
Eelco Visser: The Oregon Connection
Andrew Tolmach #

Portland State University, OR, USA

Abstract
This paper shares some memories of Eelco gathered over the past 25 years as a colleague and friend,
and reflects on the nature of modern international collaborations.

2012 ACM Subject Classification Social and professional topics → Historical people

Keywords and phrases Eelco Visser, Stratego, scope graphs

Digital Object Identifier 10.4230/OASIcs.EVCS.2023.27

1 OGI and Stratego

I first met Eelco in June 1997 on the campus of the University of Amsterdam, which was
hosting the International Conference on Functional Programming (ICFP). Eelco was just
finishing up his Ph.D. on parsing, and had been offered a postdoc position at the Oregon
Graduate Institute (OGI) in Portland, where I held a joint appointment in what we called
the Pacific Software Research Center (PacSoft). I believe the postdoc invitation initially
derived from a connection between Eelco’s thesis advisor, Paul Klint, and PacSoft’s senior
faculty member, Richard Kieburtz. But as someone who worked on practical aspects of
(functional) language compilation and tools, I seemed like the faculty member whose interests
best matched Eelco’s, so it fell mainly to me to sell him on the idea of coming to Oregon.
This was not so easy: Eelco already had a clear idea of his career path, and he wanted to
be sure that his postdoc year would help him advance along it, and not just be a pleasant
vacation after completing his degree. Fortunately, I was able to convince him that PacSoft,
which was focused on methods for design and development of domain-specific languages
(DSLs), would be a good environment in which to pursue his interests in language tooling.1

When Eelco arrived in Portland that Fall, he was already engaged with the idea of
developing a particular (meta) DSL of his own, namely a language for defining term rewriting
strategies separately from the underlying rewrite rules, using combinators somewhat inspired
by operators in process calculi. This idea was motivated by his experiences using existing
rewriting tools such as ASF+SDF and ELAN, and it had already been the subject of an
initial paper with Bas Luttik [3]. At PacSoft he built several prototype implementations of
the language, which shortly after acquired the name Stratego. The first implementation was
in MetaML [7], which was being developed by Tim Sheard and Walid Taha at OGI at that
time; this was followed by a boot-strapped implementation that ultimately generated C code
using the ATerm library [11]. Eelco also worked with another postdoc, Zino Benaissa, to
develop an elegant core theory for the strategy combinators [14]. The three of us collaborated
to write about the language in the context of a particular application: optimization of
expressions in a compiler for RML [8], a dialect of ML developed a little earlier at PacSoft by
Dino Oliva and myself. The resulting paper, “Building Program Optimizers with Rewriting
Strategies,” appeared at ICFP98 [15], and became a foundational citation for Stratego and
strategic programming in general.2

1 Given Eelco’s life-long love of photography, I suspect that Oregon’s (well-deserved) reputation for
natural beauty probably helped too.

2 Incidentally, according to a friend on the program committee, the paper very nearly wasn’t accepted.
As of 2012, it was the fifth most highly cited paper in the history of the ICFP conference.

© Andrew Tolmach;
licensed under Creative Commons License CC-BY 4.0

Eelco Visser Commemorative Symposium (EVCS 2023).
Editors: Ralf Lämmel, Peter D. Mosses, and Friedrich Steimann; Article No. 27; pp. 27:1–27:6

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tolmach@pdx.edu
https://orcid.org/0000-0002-0748-2044
https://doi.org/10.4230/OASIcs.EVCS.2023.27
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


27:2 Eelco Visser: The Oregon Connection

Eelco was a great postdoc, of course, because of his ability, energy, and congenial
personality. We used to enjoy long rambles around the (rather bucolic) OGI campus; we both
found walking conducive to creative thinking out loud. But what impressed me the most
about Eelco was his willingness and ability to sit down and write3 about his research ideas
while they were still in their formative stages. This quality is pretty rare among aspiring
computer scientists, and may be a good predictor of success. In later years, Eelco was kind
enough to blame me for having impressed upon him the importance of regular conference
publication (“got me going on the treadmill” is the phrase he used). But he certainly didn’t
need me to teach him that writing helps to clarify thinking, and that research achievements
are useless until they are effectively communicated to others.

Stratego became the foundation of Eelco’s entire career, both literally and figuratively:
it was a key component of nearly all the software systems he built, and it served as his
distinctive calling card in the research community. This has perhaps been a mixed blessing:
the user base for the language has remained small, which is a barrier to entry for those wishing
to contribute to (or in some cases, even to use) Stratego-based tools. On the other hand,
using Stratego does encourage novel techniques and perspectives that are not so natural in
more type-centered functional languages such as Haskell or ML.4 Indeed, my experience when
observing Eelco program was that he approached most tasks as syntactic transformation
problems; he always saw the ATerms lurking not far below the surface.

2 Verification and Scope Graphs

At the conclusion of his postdoc, Eelco returned to the Netherlands to take up a faculty
position at Utrecht. We exchanged a few visits over the next couple of years, in Portland and
in Amsterdam. After that, we met only occasionally at conferences during the subsequent
decade. The Stratego mailing list provided a periodic update on his many activities. I was
very impressed by the high productivity of Eelco’s research group, which he was quick to
credit to having excellent students – although he did take pride in his ability to attract and
keep them.

Our second period of active collaboration began in 2011. By this time, Eelco had moved to
Delft, built a new group, and completed many parts of the Stratego-based language workbench
that was now called Spoofax. He was becoming interested in adding a verification dimension
to the workbench tools, for example to automatically generate proofs of type soundness for
a language definition. Knowing that my own interests had shifted toward verification, he
invited me to join in a new research effort to extend Spoofax in this direction [16], which he
was able to support with a large (and prestigious) Dutch VICI grant. It is quite pleasing
when a former student or postdoc thinks you have something to contribute to their (already)
successful enterprise!

As it turned out, the first major fruit of this collaboration was on a somewhat peripheral
topic: formalizing the notion of name binding in languages. Spoofax already included
a tool called NaBL for specifying name binding, but the NaBL language lacked a clear
semantics independent of its current concrete implementation. Since binding resolution is a
key requirement for defining static typing, it seemed reasonable to attack this problem before

3 And often draw. His art background evidently encouraged him to express ideas visually too.
4 In the early days of Stratego, we often used to argue about the costs and benefits of static typing.

Despite the early work of Ralf Lämmel [4], it is only quite recently that Stratego has acquired a (gradual)
type system as part of the ongoing Ph.D. work of Jeff Smits [6].



A. Tolmach 27:3

Figure 1 Some of Eelco’s highly caffeinated initial sketches for scope graphs.

trying to address verification of type soundness. This effort resulted in the invention of scope
graphs, a simple but powerful formalism for describing binding structure, with a strong visual
intuition. The idea first really took concrete shape under Eelco’s pen in a Portland coffee
shop in June 2014 (see Figure 1). The paper introducing scope graphs [5], joint with Delft
postdoc Pierre Néron and faculty member Guido Wachsmuth, won the Best Paper award
at the European Symposium on Programming (ESOP) conference in 2015. We were quite
proud of this paper, especially its balance of theory and practicality.

The initial work on scope graphs spawned a good deal of subsequent research, some of
which I joined, together with several Delft students, postdocs, and faculty, including Hendrik
van Antwerpen, Casper Bach Poulsen, Vlad Vergu, Arjen Rouvoet, and Robbert Krebbers.
A first effort was to use scope graphs to support type checking, which clarified that binding
and typing are not wholly separable concerns, and led to a unified constraint-based approach
to defining and querying scope graphs [10].5 We also eventually returned to our original
verification goals via an approach to dynamic semantics based on heap frames that derive
their shape and connections from an underlying scope graph. Scopes-and-frames has proved
a fruitful paradigm for simplifying proofs of soundness [1], structuring intrinsically typed
interpreters [2], and supporting optimization [12]. And there is still more being mined from
the basic idea of scope graphs.

Scope graphs are largely about describing data that is explicitly named by the user. But
we gradually came to realize the importance of also handling other dynamic data, e.g. the
temporaries and control information typically produced by a compiler. This led to a number
of lower-level models for defining dynamic semantics, under the name Dynamix, which were
an active topic of collaboration among Eelco, Casper Bach Poulsen, and myself during the
pandemic years. Much of the work was planned in the form of projects conducted by Delft
master’s students Chiel Bruin, Bram Crielaard, Thijs Molendijk, and Ruben van Baarle.
Eelco’s death occurred before the latter two had completed their degrees; Casper and I have
done our best to supervise them since then.

The scope graphs collaboration was extremely rewarding, if sometimes a bit intense.
Eelco had a persistent habit of juggling far too many tasks at once, and scope graphs were
just one cog in his busy research machine. So even without conscious procrastination, lots of
things didn’t get timely attention, and there would inevitably be a mad drive to complete

5 Subsequent work, with which I was not directly involved, extended these ideas to deal with structural
typing and led to the design of the Statix DSL for static semantics [9].

EVCS 2023



27:4 Eelco Visser: The Oregon Connection

the work backing a conference submission in the last few days before a deadline. I think
Eelco thrived under this regimen. Already in the Preface to his Ph.D. thesis [13, p. iv], he
had rhapsodized

Finally, one of the great contributors to this thesis is the deadline. Soft deadlines, firm
deadlines, extended deadlines, nearing deadlines, changed deadlines, passed deadlines,
the empowering deadlines that make page after page appear as if by magic, the
deadlines that spook at night, deadlines that you can really feel, deadlines that are
suddenly there...

While I still prefer to keep my deadlines at a distance, I discovered to my surprise that
quite a bit of good science could be done under this kind of time pressure (writing clarifies
thinking, once again).

3 Talking to Delft

While Eelco and I did visit each other fairly frequently (thanks in large part to that VICI
grant), much of our collaboration was conducted at a distance. Over most of the last ten
years, we talked face to face every week or two, courtesy of Skype or Zoom. I still find
this quite amazing just on a technological level. When I started my career, even domestic
long-distance voice conversations were still expensive, and calls between Europe and the
US were only for emergencies. Now it is possible to have a visual, interactive research
discussion at an arbitrary distance, essentially for free. It is hard to overestimate how much
this development aids international collaboration.

One barrier that does remain is the time difference. Delft is nine hours ahead of Portland,
so finding a mutually acceptable time to meet with Eelco required compromise: our regular
meeting slot was a little early for me and a little late for him. Paradoxically, I think this
slight inconvenience helped us take the meetings more seriously: once they were on the
schedule, we didn’t want to cancel them lightly.

Our conversations usually focused on the research problem of the moment, and typically
included other postdocs and students. But sometimes it was just the two of us, and sometimes
we were just checking in to find out how the other was coping with the latest professional,
political, or pandemic news. On the professional front, it was an opportunity to speak freely
– brag a little or complain a lot – in ways that would be difficult with colleagues in our home
institutions. On a personal level, it was a chance to to share ideas across different nations and
cultures;6 Eelco was always interested and engaged in the world beyond computer science.
I’ve spent quite a few happy years living and working in Europe, and talking regularly with
Eelco was a way of keeping that transatlantic connection alive – which seems more important
than ever in our increasingly separatist world.

In short, my regular talks with Eelco were a rare privilege. I sorely miss them. I sorely
miss him.

6 It could also have been a chance to share them in different languages, except that I have never learned
any Dutch at all, to my regret.



A. Tolmach 27:5

References
1 Casper Bach Poulsen, Pierre Néron, Andrew P. Tolmach, and Eelco Visser. Scopes describe

frames: A uniform model for memory layout in dynamic semantics. In Shriram Krishnamurthi
and Benjamin S. Lerner, editors, 30th European Conference on Object-Oriented Programming,
ECOOP 2016, July 18-22, 2016, Rome, Italy, volume 56 of LIPIcs. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2016. doi:10.4230/LIPIcs.ECOOP.2016.20.

2 Casper Bach Poulsen, Arjen Rouvoet, Andrew P. Tolmach, Robbert Krebbers, and Eelco
Visser. Intrinsically-typed definitional interpreters for imperative languages. Proceedings of
the ACM on Programming Languages, 2(POPL), 2018. doi:10.1145/3158104.

3 Bas Luttik and Eelco Visser. Specification of rewriting strategies. In M. P. A. Sellink, editor,
2nd International Workshop on the Theory and Practice of Algebraic Specifications (ASF+SDF
1997), Electronic Workshops in Computing, Berlin, November 1997. Springer-Verlag.

4 Ralf Lämmel. Typed generic traversal with term rewriting strategies. The Journal of Logic
and Algebraic Programming, 54(1):1–64, 2003. doi:10.1016/S1567-8326(02)00028-0.

5 Pierre Néron, Andrew P. Tolmach, Eelco Visser, and Guido Wachsmuth. A theory of name
resolution. In Jan Vitek, editor, Programming Languages and Systems - 24th European
Symposium on Programming, ESOP 2015, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings,
volume 9032 of Lecture Notes in Computer Science, pages 205–231. Springer, 2015. doi:
10.1007/978-3-662-46669-8_9.

6 Jeff Smits and Eelco Visser. Gradually typing strategies. In Ralf Lämmel, Laurence Tratt,
and Juan de Lara, editors, Proceedings of the 13th ACM SIGPLAN International Conference
on Software Language Engineering, SLE 2020, Virtual Event, USA, November 16-17, 2020,
pages 1–15. ACM, 2020. doi:10.1145/3426425.3426928.

7 Walid Taha and Tim Sheard. Metaml and multi-stage programming with explicit annotations.
Theoretical Computer Science, 248(1):211–242, 2000. PEPM’97. doi:10.1016/S0304-3975(00)
00053-0.

8 Andrew P. Tolmach and Dino Oliva. From ML to Ada: Strongly-typed language inter-
operability via source translation. J. Funct. Program., 8(4):367–412, 1998. doi:10.1017/
s0956796898003086.

9 Hendrik van Antwerpen, Casper Bach Poulsen, Arjen Rouvoet, and Eelco Visser. Scopes
as types. Proceedings of the ACM on Programming Languages, 2(OOPSLA), 2018. doi:
10.1145/3276484.

10 Hendrik van Antwerpen, Pierre Néron, Andrew P. Tolmach, Eelco Visser, and Guido
Wachsmuth. A constraint language for static semantic analysis based on scope graphs.
In Martin Erwig and Tiark Rompf, editors, Proceedings of the 2016 ACM SIGPLAN Workshop
on Partial Evaluation and Program Manipulation, PEPM 2016, St. Petersburg, FL, USA,
January 20 - 22, 2016, pages 49–60. ACM, 2016. doi:10.1145/2847538.2847543.

11 Mark van den Brand, Hayco de Jong, Paul Klint, and Pieter A. Olivier. Efficient annotated
terms. Software: Practice and Experience, 30, 2000.

12 Vlad A. Vergu, Andrew P. Tolmach, and Eelco Visser. Scopes and frames improve meta-
interpreter specialization. In Alastair F. Donaldson, editor, 33rd European Conference on
Object-Oriented Programming, ECOOP 2019, July 15-19, 2019, London, United Kingdom,
volume 134 of LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2019. doi:
10.4230/LIPIcs.ECOOP.2019.4.

13 Eelco Visser. Syntax Definition for Language Prototyping. PhD thesis, University of Amsterdam,
September 1997.

14 Eelco Visser and Zine-El-Abidine Benaissa. A core language for rewriting. Electronic Notes in
Theoretical Computer Science, 15:422–441, 1998. doi:10.1016/S1571-0661(05)80027-1.

15 Eelco Visser, Zine-El-Abidine Benaissa, and Andrew P. Tolmach. Building program optimizers
with rewriting strategies. In Matthias Felleisen, Paul Hudak, and Christian Queinnec, editors,
Proceedings of the third ACM SIGPLAN international conference on Functional programming,
pages 13–26, Baltimore, Maryland, United States, 1998. ACM. doi:10.1145/289423.289425.

EVCS 2023

https://doi.org/10.4230/LIPIcs.ECOOP.2016.20
https://doi.org/10.1145/3158104
https://doi.org/10.1016/S1567-8326(02)00028-0
https://doi.org/10.1007/978-3-662-46669-8_9
https://doi.org/10.1007/978-3-662-46669-8_9
https://doi.org/10.1145/3426425.3426928
https://doi.org/10.1016/S0304-3975(00)00053-0
https://doi.org/10.1016/S0304-3975(00)00053-0
https://doi.org/10.1017/s0956796898003086
https://doi.org/10.1017/s0956796898003086
https://doi.org/10.1145/3276484
https://doi.org/10.1145/3276484
https://doi.org/10.1145/2847538.2847543
https://doi.org/10.4230/LIPIcs.ECOOP.2019.4
https://doi.org/10.4230/LIPIcs.ECOOP.2019.4
https://doi.org/10.1016/S1571-0661(05)80027-1
https://doi.org/10.1145/289423.289425


27:6 Eelco Visser: The Oregon Connection

16 Eelco Visser, Guido Wachsmuth, Andrew P. Tolmach, Pierre Néron, Vlad A. Vergu, Augusto
Passalaqua, and Gabriël Konat. A language designer’s workbench: A one-stop-shop for
implementation and verification of language designs. In Andrew P. Black, Shriram Krishna-
murthi, Bernd Bruegge, and Joseph N. Ruskiewicz, editors, Onward! 2014, Proceedings of
the 2014 ACM International Symposium on New Ideas, New Paradigms, and Reflections on
Programming & Software, part of SPLASH ’14, Portland, OR, USA, October 20-24, 2014,
pages 95–111. ACM, 2014. doi:10.1145/2661136.2661149.

https://doi.org/10.1145/2661136.2661149

	1 OGI and Stratego
	2 Verification and Scope Graphs
	3 Talking to Delft

