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Abstract
Eelco Visser’s work has always encouraged stepping back from the particular to look at the underlying,
conceptual problems.

In that spirit we present an approach to describing refactorings that abstracts away from
particular refactorings to classes of similar transformations, and presents an implementation of these
that works by substitution and subsequent rewriting.

Substitution is language-independent under this approach, while the rewrites embody language-
specific aspects. Intriguingly, it also goes back to work on API migration by Huiqing Li and the first
author, and sets refactoring in that general context.
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1 Introduction

Our subject here is not new: Eelco Visser initiated a discussion of language-independence
transformations [25] in the millennium year; it is a pleasure and an honour to join the
conversation that he began.

Refactoring tools are a particularly sensitive part of a programmer’s toolkit, since they
can make large-scale modifications to code, and yet are expected not to change the observable
behaviour of the system. Users therefore need to be given assurance about the safety of
using a tool. Assurance generally comes in two complementary forms, through verification
and through architecture.

Arguments can be made about the correctness of the transformations made. These can
be black box, checking the original against the refactored code without examining how the
transformation is performed. At minimum this is achieved by regression testing, but can be
augmented by checking equivalence more generally [8, 9]. Looking inside the implementation
it is also possible – at least in principle – to prove the correctness of that transformation [23].

1 Corresponding author

© Simon Thompson and Dániel Horpácsi;
licensed under Creative Commons License CC-BY 4.0

Eelco Visser Commemorative Symposium (EVCS 2023).
Editors: Ralf Lämmel, Peter D. Mosses, and Friedrich Steimann; Article No. 26; pp. 26:1–26:9

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:s.j.thompson@kent.ac.uk
https://orcid.org/0000-0002-2350-301X
mailto:daniel-h@elte.hu
https://orcid.org/0000-0003-0261-0091
https://doi.org/10.4230/OASIcs.EVCS.2023.26
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


26:2 Refactoring = Substitution + Rewriting

These checks will apply to particular instances of a refactoring in the case of regression
testing, while verification should establish the correctness of the transformation in itself, that
is for all possible instances. Testing can also be used in the latter case, e.g. by generating
random transformations of an arbitrary system, and testing the “old” code against the “new”
with random inputs [5].

An alternative source of assurance is in the architecture of the refactoring tool itself. At
its heart, any refactoring tool works by transforming a complex data structure (AST or
database) representing a program into a related structure. With no further thought, each
refactoring can be constructed anew, by means of an ad hoc recursive function. But this can
be improved. Firstly, following Eelco Visser’s work [25], it is possible to take a higher-level
view of the way the data structure is traversed, using a strategic approach in something like
Stratego [4], Strafunski [15] and related systems.

Secondly, we can see a commonality between the refactorings themselves, and this is the
approach we outline here. With this perspective, a class of refactorings can all be performed
with a single implementation. This, in turn, reduces the burden on users wishing to assure
themselves of the soundness of the implementation, and indeed has positive consequences for
formal verification of the refactoring transformations too.

In the remainder, we first introduce the separation of generic and specific elements of
refactoring definitions in §2. Then in §3 we argue that the generic parts in many cases can
be made language-independent. Finally, §5 discusses some related work and §6 concludes.

2 Refactoring = Substitution + Rewriting

A class of refactorings in Erlang are concerned with the definition and subsequent use of
functions, including, among others, renaming and generalisation. In this section we show
how these can be described in a common way, and the implications of this for verification.

2.1 Function renaming
Consider the example of function renaming.

Before renaming

f(X) -> X+1.
g(Y) -> f(Y+2) - f(Y-2).

After renaming

h(X) -> X+1.
g(Y) -> h(Y+2) - h(Y-2).

The transformation is described by showing how the function definition is changed, and also
explaining how to change each use of the function. We do that thus:

Define the modified function:
h(X) -> X+1.

Implement the old function using the new:
f = fun(X) -> h(X) end

How does this describe the refactoring? We can use the implementation of the old function
in terms of the new to give us the new code, in a series of steps, thus:

g(Y) -> f(Y+2) - f(Y-2).
-- by substitution giving
g(Y) -> (fun(X) -> h(X) end)(Y+2) - (fun(X) -> h(X) end)(Y-2).
-- and by rewriting (beta-reduction, here)
g(Y) -> h(Y+2) - h(Y-2).
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Rewriting stops at this point: we don’t want, or need, to inline h, since we want to be faithful
to the original program that contains a function call to f here.

It is important to note that this approach works for other uses of the function f, including
as fun arguments to higher-order functions, and, with some preliminary eta-expansion 2, in
calls to spawn the function.

2.2 Function generalisation

Now we look at a second example, function generalisation, and see that it fits the same
pattern.

Before generalisation

f(X) -> X+3.
g(Xs) -> lists:map(fun f/1,Xs).

After generalisation

f(X,Y) -> X+Y.
g(Xs) ->

lists:map(fun(X)-> f(X,3) end, Ys).

This transformation is described by showing how the function definition is changed, and also
explaining how to change each use of the function. We do that thus:

Define the modified function:
f(X,Y) -> X+Y.

Implement the old function using the new:
f = fun(X)-> f(X,3) end

How does this describe the refactoring? We can use the implementation to give us the new
code, in a series of steps, thus:

g(Xs) -> lists:map(fun f/1,Xs).
-- by substitution giving
g(Xs) -> lists:map(fun(X)-> f(X,3) end, Ys).
-- after which no rewriting is necessary

The implementation of the old function in terms of the new is denoted by = rather than -> to
emphasise that this is a semantic equivalence rather than program code defining a function,
since the LHS refers to the “old” version of the code and the RHS to the “new”.3

As earlier, this approach will handle “regular” function applications, in which the fun
expression will be removed by rewriting, as well as calls to apply and spawn.

2.3 Other function-oriented examples

Other examples include function unfolding, reordering and regrouping of arguments, adding
or removing an argument. We leave it to the reader to verify this. In each case, the general
pattern is to present the new definition and to describe how to implement the old
function using the new.

We examine other kinds of refactoring in Section 4.3.

2 Transforming fun f/1 into fun(X)->f(X) end.
3 It is a peculiarity of Erlang that the two versions of f can co-exist, as functions with the same name

but different arity are considered to be distinct.

EVCS 2023



26:4 Refactoring = Substitution + Rewriting

2.4 Verification
What do we need to establish for the transformed code to be equivalent to the original? The
verification factors into two parts:

For each specific refactoring it is necessary to ensure that the “old” function is
implemented correctly in terms of the “new”. Specifically, the replacement becomes a
proof obligation. In the case of renaming, we require that f has the same behaviour as

fun(X) -> h(X) end
when h is defined thus:

h(X) -> X+1.
Similarly for other refactorings.
On the other hand, every refactoring also depends on the correctness of the rewriting
rules, such as beta-reduction, eta-expansion, removal of syntactic sugar, etc., which are
applied to “tidy up” the resulting code in each case.

3 Towards generic, language-independent refactorings

Refactoring has a very different character in different programming languages; to take one
example, [12] compares refactoring in two functional programming languages: Haskell and
Erlang. Because of this, the first author was always sceptical about a language-independent
approach to refactoring. In this Section we argue that our approach of substitution and
rewrite allows us to split refactorings into language-independent and language-dependent
parts.

At the language independent level is a concept like function application; function
applications can be transformed by defining the old function in terms of the new, as described
earlier. On the other hand, the particular form of function application in different languages
varies widely, for example.

In Haskell function applications can be infix x ’f’ y as well as prefix f x y, and func-
tions – prefix or infix– can also be partially applied, as in the expressions map (f x) xs
and map (x ’f’) xs.
While Erlang does not contain infix function or partial applications, functions are passed
as arguments using the “function/arity’ idiom fun/N, but also be can be referenced by
atoms in some special functions, such as spawn.

These differences can be dealt with by means of rewriting, as we saw with Erlang earlier.
Consider the Haskell example

f x y = x+y

g z xs = map (f z) xs

where the order of arguments to f is reversed, so that the original f is implemented in terms
of the new thus \x y -> f y x. Applying this transformation to the definition of g gives

g z xs = map (f z) xs
-- substituting the definition of f
g z xs = map ((\x y -> f y x) z) xs
-- by beta reduction
g z xs = map (\y -> f y z) xs
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This leaves a lambda (‘\’) in the refactored expression, but this is unavoidable. While this
example might have been handled better using the flip function, this approach generalises
to any permutation (or tupling) of the arguments by introducing the appropriate, unnamed,
equivalent of flip as the lambda expression.

If, on the other hand, we had renamed f to h, the redefinition of f would be
\x y -> h x y, and the refactoring would completely eliminate the introduced lambda
thus:

g z xs = map (f z) xs
-- substituting the definition of f
g z xs = map ((\x y -> h x y) z) xs
-- by beta reduction
g z xs = map (\y -> h z y) xs
-- by eta reduction
g z xs = map (h z) xs

It is also possible to accommodate infix operations into this framework too. One option
is to recognise ’f’ as a function syntax; alternatively, and preferably, we can pre-process the
code prior to substitution. In this case we proceed thus:

g z xs = map (z ’f’) xs
-- replacing the infix "syntactic sugar"
g z xs = map (infix f z) xs
-- substituting the definition of f
g z xs = map (infix (\x y -> h x y) z) xs
-- by eta reduction
g z xs = map (infix (\x -> h x) z) xs
-- by eta reduction
g z xs = map (infix h z) xs
-- reintroducing the infix "syntactic sugar"
g z xs = map (z ‘h‘) xs

Language dependence can extend beyond syntactic sugar. For example, in Ocaml function
names can appear in signatures and as arguments to functors, where parameters are identified
by name rather than position. This impacts the way in which the scope of a renaming
refactoring is identified, as explained in [18].

4 Discussion

The approach discussed here is based on some assumptions, and so has some advantages, as
well as some limitations. We discuss these in more detail now.

4.1 Local vs global
Many refactorings are local, in the sense of being applied at a single point, such as a
replacement of a double list traversal map f. map g by a single one map (f.g), but it is
global refactorings, whose effect might span multiple sites within multiple modules, that are
more problematic to implement and to review, e.g. in a pull request.

We have concentrated on global refactorings here for that reason, but a rewriting approach
plainly works well for implementing local refactorings too, as shown by the retrie [17] tool
for Haskell. On the other hand, it is difficult to see most local refactorings as anything other
than language specific.

EVCS 2023
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4.2 Recursion vs iteration
How might the replacement of recursion by iteration be seen in this framework? To encapsulate
recursion in general would require some kind of template language, but then an arbitrary
recursion cannot be replaced by iteration. Once the recursion has a stylised form, this can
be encapsulated in a combinator, as in

diffs xs = foldr (-) 0 xs

and then a transition to an iterative form can be given thus

diffs xs = foldl (flip (-)) 0 (reverse xs)

Further transformation can render the list reverse in an iterative way too. This has been
expressed in the syntax of Haskell, but all functional languages contain cognates of lists and
folding operations, and so, arguably, it has a language-independent aspect.

4.3 Other kinds of refactoring
A similar approach can be taken to constructor-based refactorings in languages like Haskell
and OCaml. A constructor is like a function, except that it can be used on the “left hand
side’ of definitions in pattern matches, and this requires some limited form of rewriting on
patterns to implement.

There are limits to the approach described here. For example, ‘folding’ function definitions,
i.e. replacing instances of a function body by a call to the function necessitate replacing (an
instance of) a complex expression, rather than a single term. In the short term, we aim more
clearly to articulate the scope and limits of the approach.

5 Related work

5.1 Language-independence and genericity
The questions of language-independence and genericity for refactorings have been addressed
before. Indeed, Eelco Visser initiated a discussion of this in the millennium year in Language
Independent Traversals for Program Transformation [25], which described how strategic,
traversal-based programming could achieve transformations such as change in bound variable
names across functional and OO languages that could be subsets of Haskell and C++
respectively. Shortly after this Lämmel’s Towards Generic Refactoring [11] took this explicitly
to the example of function/abstraction extraction with an approach that performs a conceptual
analysis of the categories of transformations and pre-conditions that are necessary for a
generic treatment of a refactoring.

This approach is flexible and comprehensive, but it lacks completeness. While it can
encompass the generic features that occur in multiple languages, and indeed adapt e.g. to
the transition between expression- and statement-oriented languages, it does not support the
particularities of different languages, such as operator sections in Haskell or the use of atoms
to denote functions in Erlang, that our approach can handle.

While we have argued that our approach supports a degree of language independence,
we would not claim that it directly supports multi-language refactoring [21], since that
requires not only awareness of the separate semantics of a number of languages, but also
their semantic interactions.
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5.2 Verification of refactorings

A powerful approach to ensuring the correctness of refactorings is to ensure that they meet
the set of constraints that embody (aspects of) the semantics of the programming language
being refactored. This insight was first presented by Tip and colleagues in the context
of preserving type constraints [24], and elaborated for Java by de Moor and Schaefer [20].
Steimann [22] presents a general theory of constraint-based refactoring, and outlines a
program in which correct-by-construction tools can be built on top of constraint-based
presentations of programming language semantics.

Pioneering work by Kniesel and Koch [10] examines the way that correct refactorings
can be built by composing simpler parts that themselves preserve behaviour, or can be
verified separately. Our approach is related, but differs in that different instances of the
same refactoring will involve different rewrites, depending on the context of the instance:
the composition is thus, in a sense, dynamic.

5.3 API migration

When an API is upgraded it can be taken for granted that the new API should afford all the
functionality provided by the old version; this can be made concrete in an adapter module
that defines the old in terms of the new.

While adaptation is enough to ensure that the client system continues to work, it has
disadvantages. If an API evolves continually, then a series of adapter modules will stack
up, and even in the case of a single adaptation, the code will be neither idiomatic nor
natural. One approach to this is to generate transformations from the replacement code [16],
which ensures that the explicit wrapper code disappears. This mechanism is extended by
our approach, outlined in [13], where the replacement code is subsequently simplified by
rewriting, e.g. removing case expressions when they can be resolved, or exception-handling
code when that is unnecessary.

This adaptation can be complex, however, particularly in the case of object-oriented
programming, and especially when the migration is from one API to another, unrelated one.
Lämmel and colleagues outline this in a case study [1] of evolving a system, while providing
a broad overview of previous approaches, as well as in this general exploration of two XML
case studies here [2].

It turns out that the approach we outline in this paper can be seen as a particular case
of the work presented in [13], viewing each refactoring as an evolution of an API for those
aspects of the code that has changed, and also illustrated in this work on API migration in
OCaml [6].

5.4 Refactoring schemes

The approach explained in this paper can be seen as a variant of the refactoring schemes
proposed in [7]. In particular, the examples given in Section 2 instantiate the function
refactoring scheme, which can be understood as a strategy that changes function entities in
a program by applying rewrite rules to the definition and to the references of the function.
When restricting the rewrite rules to only rewrite the name of the function in the reference,
the rewrite step does not perform pattern matching and thus it becomes a simple substitution.

EVCS 2023
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6 Conclusions and future work

We have advanced an argument that it is possible to view general refactorings as having a
language-independent component, described in the language of function application, and
a language-dependent component, materialised by a set of language-specific rewrite rules.
This description re-frames earlier work of ours on refactoring for API evolution and language
schemes.

We have experimental implementations of the general function refactoring introduced
in Section 2 in the Wrangler [14] refactoring tool for Erlang, where it is materialised as an
Erlang behaviour, and in the Rotor [19] refactoring tool for OCaml. It is a short term goal
to finalise and deploy these implementations, as well as articulating the scope and limits of
the approach itself.

This work forms part of a longer-term project to build high assurance refactorings. Earlier
work on this has concentrated on a formal treatment of (re-)naming in OCaml [18], and a
formalisation of the semantics of Erlang [3].

We are very grateful to the referees for their feedback, and in particular their encourage-
ment to contextualise the work more thoroughly, as well as to the Rotor team at Kent for
their insights into refactoring OCaml programs.
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