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Abstract
Coccinelle is a program-transformation system for C code. It has been under development since
2005 and has been extensively used on the Linux kernel. The design of Coccinelle was inspired in
part by the author’s previous experience in using Stratego/XT, developed by Eelco Visser. This
paper reflects on some of Coccinelle’s design choices and their relation to Eelco Visser’s work.
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1 Introduction

Program transformation has a long history [4, 20, 33]. Anyone who loves to write code
also, somewhat ironically, begins to wonder whether a tool could write code for them, or
at least perform the repetitive code transformations that are inevitably required as design
choices change and a system evolves. This wondering has led generations of researchers to
investigate the design of tools to automate various kinds of program transformations. Still,
many of these approaches have been designed around toy languages or required users to
express transformations at the abstract-syntax tree level, and are thus not practical for use
on real, large software projects.

In 2004, the author, with Gilles Muller, began to investigate the problem of how to
migrate Linux kernel device drivers from Linux kernel version 2.4 to Linux kernel version 2.6.
At that time, the even numbered versions of the Linux kernel were considered to be stable
releases, and were maintained with bug fixes, in parallel to the odd numbered versions,
namely Linux kernel version 2.5, in which new features were integrated. Linux 2.4 was
first released in January 2001 and Linux 2.6 in December 2003, amounting to a substantial
time lapse, with many intervening changes across the code base. Manually updating code,
such as device drivers maintained outside the Linux kernel code base, for use with Linux
version 2.6 could be a substantial challenge. Our study of changes performed on device
drivers in the Linux kernel source tree [23] showed that the changes required could range
from simple refactorings [9], such as renaming a function or reorganizing a data structure, to
scattered changes across a function or file, potentially depending on some properties of the
code context. Our goal was thus to devise a transformation language that would be easy for
Linux kernel developers to use in automating all such changes.

When we started this investigation, the idea of using tools to generate, analyze, and
transform systems code was already attracting interest. The Devil domain-specific lan-
guage for generating kernel-device interface code from high-level specifications was proposed
in 2000 [19], with a follow-up paper in 2001 investigating the robustness of the generated
code [26]. Metal [7] was proposed in 2000 for systematically searching Linux and OpenBSD
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code for patterns of code corresponding to bugs, and was followed up with strategies for
inferring such patterns from analysis of a code base [8, 11]. AspectC [5] appeared in 2001, tar-
geting the instrumentation of FreeBSD with pluggable cross-cutting strategies for prefetching
data from the disk. CIL [20], published in 2002, offered a parser and visitor for processing C
code facilitating the development of analyses and transformations of C code at the abstract-
syntax tree level. Some of these approaches, such as Metal and CIL, allow finding complex
patterns of code and, in the case of CIL, transforming them. But they require programming-
language-specific expertise, in automata and abstract-syntax trees, that are not within the
comfort zone of the typical Linux kernel developer. None of these approaches enables systems
code developers to easily create fine-grained transformation rules for the specific needs of
porting Linux kernel code from an older version to a more recent one. Instead, it was Eelco
Visser’s Stratego/XT [1], a transformation system designed for general-purpose code written
in languages such as Java, that provided a guiding light.

The rest of this paper illustrates some recurring code changes that were performed in
Linux 2.5 and Linux 2.6, gives a brief overview of Stratego/XT and how it inspired our work,
and concludes with a short presentation of our transformation tool for C code, Coccinelle [22].
Coccinelle was first released in open source in 2008. As of October 2022, Coccinelle has been
used in over 9000 commits to the Linux kernel. More information about Coccinelle is available
in a range of research papers on its design and application [3, 13, 14, 15, 16, 18, 24, 27], and
at the Coccinelle web site.1

2 Some examples of Linux kernel changes

This section presents some widespread changes that were performed in Linux 2.5 or 2.6 that
illustrate some important requirements for Coccinelle. The examples come from the history
tree of the Linux kernel.2 The change extracts, expressed as Unix patches [17], have been
simplified for readability and to focus on the most relevant changes.

2.1 A new argument for end_request

Our first example illustrates a straightforward change that only requires considering a
single function call. Nevertheless, it illustrates what can go wrong when developers make
such changes manually or using tools such as search and replace that are not aware of the
programming-language syntax.

Prior to Linux 2.5.22, the function end_request always worked on the request stored
in the global variable CURRENT. In Linux 2.5.22, with the goal of eliminating CURRENT,
the function was reorganized to take the request as an argument. The first step in the
reorganization was thus to add CURRENT as a first argument to the existing calls, as illustrated
by the patch in Figure 1.

1 @@ -929 +929 @@
2 - end_request (res );
3 + end_request (CURRENT , res );

Figure 1 Change to end_request in drivers/mtd/nftlcore.c in commit 4fe6433a5d9e.

1 https://coccinelle.gitlabpages.inria.fr/website
2 git://git.kernel.org/pub/scm/linux/kernel/git/history/history.git

https://coccinelle.gitlabpages.inria.fr/website
git://git.kernel.org/pub/scm/linux/kernel/git/history/history.git
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This straightforward change affected 40 files. Still, it was noted in the original work on
Coccinelle [22] that the change was also incorrectly applied to a call to the unrelated function
swimiop_send_request, showing the importance of a change-automation tool being aware
of token boundaries in the programming language.

2.2 Changes in the usage of usb_register_dev and
usb_deregister_dev

Our second example illustrates a case where constructing the changed code requires extracting
information from other parts of the affected file.

In Linux 2.5.25, the function usb_register_dev lost its first argument and gained two
new arguments, as illustrated by the patch in Figure 2. The new values are not part of the
original call, nor in the adjacent code. Instead, they are the values stored in some members
of the structure whose value was the original first argument.

1 @@ -815 +815 ,2 @@
2 - retval = usb_register_dev (& usblp_driver , 1, &usblp ->minor );
3 + retval = usb_register_dev (& usblp_fops , USBLP_MINOR_BASE , 1,
4 + &usblp ->minor );

Figure 2 Change to usb_register_dev in drivers/usb/class/printer.c,
in commit 26f8beab467e.

At the same time, the function usb_deregister_dev lost its first argument, as illustrated
by the patch in Figure 3. This change is straightforward, requiring only information that is
part of the original function call.

1 @@ -375 +375 @@
2 - usb_deregister_dev (& usblp_driver , 1, usblp ->minor );
3 + usb_deregister_dev (1, usblp ->minor );

Figure 3 Change to usb_deregister_dev in drivers/usb/class/printer.c,
in commit 26f8beab467e.

These changes affected 9 Linux kernel files, and show the importance of being able to
collect information from across the definitions in a file, or even the entire code base.

2.3 Introduction of kzalloc

Our final example illustrates a case in which program control-flow has to be taken into
account.

In Linux version 2.6.14, the function kzalloc was introduced, to replace the composition
of a call to the Linux kernel memory allocator kmalloc and a zeroing call to memset, as
illustrated by the patch in Figure 4.3 Unlike our other examples, this change is not obligatory,
because the functions kmalloc and memset remain unchanged in the Linux kernel. Still,
making the change results in code that is more concise and readable, since the zeroing is
immediately apparent at the allocation site.

3 This change was overlooked over the years, and was made by the author in 2022:
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=
3c0e3ca6028b
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1 - request = kmalloc (16, gfp_mask );
2 + request = kzalloc (16, gfp_mask );
3 if (! request )
4 return -ENOMEM ;
5 urb = usb_alloc_urb (0, gfp_mask );
6 if (! urb) {
7 kfree( request );
8 return -ENOMEM ;
9 }

10 - memset (request , 0, 16);

Figure 4 Introduction of kzalloc in drivers/usb/net/zd1201.c, in commit 3c0e3ca6028b.

This change raises a number of challenges. Commonly, kmalloc and memset are only
separated by a conditional checking whether the allocation failed. Other intervening code,
however, is possible, as shown in Figure 4, raising the need to adapt to different scenarios.
Both kmalloc and memset are very common in the Linux kernel; the change should only
be performed if the memset occurs in the control flow whenever the allocation succeeds and
before the allocated memory is used. Furthermore, it is desirable for the amount of memory
that is allocated and zeroed to be the same, as will be the case after the introduction of
kzalloc.

3 Stratego/XT

Stratego/XT provides a language and a toolset for program transformation [1]. It grew out
of Visser’s work on rewriting in the late 1990s [31, 32]. Stratego/XT offers the ability to
write complex transformations as a composition of a strategy, which is used to select terms
to transform, and one or more transformation rules, which describe what changes to perform.
Strategies describe how to navigate around an abstract-syntax tree to identify terms to
consider for transformation. Transformation rules describe how to decompose an existing
term, and use the components to build a new one. Stratego/XT is programming-language-
independent. Internally, it adopts the Aterms of van den Brand et al. [28], that consists of a
constructor name and a sequence of arguments. Stratego/XT uses ATerms to describe an
abstract-syntax tree.

Writing transformation rules in terms of abstract-syntax trees requires the user to be
aware of the constructor names and corresponding arguments that describe the various kinds
of terms of interest. Obtaining this information may require studying documentation or even
a language implementation, and the resulting transformation rules are verbose, since, e.g.,
even representing a simple variable x requires both the constructor for variable references
and that constructor’s argument list. The Stratego/XT user, however, does not interact with
ATerms directly. Instead, Stratego/XT uses Syntax Definition Formalism (SDF), developed
in Eelco Visser’s PhD thesis [30], to provide parsers for various languages. A transformation
is expressed as a fragment of concrete syntax, parameterized by metavariables, that is to be
transformed into another fragment of concrete syntax, possibly referencing the metavariables
mentioned in the former fragment. A metavariable, as previously proposed by van Deursen
et al. [29], is a variable representing an arbitrary term of a particular syntactic category:
expression, integer constant, etc. Metavariables are declared by prepending ~ to the variable
name, but there are some predefined metavariables, such as e for an expression, or i for
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an integer constant. Using these predefined metavariables makes the fragments in the
transformation rule look entirely like ordinary code, which makes the transformation to be
performed instantly recognizable to the software developer.

At the time when we were first designing Coccinelle, Stratego/XT mainly supported
Java code; a port for C code existed, but feedback from Eelco Visser suggested that it did
not support enough of the C language to be reliably applied to the Linux kernel. In some
experiments that we had performed in the context of another project, using Java, we also
found that the strategies, while elegant, could also be complex to use, perhaps requiring more
intuition about code as an abstract-syntax tree than would be typical of most Linux kernel
developers. Nevertheless, the combination of fragments of concrete syntax, abstracted by
metavariables, particularly metavariables that do not require any specific annotation within
the fragments, appeared to be a powerful approach around which to design a user-friendly
transformation language for real world software.

4 Coccinelle

Inspired by the ease of specifying transformation rules in Stratego/XT in terms of concrete
syntax, in 2005, we began the design of Coccinelle. The initial idea was to propose a
transformation language in which rules were explicitly composed of a phase for the collection
of information from the source code, followed by a phase for the processing of that information.
This design was motivated by Stratego/XT’s strategies. Our postdoc, Yoann Padioleau,
however, pointed out that this design still relied too much on a programming-languages point
of view. To really provide something that would be usable by Linux kernel developers, we
should directly follow their existing habits. Linux kernel developers are focused on lines of
source code, and exchange and reason about changes in terms of patches [17], i.e., extracts of
the source code in which lines to remove are indicated by a - at the beginning of the line,
and lines to add are indicated by a +. Patches are easy to create from source-code changes,
using the Unix diff tool [17], and easy to understand, because they contain the source code
that the developer is already familiar with. They have the disadvantage, though, that each
patch is completely tied to specific locations in the source code, due to the use of file names,
line numbers, and the specific variable names, whitespace, etc. in the changed code and its
context. To create Coccinelle’s semantic patch language, SmPL, we considered how to make
the patch notation more generic.

A semantic patch consists of a sequence of one or more rules, each of which describes code
to remove and add. A SmPL rule has two parts: first a list of metavariables, surrounded
by a pair of @@, that can be used in the second part, a pattern, describing the code to
match and transform. Rather than using ~ and reserved names, as in Stratego/XT, SmPL
metavariables are declared explicitly with their syntactic categories, such as expression
or statement,4 indicating the kind of code term that they can match. A pattern is a code
fragment parameterized by metavariables. Lines in this fragment can be annotated with
- and +, indicating code to remove and add, respectively. SmPL contains operators for
describing (intraprocedural) program control-flow and expression types, i.e., some minimal
semantic properties. We illustrate the main features of SmPL by revisiting the examples of
Section 2.

4 As fans of statically typed languages, we considered such declarations to be important, but we were
told later by some systems code developers with no formal programming-languages training that they
found the need to choose the syntactic category of a metavariable to be a burden, because they were not
familiar with the terminology. We added a generic syntactic category metavariable, but this syntactic
category cannot always be used, because the metavariable syntactic categories are sometimes essential
to avoid parser conflicts.

EVCS 2023
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4.1 A new argument for end_request

To make the change for end_request (Figure 1), it is necessary to match the existing call,
remove it, and replace it with one that has CURRENT as an extra first argument. The form
of the original argument is not important, and so we abstract over this argument with a
metavariable. Note that the resulting pattern is identical to the code found in the example
change in Figure 1. As the argument was already a simple variable in the code of Figure 1,
it suffices to abstract over this variable.

1 @@ expression res; @@
2 - end_request (res );
3 + end_request (CURRENT , res );

Some variations on the above semantic patch are possible. First, a function call, such
as the call to end_request, need not appear at the top level in a statement. To match the
call as an arbitrary subexpression, the trailing semicolon can be omitted. The resulting
semantic patch will match a function call expression, wherever it occurs, rather than only as
a complete statement. Second, in the spirit of the traditional patch syntax, Coccinelle allows
adding and removing any sequence of tokens, as long as the pattern to match against the
existing code and the pattern to create the generated code each represents a well-formed
term in the C language (statement, expression, type, etc.). Thus, rather than removing the
entire end_request call, we can leave the existing code in place and simply add a new first
argument. A semantic patch incorporating both variations is as follows:

1 @@ expression res; @@
2 end_request (
3 + CURRENT ,
4 res)

In either case, there is no danger of matching a call to swimiop_send_request, as
Coccinelle tokenizes and parses the code according to the grammar of the C language.

4.2 Changes in the usage of usb_register_dev and
usb_deregister_dev

To make the change for usb_register_dev (Figure 2), it is necessary to find the values of
certain members of the structure that is the first argument of the call to usb_register_dev.
Coccinelle processes each top-level declaration (function, variable, type, etc.) separately, so
matching both the structure definition and the call to usb_register_dev requires multiple
rules. We construct a semantic patch that first matches the structure and then uses the
collected information to update any call to usb_register_dev that refers to that structure.
While most SmPL patterns, as illustrated in Section 4.1, only match code that has the
exact form presented, there is an exception in the case of structure initializations. As the C
language only requires specifying values for the non-zero members and allows the member
values to be specified in any order, the first rule, below, matches any structure initialization
that provides values for at least the members fops and minor, in any order. We give this
first semantic patch rule the name rule1 (line 1), so that the metavariable bindings that it
creates can be referred to in subsequent rules.

1 @ rule1 @
2 identifier I;
3 expression fops_val , minor_val ;
4 @@
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5 struct usb_driver I = {
6 fops: fops_val ,
7 minor: minor_val ,
8 };

Equipped with the information stored in the fops and minor members of the usb_driver
structure, we then create a second rule to update the call to usb_register_dev. This rule
inherits the various metavariables bound by rule1 (lines 2 and 3). If a file initializes multiple
usb_driver structures, this rule will be applied once per distinct set of bindings for the
inherited metavariables.

1 @@
2 identifier rule1.I;
3 expression rule1.fops_val , rule1.minor_val , E1 , E2;
4 @@
5 usb_register_dev (
6 - &I
7 + fops_val , minor_val
8 , E1 , E2)

The transformation for usb_deregister_dev, shown below, is then straightforward. Note
that the rule could have been written to simply remove the first argument, regardless of its
form. However, the following rule checks that this argument is the same as the name of
the matched structure. In this way, the transformation will only be carried out if it can be
carried out for both the usb_register_dev and usb_deregister_dev calls. If the needed
information is not available, both calls will remain with the wrong number of arguments,
having the wrong type. Untransformed code will thus cause an error when compiled, signaling
to the user that the semantic patch has to be extended to take some other conditions into
account.

1 @@
2 expression E1 , E2;
3 identifier rule1.I;
4 @@
5 usb_deregister_dev (
6 - &I,
7 E1 , E2);

4.3 Introduction of kzalloc

To introduce the use of kzalloc, it is necessary to find a call to kmalloc such that the
entire allocated region is subsequently zeroed using memset. As illustrated by the example
patch in Figure 4, the calls are not necessarily adjacent, and indeed they may be separated
by some code that is specific to the local context. Instead, we need to ensure that every
execution that passes through the call to kmalloc also includes execution of a call to memset.
To describe such control-flow paths, Coccinelle provides the pattern element “...”.

A simple semantic patch introducing kzalloc is shown below:

1 @@
2 expression x, size , flag;
3 @@
4 - x = kmalloc (size , flag );
5 + x = kzalloc (size , flag );
6 ...
7 - memset (x, 0, size );

EVCS 2023
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This semantic patch ensures that the return value of kmalloc is stored in an expression
that has the same form as the expression in the first argument of memset, and that the
second argument of kmalloc is an expression that has the same form as the expression in the
third argument of memset. It also ensures, via the “...”, that every execution path through
the call to kmalloc that does not end up in a failure case, e.g., when x is detected to be
NULL, leads to the call to memset. Coccinelle marks failure cases at parse time, by searching
for if statements with only one branch, where the branch ends in a return or goto, which
is a typical coding practice in the Linux kernel. The use of “...” furthermore ensures that
the matched code does not contain another identical call to kmalloc or to memset, as “...”
matches the shortest possible execution path between two terms matching the provided
patterns.

On the other hand, the above semantic patch does not ensure full semantic correctness,
e.g., that x or size is not redefined between the call to kmalloc and the call to memset. To
check for unwanted code within an execution path, Coccinelle allows “...” to be annotated
with when clauses indicating patterns of code that should not occur in the matched region.
Furthermore, the above semantic patch does not accommodate the case where the size of
the allocated region is expressed in different ways in the calls to kmalloc and memset, e.g.,
using the size of the type of x in the kmalloc call and the size of *x in the memset call. To
address this issue, more rules can be used. These features are illustrated in a recent paper
presenting some uses of Coccinelle in more depth [15].

Overall, Coccinelle aims for a WYSIWYG approach (or WYSIWIB – “what you see is
where it bugs”, in the case of semantic patches that are designed to find and possibly fix
bugs [16]). A developer can write a semantic patch that corresponds to the developer’s
understanding of the code and the issues that should be taken into account. The developer
can then test the resulting semantic patch on all or part of the Linux kernel, examine the
results obtained, and extend the semantic patch if needed, to make it more defensive in
the case of false positives, and to take into account more cases if some variations seem to
be overlooked. Coccinelle provides very minimal syntactic safety, e.g., ensuring that an
expression is replaced by another expression, but otherwise the developer can iteratively work
towards a semantic patch that is as safe as necessary. Through this process, the semantic
patch remains readable due to the use of patterns of C code that are laid out in a way that
reflects how they appear in the program source code.

5 Implementation

The primary focus of this paper is on the user experience with Stratego/XT and with
Coccinelle. Nevertheless, to achieve a user experience, it is necessary to actually implement
the transformation system.

Coccinelle is implemented in OCaml. It relies on two parsers, one for SmPL and one
for the C language. Both parsers were written from scratch, using the yacc-like parser
generators menhir [25] and ocamlyacc, respectively. Creating these parsers from scratch
allowed collecting exactly the information required by Coccinelle, including information
about comments and whitespace; such information is traditionally discarded by compilers,
but is essential to generate transformed source code that is identical to the original source
code except at the places where transformations were performed. Creating a parser from
scratch also allowed treating the exact variant of the C language used by the Linux kernel,
made it possible to avoid macro expansion by parsing the macro uses directly, which both
offers efficiency and makes it possible to match and transform macro uses [14], and enabled
creating a parser for SmPL that can accept arbitrary code fragments, notably expressions,
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that are not designed to occur at the top level in the C grammar. More details about the
parser design are presented by Padioleau [21]. The main components of the rest of the
implementation of Coccinelle include an encoding of SmPL in a variant of computational tree
logic (CTL) [3], inspired by the work of Lacey et al. on proving the correctness of compiler
optimizations using temporal logic [12], and a custom pretty printer that reconstructs the
program from the original tokens, modified by the specified transformations. In practice, it
is the pretty printer that has required the greatest maintenance effort over the years.

After completing Stratego/XT, Visser designed the language workbench, Spoofax [10],
with the goal of facilitating the design and implementation of domain-specific languages
(DSLs), including generation of syntactic and semantic verifications and generation of an
associated integrated development environment (IDE). As Coccinelle is essentially a domain-
specific language for transforming C code, we may consider whether a tool such as Spoofax
would have facilitated its development. While Spoofax includes many impressive features,
it turns out to be a poor match for Coccinelle. A main goal of Coccinelle is to fit with the
habits of the Linux developer community. It is traditional in this community to use command
line tools and to not impose any particular graphical user interfaces for code development
and maintenance. To fit with these traditions, Coccinelle was specifically designed as a
command-line tool based on text files, that users were free to create however they wanted. In
terms of parsing, most of the challenge, whether for the SmPL parser or for the C parser, is to
parse C code, and to do this without expanding macros. The C language is not context free,
and the goal of not expanding macros adds further complexity. The parser design proposed
by Padioleau to cope with this challenge [21] involves arbitrary lookahead between the lexer
and the parser, and re-encoding the tokens according to the collected information. This kind
of flexibility is not offered by Spoofax, and is probably not necessary for the kind of well
designed DSL that Spoofax targets. Furthermore, the type inference and name resolution
offered by Spoofax are of limited use for Coccinelle, as SmPL does not offer nested scopes.

Still, existing language infrastructure can be useful in implementing variants of Coccinelle
for some languages. Recently, we have started developing a variant of Coccinelle targeting
Rust. For this, we are reusing the parser and abstract-syntax tree offered by Rust Analyzer [6].
Like C, Rust offers macros, but macro uses must conform to the syntax of the Rust language.
Rust Analyzer, unlike the off-the-shelf parsers existing for C at the time when we developed
Coccinelle, also retains all whitespace and comments. While Coccinelle for Rust remains work
in progress, we hope that the use of Rust Analyzer will lead to a simpler implementation.

6 Conclusion

Coccinelle has been under development for more than 15 years. It is used extensively in the
Linux kernel and in other C software. It continues to evolve, to better support the C code as
found in the Linux kernel (a recent request was for better parsing of Sparse attributes [2]),
and to support similar programming languages, such as C++. At the heart of the Coccinelle
philosophy is the goal of doing one thing and doing it well, in a tool that is usable in practice
by domain experts. A similar spirit also infused Eelco Visser’s work.
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