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Abstract
Strategy combinators (also called strategic programming) are a technique for modular program
transformation construction invented by Bas Luttik and Eelco Visser, best known for their
instantiation in the Stratego language. Traditional implementations are dynamically typed, and
struggle to represent transformations that can be usefully applied to some types, but not all.

We present the design of our strategy-combinator library compstrat, a library for type-safe
strategy combinators which run on Patrick Bahr’s compositional datatypes. We show how strategy
combinators and compositional datatypes fuse elegantly, allowing the creation of type-preserving
program transformations which operate only on datatypes satisfying certain properties. With this
technique, it becomes possible to compactly define program transformations that operate on multiple
programming languages. compstrat is part of the Cubix framework and has been used to build
four program transformations, each of which operates on at least three languages.
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1 Introduction

If a program transformation can be written, it can be written using rewrite rules. Rewrite
rules become usable when paired with strategies, functions that apply them. Building
strategies is made economical by strategy combinators [8, 16, 15].

Typed functional programming has shown many advantages for building language tools.
Unsurprisingly, there have been many attempts to bring strategy combinators to typed
functional languages, including Strafunski [7], KURE [2, 11], and Scrap Your Boilerplate
(SYB) [5] and its extension RecLib [10]. All of these grapple with the same challenge: how
to build transformations that can run on many types, while preserving the guardrails of
strong static typing. All known solutions to this problem use some form of dynamic typing.
And in that, we argue, all of them go too far.

Figure 1 illustrates the problem of functions which are “too” dynamically-typed. Each
framework defines its own type for generic rewrites, which we call Rewrite x; Table 1 gives
the encoding for each framework. The first three – Strafunski, SYB, and RecLib – are
maximally dynamically typed, in that the type system system allows Rewrite x to be applied to
nearly any type, requiring runtime type-casing to constrain it. Each of these are dynamically
typed. Now consider the code in Figure 1, which can be thought of as a fragment of an
application that invokes some refactoring transformation, storing the new program and a
message in a Result data structure. Although the implementation of doRefactoring may look
innocuous to someone encountering it without exact memory of the Request type, it contains
a deadly bug. And yet this code typechecks verbatim in SYB! Strafunski and RecLib
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16:2 Typed Multi-Language Strategy Combinators

Table 1 Previous Haskell libraries for strategy combinators.

Library Year Encoding of Rewrite x
Strafunski 2003 (Monad m, Data x) ⇒x →m x

SYB 2003 (Monad m, Data x) ⇒x →m x

RecLib 2006 (Data x) ⇒ a → x → Maybe (a, x)
(and many variations)

KURE 2007 (Monad m) ⇒c →G → m G
where G = GExp Exp | GDecl Decl |. . .

compstrat 20133 (Monad m, HTraversable f) ⇒Term f l → m (Term f l)

myRefactoring :: Rewrite JavaProgram
...

data RefactorRequest = Request String JavaProgram
data RefactorResult = Result JavaProgram String

doRefactoring :: RefactorRequest →RefactorResult
doRefactoring (Request p s) = Result p (myRefactoring s) −− Oops

Figure 1 Example pitfall of dynamically-typed strategy combinators.

would give an error, but only to point out that the rewrite runs in the Maybe monad. After
fixing the type errors, the true problem remains: myRefactoring is being run on a string rather
than on a program, with no effect. When the transformation being applied is one step in
a larger sequence, such a bug can linger undetected. KURE1 is less dynamically typed,
permitting a Rewrite x to only be applied to terms of a custom program type. But in exchange
it allows a more elementary class of dynamic typing errors: if a KURE rewrite attempts to
replace all identifiers in a program with statements, the malformed output will be detected
only at runtime.2 These contrast the compstrat representation, which, while also internally
allowing dynamic type dispatch, is able to place arbitrary constraints on both the set of
nodes and set of sorts supported by a rewrite.

In previous work [4], we created Cubix4, the “One Tool, Many Languages” framework
which makes it possible to build source-to-source program transformations where the
entire target programming language is a type parameter. For example, Figure 2 shows
a slightly-simplified5 version of the top-level code for the test-coverage instrumentation
transformation, which inserts extra output for test coverage. Despite supporting five
languages, its implementation totals only 202 lines.

In Figure 2, the careful reader familiar with strategy combinators may recognize the allbuR
(all subterms, bottom-up Rewrite) combinator from Stratego’s allbu combinator. Indeed,
all serious Cubix transformations are built using a custom strategy combinator library,
compstrat. And it turns out that the special representation of programs which lies at the
core of Cubix incremental parametric syntax, realized using Patrick Bahr’s compositional
data types [1] synergizes with strategy combinators in a way that allows both more type

1 Older solutions in monotyped or untyped languages, namely Stratego itself and JJForester [14], are
similar to KURE in that they only express rewrites over arbitrary terms.

2 In fairness, the recommended APIs of KURE do not permit constructing such a malformed rewrite,
although the types permit it.

3 compstrat was first implemented in 2013, released on Hackage in 2015, mentioned in the 2018 Cubix
paper, and never explained in an academic paper until now

4 http://cubix-framework.com/
5 The original contains extra code related to management of label indices.

http://cubix-framework.com/
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Figure 2 Slightly-simplified top-level code of test-coverage transformation, screenshotted from
www.cubix-framework.com.

safety and an easier implementation compared to all previous attempts. Using compstrat,
it is natural to define a rewrite where e.g.: the compiler guarantees that expressions will only
be transformed into other expressions, and guarantees that the transformation may be run
on Python and Java programs but not C.

Previous Cubix papers [9, 4, 3] shied away from discussion of strategy combinators. This
paper is the first presentation of the compstrat library. We shall not present most of its
elements – they are built from the basic combinators the same way as in every other strategy
combinator library. We shall dwell briefly on its multi-language ability – much of that comes
from the representation, and would be the same for any other paradigm built atop Cubix.
But we shall present the key ideas of what makes compstrat different.

2 Background

In this section, we give an abbreviated summary of incremental parametric syntax and
compositional data types, the program representation underlying Cubix. The rest of this
paper will assume familiarity with strategy combinators.

Incremental parametric syntax is a technique for modularly constructing the datatypes
of terms in different languages, in a way where an off-the-shelf representation for a single
language can be incrementally refined into one built from modular components, gradually
reducing the amount of language-specific code that needs to be written to build a tool
for multiple languages. Though it can be presented abstractly, in terms of operators for
combining and modifying the signatures of languages, its only known instantiation, in Cubix,
is built as an extension of compositional data types [1], which are in turn an extension of
data types à la carte [12]. We now present extremely compressed explanations of each of
these.

First, the idea of data types à la carte is to make a datatype modular by
removing explicit recursion. Instead of defining terms as a recursive datatype such
as data Exp = Add Exp Exp | Val Int, the datatype is defined in unfixed form, with the
recursive occurrences of Exp replaced by a parameter to be filled in later, i.e.:
data Exp e = Add e e | Val Int. With the recursion removed, the cases of this datatype can
be decomposed into fragments which can be recombined in exponentially many variations.
Likewise, operations on nodes are defined on individual fragments, and combined into
operations on any datatype built out of these fragments. See Figure 3 for a full example.

The encoding of datatypes à la carte produces only unisorted terms. Compositional
data types extend this further by allowing multi-sorted terms. The encoding is modified so
that everything takes an extra parameter indicating the sort; datatypes are now defined as
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1 data Add e = Add e e
2 data Val e = Val Int
3 data (f : + : g) e = Inl (f e) | Inr (g e)
4 data Term f = Term (f (Term f))
5
6 type ExpSig = Add : + : Val
7 type Exp = Term ExpSig
8
9 addExample :: Exp

10 addExample = Term (Inl (Add (Term (Inr (Val 118))) (Term (Inr (Val 1219)))))

Figure 3 Using data types à la carte to present the expression 118+1219, with addition and
constant nodes defined in separate fragments.

1 data ArithL; data AtomL; data LitL
2
3 data Arith t l where
4 Add :: t AtomL → t AtomL
5 → Arith t ArithL
6 data Atom t l where
7 Var :: String → Atom t AtomL
8 Const :: t LitL → Atom t AtomL
9 Parens :: t ArithL → Atom t AtomL

10
11 data Lit (t :: ∗ → ∗) l where
12 Lit :: Int → Lit t LitL

Figure 4 Example language fragments.

GADTs so that each constructor may only have one sort. Terms in compositional data types
have types which look like Term LangSig ExpL, which is read “terms of sort Exp in language
Lang.” See Figures 4 and 5 for a full example.

Incremental parametric syntax is enabled by taking compositional data types and adding
a small idea with a huge impact. The key new ingredient in incremental parametric syntax
is to control the subsorting relationship by including sort injection nodes. These nodes allow
the tree to transition between language-specific and generic nodes in a controlled fashion, so
that terms are now represented as a combination of language-specific and generic nodes. This
both allows incremental development to support a new language, deferring the upfront cost
to replace all nodes in a language with generic nodes, and also allows for language-specific
customization of generic nodes, by e.g.: making it possible to independently specific which
nodes in a specific language may be used as the LHS of a generic assignment node. In total,
this approach makes it feasible to scale the datatypes à la carte approach to multiple real
languages. Indeed, Cubix is the first known framework6 to do so, with support for C, Java,
JavaScript, Lua, and Python [4]. Figure 6 gives an example of such a tree, and Table 2 gives
examples of ways to refer to different classes of terms.

6 GitHub’s semantic framework is the second, although they later abandoned this approach, citing
difficulties stemming from their monosorted approach [13]

1 data (:+:) f g t l = Inl ( f t l ) | Inr (g t l )
2 data Term f l = Term (f (Term f)) l
3 type LangSig = Arith :+: Atom :+: Lit
4 type LangTerm = Term LangSig

Figure 5 Combining the fragments of Figure 4.
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AssignIsCExpr

CLhsIsLhs CExprIsRhs

CExprStmt

CBlockStmt

Figure 6 A term in the incremental parametric syntax for C. The ellipses (light blue) represent
language-specific nodes; rhombi (purple) represent generic nodes; rounded rectangles (green) represent
sort injection nodes.

Table 2 Various term types in Cubix.

Type signature Description
Term f AssignL Assignments in any language
Term MJavaSig l Java terms of any sort
(Assign :<: f) ⇒ Term f IdentL An identifier in any language that contains generic assignments

Term f (StatSort f) A statement in any language. The statement sort is
language-specific.

( InjF f IdentL PositionalArgExpL
, CallAnalysis f) ⇒ Term f IdentL

An identifier in any language which supports a call analysis,
and where identifiers may be used as ordinary arguments
to functions

One result of this approach is that a single sort may have significance across multiple
languages. This means that testing for the sort of a node can be quite useful in strategy
combinators, a fact which compstrat exploits.

3 compstrat: Strategy Combinators on Compositional Datatypes

Strategy combinators are an expressive way to build complicated traversal patterns from small
building blocks, exemplified by the famous definition of a bottom-up traversal combinator,
allbu (t) = all( allbu (t )); t. Built on these primitives, implementations of strategy combinator
libraries tend to be short, elegant – and identical. Indeed, compstrat provides many
identically named combinators to KURE. We thus focus our presentation of compstrat on
these building blocks.

Lämmel, Visser, and Visser[6] name a handful of primitives that any strategy combinator
library must support. Their list consists of: basic identity and failure strategies, sequential
composition, left-biased choice, type-based dispatch, and one-layer traversals applying a
strategy to either all or any child of the present node. We shall first define the type of
rewrites, from which the basic rewrites and sequencing combinators follow trivially, including
the sequencing of rewrites with failure (which is achieved by use of the Maybe monad, same as
in other Haskell strategy combinator libraries). From there, we turn to discussion of the two
other main primitives: one-layer traversal ( all in Stratego), and type-specific rewriting.

We do simplify some aspects not relevant to showing the unique aspects of compstrat’s
approach. We present definitions on monads rather than applicatives, and ignore the support
for terms with holes. We also present only type-preserving rewrites, ignoring type-altering
transformations such as the crush operator.

EVCS 2023
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type RewriteM m f l = f l → m (f l )
type Rewrite f l = RewriteM Identity f l

type GRewriteM m f = forall l . RewriteM m f l
type GRewrite f = GRewriteM Identity f

Figure 7 Rewrite type.

3.1 The basic encoding
Figure 7 gives the type of rewrites in compstrat.

While straightforward, this is already delivering most of the novel value of compstrat.
Consider a rewrite of type Rewrite (Term f) ExpL, which is statically guaranteed to rewrite
expressions to expressions in any language. KURE’s encoding does not have a type for
multi-language rewrites at all. Meanwhile, the encodings of SYB, Strafunski, and RecLib
at best permit a rewrite that can run on any type whatsoever. Meanwhile, compstrat’s
encoding allows adding arbitrary constraints to the languages and sorts supported by a
rewriting, e.g.: (CanTransform f) ⇒ Rewrite (Term f) ExpL, allowing high levels of control on
where a rewrite may be applied.

Note that the traditional presentation of strategy combinators assumes all rewrites may
fail. But here, rewrites can be defined which are statically known not to fail. Only some
combinators deal in failable rewrites, indicated by a MonadPlus constraint on the m variable.

3.2 One-layer traversal
Applying a rewrite to every child of a node should be simple, and it is: the one-layer traversal
primitive is effectively identical to a method of HTraversable from [1], an analogue of the
standard Traversable typeclass for higher-kinded terms.
allR :: (Monad m, HTraversable f) ⇒GRewriteM m (Term f) →GRewriteM m (Term f)
allR f (Term t) = fmap Term (hmapM f t)

Yet this definition, by using a typeclass which generalizes over all tree nodes but not other
types, has advantages over the equivalent combinators for the other libraries. The authors of
KURE [11] criticized the inflexibility of approaches such as SYB based on Data.Data, where
the only way to define a custom traversal pattern is to provide a custom Data instance –
but such an instance would violate the laws that Data is supposed to follow!7 Like KURE,
compstrat makes it possible to define a custom traversal pattern, as custom HTraversable
instances are simpler to write than Data and have fewer constraints. But unlike KURE, users
can still obtain the default traversal automatically.

3.3 Specialization and dispatch
Like previous approaches, the use of compositional data types makes it straightforward
to define a rewrite which fails except on a single constructor. Unlike previous approaches,
compstrat’s Rewrite type makes it easy to give a type signature for a rewrite which only
runs on a single sort – or a single language, or a family of sorts. For example, here’s a rewrite
that is statically known to run only on languages which have generic identifiers.

7 An alternative is to add extra typecases to every rewrite application over every tree that may contain a
node where the default traversal is insufficient.
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−− compstrat
tryR :: (Monad m) ⇒RewriteM (MaybeT m) f l →RewriteM m f l

−− KURE
tryR :: MonadCatch m ⇒Rewrite c m a →Rewrite c m a

−− Closest equivalents in Strafunski
succeed :: Maybe x →x
ifM :: MonadPlus m ⇒m a →(a →m c) → m c → m c

Figure 8 Support for failure.

vandalize ’ :: ( Ident :<: f) ⇒ Rewrite (Term f) IdentL
vandalize ’ ( project → (Just (Ident s ))) = return ( iIdent (s ++ ‘‘_foo’’))

It uses the open-sum projection operator, available in all implementations of datatypes à
la carte.

compstrat uses its DynCase class to allow specialization based on sort, as distinguished
from the more typical specialized based on specific constructors is based on the DynCase class.
It takes a term of an unknown sort b, and possibly returns a proof that b is equal to some
known sort a. This makes it possible to lift single-sorted rewrites to multisorted, as in the
dynamicR and promoteR combinators later in this section.

class DynCase f a where
−− | Determines whether a node has sort @a@
dyncase :: f b → Maybe (b :~: a)

The DynCase typeclass may look like the built-in Typeable typeclass relied on by SYB,
Strafunski, and RecLib. But it’s different in an important way. A generated instance of
this class for the language in Figure 4 looks like this:
instance (Arith :<: f) ⇒ DynCase (Term f) ArithL where

dyncase x = case project x of
Just (Add _ _) →Just Refl
_ → Nothing

As we can see, dyncase is implementable just as a mundane case match, without terms
needing to carry extra runtime-type information, as is required by Typeable. It is used to
write isSortR, which fails except at nodes of the desired sort, and dynamicR, which makes a
sort-specific rewrite run at all sorts, failing at all save the desired sort.
isSortR :: (DynCase f l , MonadPlus m) ⇒Proxy l →RewriteM m f l’
dynamicR :: (DynCase f l , MonadPlus m) ⇒RewriteM m f l →GRewriteM m f

3.4 Flexible Monad Stack
An idea which could be easily added to existing strategy combinator libraries, but strangely
isn’t, is the flexible monad stack. To explain this, let us look at the type signature of
compstrat’s tryR combinator in Figure 8, which takes a failable rewrite and makes it always
succeed, and contrast it with its equivalents in other frameworks.

(Note that we found no equivalent in either SYB or RecLib.)
The compstrat version takes a rewrite which may fail, and returns one which is statically

known not to. The other versions input and output rewrites in the same monad. As a
result, code running rewrites in the other frameworks must frequently check for failure or
call fromJust on code which is known to never fail; clients of compstrat need not.

tryR is used to define promoteR, which escalates a sort-specific rewrite to run on all sorts,
doing nothing at nodes of the wrong sort.

EVCS 2023
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promoteR :: (DynCase f l , Monad m) ⇒RewriteM (MaybeT m) f l →GRewriteM m f
promoteR = tryR . dynamicR

Other combinators in compstrat using this idea include allStateR , which accumulates
results in a local state monad, and prunetdR, which runs a failable transformation on all nodes
except the descendants of transformed nodes.

3.5 Putting it together
We can now show a simple transformation built using compstrat: using only two lines of
code and two lines of type signatures, the vandalize transformation modifies all identifiers in a
term of any language that uses Cubix’s generic identifier node. Note that it (1) is guaranteed
to never fail (2) can only be run on terms, and only terms in applicable languages, and (3) is
guaranteed to never change the sort of what it runs on (e.g.: when run on an expression,
returns an expression; when run on a declaration, returns a declaration). It uses vandalize ’
defined above; here is the new part:
vandalize :: ( Ident :<: f , HTraversable f) ⇒ GRewrite (Term f)
vandalize = allbuR (promoteR (addFail vandalize ’))

4 Examples and Applications

The original Cubix paper presented four program transformations, all of which use
compstrat, although two of them only use it in a small way. We defer to the original
paper [4] for a description of these transformations. Here we present code snippets taken
from these transformations showing interesting uses of compstrat.

Specifically, we show pieces of the Hoist transformation, which lifts variable declarations
to the top of their scope. It uses the custom combinator transformOuterScope f g, which runs g
on all nodes outside a scope-delimiting block, and f on all nodes inside it. New combinators
used here include guardBoolT, which takes an operation returning a boolean and converts it
to a failable rewrite; guardedT, essentially an if-statement in strategy-combinator form; and
addFail :: Rewrite m f l → Rewrite (MaybeT m) f l, which treats a non-failable rewrite as failable.
Another thing to note here is the use of the CanHoist constraint, which ensures this combinator
(and others in the same file) may only be run on applicable languages.

transformOuterScope :: ( MonadHoist f m, CanHoist f)
⇒ GRewriteM m (Term f) →GRewriteM (MaybeT m) (Term f)

→ GRewriteM m (Term f)
transformOuterScope f g = tryR (

guardedT (guardBoolT (isSortT (Proxy :: Proxy BlockL))) (addFail ( alltdR f ))
(addFail g)

>=> allR (transformOuterScope f g))

Along with the sort-specific rewrites addIdents, transformBlockItems, and transformStatSorts ,
this combinator is now used to define the core of the Hoist transformation.

hoist = transformOuterScope
(promoteR addIdents)
((dynamicR transformBlockItems)

>+> (dynamicR transformStatSorts))
items

5 Conclusion

We have presented a library for type-safe strategy combinators. Unlike all previous approaches,
compstrat allows programmers to build transformations that are statically guaranteed not
to fail, statically guaranteed to preserve sorts, and restricted at the type level to only run
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on (certain classes) of terms rather than on arbitrary datatypes. compstrat is available
from https://github.com/cubix-framework/cubix/tree/master/compstrat, a part of
the Cubix framework.
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