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Abstract
Compilers transform a human readable source language into machine readable target language.
Nanopass compilers simplify this approach by breaking up this transformation into small steps that
are more understandable, maintainable, and extensible. We propose a semantics-driven variant of the
nanopass compiler architecture exploring the use a effects and handlers to model the intermediate
languages and the transformation passes, respectively. Our approach is fully typed and ensures that
all cases in the compiler are covered. Additionally, by using an effect system we abstract over the
control flow of the intermediate language making the compiler even more flexible. We apply this
approach to a minimal compiler from a language with arithmetic and let-bound variables to a string
of pretty printed X86 instructions. In the future, we hope to extend this work to compile a larger
and more complicated language and we envision a formal verification framework from compilers
written in this style.
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1 Introduction

The essence of a compiler is a function from a source language, suitable for humans, to a
machine language, suitable for computers. As our computers have become more powerful we
have seen increasingly complex compilers providing extensive safety guarantees and powerful
optimizations. To manage this complexity, modern compilers are designed as a composition
of multiple passes. However, the total number of passes has traditionally been kept low for
the sake of performance, because each pass adds extra overhead. Thus, compiler passes are
more complicated than necessary and therefore harder to understand, maintain, and extend.

To address this problem, Sarkar et al. introduce the nanopass compiler architecture [11].
In the nanopass architecture, each pass is designed to be as small as possible and has only a
single purpose. To make development of nanopass compilers easier Sarkar et al. proposed a
methodology where each pass only has to specify transformation rules for those language
elements which they actually modify. Additionally, intermediate representations of nanopass
compilers can be specified by listing language elements which are removed or added to an
existing intermediate representation. To address concerns about the performance of this
architecture, Keep and Dybvig have developed a competitive commercial compiler using this
architecture [6].

In this paper, we present our ongoing work on developing an improved nanopass ar-
chitecture. As our foundation we use a higher-order effect system [1] which is a state of
the art technique for modeling the semantics of programming languages with side effects.
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22:2 Towards Modular Compilation Using Higher-Order Effects

Our approach has the practical advantage of preventing type errors in the compiler and
ensuring all cases are covered, which means that the passes defined using our architecture are
guaranteed to be syntactically correct by construction. Additionally, our approach abstracts
over the control flow giving many of the benefits of continuation-passing-style while retaining
a simple monadic interface.
Concretely, we make the following contributions:

We introduce a novel approach to designing and implementing practical compilers while
staying close to formal denotational semantics specifications (Section 3).
We demonstrate our approach on a simple language with arithmetic and let-bound
variables by compiling it to a subset of X86 (Section 3).

2 Monads and Effects

The compiler architecture we propose is based on the concept of monads, algebraic effects
and handlers, and higher-order effect trees and their algebras. In this section, we briefly
introduce this required background. This section contains no novel work except for the
explanations themselves.

2.1 Monads
Monads are a concept from category theory that have been applied to the study of pro-
gramming language semantics by Moggi [7] and introduced to functional programming by
Wadler [17]. A monad as used in this paper consists of four parts:

a type m

a binary operator >>= : m a → (a → m b) → m b (known as “bind”)
a binary operator >> : m a → m b → m b

a function return : a → m a

The operator x >> y is always defined to be equal to x >>= λz. y where z is free in y.
Furthermore, monads must satisfy three laws:

left identity: return x >>= λy. k y = k x

right identity: x >>= λy. return y = x

associativity: x >>= λy. (k y >>= λz. h z) = (x >>= λy. k y) >>= λz. h z

We can use monads is to define computations with side effects. An example is the Maybe
monad which defines partial computations. The type consists of two constructors: Just :
a → Maybe a and Nothing : Maybe a. The bind operator sequences partial computations
such that if one subcomputation fails then the whole computation fails. That behavior
can be defined using the following two equations: Nothing >>= λx. k x = Nothing and
Just x >>= λy. k y = k x. The return function is the Just constructor. From these definitions
it is straightforward to prove that the laws hold, so we will not show the proofs in this paper.

Using the maybe monad we can define a checked division function assuming we have
access to an unchecked division function:

checkedDiv x y =
{

Just (div x y) if y ̸= 0
Nothing if y = 0

Using this checked division function we can define another function that divides a number
c by all the numbers contained in a list and return the result in a list:

divAll c Nil = return Nil
divAll c (x :: xs) = checkedDiv c x >>= λx′. divAll c xs >>= λxs′. return (x′ :: xs′)
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In this case, the monad has allowed us to implicitly get the control flow behavior that
the whole computation will abort if there is at least one zero in the list.

2.2 Effects
One problem with using monads for specifying the semantics of side effects of programming
languages is that you need to define a whole new monad for every programming language,
even if many programming languages have side effects in common.

Plotkin and Power addressed this problem by introducing algebraic effects [9], focusing on
the effectful operations themselves rather than the concrete monad type. Any set of effectful
operations gives rise to a monad for free. In this way, the same operations can be reused in
two different modular monads.

In this paper we group effectful operations into units which we call ’effects’. For example
we can define the interface of an effect called ’Abort’ as follows:

effect Abort where
abort : m a

This definition shows that the Abort effect has one operation called ’abort’ which takes
no arguments. The type of abort is polymorphic in both the effectful context m and the
return type a. In this paper, we assume the obvious implicit constraint that the defining
effect, in this case Abort, must be part of the effectful context m.

Any combination of effects gives rise to a monad. So, we can start using the Abort effect
to define the checkedDiv function instead of using the concrete Maybe monad as follows:

checkedDiv x y =
{

return (div x y) if y ̸= 0
abort if y = 0

The implementation of the divAll function does not need to be changed.
Now, let us consider the meaning of the Abort effect. The fact that the abort operation

claims to produce any polymorphic a as result might seem strange. A normal interface or
type class in most programming languages would not be able to implement such a function,
because it is impossible to produce a value if the type of that value is not fixed. The reason
that we are able to define our effectful operation like this is because one possible side effect
is to stop the rest of the computation. That way we do not actually have to produce such a
value at all.

In general, to define the meaning of effects we use handlers as introduced by Plotkin and
Pretnar [10]. Effect handlers can be thought of as exception handlers with the ability to
resume the computation at the location where an effect operation which is handled was used.
For the Abort effect, the usual implementation is defined by the following handler:

handle
abort k → Nothing
return x → Just x

This example shows that the handler of an effect lists each operation and how it should be
handled. In addition to the operations themselves, the handler has access to the continuation
k from the point where the operation was used. Furthermore, the Abort handler has a return
case for when the computation contains no usage of the abort operation. For most handlers
in this paper, the return case is just return x → return x in which case we simply leave it
out.
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Finally, in this paper we use a higher-order effect system introduced by Bach Poulsen
and Van der Rest [1]. Higher-order effect operations are those operations that take effectful
computations as arguments. That can be useful for scoping operations, such as exception
catching, but also thunks in lazy programming languages. Bach Poulsen and Van der Rest
show that it is possible to use their effect system to define interpreters for such higher-order
effects. So, it is more than expressive enough for the minimal compiler we present in this
paper and even we expect it gives us room to expand our compiler in the future.

3 Compiling with Higher-order Effects

In this section, we present our approach by applying it to a very simple language with
arithmetic and let-bound variables. The target language of our compiler is X86 machine
code. We explain the required concepts as we develop our compiler for this language.
The specifications and compiler passes are presented in a simplified notation, but we have
implemented all the work we present here in the Agda programming language [2]. Our code
can be found on GitHub1.

We start off by assuming our parser and possibly type checker has finished and produced
an abstract syntax tree which follows the grammar described in Figure 1. Our language has
integers, addition, subtraction, negation, a read operation to read an input integer, and a let
to bind variables and a var to refer to bound variables.

The abstract syntax is unusual because we reuse the variable binding facilities from our
host language in the form of the v → expr function in the let constructor. This style of
abstract syntax is called parametric higher-order abstract syntax (PHOAS) [3]. It allows us
to avoid the complexities of variable binding and thus simplify our presentation. We believe
other name binding approaches, such as De Bruijn indices [4], could be used instead. However,
changing the name binding mechanism would also require changing our representation of
effectful computations.

expr ::= int(n)
| add(expr , expr)
| sub(expr , expr)
| neg(expr)
| read
| let(expr , v → expr)
| var(v)

Figure 1 Abstract syntax of our simple language with arithmetic and let-bound variables.

The first step of our compilation pipeline will be to denote these syntactic constructs onto
an effectful computation. We have chosen to divide our source language into four effects: Int,
Arith, Read, and Let.

Figure 2 shows the operations that correspond directly to our source language.

1 https://github.com/heft-lang/hefty-compilation

https://github.com/heft-lang/hefty-compilation


J. S. Reinders 22:5

effect Int where
int : Z → m val

effect Arith where
add : val → val → m val
sub : val → val → m val
neg : val → m val

effect Read where
read : m val

effect Let where
let : m val → (val → m val) → m val

Figure 2 The effects of our source language and their operations with type signatures.

To keep our example simple, we have chosen to use this single type for all values, but we
keep the type abstract and simply call it “val”. Also note that we now need a special int
operation to inject integers into this abstract value type.

The reason for keeping the value type abstract is twofold. Firstly, this prevents us
from accidentally attempting to use information from these run-time values at compile-time.
Secondly, at the end of the compilation, these values stand for register or memory locations.
Keeping the values abstract gives us the freedom to choose the concrete representation later
on in the compilation pipeline. We use this freedom in the last handler of this section where
we convert the program to a string. There we choose the values to be strings.

The first pass of our compiler pipeline maps our abstract syntax from Figure 1 onto the
operations we have defined for our source language from Figure 2. This mapping, called a
denotation and written using the [[·]] notation, is a recursive traversal of the abstract syntax
tree shown in Figure 3. The result of this mapping is a monadic computation involving the
Int, Arith, Read, and Let effects.

[[int(n)]] = int n

[[add(e1, e2)]] = [[e1]] >>= λx. [[e2]] >>= λy. add x y

[[sub(e1, e2)]] = [[e1]] >>= λx. [[e2]] >>= λy. sub x y

[[neg(e)]] = [[e]] >>= λx. neg x

[[read]] = read
[[let(e, f)]] = let [[e]] (λx. [[f x]])

[[var(x)]] = return x

Figure 3 A denotational mapping from our abstract syntax onto our initial set of effectful
operations.

Now that we have denoted our syntactic elements into our semantic domain as operations,
we can start refining these operations to get closer to the desired target language which is X86
in our case. The effect that we choose to handle first is the Let effect, which only has the let
operation. We handle this operation by running the right hand side of the binding, passing
the resulting value to the body, and finally passing the result of that to the continuation. In
code that looks as follows:

handle (let e f) k → e >>= λx. f x >>= λz. k z

Note that this defines a strict semantics for our let bindings. By using a different handler
we could give different semantics to our language. This is an example of the flexibility of
algebraic effects and handlers.

EVCS 2023
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effect X86 where
addq : val → val → m ()
subq : val → val → m ()
negq : val → m ()
movq : val → val → m ()
callq : lab → m ()
reg : Register → m val
deref : Register → Z → m val

effect X86Var where
x86var : m val

Figure 4 The effects related to X86 and their operations with type signatures.

At this point, since our language is so simple we can already begin translating into our
target language. In Figure 4 we show a minimal subset of X86 that we need to compile our
Arith and Read effects. This subset contains in-place arithmetic instructions, the ubiquitous
move instruction, the call instruction, and an operation to inject concrete registers into our
abstract value type. Additionally, we add an operation to generate fresh variables and inject
them into our abstract value type.

We can translate our Arith effect operations into X86 operations by creating a fresh X86
variable, populating it, and then applying the in-place arithmetic operation to the variable.
So, we write handler as follows:

handle
(add x y) k → x86var >>= λz. movq x z >> addq y z >> k z

(sub x y) k → x86var >>= λz. movq x z >> subq y z >> k z

(neg x) k → x86var >>= λz. movq x z >> negq z >> k z

The read operation requires us to call a function that we will assume is defined in a standard
library called read_int. This function places its output in the %rax register, so we have to
move it to avoid it being overwritten by other parts of our program. The full definition of
our handler for the Read effect is as follows:

handle read k → x86var >>= λz. callq read_int >> reg %rax >>= λx. movq x z >> k z

The final challenge to complete this minimal compiler pipeline is to allocate the X86
variables on the stack. Conceptually, this requires us to give each x86var operation and
give each its own location of the stack. Keeping track of such information in our handler,
however, is something we have not yet needed to do for the passes up to this point. Until
now, we have handled each effect by translating into other effects directly. Instead, we can
parameterize our handlers which means we pass along an extra parameter while handling
our operations. Parameterized handlers take one extra parameter and need to pass one extra
argument to the continuation2. Now we can write the parameterized handler for the X86Var
effect which assigns each variable to its own stack location as follows:

handle x86var k n → deref %rbp (−8 · n) >>= λz. k z (n + 1)

Note that we assume sufficient space is allocated on the stack. Additionally, when applying
this handler we need to provide the starting value of the parameter n, which we will choose
to be 1.

2 We ignore effectful subcomputations, because they were already removed in an earlier pass.



J. S. Reinders 22:7

At this point, we have a full compiler pipeline from our source language to a subset of
X86, but is still in the form of an effectful computation. To get a concrete representation, we
implement two handlers for the remaining Int and X86 effects to produce an output string.
As part of choosing this concrete representation, we also choose the concrete type for the
variables val and lab to be the string type. We define the handler that turns our effectful
computation of Int and X86 effects into a concrete string representation as follows:

handle
(int n) k → k (showInt n)
(addq x y) k → "addq " ++ x ++ ", " ++ y ++ "\n" ++ k ()
(subq x y) k → "subq " ++ x ++ ", " ++ y ++ "\n" ++ k ()
(negq x) k → "negq " ++ x ++ "\n" ++ k ()
(movq x y) k → "movq " ++ x ++ ", " ++ y ++ "\n" ++ k ()
(callq l) k → "callq " ++ l ++ "\n" ++ k ()
(reg r) k → k (showReg r)
(deref r n) k → k (showInt n ++ "(" ++ showReg r ++ ")")
return x → x

4 Related Work

Our work is influenced by Eelco Visser’s work on the Spoofax Language Workbench [5].
Eelco Visser was the original designer of the Stratego program transformation language [16]
which is part of Spoofax. Stratego can be used to implement a whole compiler back end,
however Spoofax was still lacking a way to specifying programming language semantics at a
higher level of abstraction.

One step in that direction by Vlad Vergu, Pierre Neron, and Eelco Visser was the
DynSem DSL for dynamic semantics specification [14]. Later, Vlad Vergu and Eelco Visser
developed a way to improve the performance of programs written in languages specified
in DynSem by using just-in-time compilation [15]. However, they were not able to fully
eliminate the interpretation overhead that DynSem imposes. Furthermore, DynSem uses
big-step operational reduction rules, which require explicit managing of the control flow. For
languages which include complicated control flow constructs, such as exceptions, this requires
non-trivial glue code in every reduction rule.

In the meantime, Eelco Visser started working on adding type systems to Spoofax. Firstly,
together with Van Antwerpen et al., he developed Statix [13], which is a language for defining
the static semantics of languages defined in Spoofax. Later, Eelco Visser and Jeff Smits
added a gradual type system to the meta-language Stratego [12].

Recently, Thijs Molendijk, who was supervised by Eelco Visser, has developed the
Dynamix [8] dynamic semantics specification language for Spoofax. Dynamix is more
amenable to compilation and it allows for specifying the semantics of complicated control flow
constructs independently from other language constructs. The monadic style of Dynamix
makes it similar to our work, but the main difference is that Dynamix has a fixed intermediate
representation where the only way to extend it is to add new primitives.

As mentioned in the introduction, our approach embraces the nanopass architecture [11, 6].
The main idea of nanopass compilers is that they consist of many small single purpose passes,
which aids understanding. We improve upon this work by making it fully typed to prevent
common errors and even check that all cases are covered, and by abstracting over the control
flow in the compiler.

EVCS 2023
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5 Conclusions and Future Work

We have presented a new semantics-driven approach to writing compilers by using effect
operations as an intermediate representation. We use effect handlers to iteratively refine
operations in terms of increasingly lower level operations to finally reach a target machine
language.

We have shown a concrete example of this approach applied to a very simple language with
arithmetic and let-bound variables. This example application consists of an implementation
of a denotation function and handlers which compile this language is compiled in several
passes to X86 machine language.

In the future, we would like to extend this minimal compiler with more complicated
language constructs such as conditionals, exceptions, and anonymous functions.

Additionally, we would like to implement more complicated analyses on this effectful
representation, such as register allocation. We expect these analyses to consist of two stages:
first derive concrete structures such as control-flow graphs and interference graphs from our
effectful representation, and then perform a pass over the effectful computation that uses the
results of the analysis over these structures to transform the program. The first stage would
be similar to our handler that turns the effectful computation into a concrete string and the
second stage would employ a parameterized handler similar to our stack allocation handler.

Furthermore, we would like to explore the verification of our compilers using algebraic
laws for our effect operations, inspired by Interaction Trees [18]. To be specific, we can define
a set of laws that describe the behavior of each of the effects in our compiler pipeline. If
these laws are sound and complete, with respect to for example definitional interpreters for
the effects, then we can prove compiler correctness by proving that these laws are preserved
by each of our handlers.
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