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Abstract
Visitors and Rewriters are a well-known and powerful design pattern for processing regular data
structures in a declarative way, while still writing imperative code. The authors’ “umod” model
generator creates Java data models from a concise and algebraic notation, including code for visitor
skeleton classes according to traversal annotations. User visitors are derived from these, overriding
selected generated methods with payload code. All branches of the visiting trajectory that are not
affected can thus be safely pruned according to control flow analysis. In the first version [7], the
pruning was implemented by dynamic case distinction. Here we have developed a new solution
employing code generation at runtime.

2012 ACM Subject Classification Software and its engineering → Software performance; Math-
ematics of computing → Paths and connectivity problems; Theory of computation → Program
analysis

Keywords and phrases Visitor Pattern, Generative Programming, Control Flow Analysis, Reflection,
Runtime Code Generation

Digital Object Identifier 10.4230/OASIcs.EVCS.2023.20

Supplementary Material Software (Source Code): http://bandm.eu

1 Introduction, Context

Visitors and Rewriters are a well-known and powerful design pattern for processing regular
data structures in a declarative way, still writing imperative code. See Gamma et al. [4],
Palsberg et al. [13], and VanDrunen et al. [18] for the foundations; see Nanthaamornphong et
al. [11] for an empirical study encouraging their use, and for a survey on such studies. Pati
and Hill [14] give a survey on extensions and alternatives of the original pattern – the umod
approach as described below would classify generally as their “dynamic type” and “acyclic”,
its multiphase variant as a “hierarchical” one. Petrashko et al. [15] present a full-fledged
compiler architecture as a sequence of visitor/rewriter phases and emphasize the optimization
needs for compilers in practical engineering. Taking a bird’s-eye view upon complete model
definitions, and planning and optimizing traversals by algebraic means has been a main topic
in “Adaptive Programming” [3][9].

The authors’ “umod” model generator creates Java data models from a concise and
algebraic notation [7]. (For more related work prior to 2011 please refer here.) The tool
generates source text files for the classes which realize the elements of the model. The factor
between the lines of codes of an umod source and the generated Java is in the range of 1:25
to 1:40. Such a reduction significantly improves order, robustness, and maintainability in
software projects, and is a strong argument in favour of source text generation.
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20:2 Visitor Optimization Revisited

1 MODEL M =
2 VISITOR 0 Simple ;
3 VISITOR 1 Rewriter IS REWRITER ;
4 VISITOR 2 Visitor2 MULTIPHASE ;
5

6 TOPLEVEL CLASS
7 A
8 a1 int <-> B1 ! V 0/0 1/0 2/0 ;
9 a2 A ! V 2/1 ;

10 | B1
11 b1 OPT A ! V 1/0 ;
12 b1b SEQ B1 ! V 0/0 ;
13 | B2
14 b2 int -> D ! V 0/0 1/0 2/0 ;
15 b2b OPT B2 ! V 0/1 1/1 ;
16 D
17 d int = "17"
18 | E
19 END MODEL
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a1

b1

a2

b2
D

E

b1b

b2b

all Visitors(0,1,2)
(ignorable = do not

contribute)

VISITOR 2 onlyonlyVISITOR 1

Figure 1 A simple example model definition.

Models realized by umod are collections of instances of these classes, called model elements,
created one after the other explicitly by the programmer, with host language constructor
calls, and linked together by field values. (For technical details please refer to the original
publication [7].) Umod is currently the basis for about twenty small to medium-scale projects
in academy and industry.

Figure 1 shows an example: Uppercase identifiers are names of class declarations, lower
case are instance fields. Indentation with the “| ” operator indicates inheritance/subclassing.

The types of fields are primitive types, references to model classes, references to external
classes, or free applications of the constructors SEQ, MAP/->, REL/<->, OPT and tupling/*.
These behave fully compositionally, allowing complex nestings like “((SEQ int) * string)
<-> (int -> OPT int)”. The generated code includes safe constructor and setter methods
that reject spurious null values, serialization, visualisation, etc.

Much of the power of umod comes with the generated code for visitors and rewriters. in
the second halves of the source lines 8, 9, 11, 12, 14, and 15 in Figure 1, the annotations of
form “V a/b” define traversal plans: The value of a is a numeric identifier of such a plan, the
order of the numbers b gives the sequential order of visiting the fields of this class.

Umod models are not restricted to tree shape – their fields with reference values can span
arbitrary graphs, possibly including cycles. Any straightforward solution like the classical
Walkabout [13] cannot cope with these. The explicit selection of the fields to be followed
allows for cycle-free traversal plans (= “spanning trees”), much more efficiently implemented.1

Using these plans, the generation of visitor classes of different types (plain or multiphase,
rewriters, cyclic rewriters, visualizers etc.) can be declared, as shown in lines 2–4 of the
Figure.

1 Theory and implementation of cyclic visitors and rewriters is much more challenging, see [8].



M. Lepper and B. Trancón y Widemann 20:3

2 Optimization of Visitor Traversal

As known from other visitor frameworks, the visitor pattern is employed by (A) deriving a
class from the abstract visitor’s base class (here: source generated by umod), (B) overriding a
dedicated, overloaded visit method for some selected classes with payload code, and finally
(C) invoking some top-level visit method with the object (graph/model) to be processed.

The visit methods of the generated base class perform just the traversal, according to
the traversal plan. They can explicitly be called from the payload code where appropriate.

When campaigning to introduce generative tools into practice, the gains in production
speed and maintainance always stand against a (presumed or real) loss in execution speed.
Therefore all potentials for optimization should be explored. All descending calls which
never (transitively) reach a payload method, according to the selected traversal plan and the
overridings in this particular programemr-defined visitor subclass, can thus be pruned for
optimization.

The overridden payload methods are inherited along two axes: first by a visitor from its
superclass, then (by explicit casting in the generated code) among the visitees. Descending
into one class valued field successively follows the traversal plan of all ancestors of this class,
and potentially any of its descendant classes. The right side of Figure 1 shows the UML
graph with the associations selected by the different traversal plans.

Must a request to visit an instance of class B1 really be satisfied when there is only one
single payload definition for class E? Not with traversal plan 0. But in plan 1 each B1 has a
direct reference to an object of type A (in UML terms: an “association”), which can be an
instance of B2, which has an association to D, and any instance of this could be an E. In plan
2 such a reference to B2 is even more indirect, namely inherited by B1 from A.

The pruning condition states for every field of every class in the umod definition whether
descending into its value can possibly reach a payload method. It is calculated for one
particular programmer-defined visitor by combining (a) the subclass relation of the model
classes, (b) the map from all field definitions to the sets of all model classes which occur in
their type, (c) the set of fields selected by the traversal plan, and (d) the set of model classes
with an overridden visit method. (a)–(c) are explicit in the model definition, and hence
known to umod when generating the Java source; (d) is specific to the application-defined
visitor class, and extracted at runtime from the loaded class by means of reflection.

The expressions for classGuardU and fieldGuardU in Figure 2 give the the pruning condition
per class or per field, resp., as needed for the two variants of the optimization. Most of it can
be calculated at model compilation time. An intermediate step is to condense the traversal
graph into strongly connected components (SCCs) of classes, and all further graph analysis
is performed on these rather than individual model classes.

In the original implementation [7], the class loading code generated an array of boolean
flags indexed by field ids, and the generated visitor code contained an explicit test before
descending into the current value of a particular field – see the value of fieldGuardU in Figure 2.
This variant is called AOT in the following, because all code is created ahead of time.

A first result of this project was an empirical performance improvement in the range of
10–20% for a realistic application.

A second result was a methodological warning to software developers: The analysis of
the reachability relation turned out to be quite more complex than expected. For example:
The associations from a class to itself B1.b1b and B2.b2b do not contribute to the set of
reachable classes and can be ignored, see Figure 1. But A.a2 does, because of subclassing.
Thus any attempt to apply traversal pruning “manually”, when coding, is not advisable:
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C // = all model classes
F // = all fields, by ids unique across all classes
super : C ↛ C // maps class to its superclass, if not a root class
fieldOf : F → C // maps field to containing class
refersTo : F ↔ C // links fields to the model classes appearing in its type
selectn : 1 ↔ F // = fields selected by the traversal plan n

subSup : C ↔ C = super∗ ∪ super∼∗

reachesn : C ↔ C = (subSup # fieldOf∼ # IDselectn # refersTo)∗

sccn : C → C // each SCC is represented by one of its members
reachesn ∩ reaches∼

n = sccn # scc∼
n

payloadU : 1 ↔ C // = for one particular programmer defined visitor U : the set of
// all classes for which the visit method is overridden.
// Let the underlying traversal plan of U be p.

classGuardU : 1 ↔ C = payloadU # subSup # sccp # reaches∼ # scc∼
p

fieldGuardU : 1 ↔ F = classGuardU # refersTo∼

// _ # _ is relational composition. _∼ is inversion. _∗ is reflexive–transitive closure
// ID_ is the identity restricted to a set. 1 is any singleton type, used for modelling sets.

Figure 2 The umod visitor optimization, symbolically.

protected void action (E elem) {
...
if ( fieldGuard [ idOfField ]) {match(elem.field );}
...

}

Figure 3 Old implementation of pruning, AOT variant.

The strength of the visitor pattern is its declarative nature, which brings compositionality,
maintainability, and automated adaption to model changes, all of which are jeopardized by
manual intervention.

3 Pruning by Runtime Code Generation

In the original implementation (AOT), the pruning has been realized by explict guards
on the caller side; see Figure 3. Although somewhat redundant, this appears to be a more
reasonable choice for performance than placing guards on the callee side: it is not likely for
the just-in-time compiler to inline a method that contains a potentially large conditional
statement, and hence unnecessary calls would be expected.

More recently, we have been experimenting with the potential of dynamic program
specialization by runtime bytecode generation for staged meta-programming [16, 17]. This
allows for a distinct implementation strategy called JIT (because part of the code is created
just in time, at runtime): In a subclass of the given programmer-defined visitor, methods
that constitute entry points for unaffected SCCs can be overridden with code that returns
immediately; see Figure 4. Modern JIT compilers can be trusted to inline such small method
bodies aggressively, thereby fully eliminating the need for caller-side checks. As a bonus,
contrarily to the AOT implementation, visitor optimization has zero cost, regarding both
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// if (! classGuard [idOfS ]) generate the following :
@Override
protected void action (S subElem ) {

return ;
}

Figure 4 New JIT variant of pruning.

new MyVisitor () {
...

}. compile (). match( rootElement );

Figure 5 Explicit use of specialized visitors.

code size and runtime performance, in cases where no pruning can be applied. Furthermore,
the partial pruning of fields with complex types, such as A -> B where B is affected but A is
not, is supported.

For this strategy to take effect, the visitor object that is actually invoked needs to be
replaced by a quasi-clone, an instance of a suitably specialized subclass generated on demand
by the umod runtime library. This is almost transparent to the programmer; see Figure 5:
Every visitor class provides a method compile() that creates and returns such a quasi-
clone. Code is generated only once per programmer-defined visitor class, and subsequently
cached. If the compiler is switched off or otherwise not available, compile() falls back to
simply returning the original, such that programmer code may work as intended, only with
suboptimal performance.

The runtime support in the umod library consists essentially of the inherited base method
compile(), and has been implemented in some 25 lines of code, using the LLJava-live code
generator library [17]. LLJava-live provides a concise builder API and efficients generator
for JVM bytecode to be loaded straightaway into the running application. All Java classes,
including inner, local and anonymous classes can be subclassed.

For the umod specialization mechanism to work as expected, three preconditions must be
met: First, the visitor class to be specialized must have an accessible constructor that takes
no user-visible arguments. Second, necessary configuration with setters must be performed
after compilation. Third, the Java 9+ module system precludes access to the captured
variables of nested classes across class loaders. Hence, support for specialization of nested
classes, as in Figure 5, requires the application to be loaded with a specific class loader
provided by LLJava-live. In the next section this class loader is used also for the other
variants, for fair comparison.

4 Evaluation

In order to compare the dynamic and the generator-based implementations of pruning with
each other and the naïve version in detail, we have constructed some small benchmark tests.
As the umod model for these experiments we use DTM, a semantic model of XML DTDs [2].
In DTM, parameter entities, cross-references between elements, attribute lists, and XML
namespaces are resolved. The umod source defines 29 model classes in about 100 lines of code.
All experiments operate on two fixed DTM document objects, namely the XHTML-1.0-Strict
DTD [20] and the SVG-1.1 DTD [19] (978/5664 LoC in original form, respectively).
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Table 1 Benchmark results (XHTML-1.0-Strict).

Case Naïve AOT JIT

nop 40.06 µs ± 0.41% 0.05 µs ± 2.08% 0.10 µs ± 6.12%
nms 70.89 µs ± 0.85% 47.69 µs ± 0.86% 49.62 µs ± 1.05%
rep 37.00 µs ± 0.42% 21.64 µs ± 0.54% 7.94 µs ± 0.43%
req 39.23 µs ± 0.46% 21.67 µs ± 0.50% 20.67 µs ± 0.38%
few 43.11 µs ± 0.39% 0.96 µs ± 0.31% 1.78 µs ± 1.07%

Table 2 Benchmark results (SVG-1.1).

Case Naïve AOT JIT

nop 70.97 µs ± 1.16% 0.06 µs ± 1.64% 0.42 µs ± 68.11%
nms 205.70 µs ± 5.07% 198.14 µs ± 2.94% 194.81 µs ± 4.22%
rep 87.40 µs ± 1.75% 67.44 µs ± 0.69% 7.60 µs ± 0.51%
req 86.10 µs ± 1.46% 71.37 µs ± 0.61% 74.36 µs ± 1.12%
few 95.74 µs ± 1.38% 1.09 µs ± 0.18% 2.05 µs ± 1.02%

Each benchmark case consists of a single visitor class that performs a simple query on the
data, and hence overrides no more than two methods: nop does nothing at all; nms collects
the set of all names in the document (167/340); rep counts the elements with repeatable
content, i.e., which use the operator +/* (17/63); req counts the required attributes (13/40);
few counts the elements with fewer than five attributes (3/4).

Running times are estimated as wallclock times, measured with System.nanoTime()
precision. Each query is repeated N = 50000 times, after a JIT compiler warmup phase
of the same length. A fresh visitor instance is created in each iteration, and its compile()
method is invoked. The reported numbers are median values and median absolute deviations.
All measurements have been performed on a system with a Core i5-10210U CPU, running
Ubuntu 20.04 and OpenJDK 11.0.16.

The results indicate that the performance improvement by code generation are largely
comparable with those by dynamic pruning, and that both can be quite dramatic for “sparse”
visitors operating on stratified models, where a lot of pruning can occur. It is unclear how
much just a more aggressive JIT compiler would improve the naive approach.

The instantiation of a runtime-generated visitor subclass in the JIT variant requires the
use of reflection, and thus incurs some initial overhead; as can be seen in the nop case, the
overhead is generally small but potentially erratic. By contrast, generated code performs
significantly better in the rep case, where pruning occurs much more sparingly and at deeper
levels of nesting than in the other cases.

5 Umod Visitors Meet Strategic Programming

Strategic Programing (SP), as developed by Eelco Visser and others, is in the first line
a concept, comprising term definitions, requirements, categories, abstract algorithms, etc.
In a second step this concept can be “incarnated” in programming languages of different
paradigms: functional, object oriented, data driven, etc.; see Figure 7 in [6], and more in
Figure 6 in [10].
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Umod differs from most other approaches to visitor generation: It is a domain-specific
language (DSL) with own syntax, semantics and implementation. But it is neither realized by
genuine means of the host language (Embedded DSL, EDSL) as in the “Scrap your boilerplate”
projects [3] [5] and the Scala “Miniphases” [15]. Nor are its syntax and that of the host
language merged into the input format of a dedicated compiler, as with “Tom”. [1] Instead,
the DSL is processed totally independently from the programmer’s Java source, by which its
translation result finally will be called – in so far similar to other visitor generators [9], [12],
and [18]. But umod does not only generate visitor code, but the complete class sources which
make up the model definition, including constructors and setter methods, both with null
check, visualisation, de/serialization, uncurrying and implicit creation of nested containers,
etc.

The generated code of the different variants of visitors carries out the fundamental
operations only: traversal and cycle detection anyhow, plus the tedious task of clone
generation and management by the rewriters. All other functionality must be added by the
programmers explicitly, by the host language means they are familiar with.

Nevertheless, the theory of Strategic Progamming can sensibly be applied also to the
visitors of umod, for classification and clarification of its relations to other concepts. Applying
the check list from [6], p. 171, yields:

Genericity Being Java class definitions, visitors can take part in the standard Java type
parametrization, and can be constructed for models which are themselves parametric.
(Both is currently not yet implemented, but does not impose fundamental problems.) A
generic handling is not possible for field names. Nevertheless, inheritance, as discussed
below, has turned out sufficient for adaptation and re-use of visitors with variants of
models.

Specificity Since the activities are defined by genuine host language code operating on
statically typed arguments, all their details are accessible.

Compositionality Being Java class definitions, umod visitors are not compositional in the
strictest sense, as demanded for strategies. But they profit from the host language’s
inheritance rules along two axes: The generated code calls as default the visiting methods
of the argument’s superclass, and visitors can be derived from visitors. This allows their
refinement, heavily employed in programming practice, see for instance Figure 6.2
Visitors are normal objects and thus first class citizens: they can be passed as arguments
and used by other visitors. This is a weak form of compositionality, as usual in object
oriented languages, see Figure 7.

Traversal The sequential order of the fields on one level of class definition can/must be
specified explicitly by the user, see Figure 1. These sequences are concatenated starting
with the most specific class upwards to the most general. The content of Java collections
is visited by the standard iterators. For instances, the traversal plan 1 in Figure 1 will
for each instance of B2 first visit the objects of type D from the map in field b2, sorted by
the keys, then the reference to b2b, if not null, and finally all B1s contained in a1.
Alternatively, the order can always be overridden by host language means, see Figure 8.

Partiality Any umod visitor can always be applied to any Java object by the method
visit(Object o), which by default does nothing. All activities are controlled by the
type (= Java class) of the visited model component. In particular, visitor source text is
robust against extensions and re-organisations of the model definition.

First-class means that “they can be named, can be passed as arguments, etc.” Being Java
classes and objects, Visitors are first-class in this sense.

2 The complete, runnable source code of these examples will be available at http://bandm.eu.
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class Guarded extends MyVisitor {
@Override public void visit(B2 b) {

if (b.b2.size () >10)
super .visit(b);

}
}

Figure 6 Injection of a further guard into some Visitor MyVisitor of model M.

The classification grid from the section “Rich Variation Points” in [6] is especially useful for
identifying the use cases which could be better supported:
Transformation vs. Query Any kind of query can be carried out by our basic variant of

visitor with register variables, see Figure 9.
For transformations there are dedicated variants called REWRITER and COREWRITER. The

former can deal with sharing, internally and between input and output. The latter can
deal with cycles transparently. The programmer is responsible for the correct choice, see
Figure 10.

Single vs. Cascased Traversal “Cascaded” / “nested” application of visitors is possible by
host language means, see Figures 7.

Top-Down vs. Bottom-Up Traversal This is supported by the MULTIPHASE visitor which
allows independent definitions of the methods pre and post, which are called before and
after descending, resp. The generated code calls as default the visiting methods of the
argument’s superclass,

Depth-First vs. Breadth-First Rraversal The usual implementation for visitors is recursive
descent and thus depth-first search. If required, the code generator could be extended for
breadth-first traversal. Emulation with the current umod code is inconvenient.

Left-to-Right Traversal and vice versa See the discussion of “Traversal” above, and Fig-
ure 8.

Types vs. General Predicates as Milestones “Milestones” in this context comes from “Ad-
aptive Programming” [6], is used like “guards” in SP, and decides which model elements
shall be processed or not. Umod realizes types = Java classes as static and declarative
guards; the programmer can add dynamic and imperative guards by calculated values,
see Figure 6.

Full vs. Single-Hit vs. Cut-Off Traversal Figures 11 and 12 show two ways for preemptive
termination of a traversal. The first uses the exception mechanism of the host language,
while the second completes all pending activities in the normal way, supressing all further
descents by a built-in guard variable. The costs of both solutions must be judged by the
programmer.

Fixpoint by Equality Test vs. Fixpoint by Failure Applying a umod rewriter means to per-
form the specified work once. There is no support for automatic fixpoint iteration.

Local Choice vs. Full Backtracking vs. Explicit Cut Umod rewriters support local choice:
the commitment to rewritten sub-models can be mixed with branching control flow. Full
backtracking is not supported. However, combining local choice with compositionality
(sub-rewriters) is fairly expressive.

Traversal With Effects (Accumulation, Cloning, etc.) All effects are under control of the
programmer, see the discussions above.
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class Main extends Visitor {
public Main( Visitor sub ){ this.sub = sub ;}
final Visitor sub ;
@Override public void visit(B2 b) {

if (b.b2.size () >10)
sub.visit(b);

super .visit(b);
}

}

Figure 7 Visitor calling another visitor.

class MyVistor extends Simple {
@Override public void descend (B2 b) {

// no call to super. descend (b)
match (b.b2b ); match (b.a); match (b.b2);

}
@Override public void descend (B1 b) {

for (int i = b.b1b.size () -1; i >=0; i -=2)
match (b.b1b.get(i));

descend ((A)b1);
}

}

Figure 8 Overriding the traversal plan by explicit code.

int sum = new Simple () {
int accu = 0 ;
public int process ( Object a) {

match (a); return accu;
}
@Override public void visit(D d) {

accu += D.d;
}

}. process ( rootElement );

Figure 9 Query realized with a umod visitor.

A copy = new Rewriter () {
final D d17 = new D(17);
@Override public void visit(D d) {

replace (d17 );
}

}. rewrite ( rootElement );

Figure 10 Rewriting realized with a umod visitor.
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new Visitor {
class Ex extends RuntimeException {}
int result = -1;
public int process ( Object a) {

try { match (a); } catch (EX ex) {}
return result ;

}
@Override public void visit(D d) {

if (d.d > 10) {
result = d.d;
throw new Ex ();

}
super .visit(d);

}
}. process ( rootElement );

Figure 11 Terminating a traversal abruptly by an exception.

new Visitor2 { // is of MULTIPHASE type
{ hasPre = hasDescend = true; }
int result = -1;
public int process ( Object a) {

match (a); return result ;
}
@Override public void pre(D d) {

if (d.d > 10) {
result = d.d;
hasPre = hasDescend = false ;

}
}

}. process ( rootElement );

Figure 12 Terminating a traversal by switching off the descending mechanism.
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6 Conclusion

We have demonstrated how the optimization of visitors based on a declarative data model,
namely by pruning of unaffected node types according to a static analysis, can be implemented
in a purely object-orientied spirit, by transparently subclassing programmer code. The novel
implementation technique requires sophisticated tool support for runtime bytecode generation,
but results in leaner code and compares well against the naïve baseline and the previous
dynamically pruning implementation in empirical benchmarks.

Our approach shows that heterogeneous coding styles and technologies can co-operate in a
natural, efficient and well-arranged way, namely declarative model definition and source text
generation in the large, imperative coding by the programmer in the middle, and automated
low-level bytecode generation in the small. The use of global structural knowledge from
the model specification for code optimization purposes appears as a nice supplement and
complement to the rather local optimization heuristics of current JIT compilers.

Applying two classification grids from Strategic Programming helps to identify the use
cases which are not yet optimally supported by umod.
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