
Context in Parsing: Techniques and Applications
Eric Van Wyk #Ñ

Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA

Abstract
This paper discusses two approaches to parsing: Eelco Visser’s scannerless generalized LR parsing
and our context-aware scanning paired with deterministic LR parsing. We compare the underlying
techniques, specifically how parser context is used to disambiguate lexical syntax, and their use in the
context of language evolution and composition applications. We also reflect on the many discussions
shared with Eelco on these topics, and on our shared realization that our different assumptions
about the contexts in which our approaches were used drove and justified the technical decisions
made in each.

2012 ACM Subject Classification Software and its engineering → Syntax; Software and its engi-
neering → Parsers; Software and its engineering → Domain specific languages

Keywords and phrases Parsing, Generalized LR Parsing, Context-aware Scanning

Digital Object Identifier 10.4230/OASIcs.EVCS.2023.30

1 Introduction

One thing we have all missed due to the Covid pandemic, and fear missing in the future
due to reduced travel for climate change reasons, is the hallway track at conferences. These
opportunities to talk with fellow computer scientists are an important part of research
and helpful in driving it forward. They are also a lot of fun. These informal interactions
are, at least so far, difficult to recreate online at virtual events. Other losses include the
highly-interactive discussions and presentations at workshops and smaller conferences like the
discontinued, but much loved, Workshop on Language Descriptions, Tools, and Applications
(LDTA), its vibrant replacement Software Language Engineering (SLE), and the occasional
satellite workshops such as Parsing@SLE and OOPSLE.

The discussions at these events – in meeting rooms, in the hallway, or at dinner in the
evening – are almost always lively ones. Over the years, the conversations I had with Eelco
Visser stand out as some of the most enjoyable and thought provoking. Eelco and I were
friendly intellectual sparring partners, each of us advocating for our own approach to scanning
and parsing. Eelco had developed scannerless generalized-LR parsing [25, 26] (SGLR) while
August Schwerdfeger and I had developed context-aware scanning used with deterministic
LR parsers [24, 18] (CAS+LR).

Both of our approaches treat the processes of recognizing lexical syntax (scanning) in
the text and determining its phrase structure (parsing) as interdependent ones. This was
in contrast to the traditional approach that sees these two tasks as separate; in this view a
scanner can first consume the input text and generate a complete sequence of lexical tokens.
These tokens are then provided to the parser. This separation of lexical syntax and phrase
(context-free) syntax is a natural one. In a program text file the sequence of characters is
naturally seen as a sequence of words (identifiers, keywords, punctuation, numeric literals,
etc.) interspersed with whitespace and comments. It is the scanner’s job to recognize
these words in the sequence of characters, discarding whitespace (when it is not relevant)
and comments. These lexical symbols are commonly specified using regular expressions.
Note that we will use the terms scanner and scanning as shorthand for the component for,
and process of, recognizing lexical syntax even in SGLR despite there being no separate
scanner. The parser consumes these lexical tokens and attempts to recognize the underlying

© Eric Van Wyk;
licensed under Creative Commons License CC-BY 4.0

Eelco Visser Commemorative Symposium (EVCS 2023).
Editors: Ralf Lämmel, Peter D. Mosses, and Friedrich Steimann; Article No. 30; pp. 30:1–30:10

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:evw@umn.edu
https://cs.umn.edu/~evw
https://orcid.org/0000-0002-5611-8687
https://doi.org/10.4230/OASIcs.EVCS.2023.30
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

30:2 Context in Parsing: Techniques and Applications

phrase structure, for example, that a while-loop begins with a while keyword, followed by
an expression acting as the loop condition, and then a statement wrapped in curly braces.
Context-free grammars are typically used to define the phrase structure of the language.

Context in lexical syntax – a shared divergence

In both SGLR and CAS+LR, the state of the parser provides contextual information to the
process for recognizing lexical syntax. Both use LR parsing [14, 1] and thus the current state
of the LR parser automatically provides this notion of context. This is so that in different
parsing contexts the same sequence of characters can be recognized in different ways, as
different lexical tokens.

In his paper “Pure and Declarative Syntax Definition: Paradise Lost and Regained”
from Onward! 2010 [10], Eelco and his coauthors explain this need for context with a few
examples. One is the challenge of recognizing the lexical syntax in the text “array [1..10]
of integer”. A fragment of a specification using a context-free grammar and regular
expressions to define this can be seen in Figure 1. Nonterminals Type and Expr derive type
expressions and value expressions as expected. Lexical syntax would be defined as expected
as well. Keywords and punctuation (written between single quotes) are recognized as such;
the only non-constant lexical syntax (of interest here) is for integer and floating point literals.
The first being a non-empty sequence of digits, the second being a sequence of digits with a
trailing, leading, or contained period (“.”).

In the string “array [1..10]” we need to recognize “1” as an integer literal and not
recognize “1.” as a floating point literal. A traditional scanner would prefer the longer, yet
incorrect, match. If the parser context can be used, then the fact that floating-point literals
are not allowed in between the square brackets of an array type declaration can disallow the
longer match of “1.” and instead correctly recognize the shorter integer literal of “1”.

1 Type ::= ’integer ’
2 | ’float ’
3 | ’array ’ ’[’ IntLiteral ’..’ IntLiteral ’]’ ’of ’ Type
4
5 Expr ::= IntLiteral
6 | FloatLiteral
7 | ...
8
9 IntLiteral /[0 -9]+/

10 FloatLiteral /([0 -9]+\.)|(\.[0 -9]+)|([0 -9]+\.[0 -9]+)/

Figure 1 A partial specification for recognizing array [1..10] of integer.

Eelco’s paper on parsing AspectJ [2], a language that introduced the notion of aspects
and aspect-oriented programming [12, 11] to Java, provides the first declarative specification
of the language’s concrete syntax. As an example, consider the admittedly contrived and
abbreviated AspectJ fragment shown in Figure 2. It contains a standard Java class Sample
with 4 integer fields, “getter” methods for two of them, and a method named after. The
aspect Example will increment the count field on an object o of type Sample after a call to
either of the getter methods. The pattern “get*” on line 9 matches any calls to methods
beginning with the letters “get” and the increment action takes place after the call to any
matched methods.

E. Van Wyk 30:3

1 class Sample {
2 int get , count , size , shape;
3 int getSize () { ... }
4 int getShape () { ... }
5 boolean after () { return (get *3 > 15) ; }
6 }
7 aspect Example {
8 ...
9 after (): o.get *() { o.count ++; }

Figure 2 An abbreviated example of AspectJ.

We are not so interested in the semantics of AspectJ and more concerned with how its
lexical and context-free syntax can be recognized. The first point to note is that “after” is
used as an identifier on line 5 and as a keyword on line 9. AspectJ introduces new keywords
inside an “aspect” block, but these are still legal as identifiers elsewhere. On line 5 we see
the text “get*” which should be recognized as two lexical symbols: the identifier “get” and
a multiplication sign “*”. But in the context of the AspectJ pattern on line 9 this same text
should instead be seen as pattern matching any identifier beginning with “get”. Again, we
see that in different parts of the program – that is, in different contexts – the same text is
recognized as different lexical symbols.

Both SGLR and CAS+LR use parser context to drive the recognition of lexical syntax
and thus both directly and easily handle the examples above. The CAS+LR specification of
AspectJ [16, 17] was developed in response to Eelco’s paper on this topic as we wondered if a
deterministic specification was possible in our approach. The techniques these two approaches
use are similar in some regards, but different in others. SGLR uses generalized LR parsing
and can thus parse the entire class of context-free grammars, while our implementation of
CAS+LR uses an LALR(1) parser. In SGLR there is no scanner. Parsing is done down to
the character level, thus the term “scanner” is a misnomer since it is all just parsing. Thus
parser context is directly used in recognizing lexical syntax. The scanner in CAS+LR is
called by the parser each time a new token is needed and it tells the scanner which lexical
symbols are currently valid. The scanner uses this to return only lexical symbols that are
valid for the current parsing context.

Context in applications

Despite the similarities in recognizing lexical syntax, Eelco and I frequently debated the
relative merits of our respective approaches. The answer to the (usually) unspoken question
of which one is “better” also relies on a notion of context. The short answer is that neither
is generally better; there are contexts in which each might be the wiser choice and these
different contexts justify the technical decisions made in each approach.

The different assumptions that underpin our different approaches can be most directly
seen in a sentence from the Eelco’s “Paradise Regained” paper [10] mentioned above. This
paper embraces the freedom of expression afforded papers at the Onward! conference and
describes the use of parsing that requires a deterministic subclass of context-free grammars
such as LALR(1) as a Biblical “fall from grace.” The paper is a joy to read. Eelco lays
out the case that language engineers (those who write grammars and build parsers) should
be oblivious to the parsing algorithms used in parser generators and be free to use any

EVCS 2023

30:4 Context in Parsing: Techniques and Applications

context-free grammar. This is his “Garden of Eden.” The serpent that leads to the fall from
grace and exiting of the garden is the pursuit of speed and efficiency that forces one into
limited deterministic subclasses such as LALR(1).

The linchpin in understanding the different paths that SGLR and CAS+LR have taken
can be seen in Eelco’s proclamation in his paper [10, page 918] that in the Garden of Eden

“The language engineers were software engineers and
the software engineers were language engineers.”

In this paper we consider the ramifications of this proclamation for SGLR and how CAS+LR
takes a different path by not adhering to it. In Section 2 we revisit some of the technical
aspects of SGLR and CAS+LR and discuss the similarities and differences between the two
approaches. The focus here is on their use of parsing context in recognizing lexical syntax.
In Section 3 we explore the different scenarios, that is application contexts, in which the two
approaches best serve their users and discuss how these contexts and assumptions inherent
in them led to the different techniques used in each. Section 4 concludes.

2 Context in scanning and parsing techniques

In this section we briefly describe the fundamental techniques in SGLR and CAS+LR,
discussing a few relative merits. The description is brief; the cited papers provide the details.

Scannerless Generalized LR Parsing: SGLR

The main points of interest in scannerless generalized LR parsing (SGLR) are right there in
the name: the use of generalized parsing techniques and parsing down to the character level
so that a separate scanner is not needed.

Generalized parser generators can build parsers for any context-free grammar, thus freeing
their users from the restrictions of writing only grammars within a deterministic subclass
such as LR(k) or LALR(k). Since all grammars are allowed, even ambiguous ones, users must
be alert to this possibility. Ambiguity can often be resolved by refactoring the grammar but
this can lead to unnatural and convoluted grammars. For example, ambiguities in expressions
with infix operators can be handled by breaking a single expression nonterminal into layers
(with names such as term and factor) corresponding to operator precedence. The famous
dangling-else ambiguity splits a statement nonterminal into so-called open and closed varieties
that is even more convoluted than the expression refactoring.

The “pure” solution to this problem, as advocated by Eelco [10], is to use disambiguation
filters. As the name suggests, when an ambiguous parse produces two (or more trees) for the
input text, the filters remove the undesired trees, keeping the desired one. These filters can
take the form of stating a preference for one grammar production over another, or higher
level filters for specifying infix operator precedence and associativity. In SDF, the grammar
formalism originally used in SGLR, one can write the specification on the left of Figure 3
(as shown in [10, page 925]) instead of the more verbose one on the right.

A sequence of Eelco’s papers provides a compelling case for this approach [13, 21, 4, 5].
It allows one to write more natural grammars, free of the convolutions required to fit the
concrete grammar into a deterministic subclass. The resulting concrete syntax trees generated
by the parser are simple and thus there is often no need for a second simplified “abstract”
tree representation for semantic analysis.

The “scannerless” in SGLR means what it says; there is no scanner. Instead it is parsing
all the way down to the character level. As Eelco says in the “Paradise Regained” paper,
“and the words were trees.” This results in a uniform specification for recognizing both lexical

E. Van Wyk 30:5

E "*" E -> E {left} >
E "+" E -> E {left}
Literal -> E

E "+" T -> E
T -> E
T "*" F -> T
F -> T
Literal -> F

Figure 3 Grammar disambiguation by filters (left) and nonterminal refactoring (right).

and context-free syntax. Whitespace symbols are ignored, and parsing of comments allows
for nested comments – something that is not possible when using only regular expressions to
specify lexical syntax. Here disambiguation filters are used to ensure that the traditional
longest match (“maximal munch”) behavior of matching lexical syntax is enforced.

Returning to the examples from Section 1 we can now see how SGLR uses the context
of the parser to properly recognize lexical syntax. In “array [1..10]” the bottom-up
behavior of SGLR may recognize “1” as an integer literal and also recognize “1.” as a
floating point literal, but this temporary ambiguity is resolved in the context of “array [”
since only the former can be used to form a syntactically valid tree. The latter leads to a
syntax error and thus that parsing thread is abandoned. Here the parser context recognizing
lexical syntax is implicit in that it is all part of a single parser. In the AspectJ example [2]
the same techniques are applied. For example, the text “after” on line 9 may be recognized
as both a Java identifier and an AspectJ keyword, but only the keyword is valid at the
beginning of this line, and thus it is used and the identifier tree is discarded.

Context-aware Scanning and LR Parsing: CAS+LR

The primary insight of context-aware scanning [17, 24] is (again) that the parser context can
be used by the scanner to be more discriminating in how it recognizes lexical syntax. Both a
scanner and parser are used in this approach, but there is a modification in how these two
components interact. Lexical syntax is still defined by regular expressions, and a scanner is
generated by converting these to a deterministic finite automata (DFA). The difference is
that a context-aware scanner has two types of input when called by the parser to produce the
next token. The first is the text being scanned. The second is the set of terminal symbols
that are valid in the current parser context. When context-aware scanning is used with an
LR parser, this set of valid terminal symbols is the set of terminals in the current LR parse
table state that have entries of shift, reduce, or accept, but not error. While the details of
how the context-aware scanner is constructed and makes use of this input is to be found in
the papers cited above, the idea is a simple one. Where a traditional scanner follows the
longest-match rule to prefer a longer token over a shorter one, a context-aware scanner will
prefer shorter valid tokens over longer invalid ones.

In the “array [1..10] of integer” example, after the parser has shifted the “array”
and the “[” tokens it is a state in which IntLiteral has an action of shift but FloatLiteral
has an error action. Thus the context-aware scanner only returns the former, and does not
consume the “.” character and thus does not recognize the latter. The same process plays
out in the AspectJ example. In Figure 2, the “after” on line 9 is in a parser context in
which the AspectJ keyword after is valid but the Java identifier is not. The scanner DFA
reaches a final state labeled by both terminal symbols and returns the one that is in the
valid terminal set for that call to the scanner.

EVCS 2023

30:6 Context in Parsing: Techniques and Applications

3 Application Contexts: Language Evolution and Composition

The various merits, advantages, and disadvantages of SGLR and CAS+LR were the
fodder for many discussions that Eelco and I enjoyed. While we occasionally talked about
performance, our main topic was the issue of ambiguity in grammars. It was at one
Parsing@SLE, in Indianapolis I believe, that I asked Eelco if the benefit of using an LALR(1)
grammar and thus knowing, statically, that the grammar was unambiguous was like static
typing in programming languages. Is it not better to know that an ambiguous parse is
impossible in the same way that static type systems ensure that run-time type errors are
impossible? Eelco agreed that it was better to know desirable properties statically, but that
this was more like statically checking for program termination than statically checking for
type errors. Many programmers use statically typed languages because the effort to show a
program is well-typed is not an onerous one. However, showing that a program terminates is
onerous and there is little tool support for doing so. I agreed, but felt that ambiguities can be
more difficult to identify than non-termination. He felt the cost of contorting a grammar into
a deterministic class like LALR(1) was too high a price to pay for that guarantee. It seemed
that perhaps it was simply a matter of personal preference – balancing static guarantees and
performance against flexibility in expression and ease of use.

We were both interested in domain-specific languages (DSLs), and extensible languages
in which programmers add domain-specific language features to a host language such as Java
or C. In this context some clarity about the technical decisions made by the two approaches
can be found. Consider a language component introducing syntax for SQL database queries
to Java. It may allow for syntax like the following for establishing a connection named mydb
to a database server and ensuring that a person table there has the expected columns:

connection mydb "jdbc:derby :./ person_db "
with table person [person_id INTEGER , first_name VARCHAR];

Another language extension may introduce condition tables, a construct useful for under-
standing complex boolean expressions. A simple example can be seen below:

boolean b = table (c1 : T F
c2 : F *);

This sets a boolean identifier b to the value of the condition table. The table will evaluate to
true if condition c1 is true (T) and c2 is false (F) or if c1 is false and c2 has either value (*).
This condition is equivalent to (c1 && !c2) || (!c1) and may be translated down to this
expression or an equivalent one that avoids evaluating c1 twice. Tables like these are used in
modeling language such as RSML−e [19] and SCR∗ [6] where complex Boolean conditions
need to be understood by software stakeholders. This is another example in which parser
context disambiguates lexical syntax, in this case to recognize “table” as a keyword token
from the correct extension specification. Eelco’s MetaBorg approach using SGLR allows
language users to extend Java with new syntax similar to the examples above [3] while we
did it using CAS+LR in for Java in our ableJ [23] system and later for C in ableC [8].

Eelco’s research, embodied in the Spoofax language workbench [9] and its collection of
language processing tools, allows software engineers (the language users) to have a hand in
prototyping, designing, and implementing the languages they wanted to use to solve their
problems. This can be done using extensible languages, as described above, in developing
new domain-specific language features and composing them with others to create an extended
language tailored for a particular task. Eelco’s work also enables and encourages engineers
to design their own stand-alone DSLs. In creating a new language it is not uncommon for

E. Van Wyk 30:7

the (composed) context-free grammar to be unambiguous even if it is not in a deterministic
subclass like LALR(1). If it is ambiguous, the ambiguities are seen as bugs. One can still use
the generated parser and simply treat an ambiguous parse as a syntax error. If this kind of
error occurs too frequently, then one may work to resolve the ambiguity in the specification
by adding or modifying a disambiguation filter, such as those shown on the left of Figure 3.
This approach allows an engineer to easily prototype a new language, a central focus of
Eelco’s work. The effort, sometimes a considerable one, to transform an initial grammar to
be a member of a deterministic subclass can be avoided. This view rests on his proclamation
that the roles of language engineer and software engineer should be interchangeable, and is
realized by the technical choices made in SGLR and its supporting tools.

My students and I were primarily interested in language evolution and feature composition
in a different context – one in which the roles of language engineer and software engineer
are kept as distinct. That is, we start with a set of assumptions different from those
encapsulated in the proclamation from Eelco’s “Paradise Regained” paper. In this view,
language extensions are independently developed by authors (language engineers) familiar
with context-free grammars and parser-generator tools (and the attribute grammar formalisms
used to specify the semantics of the language features [22]). The users of language extensions
however – the software engineers composing a language from some set of extensions – need
not be familiar with the parsing techniques. This view acknowledges that some software
engineers may simply not want to know about grammars and parsing (as bizarre as it may
seem to many readers of this paper.) Software engineers are not only oblivious to any
underlying parsing algorithms, they are also oblivious to parsing and context-free grammars.
Our interest was in seeing how far we could go with this different set of assumptions. This
view was realized in the ableC extensible specification for C and a collection of modular
and reliably composable language extensions [8, 7].

For this approach to be feasible, language extensions must compose with the host
language automatically, and the resulting composition must be well-formed. For concrete
syntax specifications, this requires the composed context-free grammar to be unambiguous
and for there to be no lexical ambiguities in the lexical syntax. Thus we developed a
modular determinism analysis [18, 17] for context-free and lexical syntax provides a guarantee
for composed specifications: if the extensions independently pass the analysis, then the
specification automatically composed from the user-selected extensions would be deterministic,
specifically, LALR(1) and the lexical specification would have no lexical ambiguities.

Composing context-free grammars and regular expressions is simply a matter of taking
the union of the sets of productions, nonterminals, and terminals (with associated regular
expressions) in the separate specifications, denoted as ∪∗ below. We are concerned with
some specification C that is the composition of a host language H and set of independently-
developed extensions {E1, ..., En}, that is C = H ∪∗ E1 ∪∗ ... ∪∗ En. The property provided
by the modular determinism analysis can be expressed as

(∀i ∈ [1, n] .detm(H, Ei)) ⇒ det(H ∪∗ E1 ∪∗ ... ∪∗ En)

This property states that if each extension Ei satisfies the modular composability criteria
(detm) with respect to the host language H, then the lexical and context-free syntax of
the composition of all components (H ∪∗ E1 ∪∗ ... ∪∗ En) is also deterministic (det). For
context-free syntax, the modular analysis detm checks certain characteristics of the grammar
H ∪∗ Ei to ensure that the composition of all the grammars (H ∪∗ E1 ∪∗ ... ∪∗ En) will be
LALR(1) and thus non-ambiguous. First it requires H ∪∗ Ei to be LALR(1). Additionally
detm requires any production in Ei with a host language nonterminal on the left-hand side

EVCS 2023

30:8 Context in Parsing: Techniques and Applications

to have, as the first symbol on its the right-hand side, a new so-called marking terminal [18]
introduced by that extension. The table keyword from the condition table example above
is a marking terminal. It also checks that the follow sets of host nonterminals in H ∪∗ Ei

do not exceed those from H alone. Additional checks [18] on the LR-automata generated
from H ∪∗ Ei ensure that each extension creates an effectively isolated part of the eventually
composed LR-automata that corresponds to having no conflicts in the parse table.

For lexical syntax, determinism requires that in any parsing context only one terminal
symbol be matched. The primary requirement is that for any two different terminals t1 and
t2, if (i) they are both valid for some parser state p of the LR-parse table and (ii) t1 and t2
both label a final state in the scanner DFA (meaning both could be returned by the scanner),
then one has lexical precedence over another. An example of this is keyword terminals
being preferred over identifier terminals. This ensures that SQL table keyword will never
conflict with the condition-table table keyword from above. The isolation of LR-automata
for different extensions, as checked by detm, ensures that this determinism condition is met
in the final composition for all LR parse states except for those states that are considered to
be “host” states. For example, if a third extension introduces a marking terminal matching
“table” then there is a lexical ambiguity between two extensions that cannot be detected by
the analysis. Fortunately, these ambiguities can be easily resolved by the software engineer
composing the extensions (with a bit of tool support) to require a short disambiguating
prefix be written before each use of “table”. This is similar to the Java requirement that if
two imported packages define the same type, then some form of qualified name be used to
distinguish them. The full description of the analysis can be found in earlier works [18, 17].

The point of this modular analysis is that the cost of being constrained to deterministic
grammars is paid by language engineers. This has not, in Eelco’s words, “delivered language
engineers out of the slavery to parser generators” as they may still resort to the “process of
trial-and-error” to “simply torture the parser definition until it confesses” and satisfies the
analysis requirements. A significant benefit, however, is reaped by the software engineers
choosing a set of extensions. They need not know anything about grammars or parsing
but are assured that the syntax specifications of the extensions they have chosen will be
automatically composed and guaranteed to form an unambiguous specification. This provides
the freedom to freely pick the independently-developed language extensions they desire.

It is clear then that these different contexts – in which software engineers are or are not
language engineers – drove the technical decisions made in both SGLR and CAS+LR.

4 Conclusion

We have compared the SGLR and CAS+LR approaches to parsing: the underlying tech-
niques used by both, and the application contexts in which they each shine. Eelco and I
eventually realized that we each had a different view of language evolution and composition
and that each had developed tools and techniques that supported our individual views. After
this, our conversations shifted to focus on other problems in the field of software language
engineering, including some on Eelco’s influential scope graphs [15, 20].

That said, I do miss our “pugnacious” debates about parsing. Eelco was a wonderful
sparring partner in these: committed, insightful, helpful, and caring. It is a great joy to have
someone like him who pushes you to think more carefully and clearly about your work and
helps you better understand the context in which it resides. He will be sorely missed.

E. Van Wyk 30:9

References
1 A.V. Aho, R. Sethi, and J.D. Ullman. Compilers – Principles, Techniques, and Tools. Addison-

Wesley, Reading, MA, 1986.
2 Martin Bravenboer, Éric Tanter, and Eelco Visser. Declarative, formal, and extensible syntax

definition for aspectJ. In Proceedings of the Conference on Object-oriented Programming
Systems, Languages, and Applications (OOPSLA), pages 209–228. ACM, 2006. doi:10.1145/
1167473.1167491.

3 Martin Bravenboer and Eelco Visser. Concrete syntax for objects: domain-specific language
embedding and assimilation without restrictions. In Proceedings of the Conference on Object
Oriented Programming, Systems, Languages, and Systems (OOPSLA), pages 365–383. ACM,
2004. doi:10.1145/1028976.1029007.

4 Luis Eduardo de Souza Amorim, Michael J. Steindorfer, and Eelco Visser. Deep priority
conflicts in the wild: a pilot study. In Proceedings of the 10th ACM SIGPLAN International
Conference on Software Language Engineering, SLE, pages 55–66. ACM, 2017. doi:10.1145/
3136014.3136020.

5 Luis Eduardo de Souza Amorim, Michael J. Steindorfer, and Eelco Visser. Towards zero-
overhead disambiguation of deep priority conflicts. Programming Journal, 2(3):13, 2018.
doi:10.22152/programming-journal.org/2018/2/13.

6 C. Heitmeyer, A. Bull, C. Gasarch, and B. Labaw. SCR∗: A toolset for specifying and
analyzing requirements. In Proceedings of the Tenth Annual Conference on Computer Assurance
(COMPASS), 1995.

7 Ted Kaminski. Reliably Composable Language Extensions. PhD thesis, University of Minnesota,
Department of Computer Science and Engineering, Minneapolis, Minnesota, USA, 2017. URL:
http://hdl.handle.net/11299/188954.

8 Ted Kaminski, Lucas Kramer, Travis Carlson, and Eric Van Wyk. Reliable and automatic
composition of language extensions to C: The ableC extensible language framework. Proceedings
of the ACM on Programming Languages, 1(OOPSLA):98:1–98:29, October 2017. doi:10.1145/
3138224.

9 Lennart C. L. Kats and Eelco Visser. The Spoofax language workbench. Rules for declarative
specification of languages and IDEs. In Proceedings of the Conference on Object Oriented
Programming, Systems, Languages, and Systems (OOPSLA), OOPSLA. ACM, 2010. doi:
10.1145/1869459.1869497.

10 Lennart C.L. Kats, Eelco Visser, and Guido Wachsmuth. Pure and declarative syntax definition:
Paradise lost and regained. In Proceedings of the ACM International Conference on Object
Oriented Programming Systems Languages and Applications, Onward!’10, pages 918–932. ACM,
2010. doi:10.1145/1869459.1869535.

11 G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. An overview of
AspectJ. In J. L. Knudsen, editor, ECOOP 2001 Object–Oriented Programming, volume 2072
of Lecture Notes in Computer Science, pages 327–353, 2001. doi:10.1007/3-540-45337-7_18.

12 G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J. Loingtier, and J. Irwin.
Aspect-oriented programming. In M. Aksit and S. Matsuoka, editors, ECOOP’97 Object–
Oriented Programming, volume 1241 of Lecture Notes in Computer Science, pages 220–242,
1997. doi:10.1007/BFb0053381.

13 Paul Klint and Eelco Visser. Using filters for the disambiguation of context-free grammars. In
Proceedings of the ASMICS Workshop on Parsing Theory, Milano, Italy, October 1994. Tech.
Rep. 126–1994, Dipartimento di Scienze dell’Informazione, Università di Milano.

14 D. E. Knuth. On the translation of languages from left to right. Information and Control,
8(6):607–639, 1965. doi:10.1016/S0019-9958(65)90426-2.

15 Pierre Néron, Andrew P. Tolmach, Eelco Visser, and Guido Wachsmuth. A theory of name res-
olution. In Programming Languages and Systems - 24th European Symposium on Programming,
ESOP 2015, Held as Part of the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings, volume 9032 of Lecture Notes
in Computer Science, pages 205–231. Springer, 2015. doi:10.1007/978-3-662-46669-8_9.

EVCS 2023

https://doi.org/10.1145/1167473.1167491
https://doi.org/10.1145/1167473.1167491
https://doi.org/10.1145/1028976.1029007
https://doi.org/10.1145/3136014.3136020
https://doi.org/10.1145/3136014.3136020
https://doi.org/10.22152/programming-journal.org/2018/2/13
http://hdl.handle.net/11299/188954
https://doi.org/10.1145/3138224
https://doi.org/10.1145/3138224
https://doi.org/10.1145/1869459.1869497
https://doi.org/10.1145/1869459.1869497
https://doi.org/10.1145/1869459.1869535
https://doi.org/10.1007/3-540-45337-7_18
https://doi.org/10.1007/BFb0053381
https://doi.org/10.1016/S0019-9958(65)90426-2
https://doi.org/10.1007/978-3-662-46669-8_9

30:10 Context in Parsing: Techniques and Applications

16 August Schwerdfeger. A declarative specification of a deterministic parser and scanner for
AspectJ. Technical Report 09-007, University of Minnesota, March 2009. URL: https:
//hdl.handle.net/11299/215794.

17 August Schwerdfeger. Context-Aware Scanning and Determinism-Preserving Grammar
Composition, in Theory and Practice. PhD thesis, University of Minnesota, Depart-
ment of Computer Science and Engineering, Minneapolis, Minnesota, USA, 2010. URL:
http://purl.umn.edu/95605.

18 August Schwerdfeger and Eric Van Wyk. Verifiable composition of deterministic grammars.
In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), pages 199–210, New York, NY, USA, June 2009. ACM. doi:10.
1145/1542476.1542499.

19 Jeffrey M. Thompson, Mats P.E. Heimdahl, and Steven P. Miller. Specification based proto-
typing for embedded systems. In Proceedings of the 7th ACM SIGSOFT Symposium on the
Foundations on Software Engineering, volume 1687 of Lecture Notes in Computer Science,
September 1999. doi:10.1145/318774.318940.

20 Hendrik van Antwerpen, Pierre Néron, Andrew P. Tolmach, Eelco Visser, and Guido
Wachsmuth. A constraint language for static semantic analysis based on scope graphs.
In Proceedings of the 2016 ACM SIGPLAN Workshop on Partial Evaluation and Program
Manipulation, PEPM, pages 49–60. ACM, 2016. doi:10.1145/2847538.2847543.

21 Mark G. J. van den Brand, Jeroen Scheerder, Jurgen J. Vinju, and Eelco Visser. Disambiguation
filters for scannerless generalized LR parsers. In Compiler Construction, 11th International
Conference, CC 2002, Held as Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS 2002, volume 2304 of Lecture Notes in Computer Science, pages 143–158.
Springer, 2002. doi:10.1007/3-540-45937-5_12.

22 Eric Van Wyk, Derek Bodin, Jimin Gao, and Lijesh Krishnan. Silver: an extensible attribute
grammar system. Science of Computer Programming, 75(1–2):39–54, January 2010. doi:
10.1016/j.scico.2009.07.004.

23 Eric Van Wyk, Lijesh Krishnan, August Schwerdfeger, and Derek Bodin. Attribute grammar-
based language extensions for Java. In Proceedings of the European Conference on Object
Oriented Programming (ECOOP), volume 4609 of Lecture Notes in Computer Science, pages
575–599. Springer, 2007. doi:10.1007/978-3-540-73589-2_27.

24 Eric Van Wyk and August Schwerdfeger. Context-aware scanning for parsing extensible
languages. In Proceedings of the ACM SIGPLAN International Conference on Generative
Programming and Component Engineering (GPCE), pages 63–72, New York, NY, USA, 2007.
ACM. doi:10.1145/1289971.1289983.

25 Eelco Visser. Scannerless generalized-LR parsing. Technical Report P9707, Programming
Research Group, University of Amsterdam, August 1997. URL: https://eelcovisser.org/
publications/1997/Visser97-SGLR.pdf.

26 Eelco Visser. Syntax Definition for Language Prototyping. PhD thesis, University of Amsterdam,
September 1997. URL: https://eelcovisser.org/publications/1997/Visser97.pdf.

https://hdl.handle.net/11299/215794
https://hdl.handle.net/11299/215794
http://purl.umn.edu/95605
https://doi.org/10.1145/1542476.1542499
https://doi.org/10.1145/1542476.1542499
https://doi.org/10.1145/318774.318940
https://doi.org/10.1145/2847538.2847543
https://doi.org/10.1007/3-540-45937-5_12
https://doi.org/10.1016/j.scico.2009.07.004
https://doi.org/10.1016/j.scico.2009.07.004
https://doi.org/10.1007/978-3-540-73589-2_27
https://doi.org/10.1145/1289971.1289983
https://eelcovisser.org/publications/1997/Visser97-SGLR.pdf
https://eelcovisser.org/publications/1997/Visser97-SGLR.pdf
https://eelcovisser.org/publications/1997/Visser97.pdf

	1 Introduction
	2 Context in scanning and parsing techniques
	3 Application Contexts: Language Evolution and Composition
	4 Conclusion

