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—— Abstract

Distributed embedded systems are emerging and gaining importance in various domains, including

industrial control applications where time determinism — hence network clock synchronization — is
fundamental. In modern applications, moreover, this core functionality is required by many different
software components, from OS kernel and radio stack up to applications. An abstraction layer
devoted to handling time needs therefore introducing, and to encapsulate time corrections at the
lowest possible level, the said layer should take the form of a timer device driver offering a Virtual
Clock to the entire system. In this paper we show that doing so introduces a nonlinearity in the
dynamics of the clock, and we design a controller based on feedback linearization to handle the issue.
To put the idea to work, we extend the Miosix RTOS with a generic interface allowing to implement
virtual clocks, including the newly designed controller that we call FLOPSYNC-3 after its ancestor.
Also, we introduce the resulting virtual clock in the TDMH [20] real-time wireless mesh protocol.
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1 Introduction

The world of embedded systems is evolving from isolated to distributed systems. This move
can be observed in several research and market trends such as the Industrial Internet of
Things (IIoT) [16]. As a result, clock synchronization is becoming a key technology to enable
both real-time industrial applications as well as low energy wireless protocols [23]. At the
application level, synchronization in distributed embedded systems allows the execution of
coordinated tasks among multiple devices [13], allows to perform sensing and reconstruction
of spatially distributed phenomena [10, 2], while the availability of synchronization at the
network level enables the use of TDMA protocols [1, 20, 7], being thus fundamental for
real-time communication among devices. Since in modern embedded operating systems
both applications and OS components — such as the radio stack — can benefit from clock
synchronization, an abstraction layer that handles time correction directly at the OS level is
therefore needed. Moreover, from a software engineering perspective, the presence in the
OS codebase of both corrected and uncorrected time values is a potential source of errors.
Therefore, it becomes desirable to encapsulate time correction at the lowest possible level,
such as the timer device driver.

However, using corrected times in the entire OS codebase introduces an issue: the
uncorrected time is usually required by the clock synchronization algorithm itself. Efficient
clock synchronization schemes such as FLOPSYNC-2[22] require uncorrected timestamps
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of received synchronization packets, and performing clock synchronization using corrected
timestamps is challenging as it makes the model of the clock synchronization problem
nonlinear.

This work introduces a new clock synchronization scheme, FLOPSYNC-3, that is capable
of operating with timestamps corrected by the previous iteration of the algorithm itself. As
a result of this improved capability, the Miosix RTOS was extended with a generic interface
allowing to implement clock correction at the hardware timer level.

The FLOPSYNC-3 controller is here tested both in simulation and on a network of nodes
running the Miosix operating system and the TDMH [20] real-time wireless mesh protocol.

This paper is organized as follows: Section 2 presents a brief overview on the state of the
art in clock synchronization for distributed embedded systems. Section 3 discusses how the
Miosix OS has been extended with a virtual clock abstraction that enables transparent clock
corrections. Section 4 briefly mentions the design of the Miosix subsystem for performing
timestamp measurements, a key feature used to precisely timestamp clock synchronization
packets. Section 5 presents the FLOPSYNC-3 clock synchronization scheme that can perform
clock corrections using the virtual clock as actuator while operating on corrected timestamps
only. Finally, Section 6 presents simulation and experimental results, and Section 7 outlines
future research directions.

2 Related Works

Clock synchronization is a classical problem in distributed systems [11, 15], but also one where
research is still ongoing to produce clock synchronization schemes fine-tuned to changing
application requirements and hardware capabilities. Many works related to clock synchron-
ization in distributed embedded systems come from the Wireless Sensor Network research
community, focusing on several aspects including low power synchronization [18, 22], propaga-
tion delay compensation [12, 19], efficient synchronization information dissemination [14, 8§].

When considering accuracy, a major differentiating factor is whether a clock synchroniza-
tion scheme only performs offset corrections or it also performs skew corrections. Simple
schemes such as TPSN [9] and DMTS [17] only correct for offset. When implemented at the
OS level, this correction can be efficiently performed by overwriting the hardware counter
with the required correction at every synchronization [9]. The disadvantage is however that
after each correction the hardware clock keeps counting at the incorrect frequency, and thus
a time error accumulates over the synchronization period, which reaches its maximum value
immediately before the next correction. Another issue is that the value returned by the clock
exhibits a discontinuity at every synchronization [22], a matter that can introduce errors in
interval measurements, especially for short intervals.

More advanced clock synchronization schemes perform skew (also known as frequency
or rate) corrections. The synchronization scheme produces both an offset and a frequency
correction value at every synchronization. As altering the frequency of a crystal oscillator
requires additional hardware [5] which is usually unavailable in off-the-shelf boards, the
frequency correction is preferably performed by applying an algorithm every time the OS or
applications request the time. In this paper we refer to such algorithm as a virtual clock. For
a given synchronization period, frequency correction allows for lower synchronization errors
compared to offset correction. Additionally, clock synchronization schemes that perform
frequency correction can make the corrected clock continuous and monotonic [22], thus
avoiding clock jumps.
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Real-time embedded systems also face increasing power and energy constraints [3],
especially if battery operated. Clock synchronization may thus be required to operate also
when the processor enters a deep sleep state which includes turning off the main oscillator.
In such cases, time is kept using a low power Real-Time Clock (RTC), and this introduces
the need to synchronize both the RTC and high-frequency timebase [21], a matter that we
account for by designing our virtual clock to support multiple corrections.

In this paper we address the clock synchronization problem from the perspective of
implementing it at the real-time OS level. Software engineering considerations suggest us to
completely encapsulate time correction, and since this makes uncorrected time unavailable to
the clock synchronization scheme, we design a new scheme that can operate with corrected
timestamps.

3 Virtual Clock

A real-time OS typically requires two main time-related primitives: one to get the current
time, whose use is obvious, and one to set an interrupt in a given future time instant, to be
used to handle context switches as well as sleeping tasks wakeup. This chapter describes the
design and implementation of a virtual clock to make these primitives synchronization-aware.

3.1 Design

An uncorected clock t,. fed by an oscillator with nominal frequency fy, affected by (possibly
time-varying) frequency error d5 will progressively diverge from an ideal one as
t t
)
elt) = [ L=y [0 )
o Jo o Jo
where f; is the instantaneous oscillator frequency, and the integral accounts for the accu-
mulated frequency error. Accordingly, the accumulated frequency error A(k) over one clock
synchronization period k of duration 7' is

kT OsT
A(k) = /(“)T P dr (2)

A virtual clock VC is a piece wise linear function (Figure 1) that applied to the uncorrected
clock t,,. produces a corrected one. Virtual clocks allow to perform not only offset corrections,
but also frequency corrections. Said otherwise, it is possible to control a virtual clock to
count time faster or slower than the underlying hardware clock to better approximate a
reference clock. A virtual clock is however just an actuator, it provides the means to correct
a hardware clock, but requires at every synchronization period updated parameters. A clock
synchronization scheme uses a controller and time information from an external reference to
adjust the virtual clock rate trying to align it to the reference clock. By defining the virtual
clock rate separately on each synchronization interval, it can be demonstrated by induction
that the value of the virtual clock (that is the corrected time ¢.) on a generic time t,,. inside
a synchronization interval [ kT, (k + 1) T'] can be expressed as

t. = VC(tnc) = VC(]C) + Vb(k) (tnc - tnc(k)) (3)

where V.C(k) is the rate of the virtual clock. More specifically, if t,. = t,.(k + 1), its
definition simplifies as

VC(k +1) = VO (k) + VC(k) (T + A (k)) (4)
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Figure 1 Virtual clock correcting clock rate to align itself to a reference clock.

We can further generalize the virtual clock expressing (3) as f = axx + by by algebraic
manipulation

ar =VCO(k) )
be = VC(k) — VC(k)tne(k)

where a;, is the rate correction of the clock in the synchronization period k and by is the
offset. This rate is adjusted by the controller to align the current clock to the reference, and
is related to the mean skew over the synchronization period.

3.2 Implementation

The virtual clock was implemented in C++ as part of the Miosix RTOS, as shown in Figure 2.
To support clock synchronization as well as deep sleep operation which entails transitions
from a board RTC to an high resolution clock (a technique called VHT [21]), a virtual
clock may need to perform multiple clock corrections f; combined. The software design of
the virtual clock thus supports multiple corrections as a Variable Length Correction Stack
(VLCS). This design allows for an arbitrary number of Correction Tiles, each with their own
correction parameters ay ; and by ;. For performance reasons, the number of correction tiles
is configured at compile time as a template parameter. Having n distinct corrections chained
together as fyo---o f,, the combined correction parameters can be calculated as

n—1
Ak ve = H Qi (6)
=0

n—2 n—1
Drwe = Y {bk,i -] ak,j} + bem1 (7)

i=0 j=i+1

where index 0 is the correction closer to the hardware timer, and n the furthest.
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As reading the current time is a more frequent operation than changing the correction

coefficients, the combined parameters are precomputed when a new clock correction is
produced (Figure 3). Conversely, to set a time interrupt the corrected time coming from the

OS will need to be back-converted as the hardware timer still works using uncorrected time.

t. = Ak ve * the + bk,vc (8)
tnc = (tc - bk,vc) /ak,vc (9)

3.3 Optimization

As the typical skew of quartz clocks is in the order of tens of parts per million (ppm), the
ar, e coefficient should be very close to 1. Since many microcontrollers lack a Floating Point
Unit (FPU), we need an efficient way (exploiting the range of aj . as just identified) to

Recompute
A
»
ag | bg | a1 | bp an | bn
A A
“‘ updateCorrectionPair updateCorrectionPair ,"
\ (a, b) (a, b)
VHT [ Flopsync3 ]

Figure 3 Virtual clock recomputing aggregated parameters ay. and byec.
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perform the multiplication ay - =, as the time retrieval is one of the most critical path
of the operating system. For this purpose, a template class Fized was designed. This is
capable of representing a fixed point number with an arbitrary number of bits for the decimal
part. Given a few compile-time optimized functions able to handle multiplication between a
64-bit integer and a fixed point 32.32, a specialization of the said class — called fp32 32 and
representing a fixed point number as a 64-bit integer with 32-bit for both decimal and integer
part — was used. With fp32 32, the multiplication aj, . - can be performed in just 60 clock
cycles bringing the total time to get the current time to 170 clock cycles, a 37% improvement
compared to the previous implementation. Regarding the uncorrection, we can note from (9)
that a division by aj,,c is needed. There is no nice properties to perform fast division using
fixed point, so it was implemented as a multiplication for the inverse. The inverse value is
precomputed using 64-bit floating point numbers at every update of the ay .. parameter and
converted to fp32_32. The pre-computation is optimized using a modified version of the
fast inverse square root algorithm [6], adapted to perform 1/x instead of 1/\/z as follows.
The optimization relies on the fact that an IEEE75/ double precision number is very similar
to an Logarithmic Number System (LNS) number, as they never differ for more than a
small factor. An interesting property of LNS numbers is that it makes implementations for
multiplications and divisions very efficient. In particular, the inverse of an LNS number v
is —v. The bit representation of a floating point number u can approximated as the LNS

number x = 2“/252’1023, and using this representation the inverse ¢ can be computed as
follows
2q/252—1023 _ 2—(u/252—1023) (10)

which solving the implicit equation results in
q = 0x7FE0000000000000 — u (11)

Performing a sweep with sufficient precision, it was possible to elaborate a quadratic regression
model to approximate faster and with more precision the hexadecimal value. Having a closer
approximation, less Newton steps are necessary making the inversion faster. This whole
inversion process is called optimizedFastInverse.

4 Hardware Events

Although what presented above is sufficent to support the time-related requirements of
an OS, performing clock synchronization requires accurate timestamping of received radio
packets. Moreover, advanced radio transmission techniques such as constructive interference
require accurate packet transmission times [22]. To abstract hardware-accelerated event
timestamping and generation, Miosix was extended with an Fventstamping interface. This
abstraction introduces the concept of event channels that abstract the event sources or sinks
of a given platform. Every event channel can be configured as input, for external event
timestamping, or as output to trigger events. When configured in input mode, a thread
can block and wait for an event to happen on the chosen channel, with an optional timeout
(Figure 4). When configured as output, a thread can generate a hardware event in the future,
blocking until that time point. This design simplifies the realization of TDMA networking
protocols. Since events are measured/generated in hardware, the achievable time granularty
is that of the hardware timer (in our implementation 21ns), and is unaffected by software
interrupt latencies.
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5 FLOPSYNC-3

The redesign of the Miosix OS timing subsystem in order to only operate in terms of corrected
time in the entire OS —except for the timer driver— required the design of a new clock
synchronization scheme. Previously, the clock synchronization packets were timestamped
using the uncorrected clock, as this was needed by the FLOPSYNC-2 algorithm [22]. The
previous approach required to deal with both corrected and uncorrected times and was causing
code maintainability issues from a software engineering standpoint. However, performing clock
synchronization using timestamps corrected by the previous round of clock synchronization
makes the problem nonlinear. The FLOPSYNC-3 controller was designed to address the
aforementioned nonlinearity, and implemented at the OS level.

5.1 Design

Given (4), we can define the clock synchronization error at the end of each synchronization
period as

e(k) = VC(k) — kT (12)

To observe the evolution of the error across synchroniation periods, we can compute the next
error as a function of the previous, resulting in

e(k+1)=e(k) + T (1-VC(k)) — A(K)VC(k) (13)

where the A(k:)V.C(k) term makes the model nonlinear. To perform the control synthesis we
used Feedback Linearization [4] to linearize this process using the output u(k) of a linear
controller and express the new error as

e(k+1) = pe(k) + (1= ) u(k) (14)
and as a consequence have the new output u(k) of the controller provide V.C(k) from

e(k)(1 —B) +u(k)(b-1)+T

VO(k) = T + A(k)

(15)

The mean skew value at the synchronization period £ is of course not available and needs
to be approximated with the previous one (k — 1), i.e.,
" _VC(k)-VCO(k—1)

Ak) = Ak —1) = =D -7 (16)

wait

—1 Thread1 Thread1 Thread1
t

configure pin_n wait event wake up
as input (timeout ns) +
event timestamp

Evgntstamplng Eventstamping interface —_—
interface t

event

Figure 4 Eventstamping, wait event.
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We can then obtain the transfer function J#(z) of the imposed dynamic (14) as

_ Bl _1-8
H(z) = O (17)
Wwe=0 +— e(k) c(z) ulk) 1-p e (k+1) >
_ z - p

Figure 5 FLOPSYNC-3 Control scheme.

The controller C'(z) used to work in conjuction with the feedback linearization is a proportional
one having a gain of 0.15. The full FLOPSYNC-3 control scheme is shown in Figure 5.

6 Simulation and Experimental Results

The operation of the FLOPSYNC-3 controller and virtual clock were first assessed through
simulations performed using the Modelica language.

Figure 6 shows one such simulation, where the clock synchronization period T was set to
10 seconds and 8 was chosen to be 0.025. The left part of the figure shows the simulated
clock skew profile, that starts from 10 ppm and increases to 50 ppm from 7" = 150 seconds,
approximating in the simulation the effect of an ambient temperature change. The right part
of the figure shows the clock synchronization error. The blue line is the instantaneous error
of the virtual clock, thus the time error exposed to the operating system and application. As
a node in the network can measure its error only at discrete intervals, corresponding to when
synchronization packets are received, the red line shows the measured error that feeds the
FLOPSYNC-3 controller.

As can be seen, the initial 10 ppm skew causes a 100 us error that is quickly corrected by
the FLOPSYNC-3 controller. The frequency change caused by the simulated temperature
change, although higher in amplitude than the initial skew causes a lower peak error, less
than 75 us, due to its slower nature.

The FLOPSYNC-3 controller as specified by equation (15) and (16) has been implemented
in Miosix acting on the the variable length correction stack of the virtual clock. Since deep
sleep support was not implemented, the correction stack was configured to perform the
FLOPSYNC-3 correction only. Synchronization parameters T and 8 were configured as in
the simulations. The clock synchronization error measurement was taken from the TDMH
networking stack using the eventstamping interface to provide the timestamps of received
synchronization packets. FLOPSYNC-3 was implemented using the fp32_ 32 type to perform
intermediate calculations efficiently. Because of the limited range of this type, pre-scaling
was necessary to avoid overflows.

Clock synchronization experiments were performed with a network of nodes running the
TDMH networking stack on top of Miosix. Figure 7 shows the clock synchronization error of
one such node. The top part of the figure shows the measured clock synchronization error in
the first three minutes after synchronization. The initial clock synchronization error of 40 us
occurs when the node is booted and joins the network. This value is the accumulation of the
oscillator frequency error over the entire first synchronization period, as the FLOPSYNC-3
algorithm, being a feedback one, requires a first error measure to compute a correction. The
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Figure 6 Simulated clock skew profile (left) and clock synchronization error (right). The blue
line shows the instantaneous synchronization error, while the red line shows the measured error.

bottom part of the figure shows the error after the initial synchronization, over a period of
approximately 24 hours, to better appreciate the error dynamics after the initial skew is
corrected. The observed stochastic nature of the clock synchronization error, not present
in the simulations, is caused by the measurement noise of packet timestamps. The error
standard deviation, excluding the first transient, is 137 ns.

7 Conclusions

This work addressed abstracting clock synchronization at the operating system level. To
achieve this goal a virtual clock was introduced as an efficient abstraction allowing a hardware
timer driver to provide a time reference whose rate can be changed compared to the one
of the underlying oscillator. Support for multiple corrections sources was accounted for,
allowing the implementation of deep sleep solution such as VHT [21]. Encapsulating time
correction allows reducing bugs and problems during development since all components are
just using the same time source (corrected), but makes the uncorrected synchronization
packet timestamps unavailable to the clock synchronization algorithm. The FLOSPYNC-3
controller was thus designed specifically to overcome this issue.

The Miosix real-time OS was extended with a flexible, efficient and modular timing
subsystem based on the virtual clock design, capable of internalizing the clock correction and
only exposing corrected time to all kernel and application tasks. This new timing subsystem
was designed from the start to be general allowing to easily port the Miosix to different
microcontrollers.

Future research directions will focus on further improving clock synchronization resilience
to temperature variations, while future improvements of the Miosix timing subsystem will
address completing the support for maintaining clock synchronization during deep sleep
periods using the variable length correction stack.
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