:14 Efficient Algorithms for Fully Multimodal Journey Planning

References
1 Hannah Bast, Mirko Brodesser, and Sabine Storandt. Result Diversity for Multi-Modal Route

Planning. In Proceedings of the 13th Workshop on Algorithmic Approaches for Transportation
Modelling, Optimization, and Systems (ATMOS’13), volume 33 of OpenAccess Series in
Informatics (OASIcs), pages 123–136. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2013. doi:10.4230/OASIcs.ATMOS.2013.123.

2 Hannah Bast, Daniel Delling, Andrew Goldberg, Matthias Müller-Hannemann, Thomas
Pajor, Peter Sanders, Dorothea Wagner, and Renato F. Werneck. Route Planning in
Transportation Networks. In Algorithm Engineering: Selected Results and Surveys, vol-
ume 9220 of Lecture Notes in Computer Science (LNCS), pages 19–80. Springer, 2016.
doi:10.1007/978-3-319-49487-6_2.

3 Moritz Baum, Valentin Buchhold, Jonas Sauer, Dorothea Wagner, and Tobias Zündorf.
UnLimited TRAnsfers for Multi-Modal Route Planning: An Efficient Solution. In Proceedings
of the 27th Annual European Symposium on Algorithms (ESA’19), volume 144 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 14:1–14:16. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.ESA.2019.14.

4 Daniel Delling, Julian Dibbelt, and Thomas Pajor. Fast and Exact Public Transit Routing
with Restricted Pareto Sets. In Proceedings of the 21st Workshop on Algorithm Engineering
and Experiments (ALENEX’19), pages 54–65. Society for Industrial and Applied Mathemat-
ics (SIAM), 2019. doi:10.1137/1.9781611975499.5.

5 Daniel Delling, Julian Dibbelt, Thomas Pajor, Dorothea Wagner, and Renato F. Werneck.
Computing Multimodal Journeys in Practice. In Proceedings of the 12th International Sym-
posium on Experimental Algorithms (SEA’13), volume 7933 of Lecture Notes in Computer
Science (LNCS), pages 260–271. Springer, 2013. doi:10.1007/978-3-642-38527-8_24.

6 Daniel Delling, Thomas Pajor, and Renato F. Werneck. Round-Based Public Transit Routing.
Transportation Science, 49:591–604, 2015. doi:10.1287/trsc.2014.0534.

7 Julian Dibbelt, Thomas Pajor, Ben Strasser, and Dorothea Wagner. Connection Scan
Algorithm. Journal of Experimental Algorithmics (JEA), 23:1.7:1–1.7:56, 2018. doi:
10.1145/3274661.

8 Edsger W. Dijkstra. A Note on Two Problems in Connexion with Graphs. Numerische
Mathematik, 1:269–271, 1959. doi:10.1007/BF01386390.

9 Robert Geisberger, Peter Sanders, Dominik Schultes, and Christian Vetter. Exact Routing
in Large Road Networks Using Contraction Hierarchies. Transportation Science, 46:388–404,
2012. doi:10.1287/trsc.1110.0401.

10 Sebastian Knopp, Peter Sanders, Dominik Schultes, Frank Schulz, and Dorothea Wagner.
Computing Many-to-Many Shortest Paths Using Highway Hierarchies. In Proceedings of the 9th
Workshop on Algorithm Engineering and Experiments (ALENEX’07), pages 36–45. Society for
Industrial and Applied Mathematics (SIAM), 2007. doi:10.5555/2791188.2791192.

11 Moritz Potthoff and Jonas Sauer. Fast Multimodal Journey Planning for Three Criteria. In
Proceedings of the 24th Workshop on Algorithm Engineering and Experiments (ALENEX’22),
pages 145–157. Society for Industrial and Applied Mathematics (SIAM), 2022. doi:10.1137/
1.9781611977042.12.

12 Jonas Sauer, Dorothea Wagner, and Tobias Zündorf. Faster Multi-Modal Route Planning
with Bike Sharing using ULTRA. In Proceedings of the 18th International Symposium on
Experimental Algorithms (SEA’20), volume 160 of Leibniz International Proceedings in Infor-
matics (LIPIcs), pages 16:1–16:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020.
doi:10.4230/LIPIcs.SEA.2020.16.

13 Jonas Sauer, Dorothea Wagner, and Tobias Zündorf. Integrating ULTRA and Trip-Based
Routing. In Proceedings of the 20th Symposium on Algorithmic Approaches for Transportation
Modelling, Optimization, and Systems (ATMOS’20), volume 85 of OpenAccess Series in
Informatics (OASIcs), pages 4:1–4:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2020. doi:10.4230/OASIcs.ATMOS.2020.4.

https://doi.org/10.4230/OASIcs.ATMOS.2013.123
https://doi.org/10.1007/978-3-319-49487-6_2
https://doi.org/10.4230/LIPIcs.ESA.2019.14
https://doi.org/10.1137/1.9781611975499.5
https://doi.org/10.1007/978-3-642-38527-8_24
https://doi.org/10.1287/trsc.2014.0534
https://doi.org/10.1145/3274661
https://doi.org/10.1145/3274661
https://doi.org/10.1007/BF01386390
https://doi.org/10.1287/trsc.1110.0401
https://doi.org/10.5555/2791188.2791192
https://doi.org/10.1137/1.9781611977042.12
https://doi.org/10.1137/1.9781611977042.12
https://doi.org/10.4230/LIPIcs.SEA.2020.16
https://doi.org/10.4230/OASIcs.ATMOS.2020.4

M. Potthoff and J. Sauer 14:15

14 Johannes Schlaich, Udo Heidl, and Regine Pohlner. Verkehrsmodellierung für die Region
Stuttgart – Schlussbericht. Unpublished manuscript, 2011.

15 Dorothea Wagner and Tobias Zündorf. Public Transit Routing with Unrestricted Walk-
ing. In Proceedings of the 17th Workshop on Algorithmic Approaches for Transportation
Modelling, Optimization, and Systems (ATMOS’17), volume 59 of OpenAccess Series in Infor-
matics (OASIcs), pages 7:1–7:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017.
doi:10.4230/OASIcs.ATMOS.2017.7.

16 Sascha Witt. Trip-Based Public Transit Routing. In Proceedings of the 23rd Annual Eu-
ropean Symposium on Algorithms (ESA’15), volume 9294 of Lecture Notes in Computer
Science (LNCS), pages 1025–1036. Springer, 2015. doi:10.1007/978-3-662-48350-3_85.

17 Tobias Zündorf. Multimodal Journey Planning and Assignment in Public Transportation
Networks. PhD thesis, Karlsruhe Institute of Technology, 2020. doi:10.5445/IR/1000145076.

A Car-Based Modes

Car-based modes such as park and ride (i.e., using a private car for the first or last leg
of a journey), taxi or car-sharing do not fit the assumption of the multimodal discomfort
scenario that public transit is the fastest and most comfortable mode. Since these modes are
generally faster than using public transit, the solution that optimizes arrival time and number
of trips is usually a direct car journey. Since usage of the fastest mode is now penalized,
interrupting it in order to reduce car time always leads to a non-dominated solution. This
causes a combinatorial explosion in the number of optimal journeys, as observed previously
by Delling et al. [5] when including taxis in a multimodal network. The resulting journeys
tend to be undesirable combinations of long car rides and short public transit detours. In
practice, users are either willing to use a car for the entire journey (which yields a unimodal
journey planning problem) or they are only willing to use it in a very limited capacity. In
the latter case, there is no need for techniques designed for unrestricted transfer modes, such
as ULTRA. In fact, because using a car incurs a large time overhead (e.g., for hailing a ride),
short intermediate car transfers are typically not useful. Thus, cars should not be considered
a transfer mode but rather an access/egress mode that connects the source and target vertex
to the public transit network. Since such modes can be handled with existing techniques, we
consider them out of scope for this work.

ATMOS 2022

https://doi.org/10.4230/OASIcs.ATMOS.2017.7
https://doi.org/10.1007/978-3-662-48350-3_85
https://doi.org/10.5445/IR/1000145076

	p000-Frontmatter
	Preface
	Committees

	p001-Blanco
	1 Introduction
	2 The Flight Planning Problem
	3 An A* Algorithm based on Idealized Vertical Profiles
	3.1 The state of the art
	3.2 Basic framework
	3.3 Calculation of the Idealized Vertical Profile

	4 Computational Results
	4.1 Instances
	4.2 Methodology
	4.3 Results

	5 Conclusion

	p002-Borndorfer
	1 Introduction
	2 The Free Flight Trajectory Optimization Problem
	2.1 Continuous Point of View: Optimal Control
	2.2 Discrete Point of View: Shortest Paths
	2.3 Discrete-Continuous Point of View: Hybrid Algorithm DisCOptER

	3 Towards Global Optimality
	4 Conclusion

	p003-Bortoletto
	1 Introduction
	2 Tropical Decomposition of Periodic Timetable Space
	3 Tropical Neighbourhood Search
	4 Implementation details
	4.1 Preparing the exploreList
	4.2 Sorting the exploreList
	4.3 The qualityFactor
	4.4 Subproblem Formulation: Arc Offsets vs. Cycle Offsets
	4.5 Hashing Visited Polytropes

	5 Computational Experiments and Results
	5.1 Impact of Parameter Choices for tns
	5.1.1 mns+tns vs. mns
	5.1.2 complete Runs

	5.2 Contribution of tns in Comparison to Other Methods
	5.3 New PESPlib Incumbents

	6 Outlook
	A Appendix

	p004-Gao
	1 Introduction
	2 Literature Review of the Bin Packing and Related Problems
	2.1 Classical Bin Packing Problem
	2.2 Variations of BPP
	2.2.1 Bin Packing Problem with General Cost Structures (GCBP)
	2.2.2 Generalized Bin Packing Problem (GBPP)
	2.2.3 Generalized Bin Packing Problem with Bin-Dependent Item Profits (GBPPI)

	3 Problem Formulation and Non-Approximability Result
	4 Proposed Heuristics
	4.1 Greedy Cost-Feasibility Algorithm (GR)
	4.1.1 Overview
	4.1.2 Overflow Score
	4.1.3 Moving Towards Feasibility
	4.1.4 Algorithm Summary

	4.2 Greedy + Local Search (GRL)
	4.2.1 Overview
	4.2.2 Searching the ``Shift'' Neighborhood
	4.2.3 Searching the ``Swap'' Neighborhood
	4.2.4 Local Optimal Solution in Both Neighborhoods
	4.2.5 Algorithm Summary

	4.3 Greedy + Local Search + Varying Containers (GRLV)
	4.3.1 Overview
	4.3.2 Adjusted Local Search
	4.3.3 Adding One of the Deleted Containers Back
	4.3.4 Deleting a Chain of Containers
	4.3.5 Deleting One More Container
	4.3.6 Deleting Containers One by One
	4.3.7 Algorithm Summary

	5 Experiments
	6 Conclusion and Future Direction
	A Review of GBPPI

	p005-Gatt
	1 Introduction
	2 The Frequency Setting Problem
	3 Solving the frequency setting problem
	3.1 Bilevel model
	3.2 General process

	4 Numerical Results
	5 Conclusion
	A FSP model

	p006-Graf
	1 Introduction
	2 The Model
	3 Dynamic Equilibria with Convex Constraints
	4 Existence of Capacitated Dynamic Equilibria
	5 Computational Study and Conclusion

	p007-Grafe
	1 Introduction
	2 Including vehicle circulations in delay management
	2.1 The classic delay management formulation (DM)
	2.2 Delay management with fixed circulations (DM-fix)
	2.3 Integrating delay management and vehicle scheduling (DM-opt)

	3 Analyzing the models
	4 Algorithmic approaches
	4.1 NEI: Next-Event-Improve
	4.2 RE: Reachable Events
	4.3 DM-VS

	5 Computational results
	5.1 Comparison of (DM), (DM-fix) and (DM-opt)
	5.2 Heuristics

	6 Outlook
	A Algorithms
	B Data

	p008-Heinrich
	1 Introduction
	2 Preliminaries
	3 Hardness of approximation
	4 NP-hard cases
	5 Optimal line planning for stars
	6 Optimal line planning for trees
	7 Conclusion and outlook
	A Proof of Lemma 10
	B Proof of Theorem 11
	C Proof of Lemma 13
	D Proof of Theorem 14

	p009-Hoogervorst
	1 Introduction
	1.1 Related Literature
	1.2 Contribution

	2 Model and Problem Formulation
	3 Theoretical Analysis
	3.1 The Linear Case
	3.2 The MinImprov Case
	3.3 Relaxations and Dual Bounds

	4 Computational Study
	4.1 Artificial Instances
	4.2 Copenhagen Case Study

	5 Conclusion
	A Appendix: Further Evaluations

	p010-Kawazoe
	1 Introduction
	2 Automated Train Rescheduling
	3 Moving Block
	4 Assumptions
	4.1 Perspective and ATO
	4.2 Moving Block

	5 Constraints Description
	5.1 Pattern (TA)
	5.2 Pattern (TB)

	6 Evaluation
	6.1 Experiment Setting
	6.2 Experiment 1: Delay Reduction
	6.3 Experiment 2: Calculation Time

	7 Discussions
	8 Related Work
	9 Conclusions
	A Assumptions In On-the-way Sections
	B Constraints Based On Previous Models
	B.1 Running Constraints in On-the-way Sections
	B.1.1 Pattern (OA)
	B.1.2 Pattern (OB)

	B.2 Order Constraints
	B.3 Other Constraints

	C Details Of Experiment Setting
	C.1 ATO and Moving Block
	C.2 Other Constants

	p011-Klug
	1 Introduction
	2 Model
	3 Algorithmic Add-Ons
	3.1 Recall the Iterative MIP Approach (BC)
	3.2 Lazy-Constraint Approach (LAZY)
	3.3 Primal Repair Heuristic (PRH)

	4 Computational Results

	p012-Kontogiannis
	1 Introduction
	2 Preliminaries
	3 Existing Models and State-Of-Art Review
	3.1 The BJ Model
	3.2 The PSWZ model
	3.3 Query algorithm for BJ and PSWZ models
	3.4 Comparison of BJ vs PSWZ and Other Approaches

	4 A novel time-dependent graph model
	4.1 The REX model
	4.2 TRIPLA: Query algorithm for REX

	5 Experimental Evaluation
	6 Conclusions and Future Work

	p013-Patzner
	1 Introduction
	2 Short Turns During Daily Operation
	2.1 Basic Model
	2.2 Deciding Short Turns

	3 Experiments
	4 Machine Learning Short Turn Decisions
	5 Conclusions and Outlook
	A Algorithms

	p014-Potthoff
	1 Introduction
	2 Preliminaries
	3 Multimodal Discomfort Scenario
	4 Adapting McULTRA
	5 RAPTOR-Based Query Algorithms
	6 HydRA
	7 Experiments
	8 Conclusion
	A Car-Based Modes

