
Comparing Bottom-Up with Top-Down Parsing
Architectures for the Syntax Definition Formalism
from a Disambiguation Standpoint
Jurgen J. Vinju #Ñ

NWO-I Centrum Wiskunde & Informatica (CWI), Amsterdam, The Netherlands
TU Eindhoven, The Netherlands

Abstract
Context-free general parsing and disambiguation algorithms are threaded throughout the research
and engineering career of Eelco Visser. Both our Ph.D. theses featured the study of “disambiguation.”
Disambiguation is the declarative definition of choices among different parse trees, derived using the
same context-free grammar, for the same input sentence.

This essay highlights the differences between syntactic disambiguation for context-free general
parsing in a top-down architecture and a bottom-up architecture. The differences between top-
down and bottom-up are mainly observed as practical aspects of the software architecture and
software implementation. Eventually, the concept of data-dependent context-free grammar brings
all engineering perspectives of disambiguation back into a conceptual (declarative) framework
independent of the parsing architecture. The novelty in this essay is the juxtaposition of three
general parsing architectures from a disambiguation point of view: SGLR, SGLL, and DDGLL. It
also motivates design decisions in the parsing architectures for SDF{1,2} and Rascal with previously
unpublished detail. The essay falls short of a literature review and a tool evaluation since it does not
investigate the disambiguation methods of the many other parser generator tools that exist. The fact
that only the implementation algorithms are different between the compared parsing architectures,
while the syntax definition formalisms have practically the same formal semantics for historical
reasons, nicely “isolates the variable” of interest.

We hope this essay lives up to the enormous enthusiasm, curiosity, and drive for perfection in
syntax definition and parsing that Eelco always radiated. We dearly miss him.

2012 ACM Subject Classification Software and its engineering → Syntax

Keywords and phrases parser generation, context-free grammars, GLR, GLL, algorithms, disambig-
uation

Digital Object Identifier 10.4230/OASIcs.EVCS.2023.31

Acknowledgements This essay would not have been possible without the past teamwork with Eelco
Visser, Paul Klint, Jan Heering, Jeroen Scheerder, Mark van den Brand, Chris Verhoef, Alex Sellink,
Pieter Olivier, Hayco de Jong, Georgios (Rob) Economopoulos, Martin Bravenboer, Tijs van der
Storm, Joost Visser, Merijn de Jonge, Jørgen Iversen, Arnold Lankamp, Ali Afroozeh, Anastasia
Izmaylova, Bas Basten, Martin Bravenboer, Adrian Johnstone and Elizabeth Scott on the topic of
context-free general parsing and disambiguation and supporting technologies. However, any error or
inconsistency in the following is all mine.

1 Introduction

This essay focuses on qualitative differences in the design and implementation of Syntax
Definition, Parser Generation, and Disambiguation between two classes of Parsing algorithms:
GLR and GLL. Disambiguation is a function of an entire Parsing Architecture with the goal of
reducing the set of Parse Trees (the Parse Forest) to exactly one using declarative definitions.
Extensions of the Syntax Definition Formalisms (languages for context-free grammars) allow
expressing preferences between different Parse Trees as produced by the Grammar. It is

© Jurgen J. Vinju;
licensed under Creative Commons License CC-BY 4.0

Eelco Visser Commemorative Symposium (EVCS 2023).
Editors: Ralf Lämmel, Peter D. Mosses, and Friedrich Steimann; Article No. 31; pp. 31:1–31:16

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Jurgen.Vinju@cwi.nl
http://homepages.cwi.nl/~jurgenv
https://orcid.org/0000-0002-2686-7409
https://doi.org/10.4230/OASIcs.EVCS.2023.31
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

31:2 Comparing Bottom-Up with Top-Down Parsing from a Disambiguation Standpoint

helpful to see Disambiguation as orthogonal to Parsing, where the latter produces Parse
Trees and the former removes them again. However, in actual Parsing Architectures, this
distinction is virtually invisible due to efficiency considerations. In this essay, we emphasize
declarative and correct parsing over efficiency.

1.1 History of Disambiguation with the SDF
A brief and selective history of disambiguating context-free grammars written in the “Syntax
Definition Formalism” (SDF) is due first. We focus on the parsing architectures of the Syntax
Definition Formalism (SDF) [18, 15, 19] and its later incarnations SDF2 [26, 45] (a part of
the “new” ASF+SDF Meta-Environment [7, 12] and of StrategoXT [13]), and its further
parallel offspring in Rascal [24, 25] and Spoofax [22] (SDF3 [4]). This history motivates the
comparison of parsing architectures later and establishes their origins and dependencies for
the sake of full disclosure. We are not comparing independently designed artifacts.

Already in the first SDF from the early 1980’s its users wrote context-free grammars in a
BNF-like format [18], plus regular extensions such as lists and optionals (a.k.a. “EBNF”),
plus disambiguation declarations. The non-terminal notation of SDF was taken from the
meta notation used in Paul Klint’s PhD thesis [23]. These definitions were then used to
generate parsers and other useful language tooling such as unparsers, syntax highlighters,
structure editors, etc. SDF used general parsing algorithms from the very start. Initially,
it was based on Jay Earley’s algorithm [16], but SDF switched to Tomita’s GLR parsing
algorithm [37] quickly. Earley’s and GLR would allow any kind of grammars – not just LL(1)
or LR(1) or LALR, but any. This was a unique and stimulating feature for a parser generator,
since putting together rules from different modules would also work (i.e. parsing would
happen) and often it would do the right thing. SDF with GLR as its underlying execution
mechanism offered the powers of modularity, language embeddings, and compositionality of
grammars that were eminently useful and also deemed elegant.

However, ambiguity and its cure disambiguation are neither modular nor compositional.
By this, we mean that two arbitrary unambiguous modules when composed can easily become
ambiguous and that two arbitrary modules with disambiguation constructs without parsing
errors could when composed, easily generate spurious parsing errors. Ambiguity of context-
free grammars is generally undecidable (with and without disambiguation constructs) [36],
and this conundrum is the main motivation for all our research into the “diagnostics and
treatment” of ambiguity in the SDF world [43]. Ambiguity made the SDF sometimes hard
to use, despite its elegance and compositionality, or perhaps because of it. On top of this,
the non-determinism of SDF grammars (ambiguous or not) is also a source of inefficiency of
Tomita’s GLR. The same disambiguation constructs that were proposed would also have a
positive effect on efficiency as well.

Rewinding, this history starts with the implementation of SDF which was documented in
Jan Rekers’ thesis on incremental general parser generation in 1992. SDF existed before this
and was documented in the technical reports of the ESPRIT project “GIPE - Generating
Interactive Programming Environments” and GIPE II in ESPRIT 2 ([18] not digitized).
SDF and the initial implementations of SDF2 were implemented using ASF+SDF itself,
which was implemented in “LeLisp” [15]. The scanner in SDF was non-deterministic as
well: scanning would produce all possible tokens at a given input position, from which
the non-deterministic parsers could choose. This was necessary to achieve the desired
modularity and compositionality of real programming languages like PL/I, Pascal, and
COBOL. Disambiguation was featured in SDF by the associativity and priority declarations
between rules, to help declare the binding strength of unary, binary, and n-ary expression

J. J. Vinju 31:3

operators without having to factor a grammar and without introducing any helper non-
terminals. Writing and maintaining SDF grammars was attractive because due to these two
disambiguation constructs the number of rules needed to define the syntax of a language was
kept close to the number of actual constructs in the language. The interactions between the
scanner and parser were sometimes unpredictable due to complex feature interactions with
language composition and rules like longest match and keyword reservation. Incremental
parsing was important at that time for feasibility of running complex and lively updated
IDEs on small and slow machines. Wilco Koorn and Jan Rekers extended the GLR algorithm
for substring parsing [32] to that end, and also to improve error recovery and auto-completion
IDE features. This pushed the interaction between the parsing and the scanning algorithms
to the limit.

Eelco’s Ph.D. thesis on SDF2 in 1997 followed [45], and we completed an implementation
of its parsing and disambiguation mechanisms (SGLR and PGEN) in C and ASF+SDF in
2000 together with Jeroen Scheerder and Mark van den Brand [7]. A main driving force
at that time was the COBOL grammar by Chris Verhoef and Ralf Lämmel [27], as well as
the “Island Grammars” by Leon Moonen [29] that kept pushing the boundaries of what was
possible with declarative disambiguation. Peter Mosses and the Action Notation [9] (design
and implementation) we considered important to satisfy as our “customer on-site.” Eelco had
been inspired by Solomon and Cormack [33] and introduced “scannerless parsing” to SDF by
removing the entire scanner from the architecture, thereby introducing lexical ambiguity to
the playground of SDF2. This design decision removed the aforementioned hard-to-predict
interactions between a non-deterministic scanner and a non-deterministic parser.

Eelco’s thesis contains the mitigations necessary to make scannerless parsing workable.
These are two new disambiguation constructs: follow restrictions for longest match and reject
rules for keyword reservation [39]. He also introduced a simplified representation of parse trees,
with only three kinds of nodes: applications of grammar rules, unordered ambiguity clusters,
and terminal characters. The grammar rules were represented in the abstract syntax of SDF2
as an algebraic data type in the ATerm format (Pieter Olivier, Hayco de Jong, Mark van
den Brand, Paul Klint) [11, 10]. This algebraic format of constructors for parse trees, called
AsFix2, was derived from earlier parse tree export formats (AsFix1) that were designed by
Mark van den Brand to bootstrap ASF+SDF off of the LeLisp implementation [38] and as the
intended exchange format between the various tools of the ASF+SDF Meta-Environment [7]
that was under development at that time.

Since SDF2 was partly implemented in ASF+SDF itself, a bootstrap was required. Mark
van den Brand and Pieter Olivier completed the LeLisp-independent ASF+SDF compiler
in ASF+SDF in 2001, which included a compilation of the implementation of SDF2 and
a re-implementation of the back-end table generator in C. My own thesis work included
disambiguation for SDF2 [42]. That was in collaboration with Eelco, Jeroen Scheerder, and
Mark van den Brand [39], on how to implement the filtering ideas in Eelco’s thesis [26, 45].
The work with Rob Economopoulos was about integrating RNGLR [34] into SGLR in
2013 [17], which could simplify some of the filters but complicated others. Diagnosing
ambiguity with Bas Basten was a parallel track [43, 5] (2011).

SDF2 as-is was used for many years by the ASF+SDF Meta-Environment, ELAN4
environment [12, 41], Action Environment [9] and StrategoXT [13] communities. In this
essay we focus on the differences between the bottom-up parsing architecture of SDF2 as it
was in the early 2010’s and the Rascal top-down architecture in the same period.

SDF2’s Scannerless Generalized LR parsing algorithm (SGLR) is by Eelco Visser [45].
What makes it different from its predecessors, namely Rekers’ fixed version [31] of Tomita’s
GLR [37], is the semantics or implementation of disambiguation filters specific to scannerless

EVCS 2023

31:4 Comparing Bottom-Up with Top-Down Parsing from a Disambiguation Standpoint

parsing and specific to declarative definitions of operator precedence and associativity in
expression grammars. SGLR is the parsing architecture made ready to implement SDF2, the
syntax definition formalism from the thesis of Eelco Visser. The predecessor of SDF2, SDF
had similar disambiguation constructs for operator precedence, but not for disambiguating
lexical syntax. Hence Eelco named “SGLR”: “Scannerless GLR”, and the efficient and
declarative disambiguation of lexical syntax is its core contribution.

Lexical ambiguity aside, what we never really solved (at that time) was the context-
free ambiguity problem in general. Context-free general parsing produces multiple parse
trees, sometimes, and it is hard to predict when. And, SGLR offers specific disambiguation
constructs for specific kinds of ambiguity [5], but it can not solve arbitrary ambiguity. So, we
experimented (from the very start) with far more general disambiguation constructs, such
as the “multiset filter” algorithm [26, 45]. The multiset filter lifts the strict partial order of
priority rules to entire parse trees by considering them “sets of rules” and applying a strict
partial order of sets of partially ordered elements on entire trees. The more advanced the filters
became, the less declarative and the more heuristic they became. Also, new disambiguation
filters tended to be hard to implement correctly (more on this later) or efficiently (they all
became back-end tree filters). Every new disambiguation concept added to SGLR required
almost the effort of a PhD thesis. At the end of the 2010’s, we found a resting point,
eventually, to be able to filter parse trees using general purposes tree manipulators, such as
Stratego, ASF+SDF, and Rascal – a.k.a. semantics directed disambiguation [8].

The second bootstrap stage of Rascal in 2011 provided us with a choice again. We had
the opportunity to start from scratch in terms of parsing architecture. Having wrestled
with the GLR algorithm for decades, we decided to flip the perspective and go top-down
to Scott and Johnstone’s GLL [35]. The one and only motivation was the simplicity and
elegance of the new architecture, promising also simple and elegant disambiguation filters. A
scannerless version of GLL [35] with disambiguations based on all the filters of SDF2 was
indeed produced for Rascal 0.4.x. After this experimenting with new filters became really
easy, intuitive, and fast. It is the goal of the current essay to substantiate this story.

The PhD thesis of Izmaylova and Afroozeh contains the idea of mapping the semantics of
disambiguation filters to (lexical) constraints in data-dependent context-free grammars [1].
The team of Jim, Mandelbaum, and Walker had shown with their Jakker parser generator
that data-dependent grammars are an elegant formalism for expressing the unambiguous
syntax of programming languages [20, 21]. Moreover, such data-dependent grammars with
lexical constraints seem to effectively model almost every hack we have seen in hand-written
top-down parsers as well. Even the offside rule in Haskell, which is described as a hack of
introducing an extra token in the token stream in an error state, can be simulated using a
DDCFG in Iguana [2], and also symbol tables such as used in the scanning of C programs
are expressible in data-dependent context-free grammars [1].

2 Comparing Syntax Definition Formalisms

These are the three main disambiguation constructs in SDF2 and Rascal:

Priorities and associativity for binding strength of operators in expression languages;

Reject rules for keyword reservation;

Follow restrictions for longest and first match.

J. J. Vinju 31:5

1 module ExpInSDF2
2 context-free syntax
3 Id -> Exp
4 "(" Exp ")" -> Exp {bracket}
5
6 context-free priorities
7 Exp "[" Exp "]" -> Exp <0> >
8 Exp "*" Exp -> Exp {left} >
9 { left:

10 Exp "+" Exp -> Exp
11 Exp "-" Exp -> Exp }

1 module ExpInRascal
2 syntax Exp
3 = Id
4 | bracket "(" Exp ")"
5 | Exp "[" Exp "]"
6 > left Exp "*" Exp
7 > left (Exp "+" Exp
8 | Exp "-" Exp
9);

10 _
11 _

Figure 1 Comparing expression language definition between SDF2 and Rascal; minor meta-syntax
differences but conceptually the same.

2.1 Associativity and Priority Disambiguation

In Figure 1 the use of priority and associativity declarations is shown for the same
language “Exp” in both SDF2 and Rascal. Associativity can be applied to a single rule, e.g.
∗, or a group of rules (− and +). We see a binary ordering > which is to be interpreted as a
strict partial order (transitive, irreflexive, asymmetric) between rules.

In both formalisms, each priority and associativity declaration defines a set of disallowed
derivation steps in the respective grammar. Namely for “left” associative binary recursive
rules a rule in the same group must not be derived on the right-hand side non-terminal of
the rule. Vice versa for “right” associativity. If a rule is not binary recursive (i.e. it is of the
form X ::= X ... X then the filter has no effect.

Also, both formalisms share similar semantics for the priority relation. If production A
has a higher priority than another production B, then never shall B be a direct child of A.
No non-terminal of A will be recognized using the application of rule B. SDF2 priority rules
have no effect unless the two rules in question are shaped like so: X ::= ϵ X ... | ... X ϵ or
so: X ::= ... X ϵ | ϵ X The recursive positions must overlap at a left-most or right-most
position (or their pre/postfixes must derive the empty sequence ϵ).

For SDF2, if the user makes a mistake and defines a priority relation that is reflexive or
symmetric (A > B and B > A), then the filter may remove too many derivations from the
generated parser with parse errors as a result. Also, SDF2 removes all nested derivations of
B under A if A > B, including the position between brackets in Exp "[" Exp "]". This would
make it impossible to write a[1+2]. And so SDF2 users write < 0 > before that rule to limit
the filter to the first argument position and ignore it for the second. For Rascal the set of
generated filter positions is filtered itself; only the positions that are guaranteed to generate
ambiguity are filtered and the other positions are ignored. If the priority relation is not a
partial order, the user is provided with an error message.

In short: the semantics of associativity and priority disambiguation is described in terms
of derivation step filters on the grammar level. We refer to Eelco’s thesis [45], this paper
on ambiguity diagnostics [5], and this on disambiguating expression grammars [3], which
explain the above formally.

The correctness of the semantics of these constructs relies on the guaranteed ambiguity of
binary expression operators that are left and/or right-recursive, such that the filter does not
remove the last derivation from a Parse Tree [3]. So, their implementation should prevent the
effects of such derivations or remove them, somewhere in the respective parsing architecture
in order to implement this filtering behavior.

EVCS 2023

31:6 Comparing Bottom-Up with Top-Down Parsing from a Disambiguation Standpoint

1 module RejectInSDF2
2 context-free syntax
3 Id -> Exp
4 Keyword -> Id {reject}
5 "begin" -> Keyword
6 "end" -> Keyword

1 module RejectInRascal
2 syntax Exp = Id \ Keywords;
3 keyword Keywords
4 = "begin"
5 | "end"
6 ;

Figure 2 Comparing reject rules between SDF2 and Rascal.

1 module RestrictionsInSDF2
2 lexical syntax
3 [A-Za-z][A-Za-z0-9]* -> Id
4 lexical restrictions
5 Id -/- [A-Za-z0-9]

1 module RestrictionsInRascal
2 lexical Id
3 = [A-Za-z][A-Za-z0-9]*
4 !>> [A-Za-z0-9];
5 _

Figure 3 Comparing follow restriction between SDF2 and Rascal.

2.2 Reject Rules
Figure 2 depicts the two styles of reserving keywords as a disambiguation mechanism.

The reject tag was introduced by Eelco Visser in 1997. The semantics is that any subsentence
recognized by any derivation for Id which can also be recognized as Keyword, at that same
input position and having the same length, must be filtered. As described, the mechanism
extends context-free grammars to include the intersection of context-free non-terminals and
it should be possible to generate parsers for the famous non-context-free example anbncn.
Later we read why this was not accomplished with SDF2.

The Rascal reflection of this design is the \ operator that removes the language of Keywords

from that specific use of Id in Exp. The difference is thus that Rascal defined a derivation step
filter for a specific position of Id in a specific rule, while SDF2 defined a filter for all uses of
Id in any rule. Nevertheless, the expressive power would be the same, if the Rascal designers
had not limited the keyword non-terminals to generate non-empty and finite languages only.

2.3 Follow restrictions
Here in Figure 3 we even more clearly step out of the realm of context-free grammars.

Follow restrictions in Rascal and SDF2 express, literally, constraints on what comes after
the character yield of a recognized non-terminal. In SDF2 we define a filter that removes
all derivations of Id anywhere if the single character that would follow it in the input is a
member of the character class [A-Za-z0-9]. Although this is not a local property of a Parse
Tree, it is a local input of most parsing algorithms that move from left to right through the
input. The next character or token in the stream is usually referred to as the “lookahead
token.” SDF2 also has multi-character lookahead tokens for restrictions, which lead to the
same semantics (but an arguably much more complex implementation).

In Rascal the semantics is similar, but we define the derivation filter not for all instances
of the non-terminal, but only for the position in the rule that the restriction is applied. Next
to this Rascal features the complement: a follow requirement declares that a non-terminal
must be followed by a certain character class, and their analogous duals: precede restrictions
and requirements. Rascal, like SDF2, also features multiple look-ahead characters.

While explaining the semantics of the three disambiguation constructs we used only ideas
such as Grammar, Derivation steps, Parse Trees, and Input sentences. There is no distinction
between top-down and bottom-up because we have yet to dive into the implementations of
these filters.

J. J. Vinju 31:7

Grammar Parsetable
Generator Parsetable

SGLRSource code Parse forest

Tree Filter Parse tree
Extra disambiguation

information

Figure 4 Bottom-up SDF2 architecture based on SGLR.

Grammar

SGLLSource code Parse forest

Tree Filter Parse treeExtra disambiguation
information

Figure 5 Top-down Rascal architecture based on SGLL.

3 Comparing Parsing and Disambiguation Algorithms

We are comparing the parsing and disambiguation algorithms SGLR and SGLL as they were
part of the parsing architectures for SDF2 and Rascal as they were in 2010. We will show
details of the SGLR implementation in C and ASF+SDF and in Java and Rascal of the
Rascal implementation.

Figure 4 shows the parsing and disambiguation architecture of SDF2 with SGLR in it. As
you can see a disambiguation filter may end up filtering a rule from a grammar completely,
modify the SLR parse table to prevent certain derivations to occur at all, or inject itself in
the parser run-time to prevent parser driver operations that have the same effect. Eventually,
every filter could be implemented by a post-parse tree transformation.

Figure 5 shows a different architecture because there is no intermediate stage for parse
table generation. However, Rascal does have a grammar rule merging step while loading a
new grammar that captures some of the partial evaluation that is done while building parse
tables as well.

The two premises of implementing SDF2’s disambiguation constructs are [26, 39]

efficiency: implement filters as early as possible in the parsing architecture; preventing
non-determinism is better than fixing ambiguity later. For Rascal, we adopted a similar
but less far-fetching dogma: better filter while predicting than filter while accepting a
derivation.

grammar neutrality: do not change the shape of the grammar rules, such that also the
shape of the Parse Trees is unaffected. This adds to the predictability of the shape of the
forests as well as efficiency since tree structure does not need to be reconstructed. For
Rascal, this is also a core design constraint.

EVCS 2023

31:8 Comparing Bottom-Up with Top-Down Parsing from a Disambiguation Standpoint

3.1 Implementing priority and associativity
In a bottom-up parser, it is possible to completely prevent the creation of derivations that do
not satisfy the constraints generated from associativity and priority declarations1 The major
vehicle for this is the parse table generator.

SDF2 uses DeRemer’s SLR(1) [14] table construction. An SLR(1) parse table is some-
thing most students must be able to generate from a grammar by hand in their Compiler
Construction course. The table represents a state machine for a pushdown automaton driver
that will recognize a string or not, using the information in the table. One could look at the
table as a partially evaluated parsing algorithm (typically Earley’s algorithm [16]) where the
grammar is interpreted but the input sentence is left open. Eelco’s idea is that any reduce
P1 actions going out of a state can be completely removed if said state witnesses that P2 is
its parent at the wrong position according to P2 > P1.

However, SLR(1)’s follow sets are defined on non-terminals and not production rules, so
they do not represent rules that clearly. Every goto action out of a state may represent a
union of rules for different non-terminals and different positions in different rules of the same
non-terminal. Seeing that we use a non-deterministic parsing driver, Eelco observed that it
was possible to redefine SLR follow sets per production instead of per non-terminal; and this
enabled a full implementation of the priority and associativity semantics. The overhead is
that different rules would exit a state on sometimes the same follow set to the same state, but
at least never could an illegal transition be made anymore. The breakthrough here was that
this solution, on top of Rekers’ version of Tomita’s GLR, could deal with any context-free
grammar and not only the LR(k) class.

The actual code that implements this filter in SDF2 is written in ASF+SDF and C
(against ApiGen-generated ATerm interfaces). The expensive part is the transitive closures
and cartesian products part, which was ported to C after the declarative version in ASF+SDF
proved to be a bottleneck. This implementation derives triples (P1, pos, P2) that explain for
every rule P1 at which position pos the other rule P2 should be disallowed. The worst-case
size of the set of these triples is quadratic in the number of original production rules. Later
the relatively simple SLR table generator takes this set as an additional argument and
surgically does not add reductions if they occur in the set (Figure 6).

The Rascal implementation of the same filter uses a comparable triplet computation but
is written in (higher-level) Rascal. The Rascal code also first proves ambiguity for left-most
and right-most recursive positions, instead of applying the filter to all arguments of every
production. With SGLL, the set of triplets is not used at parser generation time but during
the prediction stages of the top-down parsing algorithm (Figure 7). Rascal’s SGLL (designed
and implemented by Arnold Lankamp) filters rules the moment they are applied by looking
at their parent node. At this moment of rule reduction, the triplet set is queried. This has
the exact same effect as the SDF2 implementation, at the cost of a hash-table lookup. In fact,
the SGLL implementation numbers every production with a low integer and uses a small
array to look up all the conflicting rules at a certain position. In a correct SGLL or SGLR
implementation, all these solutions for priority and associativity filtering have the same effect
of removing reductions without breaking the algorithm, at the cost of extra bookkeeping.

The SGLL algorithm prevents certain recursive steps dynamically while the SDF2 al-
gorithm filters certain derivations. From a slight distance, both algorithms simulate a
grammar transformation that would introduce non-terminals for every production rule and

1 Later Peter Mosses found out that there are cases where SDF2 is theoretically incomplete for expressing
binding strength using single derivation step filters and that required the development of a new theory
and new implementations. This is out of the scope of the current paper.

J. J. Vinju 31:9

1 ATermList shift_prod(ItemSet items, int prodNr) {
2 Item item, newitem;
3 PT_Symbol symbol;
4 ATermList newvertex = ATempty;
5 ItemSetIterator iter;
6 PT_Production prod = PGEN_getProductionOfProdNumber(prodNr);
7
8 symbol = PT_getProductionRhs(prod);
9

10 ITS_iteratorPerDotSym(items, symbol, &iter);
11 while (ITS_hasNext(&iter)) {
12 item = ITS_next(&iter);
13 assert(PT_isEqualSymbol(symbol, IT_getDotSymbol(item)));
14 newitem = IT_shiftDot(item);
15 if (newitem != NO_ITEM
16 && !PGEN_isPriorityConflict(item, prodNr)) {
17 newvertex = ATinsert(newvertex, IT_ItemToTerm(newitem));
18 } }
19
20 return newvertex; }

Figure 6 C code snippet in the SDF2 parser generator with a single surgical addition predicate
on line 16 to implement associativity/priority filtering. Small intervention: big impact.

disallow certain rules based on the same constraint triplets. A factored grammar, such as
we see when using LALR parsers, would probably not be much different. One could say
that by requiring not to change the grammar, we have to simulate those grammar changes
on a lower level of abstraction to achieve the same effect. Accidentally, a similar “set of
integer production rules representation” used by Arnold Lankamp in SGLL, Eelco had
envisioned earlier with “character-class grammars” [44]. There each non-terminal would also
be represented by a set of active production rules for that level in the grammar and removing
a production would entail implementing a filter on the grammar level.

The SDF2/SGLR solution requires theory: does the implementation satisfy all the
constraints derived from the semantics of the formalism? Well, only if we change the concept
of what an SLR(1) table is a bit, such that it fits. The solution does not generalize to
other standard table formats, like LALR(1). The Rascal/SGLL solution sits very tightly on
the concept of top-down parsing where recursion on the way down models prediction and
coming back up models acceptance/reduction; it can be added to any (G)LL(1) algorithm
implementation technique.

3.2 Implementing reject
The way we write SDF2 reject rules already leaks something about the implementation
strategy of keyword reservation. We simply schedule the rejected rule along with the rest of
the grammar. Then, when all alternatives for the Id non-terminal have finished, we check if
one of them was accidentally a reject rule and if so we remove all those derivations from the
computation.

With this elegant approach, Eelco had found a near-optimal solution [45]. We do not have
to start a whole other parser with its own stack. Instead, we surf on the non-deterministic
graph-structured stack of Tomita’s algorithm and pay only a low overhead of recognizing an
additional alternative.

However, this implementation had to be revisited and revised many times between the
years 2000 and 2005, and eventually, we had to admit general non-terminals could not be
“rejected” by this algorithm. The problem with reject is very much akin to the original bug

EVCS 2023

https://github.com/cwi-swat/meta-environment/blob/master/pgen/src/goto.c

31:10 Comparing Bottom-Up with Top-Down Parsing from a Disambiguation Standpoint

1 private void handleEdgeListWithRestrictions(...) {
2 firstTimeRegistration.clear(); firstTimeReductions.clear();
3 for (int j = edgeSet.size() - 1; j >= 0; --j) {
4 AbstractStackNode<P> edge = edgeSet.get(j);
5 int resultStoreId = getResultStoreId(edge.getId());
6
7 if (!firstTimeReductions.contains(resultStoreId)) {
8 if (firstTimeRegistration.contains(resultStoreId)) continue;
9

10 firstTimeRegistration.add(resultStoreId);
11
12 if (!filteredParents.contains(edge.getId())) {
13 AbstractContainerNode<P> resultStore = null;
14 if (edgeSet.getLastVisitedLevel(resultStoreId) == loc)
15 resultStore = edgeSet.getLastResult(resultStoreId);
16 ... /* elided error recovery code */
17 resultStore.addAlternative(production, resultLink);
18 } else {
19 AbstractContainerNode<P> resultStore = edgeSet.getLastResult(resultStoreId);
20 stacksWithNonTerminalsToReduce.push(edge, resultStore);
21 } } } }

Figure 7 Java code snippet in Rascal’s SGLL parser run-time, with a single additional predicate
on line 14 to filter associativity/priority violations. Again: small intervention; big impact.

1 public interface ICompletionFilter {
2 boolean isFiltered(int[] input, int start, int end, PositionStore positionStore); }

Figure 8 Rascal’s SGLL completion filter interface code.

in Tomita’s algorithm, which occurred with hidden left recursion. Sometimes the graph-
structured stack would miss reductions and Farshi fixed that [30] with an additional stage
to search for the missing reductions. The reject implementation very much depends on
the algorithm identifying a moment where all rules for the restricted non-terminal Id have
reduced, but the original algorithm for it did not achieve this. The reject “aspect” of SGLR
is scattered in different places making it hard to theorize what its effect really is. And so
sometimes rules would continue even though they should have been rejected with spurious
ambiguity as a result. After several experiments, the diagnosis was left-nullable rules for the
restricting could lead to “escaped” reductions. Further complicating the algorithm with yet
more searching on top of Farshi’s fix was deemed inefficient.

The reject filter in Rascal is either an implementation of an ICompletionFilter or an
IEnterFilter. The latter prevents going into a production when it is predicted while the former
removes the effect of recognizing a production when it is completed. This is the general
filtering scheme, which gives access to the input character array, the start, and end index of
the currently recognized input, etc. Other (static) information, like which non-terminal or
production is captured by the object that implements the filter. The reject filter in SGLL
simply compares the input subsentence with a given list of keywords that are not allowed and
fails on a match. A more complex implementation could parse the substring using another
parser (or recognizer). Setting up a nested parser is not as complex or expensive in Java as
it was in SGLR’s C version.

The parameters of a completion filter in SGLL (see Figure 8) make explicit what can
be safely used as information to filter without breaking the algorithm’s assumptions. The
dynamic programming techniques that are used to stay in polynomial time for an exponential

https://github.com/usethesource/rascal/blob/main/src/org/rascalmpl/parser/gtd/SGTDBF.java
https://github.com/usethesource/rascal/blob/main/src/org/rascalmpl/parser/gtd/stack/filter/ICompletionFilter.java

J. J. Vinju 31:11

number of parse trees, or even cubic, are predicated upon the identification of reusable
parse stacks for reusable subsentences. When context information breaks into this equation,
it breaks the underlying assumptions for sharing computations leading to false positives
(spurious derivations) as well as false negatives (spurious filtering of derivations). Every
new filter introduced requires new theory. The definition of ICompletionFilter and IEnterFilter

in Rascal’s SGLL mitigate this by allowing any filter based on the given information and
guaranteeing algorithmic correctness. If you need something more, it’s back to the drawing
board just as with SGLR.

3.3 Implementing follow restrictions
The final filter, however innocuous, proved to be another grand challenge for implementing in
SDF2 and SGLR. Firstly, the basic implementation for single-character lookahead was simply
to remove the given characters from the lookahead sets in the SLR(1) table [45]. Secondly,
multiple character lookahead would be implemented by dynamically filtering reductions in
the inner parser loop. With the right internal administration that associates the lookaheads
with every production rule, the code change in the algorithm is minimal.

However, at the time we were using the ATerm library for representing parse trees with
its maximal sharing ability. Parse tree nodes that were structurally equal, would always
be shared. Sharing was thus based on the contents of the trees’ sub-nodes, and not on the
context. This design decision is efficient in the context of ambiguity where lots of sub-nodes
would be structurally equal (whitespace). With a theory of context-free grammars this all
works fine. With the theory of context information with follow restrictions, maximal sharing
breaks the parser. To fix the bugs, we ended up introducing an additional lookup table for
ambiguous parse trees where the starting position in the input sentence became part of the
lookup key.

Having learned from the experience, the Rascal SGLL implementation used its own
intermediate SPPF-like [37] data structure for parse forests, which is then serialized to AsFix
Parse Trees after the parse is done. The aforementioned ICompletionFilter can be used to
implement follow restrictions in a single line of code. IEnterFilter would be used for the
precede variants. If you’d start from scratch to implement SGLR in Java, for example, you
would use the same trick. Indeed the JSGLR code by Karl Trygve Kalleberg in Spoofax,
uses an ambiguity hash-table that also includes the start position of every tree.

3.4 Top-down disambiguation is easier to get right
Table 1 summarizes how the three declarative implementation constructs were implemented
in either a top-down (Rascal) or bottom-up (SDF2) parsing architecture. Once you have the
theory straight, the implementation of a disambiguation filter seems a surgical incision in
either algorithm: a conditional around the scheduling of the next step. If only this were true.

Implementing the Reject and Follow Restriction filters has proven to be complex for
the SGLR architecture while it is straightforward in SGLL. Moreover, the priorities and
associativity filter on the parse table level can never be complete, even though it is elegant.
Small changes in the parse table, such as filtering a goto edge, may break the conditions
under which parse stacks or parse tree nodes can be shared later in the GLR algorithm.
These semantic links are platonic, in the sense that they do not lead to explicit dependencies
on the source code level of SGLR, however, when not taken care of complex bugs do arise.
Concretely, the addition of Follow Restrictions to the SLR table construction algorithm
broke many of the underlying assumptions of the SGLR implementation and required the
reconsideration of all of its internal data structures. On the other hand, for SGLL a follow
restriction was a simple conditional while scheduling the next algorithmic step.

EVCS 2023

https://github.com/metaborg/jsglr/blob/master/org.spoofax.jsglr/src/org/spoofax/jsglr/client/AmbiguityManager.java

31:12 Comparing Bottom-Up with Top-Down Parsing from a Disambiguation Standpoint

Table 1 Overview of the disambiguation implementations for either SDF2 (bottom-up) or Rascal
(top-down).

Feature Grammar Implementation

SDF2 Priority / Associativ-
ity

P1 > P2, left, right 1. Compute constraint triplets
2. SLR(1) follow-sets per rule
3. Filtering goto’s in SLR(1)

Rascal Priority / Associativ-
ity

P1 > P2, left, right 1. Compute constraint triplets
2. Filter forest edge creation

SDF2 Keyword reservation Kw -> Id {reject} 1. Grouping reductions
2. Filter reductions

Rascal Keyword reservation Id \ Kw 1. ICompletionFilter

SDF2 Longest Match Id -/- [A-Z] 1. Goto Filter on follow sets
2. Reduction filter for k lookahead

Rascal Longest Match Id !>> [A-Z] 1. ICompletionFilter

The reject filter for SGLR proved to be even more difficult to implement. The actual
filter operation is to remove all other reductions for a non-terminal in the presence of a
“rejected” one for the same sub-sentence and non-terminal. The SGLR algorithm does not
schedule reductions in such a way that a clear moment arises when all possible reductions for
a subsentence have been collected. Sometimes graph stack nodes are processed already for
further reductions (chain rules), and that way a tree would escape that would otherwise have
been filtered. Sometimes the rejected stack node itself would be processed too early, letting
later nodes escape. The first problem was solved by changing the GLR algorithm to group
reductions in the same starting position of the input. The latter problem was solved by
disallowing more complex non-terminals to be rejected, limiting them to finite non-nullable
languages. The reject filter in SGLL is a simple reduction filter.

We conclude that top-down is much easier to experiment with and extend. Bottom-up
could be faster due to partial evaluation, but still, additional bookkeeping and less sharing
are required to filter correctly. Rascal’s SGLL in Java is as fast as the SDF2’s SGLR in C.

4 Perspective on contextual disambiguation with DDCFGs

Let’s step back from the comparison made between top-down general and bottom-up general
parsing with disambiguation and zoom out to the general problem of disambiguation.

All three disambiguation constructs use context information.
Each of the three disambiguation constructs is an ad-hoc extension of the SDF [43, 6].
Each disambiguation construct deeply impacts the parsing algorithm.

Never mind that they are easier to implement in GLL, but what is the best way of formulating
the next disambiguation construct on the SDF level? Say we want to support the offside
rule [28]. How to implement it in (S)GLL? Disambiguation always adds “context” to the
algorithm of constructing parse trees as compared to “context-free” grammars. At the LDTA
conference in 2011, Trevor Jim and Yithzak Mandelbaum demonstrated the utility and
elegance of data-dependent context-free grammars with their Yakker parser generator [21, 20].
Much earlier, Mark van den Brand in his PhD thesis [40] also demonstrated that parse-
time semantic predicates can be used elegantly and efficiently to disambiguate (lexical and
context-free) ambiguity.

J. J. Vinju 31:13

A Data-dependent Constraint Grammar is a context-free grammar with three major
extensions: (a) the non-terminal on the left-hand side of any rule may receive additional
data parameters, (b) every symbol on the right-hand side may be conditional on said data
parameters using constraint formulas, and (c) data from the input sentence or of syntax trees
already processed may be passed as parameters to non-terminals or constraints. Typical
“data” would be the character string of a sub-sentence, the start and ending position of every
rule, the current indentation level, etc. Typical formulas would be integer arithmetic (for
layout positioning), and string (in)equality, but in general, any predicate without side-effects
written in the host programming language is ok.

Afroozeh and Izmaylova [2, 1] mapped all of SDF’s and Rascal’s disambiguation mech-
anisms to their Iguana formalism which is based on data-dependent grammars, and then
immediately added many more disambiguation constructs. For example, with Iguana it is
possible to declaratively express the offside rule and many other “two-dimensional” layout con-
straints for programming languages such as Haskell and Python. Iguana is a top-down parsing
architecture, as the reader might expect. It is also possible to implement data-dependent
grammars on top of Earley’s algorithm [21, 16].

However, the semantics of Disambiguation remains the same whether you implement
your DDCFG parsing algorithm in a top-down or a bottom-up data-dependent context-free
general framework. The formal semantics of data-dependent context-free grammars acts as a
virtual machine for disambiguation constructs, making it easier to reason about correctness
independent of the implementation in a complex parsing algorithm [1].

5 Conclusion

First, contextual disambiguation is a pleonasm. Second, it is arguably easier to design and
implement (new) disambiguation constructs with GLL than with GLR. Third, data-dependent
context-free grammars add the level of formality and generality that we were always searching
for when inventing new disambiguation schemes (as exemplified by the Jakker and Iguana
Parsing Architectures). We conclude that a top-down implementation of data-dependent
context-free parsing is the way to go for Rascal as well as SDF3.

References
1 Ali Afroozeh and Anastasia Izmaylova. One Parser to Rule Them All. In Proceedings of the 2015

ACM International Symposium on New Ideas, New Paradigms, and Reflections on Programming
& Software, Onward! 2015, pages 151–170. ACM, 2015. doi:10.1145/2814228.2814242.

2 Ali Afroozeh and Anastasia Izmaylova. Iguana: a practical data-dependent parsing framework.
In Ayal Zaks and Manuel V. Hermenegildo, editors, Proceedings of the 25th International
Conference on Compiler Construction, CC 2016, Barcelona, Spain, March 12-18, 2016, pages
267–268. ACM, 2016. doi:10.1145/2892208.2892234.

3 Ali Afroozeh, Mark van den Brand, Adrian Johnstone, Elizabeth Scott, and Jurgen J. Vinju.
Safe specification of operator precedence rules. In International Conference on Software
Language Engineering (SLE), LNCS. Springer, 2013.

4 Luís Amorim and Eelco Visser. Multi-purpose Syntax Definition with SDF3, pages 1–23.
Springer, September 2020. doi:10.1007/978-3-030-58768-0_1.

5 Bas Basten and Jurgen Vinju. Parse forest diagnostics with dr. ambiguity. In International
Conference on Software Language Engineering (SLE), LNCS. Springer, 2011.

6 Bas Basten and Jurgen Vinju. Parse forest diagnostics with Dr. Ambiguity. In International
Conference on Software Language Engineering (SLE), LNCS. Springer, 2011.

EVCS 2023

https://doi.org/10.1145/2814228.2814242
https://doi.org/10.1145/2892208.2892234
https://doi.org/10.1007/978-3-030-58768-0_1

31:14 Comparing Bottom-Up with Top-Down Parsing from a Disambiguation Standpoint

7 Mark G.J. van den Brand, Arie van Deursen, Jan Heering, Hayco A. de Jong, Merijn de Jonge,
Tobias Kuipers, Paul. Klint, Leon Moonen, Pieter .A. Olivier, Jeroen Scheerder, Jurgen J.
Vinju, Eelco Visser, and Joost Visser. The ASF+SDF Meta-Environment: a Component-Based
Language Development Environment. In R. Wilhelm, editor, Compiler Construction (CC ’01),
volume 2027 of Lecture Notes in Computer Science, pages 365–370. Springer-Verlag, 2001.

8 Mark G.J. van den Brand, Steven Klusener, Leon Moonen, and Jurgen J. Vinju. Generalized
Parsing and Term Rewriting – Semantics Directed Disambiguation. In Barret Bryant and João
Saraiva, editors, Third Workshop on Language Descriptions Tools and Applications, Electronic
Notes in Theoretical Computer Science. Elsevier, 2003.

9 Mark van den Brand, Jørgen Iversen, and Peter Mosses. An Action Environment. Electr.
Notes Theor. Comput. Sci., 110:149–168, December 2004.

10 Mark van den Brand and Paul Klint. ATerms for manipulation and exchange of structured
data: It’s all about sharing. Information & Software Technology, 49:55–64, January 2007.

11 Mark van den Brand, Paul Klint, Hayco de Jong, and Pieter Olivier. Efficient annotated
terms. Software— Practice & Experience, 30(2), January 2000.

12 Mark van den Brand, Pierre-Etienne Moreau, and Jurgen Vinju. Environments for term
rewriting engines for free! In Proceedings of the 14th International Conference on Rewriting
Techniques and Applications, RTA’03, pages 424–435, Berlin, Heidelberg, 2003. Springer-Verlag.

13 Martin Bravenboer, Karl Trygve Kalleberg, Rob Vermaas, and Eelco Visser. Stratego/XT
0.17. a language and toolset for program transformation. Science of Computer Programming,
72(1):52–70, 2008. Special Issue on Second issue of experimental software and toolkits (EST).
doi:10.1016/j.scico.2007.11.003.

14 Frank DeRemer. Simple lr(k) grammars. Commun. ACM, 14(7):453–460, 1971. doi:10.1145/
362619.362625.

15 Arie Van Deursen, Jan Heering, and Paul Klint. Language Prototyping: An Algebraic Specific-
ation Approach: Vol. V. World Scientific Publishing Co., Inc., USA, 1996.

16 Jay Earley. An efficient context-free parsing algorithm. Commun. ACM, 13:94–102, February
1970. doi:10.1145/362007.362035.

17 Giorgios R. Economopoulos, Paul Klint, and Jurgen J. Vinju. Faster scannerless GLR
parsing. In Oege de Moor and Michael I. Schwartzbach, editors, Compiler Construction
(CC), volume 5501 of Lecture Notes in Computer Science, pages 126–141. Springer, 2009.
doi:10.1007/978-3-642-00722-4_10.

18 J. Heering and P. Klint. A syntax definition formalism, 1986. ESPRIT”86: Results and
Achievements, page 619–630.

19 Jan Heering, Paul R. H. Hendriks, Paul Klint, and Jan Rekers. The syntax definition
formalism SDF — reference manual. SIGPLAN Not., 24(11):43–75, November 1989. doi:
10.1145/71605.71607.

20 Trevor Jim and Yitzhak Mandelbaum. Delayed semantic actions in yakker. In Claus Brabrand
and Eric Van Wyk, editors, Language Descriptions, Tools and Applications, LDTA 2011,
Saarbrücken, Germany, March 26-27, 2011. Proceeding, page 8. ACM, 2011. doi:10.1145/
1988783.1988791.

21 Trevor Jim, Yitzhak Mandelbaum, and David Walker. Semantics and algorithms for data-
dependent grammars. In Manuel V. Hermenegildo and Jens Palsberg, editors, Proceedings
of the 37th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2010, Madrid, Spain, January 17-23, 2010, pages 417–430. ACM, 2010. doi:10.1145/
1706299.1706347.

22 Lennart C.L. Kats and Eelco Visser. The Spoofax language workbench: Rules for declarative
specification of languages and IDEs. SIGPLAN Not., 45(10):444–463, October 2010.

23 Paul Klint. From SPRING to SUMMER: design, definition and implementation of programming
languages for string manipulation and pattern matching. PhD thesis, Technische Hogeschool
Eindhoven, March 1982.

https://doi.org/10.1016/j.scico.2007.11.003
https://doi.org/10.1145/362619.362625
https://doi.org/10.1145/362619.362625
https://doi.org/10.1145/362007.362035
https://doi.org/10.1007/978-3-642-00722-4_10
https://doi.org/10.1145/71605.71607
https://doi.org/10.1145/71605.71607
https://doi.org/10.1145/1988783.1988791
https://doi.org/10.1145/1988783.1988791
https://doi.org/10.1145/1706299.1706347
https://doi.org/10.1145/1706299.1706347

J. J. Vinju 31:15

24 Paul Klint, Tijs van der Storm, and J.J. Vinju. EASY meta-programming with Rascal.
In João Fernandes, Ralf Lämmel, Joost Visser, and João Saraiva, editors, Generative and
Transformational Techniques in Software Engineering III, volume 6491 of LNCS, pages 222–289.
Springer Berlin / Heidelberg, 2011.

25 Paul Klint, Tijs van der Storm, and Jurgen J. Vinju. Rascal: A domain specific language for
source code analysis and manipulation. In Ninth IEEE International Working Conference on
Source Code Analysis and Manipulation (SCAM), pages 168–177. IEEE Computer Society,
2009. doi:10.1109/SCAM.2009.28.

26 Paul Klint and Eelco Visser. Using filters for the disambiguation of context-free grammars. In
G. Pighizzini and P. San Pietro, editors, Proc. ASMICS Workshop on Parsing Theory, pages
1–20, Milano, Italy, 1994. Tech. Rep. 126–1994, Dipartimento di Scienze dell’Informazione,
Università di Milano.

27 Ralf Lämmel and Chris Verhoef. Semi-automatic Grammar Recovery. Software—Practice &
Experience, 31(15):1395–1438, December 2001.

28 P. J. Landin. The next 700 programming languages. Commun. ACM, 9:157–166, March 1966.
29 Leon Moonen. Generating robust parsers using island grammars. Proceedings Eighth Working

Conference on Reverse Engineering, pages 13–22, 2001.
30 Rohman Nozohoor-Farshi. Handling of ill-designed grammars in tomita’s parsing algorithm.

In Proceedings of the First International Workshop on Parsing Technologies, pages 182–192,
Pittsburgh, Pennsylvania, USA, August 1989. Carnegy Mellon University. URL: https:
//aclanthology.org/W89-0219.

31 J. Rekers. Parser Generation for Interactive Environments. PhD thesis, University of
Amsterdam, 1992.

32 Jan Rekers and Wilco Koorn. Substring parsing for arbitrary context-free grammars. In
Proceedings of the Second International Workshop on Parsing Technologies, pages 218–224,
Cancun, Mexico, February 13-25 1991. Association for Computational Linguistics. URL:
https://aclanthology.org/1991.iwpt-1.25.

33 D. J. Salomon and G. V. Cormack. Scannerless NSLR(1) parsing of programming languages.
In Proceedings of the ACM SIGPLAN 1989 Conference on Programming language design and
implementation, PLDI 1989, pages 170–178. ACM, 1989. doi:10.1145/73141.74833.

34 Elizabeth Scott and Adrian Johnstone. Right nulled GLR parsers. ACM Trans. Program.
Lang. Syst., 28(4):577–618, July 2006.

35 Elizabeth Scott and Adrian Johnstone. GLL parsing. ENTCS, 253(7):177–189, 2010. Pro-
ceedings of the Ninth Workshop on Language Descriptions Tools and Applications (LDTA
2009).

36 Thomas A. Sudkamp. Languages and Machines: An Introduction to the Theory of Computer
Science. Addison-Wesley Longman Publishing Co., Inc., USA, 1997.

37 M. Tomita. Efficient Parsing for Natural Languages. A Fast Algorithm for Practical Systems.
Kluwer Academic Publishers, 1985.

38 Mark van den Brand, Jan Heering, Paul Klint, and Pieter A. Olivier. Compiling language
definitions: The ASF+SDF compiler. CoRR, cs.PL/0007008, 2000. URL: https://arxiv.
org/abs/cs/0007008.

39 Mark van den Brand, Jeroen Scheerder, Jurgen J. Vinju, and Eelco Visser. Disambiguation
filters for scannerless generalized LR parsers. In R. Nigel Horspool, editor, Compiler Construc-
tion, 11th International Conference, CC 2002, volume 2304 of LNCS, pages 143–158. Springer,
2002.

40 Mark G. J. van den Brand. PREGMATIC – A generator for incremental programming
environments. PhD thesis, Radboud University Nijmegen, 1992.

41 Mark G. J. van den Brand, Pierre-Etienne Moreau, and Christophe Ringeissen. The ELAN
Environment: an Rewriting Logic Environment based on ASF+SDF Technology. In Workshop
on Language Descriptions, Tools and Applications – LDTA’02, volume 65/3 of Electronic
Notes in Theoretical Computer Science, Grenoble, France, April 2002. Colloque avec actes et
comité de lecture. internationale. URL: https://hal.inria.fr/inria-00101028.

EVCS 2023

https://doi.org/10.1109/SCAM.2009.28
https://aclanthology.org/W89-0219
https://aclanthology.org/W89-0219
https://aclanthology.org/1991.iwpt-1.25
https://doi.org/10.1145/73141.74833
https://arxiv.org/abs/cs/0007008
https://arxiv.org/abs/cs/0007008
https://hal.inria.fr/inria-00101028

31:16 Comparing Bottom-Up with Top-Down Parsing from a Disambiguation Standpoint

42 J.J. Vinju. Analysis and Transformation of Source Code by Parsing and Rewriting. PhD
thesis, Universiteit van Amsterdam, November 2005.

43 Jurgen J. Vinju. SDF disambiguation medkit for programming languages. Technical Report
SEN-1107, Centrum Wiskunde & Informatica, 2011. URL: http://oai.cwi.nl/oai/asset/
18080/18080D.pdf.

44 Eelco Visser. From context-free grammars with priorities to character class grammars. In
Mieke Brune Arie van Deursen and Jan Heering, editors, Dat Is Dus Heel Interessant, Liber
Amicorum dedicated to Paul Klint. Centrum Wiskunde & Informatica and IVI Universiteit
van Amsterdam, 1997.

45 Eelco Visser. Syntax Definition for Language Prototyping. PhD thesis, Universiteit van
Amsterdam, 1997.

http://oai.cwi.nl/oai/asset/18080/18080D.pdf
http://oai.cwi.nl/oai/asset/18080/18080D.pdf

	1 Introduction
	1.1 History of Disambiguation with the SDF

	2 Comparing Syntax Definition Formalisms
	2.1 Associativity and Priority Disambiguation
	2.2 Reject Rules
	2.3 Follow restrictions

	3 Comparing Parsing and Disambiguation Algorithms
	3.1 Implementing priority and associativity
	3.2 Implementing reject
	3.3 Implementing follow restrictions
	3.4 Top-down disambiguation is easier to get right

	4 Perspective on contextual disambiguation with DDCFGs
	5 Conclusion

