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Abstract
In embedded systems, applications frequently have to meet non-functional requirements regarding,
e.g., real-time or energy consumption constraints, when executing on a given MPSoC target platform.

Feedback-based controllers have been proposed that react to transient environmental factors
by adapting the DVFS settings or degree of parallelism following some predefined control strategy.
However, it is, in general, not possible to give formal guarantees for the obtained controllers to
satisfy a given set of non-functional requirements. Run-time requirement enforcement has emerged
as a field of research for the enforcement of non-functional requirements at run-time, allowing to
define and formally verify properties on respective control strategies specified by automata. However,
techniques for the automatic generation of such controllers have not yet been established.

In this paper, we propose a technique using reinforcement learning to automatically generate
verifiable feedback-based enforcers. For that, we train a control policy based on a representative
input sequence at design time. The learned control strategy is then transformed into a verifiable
enforcement automaton which constitutes our run-time control model that can handle unseen input
data. As a case study, we apply the approach to generate controllers that are able to increase
the probability of satisfying a given set of requirement verification goals compared to multiple
state-of-the-art approaches, as can be verified by model checkers.
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7:2 RL for Generating Verifiable Run-Time Requirement Enforcers

1 Introduction

Current multi-processor on-chip (MPSoC) platforms offer abundant computational and
storage resources that necessitate new programming paradigms such as invasive computing [39,
1] for isolating applications to handle architectural interferences between applications. Hybrid
mapping approaches [35, 33, 29] have emerged for mapping of applications onto multi-core
systems in the presence of uncertainty [34, 36].

Despite inter-application resource isolation schemes, applications are still exposed to
variances in the system state (e.g., due to scheduler or caching effects) [6]. According
to [38], another source of uncertainty is the varying workload induced by the input data (e.g.,
different workloads for different image inputs). As an example, throughput jitter in virtual
and augmented reality applications may not only be an annoying user experience, but even
cause dizziness or a headache to a user.

Run-time Requirement Enforcement (RRE) [40] is a field of research with the aim to
control the non-functional properties of execution of a program within desired bounds. Such
techniques dynamically steer control knobs, e.g., voltage/frequency settings, in reaction to
observed changes in the system state to keep the non-functional properties of execution
within the desired range. RRE allows a user to specify bounds on execution properties of
an application on a multi-core platform using so-called requirements [38], i.e., expressions
on non-functional properties such as desired corridors on latency or energy consumption.
Recently, techniques have been proposed in [9, 10, 11] to formally verify the satisfaction or
violation of non-functional requirements of RRE techniques at design time. In order to apply
formal methods such as model checking, finite state machines (FSMs) are used to formally
specify control strategies. However, techniques for automatically generating FSMs for RRE
that either always guarantee the satisfaction of a set of given non-functional requirements in
case of strict enforcement or at least guarantee a certain probability of satisfying executions
in case of loose enforcement [40] have not yet been established.

In this realm, different machine-learning-based techniques have been proposed for the
dynamic control of program executions [25, 26]. In an offline phase, a controller behaviour is
learned to optimize a set of given non-functional objectives that can be used at run-time to
control the application. However, the above approach cannot provide any formal guarantees
regarding the ability or strictness to fulfill a set of given requirements, i.e., constraints on non-
functional execution properties. In this paper, we propose a technique using reinforcement
learning to generate FSMs for RRE with formally verifiable guarantees by training and
optimizing an FSM controller to be generated based on input sequences at design time. Based
on a formal characterization of input variation at run time, the generated FSM controllers
for RRE can then also be formally verified at design time.
Contributions: The main contributions of this paper can be summarized as follows:

1. Using reinforcement learning for FSM-based RRE generation: Based on training sequences,
reinforcement learning is used to adapt an initial FSM model towards satisfaction (or
improvement of the satisfaction probability) of a given set of non-functional program
execution properties formulated as verification goals.

2. During learning, the RRE strategy is regularly transformed into an FSM and formally
verified according to the set of verification goals. The offline learning phase stops once all
goals are satisfied. Alternatively, based on a user-defined exit condition.

3. In a case study, the approach to generate formally verified FSM-based RRE controllers is
compared to state-of-the-art enforcer designs.
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2 Fundamentals

In the following, important notions and definitions are introduced.

2.1 FSM-based RRE
Non-functional requirements should be satisfied during each program execution on a given
MPSoC platform even when the environmental input is varied. According to [10], let the size
of the input of a given program for each discrete execution k be given by an environment
feature vector i(k) ∈ I, where I is called the environment space. Moreover, assume that for
preventing or as a countermeasure against violations of a set of non-functional requirements,
an enforcer can vary the number n of cores allocated to execute an application program
as well as the voltage/frequency setting m of these cores. We call such a setting (n, m) a
configuration c and the set of available configurations available on a given MPSoC platform
the configuration space C. Figure 1 shows the concept of feedback-based RRE according to
[10] which serves as the base model also in this paper. Illustrated is a multi-core system
stimulated by input from an environment and reacting to violation of a number of requirement
using an enforcement FSM that determines the configuration c(k + 1) for the (k + 1)th
execution accordingly.

Figure 1 Illustration of feedback-based RRE. A system response vector r is mapped to a binary
requirement response vector ϕ such that the enforcement FSM F controls the next configuration
c(k + 1) ∈ C. Adapted from [10].

2.1.1 Formal Definitions
Assume that the k-th execution of a program on an MPSoC yields H execution properties of
interest (e.g., latency and energy consumption). These properties depend on the input data
i(k) ∈ I and the system configuration c(k) ∈ C. For the purpose of RRE, the system-under-
control can be abstracted by a single function called system response function r : I×C → RH

(see [10]). Thus, the system response r(i(k), c(k)) = (o1(k), . . . , oH(k)) at execution k is a
vector of the H relevant execution properties (see Figure 1). According to [41], requirements
can be specified for each property oh, h ∈ {1, . . . , H}, typically in terms of a lower bound
LBoh

and an upper bound UBoh
that should not be violated. Such intervals can be described

by two propositions φLB
h and φUB

h as follows:

φLB
h (oh(k)) = (LBoh

≤ oh(k)) (1)
φUB

h (oh(k)) = (oh(k) ≤ UBoh
) (2)

NG-RES 2023



7:4 RL for Generating Verifiable Run-Time Requirement Enforcers

In Equation (1) and Equation (2), LBoh
and UBoh

denote a user-given lower, respectively,
upper bound on the execution property oh. The information about which proposition is
fulfilled and which is violated at the k-th execution can then be described by a binary vector
denoted by requirement response ϕ (see Figure 1). It is obtained from the system response
r(i(k), c(k)) = (o1(k), . . . , oH(k)) using the requirement response function [10]:

β := ϕ (o1(k), . . . , oH(k)) =
(
φLB(o1(k)), φUB(o1(k)), . . . ,

φLB(oH(k)), φUB(oH(k))
)
∈ {0, 1}2H . (3)

This binary requirement response vector β specifies for each proposition to be satisfied for
each execution k the input to the enforcement finite state machine (FSM) F , as illustrated in
Figure 1. F reacts by computing the next configuration c(k + 1) ∈ C to enforce the desired
non-functional properties for the next execution k + 1. Formally, an enforcement FSM is
defined as follows.

▶ Definition 1 ([10]). An enforcement FSM (F ) is a deterministic finite state machine
(Moore machine) that can be described by a 6-tuple (Z, z0, B, δ, C, γ) :

Z is a finite set of states.
z0 ∈ Z is the initial state.
B is the input alphabet.
δ is the transition relation: δ ⊆ B × Z × Z with (β, z, z′) ∈ δ representing a transition
from z to z′ under input β.
C is the output alphabet, also called configuration space.
γ is the output function, which maps each state to the output alphabet: γ : Z → C.

Instead of verifying an enforcement strategy described by an enforcement automaton
F for RRE just for individual input traces, the authors in [10] proposed rather to analyze
families of traces. The input variation of the environment is modeled by a discrete-time
Markov Chain called environment FSM, after partitioning the environment space of inputs
I into a set P of disjoint partitions p ∈ P with p ⊆ I. The partitions are constructed
such that all inputs i ∈ p assigned to the same partition always deliver the same binary
requirement response ϕ(r(i(k), c(k))) in each configuration c ∈ C. These partitions p then
define a discrete state space of a discrete-time Markov chain E. Transitions between states
reflect the probabilities of observable variations in environmental input from state to state.
The environment FSM E can equally be seen as a generator of potential input traces that
an RRE FSM F shall be evaluated for. But rather than evaluating a single or comparing
multiple enforcer FSMs based on just individual sample traces, we want to argue first about
quality of enforcers rather for all input traces that a system can potentially undergo. Second,
rather than simulating such input traces to generate statistics, we propose to apply symbolic
techniques, i.e., probabilistic model checking for our analysis.

2.1.2 Verification Goals
Verification goals (V Gs) can then be specified to compare different enforcement strategies
regarding their quality to satisfy the given set of requirements. V Gs are formulated over the
two propositions φLB

h and φUB
h , see Equation (1) and Equation (2), using temporal logic [5]

or PCTL [2, 17]. Examples of such verification goals of interest (one is applied in case of
strict enforcement, the subsequent ones for loose enforcement) are [10]:

AG(φ): φ should always hold.
AF (φ): φ should eventually hold.
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P=?[¬φ → F ≤λ(φ)] denoting the probability of returning to a requirement-satisfying
configuration state (φ) from a violating one (¬φ) in no more than λ steps, i.e., next
executions.
P=?[G≤λ (¬φL)] denoting the probability of λ consecutive violations of φ.
S=?[¬φ] denotes the steady-state probability of violating φ.

2.2 Reinforcement Learning
Reinforcement Learning (RL) [37] is a Machine Learning paradigm dealing with how an
agent shall act in an environment in order to maximize a cumulative reward. An agent is
supposed to improve its ability to solve a problem (defined via a reward function) through
trials-and-errors, similar to how humans and animals learn. At its core, RL models a problem
as a Markov Decision Process (MDP), representing the environment, which the agent interacts
with and observes. At each time step, the environment resides in a state υ ∈ Υ, based on
which the agent then selects an action a ∈ A according to its internal policy π that will put
the state in a successor state υ′ ∈ Υ. The resulting sequence of states and actions performed
in the environment τ = (υ0, a0, υ1, a1, ...) is called a trajectory τ . Some key components
when performing RL training are:
1. A policy π : Υ×A→ [0, 1] that defines the behavior of an agent, i.e., the probability to

take each available action a ∈ A for each state υ ∈ Υ. A policy π can have parameters
θ (then denoted as πθ), be stochastic (e.g., the ϵ-greedy policy in Equation (4)) or
deterministic.

2. A reward signal ξ : Υ × A → R is the feedback sent by the environment to the agent
when it takes an action a in a state υ, ergo it represents the immediate goal of the agent.

3. An action-value function Qπ : Υ × A → R, which predicts the cumulated reward that
could be obtained on the long run if the agent takes decision a in current state υ when
following policy π.

4. In some cases, a model of the environment that allows for predicting rewards ξ(υ, a).

The most investigated way of solving a RL problem is to accurately estimate the action-
value function. While doing so, an agent has to explore the state space Υ to receive the rewards.
To that regards, there is a trade-off to be made between exploration, i.e., taking a random
action at a given state υ, and exploitation, i.e., performing the action a that will maximize the
expected cumulative reward Qπ(υ, a) = Eτ∼π[

∑
(υt,at)∈τ ξ(υt, at) | υ0 = υ, a0 = a] following

the trajectory τ sampled from the policy π starting from state υ0 = υ and action a0 = a. Too
much exploration will increase the training time (as it is not different from a random selection
of actions), whereas too much exploitation might lead to convergence to a local optimum.
As an example, a common policy used (notably in Q-Learning) to balance exploration and
exploitation is called ϵ-greedy policy and is presented in Equation (4). Here, a ∈R A describes
the sampling of a random action from A based on the probability distribution R.

a =
{

arg maxa∈A Q(υ, a) with probability (1− ϵ)
a ∈R A with probability ϵ

(4)

In this paper, we will consider as an example a widely used algorithm, Q-Learning.
Q-Learning [43] is a model-free algorithm which learns the action-value function, i.e., the
Q-function. A common implementation is to have a Q-table storing all the values of Q. The
algorithm steps are described in Algorithm 1 (in the appendix). An episode ep comprises
multiple iterations, in which actions are picked and taken until υ is a terminal state or a given

NG-RES 2023
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number of maximum iterations is performed. Observing the reaction of the environment
yields the successor state υ′ and reward ξ(υ, a). The Q-table is then updated according to
Equation (5).

Q(υ, a)← Q(υ, a) + α ·
(

ξ(υ, a) + κ ·max
a

Q(υ′, a)− Q(υ, a)
)

(5)

The learning rate α ∈ [0, 1] determines how much of the newly acquired information
should replace the current knowledge. The discount factor κ ∈ [0, 1] represents how much
influence future rewards have on the current optimization step compared to the instant one.
For example, a value of 0 will make the agent “short-sighted”, while a value of 1 will make it
aim for an endgame goal.

One limitation of Q-learning is its discrete nature, which, when used to solve continuous
problems, either leads to a state explosion or suboptimal performance due to a down-sampling
of both actions and states. One way to solve continuous problems using this algorithm is to
use deep artificial neural networks as approximators for the Q-function. This is referred to
as Deep Q-Learning [14].

3 Reinforcement Learning for the Generation of Run-Time
Requirement Enforcers

The structure of our verifiable RRE generation approach and optimization is depicted in
Fig. 2. During a training phase (see upper part of the figure), an enforcement agent learns an
enforcement strategy aiming to satisfy a set of verification goals defined over a set of given
requirements like latency, energy, or power. The training is based on an input data sequence
I = {i(1), i(2), ...} generated by a Markov chain. To assess the satisfaction of the verification
goals, the policy of the enforcement agent is periodically transformed (i.e., after a specified
number of training iterations nupdate) into an enforcement FSM and the verification goals
VG are subsequently formally verified using a model checker (see lower part of Fig. 2). Since
verifying the enforcement goals can be a time-intensive task, we employ surrogate functions in
executions k between such verification checks to estimate the verification goals VG between
the actual model checks to speed up the training process. The training phase stops either
when a run-time requirement enforcer with verified VGs has been found, which then can be
deployed in the field (run-time phase). Else, a user can determine the termination of the
learning phase.

3.1 Learning phase
Our enforcement agent is defined by a set of states Υ, a set of actions A, and finally a
reward function ξ that assesses the quality of choosing an action in the current state (see
Section 2.2). An action a(k) of our agent is determined by the selection of the configuration
c(k + 1) = (n, m) of number of cores n and power mode m to be applied for processing the
next input data i(k + 1). The set of actions A is thereby defined equal to the configuration
space C, i.e., A = C. A state υ ∈ Υ = B × C is given by a pair of configuration c ∈ C

and corresponding requirement response β ∈ B that indicates which requirements were
fulfilled after having processed a given input data i in configuration c and which not. As a
consequence, the number of states is given by: |Υ| = |B| · |C|.

Since we do not require any functional execution properties of the related programs for
training the enforcement agent, our approach can also handle black-box applications. The
feedback about the satisfaction of a set of verification goals is encapsulated into a reward
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Figure 2 Enforcer generation based on Reinforcement Learning.

function ξη that associates a chosen action a ∈ A with a quality assessment in the form
of a numeric reward. In the following Equation 6, the reward is defined as a weighted
sum of a verified reward ξver – measured by transforming the enforcement agent into an
enforcement FSM and employing a model checker – and a surrogate reward ξsur that provides
a probabilistic estimation of the probabilities of fulfilling the verification goals based on the
history of an already processed input data sequence. Consequently:

ξη(a(k)) = η · ξsur(k) + (1− η) · ξver(k). (6)

With an increasing number of training iterations, the influence of the model checked reward
ξver should increase, as the surrogate reward merely serves as an estimate. This can be
implemented by decaying η with increasing episode numbers ep, e.g., exponentially by
η = η0 · e−ep·dec, with η0 ∈ [0, 1] being the initial value and dec ∈ R a decay hyperparameter.

Moreover, we define the verified reward ξver as the weighted sum of given requirement
verification goals V G of our model at iteration k and obtained by applying probabilistic model
checking to an enforcer FSM obtained by a model transformation described in Section 3.2:

ξver(k) =
|V G|∑
ω=1

ςω · V Gω(k). (7)

In the case of a verification goal for strict enforcement, V Gω represents a binary value
indicating whether the verification goal was met V Gω = 1 or missed V Gω = 0, while in case
of loose enforcement, V Gω ∈ [0, 1] denotes a probability of meeting the verification goal.
Furthermore, the weight ςω should be chosen negative when the associated verification goal
V Gω shall be minimized and positive when V Gω shall be maximized.

In contrast to the verified reward ξver that is updated periodically every nupdate iterations,
the surrogate reward ξsur is computed in each iteration k due to being an derivative of the
function fest at point k estimating the verification goals based on the history H = (1, ..., k)
of the input data i and agent trajectory τ up to the current action a(k):

fest(k) = ϑ(k) ·
|V G|∑
ω=1

ςω · E[V Gω | (i(y))y∈H, (υy, ay)y∈H ∈ τ ]. (8)

With that, the surrogate reward ξsur(k) is defined as:

ξsur(k) = ∆fest(k) = fest(k)− fest(k − 1). (9)

NG-RES 2023



7:8 RL for Generating Verifiable Run-Time Requirement Enforcers

Loose verification goals V Gω can be estimated by using the empirical probability, i.e.,
associating the number of occurrences of verification goal violations over the history H. Since
the accuracy of our probabilistic estimation increases with larger sizes of the regarded history
k = |H|, we weight the surrogate function by a factor ϑ(k) ∈ [0, 1] that scales the reward
with k:

ϑ(k) = 1− e−u·k, u ∈ R+. (10)

Above function covers the range of ϑ(0) = 0 up to limk→∞ϑ(k) = 1 with u ∈ R+ steering the
gradient of the scaling function. Strict verification goals are set to zero in case any violation
happens in the history, and to one otherwise.

Example. Let the verification goal V GL := S=?[φL] be given, the goal being to minimize
the probability of violating a latency requirement ϕL. This goal can be estimated as

E[V GL] =
∑

y∈H ξφL
(k)

|H|
(11)

We can then define the reward for the requirement φL as:

ξφL
(k) =

{
1 if φUB(oL(i(k), a(k))) ∧ φLB(oL(i(k), a(k)))
0 else

(12)

With this formalization of our reinforcement agent, we can choose a suitable reinforcement
learning implementation from the literature for performing the training procedure. In case
of a low cardinality of configurations |C|, simple approaches as Q-learning are viable. Else,
more sophisticated model-free deep learning procedures as proximal policy optimization
(PPO) [31] or soft actor-critic (SAC) [16] are recommended.

3.2 Transformation
This section describes how to transform a trained reinforcement learning agent into an enforcer
FSM that can be formally verified. First, we need to transform our reinforcement learning
agent states Υ into a set of enforcement FSM states Z. Second, we need to transform our
agent policy into an FSM transition relation δ. Note that we can only transform reinforcement
agents into a verifiable enforcer FSM for discrete action and state spaces.

We generate one unique enforcer FSM state zc ∈ Z of a Moore FSM per configuration
c ∈ C, described by the bijective function ζ : C ↔ Z. The FSM transition relation
δ : B × Z → Z determines a next state from a current state based on the requirement
response β. Since each state represents uniquely exactly one configuration, we can reformulate
this relation as δ : B × C → C, i.e., we have to determine for each configuration the best-
suited subsequent configuration in dependence of the requirement response β. With the
reinforcement states defined as Υ = B × C and associated actions given by A = C, we
propose to derive the state transitions by determining the best action per state (β, c) of
our reinforcement learning agent. In particular, for each enforcer FSM state z = θ(c)
corresponding to a configuration, we create one outgoing transition per reinforcement state
(β, c) ∈ Γ as follows:

δ = {(β, ζ(c), ζ(a)) | (β, c) ∈ Υ ∧ a = ϱ(β, c))} . (13)

The best action per state ϱ : Υ→ A can be extracted from the trained agent policy.
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Q-Table

States Q-Values States Best ac�on Trans. Rela�on 

Transforma�on Enforcer FSM

Figure 3 Example of transforming a Q-table that is based on the configuration set C = {c0, c1}
and the verification goal V GL := S=?[φL] for the latency requirement φL into an enforcer FSM.

Example. Let us give a simple example with two configurations C = {c0, c1} and one
verification goal V GL := S=?[φL] based on the latency requirement φL. As in the following
Section 4 Evaluation, Q-learning is used as the reinforcement learning implementation. The
Q-table of the enforcement agent contains one Q-value Q(υ, a) per tuple of enforcer agent
state υ and action a ∈ A = C. The transformation from a Q-table into an enforcer FSM is
illustrated in Fig. 3. In the first step, the transformation procedure associates each state υ

with its best action a by applying ϱ. For Q-learning, the best action per state is directly
given by the highest Q-value in the corresponding row, which therefore defines ϱ as:

ϱ(υ) = arg max
a∈A

Q(υ, a). (14)

With that, the transition relation δ can be determined, representing the two-step enforcer
FSM depicted on the right side of the figure. Remember that each tuple (β, z, z′) ∈ δ describes
a transition of the enforcer FSM from state z into state z′ triggered by the requirement
response β. Finally, the resulting enforcer FSM can be formally verified for the given
verification goals according to [10] using probabilistic model checking, e.g., PRISM [23].

4 Evaluation

In this section, we present an elaborate case study for the presented approach. The application
considered is an object detection application whose actor graph is shown in Fig. 4 (in the
appendix). The object detection application processes a stream of periodic input images
in a pipelined fashion so that a given object in each image frame is detected based on
scale-invariant feature transform (SIFT) matching [24]. As properties of execution to be
enforced, we consider the latency oL and the power consumption oP . An empirical analysis of
the execution times revealed that most of the execution time is spent in the SIFT description
actor. Each SIFT description worker actor iterates over the list of features received from the
control mechanism and generates corresponding feature descriptions, which is a compute-
intensive task. For that reason, we apply RRE to just this actor using the method described in
this paper. For the experiments, we used a sequence of Itrain = 1000 images from the KITTI
database [13] in each training episode. To counteract any violation of the corresponding
requirements, a set of m = 20 power modes driven by dynamic voltage and frequency scaling
(DVFS) can be applied, and a maximum of n = 4 cores can be allocated per run.

Each of the reinforcement learning-based enforcer instances was trained for a given set of
verification goals until convergence (3,000 episodes, where each episode consists of iterating
over the training input set Itrain) using the reward function described in Eq. (6), the ϵ-greedy
policy described in Eq. (4), parametrized with a learning rate of α = 0.1 and a discount factor
κ = 0.99. Due to the limited state space with |C| = 80, Q-learning is still viable. Note that

NG-RES 2023



7:10 RL for Generating Verifiable Run-Time Requirement Enforcers

deep learning-based agent implementations such as Soft-Actor-Critic provide similar results
but introduce additional overhead during training. The result of the transformation process,
explained in Section 3.2, is an FSM that can be verified using the verification method in [10].

For formal verification, an environment FSM is generated from Itrain, using the environ-
ment FSM generation method in [10], based on a latency requirement φL = φLB

L ∧ φUB
L =

(LBoL
≤ oL) ∧ (oL ≤ UBoL

) for a latency lower bound LBoL
= 0 ms and an upper bound

(deadline) UBoL
= 40 ms, similarly for a power requirement φP = φLB

P ∧ φUB
P = (LBoP

≤
oP ) ∧ (oP ≤ UBoP

) for a power lower bound LBoP
=0 W and an upper bound UBoP

=
1.2 W. Intuitively, φLB

L = (0 ms ≤ oL) and φLB
P = ( 0 W ≤ oP ) are always satisfied and

can therefore be ignored during enforcement in this case study. The generated enforcer
FSMs are verified using the PRISM model checker [22]. In the following, we present the
verification results for loose and strict enforcement for the proposed and the following set
of other previously proposed RRE techniques: Race-to-idle (RTI) [21] that executes the
application in each iteration k constantly with n = 4 cores and the highest power mode m,
1-step enforcement FSM F1 proposed in [9], and 8-step enforcement FSM F2 in [10].

4.1 Loose enforcement
As a first example, we specify and verify the following two verification goals: P=?[G≤3¬φL] for
the latency requirement φL and P=?[G≤3¬φP ] for the power requirement φP , see Section 2.1.2
for explanation.

Table 1 Verification results for loose enforcement for RTI, F1, F2, and Frl0 for the verification
goals P=?[G≤3¬φL] and P=?[G≤3¬φP ], based on a latency upper bound (deadline) UBoL = 40 ms,
and a power upper bound UBoP = 1.2 W.

P=?[G≤3¬φL] P=?[G≤3¬φP ]
RTI F1 F2 Frl0 RTI F1 F2 Frl0

0 0.427 0.041 0 1 0.256 0.389 0

As shown in Table 1, P=?[G≤3¬φL] = 0, P=?[G≤3¬φP ] = 0 for the RL-generated FSM
Frl0 . This means that our approach can determine an enforcer FSM that does not violate the
latency nor the power requirement for λ = 3 consecutive executions. P=?[G≤3¬φL] = 0 also
for RTI, as it always satisfies the latency requirement φL, and P=?[G≤3¬φL] = 1 because
it always violates the power requirement φP as it always runs in the highest power mode
mmax = 20 and number of cores nmax = 4. Also note that P=?[G≤3¬φL] is higher for F1 than
for F2 as F2 increases its configuration state z by 8 steps when having a latency violation,
whereas F1 only increases it by 1. For the same reason, P=?[G≤3¬φP ] for F1 is lower than
for F2.

Finally, we also performed a verification for loose enforcement using the two alternative
verification goals S=?[¬φL] for the latency requirement φL and S=?[¬φP ] for the power
requirement φP , see Section 2.1.2. Such steady-state probabilities give insight into the
long-term behavior of running applications.

As shown in Table 2, the steady-state probabilities S=?[¬φL] and S=?[¬φP ] for our
RL-based FSM Frl1 are lower than for F1. Thus, our approach can generate an enforcer FSM
that has lower steady-state probability than F1 to violate the given requirements φL and
φP . Although the steady-state probability of having a latency violation S=?[¬φL] is lower
for F2 than Frl1 , the steady-state probability of having a power violation S=?[¬φP ] for F2 is
higher than for Frl1 . For RTI, as it always satisfies the latency requirement φL, it has also a
stationary probability S=?[¬φL] = 0. But regarding the power requirement φP , S=?[¬φL] = 1
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Table 2 Verification results for loose enforcement for RTI, F1, F2, and Frl1 for the verification
goals S=?[¬φL] and S=?[¬φP ], based on a latency upper bound (deadline) UBoL = 40 ms, and a
power upper bound UBoP = 1.2 W.

S=?[¬φL] S=?[¬φP ]
RTI F1 F2 Frl1 RTI F1 F2 Frl1

0 0.5 0.121 0.173 1 0.445 0.591 0.435

for RTI as it always runs in the power requirement violating mode (nmax, mmax). S=?[¬φL]
for F2 is lower than for F1 as F2 increases its configuration state z by 8 when having a
latency violation, whereas F1 only increases it by 1, so it has a higher chance to meet the
latency requirement φL. For the same reason, S=?[¬φP ] for F1 is lower than for F2.

4.2 Strict enforcement
Finally, the following example is chosen to illustrate the approach also for strict enforcement.
Table 3 shows the verification results for strict enforcement of the latency requirement φL

using the verification goal AG(φL), see Section 2.1.2. AG(φL) = true for RTI, which means
that φL always holds, as RTI always runs in the highest power mode mmax = 20 and number
of cores nmax = 4. For F1 and F2, AG(φL) = false because both FSMs decrease their
configuration state z by one once satisfying φL. Finally, our RL-based approach can generate
an enforcer FSM Frl2 that also always satisfy the latency requirement φL (AG(φL) = true).

Table 3 Verification results for strict enforcement for RTI, F1, F2, and Frl2 for the verification
goal AG(φL), based on a latency upper bound (deadline) UBoL = 40 ms, and a power upper bound
UBoP = 1.2 W.

RTI F1 F2 Frl2

true false false true

5 Related Work

Several approaches do exist to control non-functional properties of program executions, such
as latency, or power and energy consumption. Examples of such approaches are techniques
based on online machine learning like [25, 26], heuristics like [42], and predictive models [8, 32].
However, most of them cannot provide any formal guarantees about the controller’s capability
of satisfying the given requirements. Such guarantees include that the control technique
will never lead to a violation of the given requirements or that the system will stay no
more than a certain number of executions in a violating state, or long-term percentages of
non-violating executions. Although techniques based on control theory, such as [19, 27, 28],
can formally analyze controller properties such as stability, they are not able to provide any
formal guarantees regarding the satisfaction or violation of given non-functional requirements
in uncertain environments.

In general, FSMs are not only used to formally specify the functional behavior of a
system [30, 4, 12], but also when formal verification of non-functional properties is required,
especially in safety-critical systems. In [40], the concept of Run-time Requirement Enforcement
(RRE) is introduced to describe techniques to either centrally or decentrally control the
satisfaction of non-functional execution properties of programs executed on MPSoCs given

NG-RES 2023
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by set of requirements. of programs for MPSoCs. Based on this concept, [10] proposes
feedback-based RRE techniques. Presented is an approach for the formal specification and
verification of non-functional properties for systems executing programs periodically, where
an FSM-based enforcer is used to control the number of cores and DVFS level of a system
once per execution at run-time. Using this approach, one can evaluate whether a combination
of a system (MPSoC), an enforcer, and an environment either always satisfies the defined
requirements or with which satisfaction probability. In [9], simple FSM control schemes are
introduced that simply increase, resp. decrease the power mode or number of cores in case
of a violation ¬φL, resp. satisfaction φL of the latency requirement. In [10, 11], FSMs for
multi-requirement control have been introduced. However, the RRE controllers presented in
these works are all manually designed. In summary, techniques for automatic generation of
verifiable enforcers are still missing.

Reinforcement Learning techniques offer the capability for a controller to learn how to
act for meeting run-time requirements via trials-and-errors on simulated or real data. There
already exist several approaches to learn control techniques which leverage RL. Most of them
use Q-Learning [44, 15], sometimes on a dedicated hardware module [7]. The majority of
works that consider the verification of a trained RL policy are based on (DQL). Verification
on DQL is intrinsically complex, partly due to the continuous input leading to an infinite
number of states. [3] verifies DQL by extracting decision tree policies from a trained neural
network. Though, they only verify robustness, stability and functional correctness of a
controller. The authors of [20] and [18] both propose a verification-in-the-loop method, i.e.,
they perform the verification during training. However, their works only consider verification
goals formulated using ACTL (a subset of CTL) and LTL specifications. Our approach, on
the other hand, can verify goals formulated in not only CTL and LTL, but PCTL, too.

6 Conclusion

In this paper, we have presented a novel technique using reinforcement learning for automat-
ically generating feedback-based run-time requirement enforcers that can be formally verified
concerning a given set of verification goals by a model checker. For that, we elucidated a
formalism for transforming reinforcement learning agents during training into enforcement
state machines and applying model checking techniques in regular intervals to verify these
to satisfy a set of verification goals. We were able to demonstrate in a case study using an
object recognition application that our proposed approach significantly outperforms related
work in being able to generate verified enforcers.
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A Appendix

Algorithm 1 Q-Learning.

Initialize Q arbitrarily
for all ep ∈ {1, 2, ..., nepisodes} do

Initialize υ arbitrarily
while υ is not terminal do

Pick an action a following an ϵ-greedy policy
Take action a

(υ′, ξ)← ObserveEnvironment(υ, a)
Q(υ, a)← UpdateQTable(υ, υ′, a, ξ)
υ ← υ′

end while
end for
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Figure 4 Actor graph of the evaluated object detection application.
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