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Abstract
Decentralised Finance has popularised Automated Market Makers (AMMs), but surprisingly little
research has been done on their consistency. Can a single attacker extract risk-free revenue from an
AMM, regardless of price or other users’ behaviour? In this paper, we investigate the consistency of
a large class of AMMs, including the most widely used ones, and show that consistency holds.
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1 Introduction

Blockchains offer in principle a neutral computational medium, where anyone can deploy and
interact with smart contracts without interference from external parties. It has been long
thought that the ability for parties to enter into interactions that have to follow rules captured
un-ambiguously by code could change finance [8]. Indeed, there is now an emerging domain
known as decentralized finance (DeFi) re-defining financial primitives and functionalities
using smart contracts. Its progresses and potentials were recently recognised in a report
of the IMF.1 One key component of any financial system is the mechanism for matching
participants willing to trade. DeFi has brought to the fore a novel class of protocols, namely
automated market makers (AMMs), to perform this task. In this paper, we investigate the
consistency of such AMMs.

An automated market maker (AMM) is a specific type of decentralized exchange, ie a
market place which is fully automatised and implemented as a smart contract. An AMM
protocol typically maintains reserves, also referred to as pools, of different assets and employs
mathematical algorithms to determine the price of assets and identify which trades it is
willing to execute with a particular trader. The AMM pools are populated by users known
as liquidity providers (LPs). In return for providing liquidity, LPs receive LP tokens, also
referred to as pool tokens, representing their ownership fraction of the pools, and receive
accordingly a fraction of the fees paid by traders on each trade. Nothing prevents a user
from taking on both roles, that is to say, to deposit/withdraw assets as an LP, while at the
same time trading assets with the AMM.

1 “By taking innovation to a new level [. . . ] DeFi has had extraordinary growth in the past two years,
potentially offering higher efficiency and investment opportunities.” “DeFi offers broad access to players
of any size and has no need for custodian service, potentially improving efficiency and financial inclusion.”
(IMF report, Apr 2022)
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4:2 Consistency of Automated Market Makers

The top-performing AMMs in 2022 achieved weekly trading volumes in the billions of
euros [3]. Despite those substantial volumes, little is known about the consistency of the
underpinning mathematical mechanisms. Of course, providing liquidity can lead to losses
depending on the evolution of prices. In the context of AMMs, loss due to price movement
is called impermanent loss. However, in this paper, we address a different risk which is
unrelated to price action, arbitrage (exploiting price discrepancies on different markets),
or the exploitation of other players’ moves (as in various types of front-running). We ask
whether a single attacker with unbounded capital can initiate a sequence of interactions
with a given AMM, which would lead to a risk-free and price-independent profit. If there
is no such sequence, regardless of the initial state of the AMM, then we say the AMM
is consistent. There are examples of such attacks, making the question of consistency a
practically important one [4].

The latest and only known result on the consistency problem, published in 2020, showed
that under reasonable conditions on the AMM mechanics, the AMM is consistent as long as
the attacker is only allowed to trade (and not to provide liquidity) [2]. This weaker notion of
consistency can be readily proved for a large class of AMMs. It leaves open the question of
consistency where the attacker is allowed to combine LP actions and trading.

Outline

We begin with the definition of a large class of AMMs which we call price machines, and
narrow down their definition to the case of a single attacker (§2). We turn to the definition
of consistency and prove our main abstract result which gives a simple sufficient condition
for the consistency of a price machine (§3). The third part of the paper (§4) is devoted
to applications. We establish the consistency of DeFi’s most popular AMMs: Uniswap [1],
Balancer [7], and both versions of the Curve AMM [5, 6].

2 Basic definitions

Throughout the paper we use the terms assets and tokens as synonymous. We call market
participants simply users. In this section, we define and discuss price machines which form
the class of AMMs we investigate.

2.1 Preliminaries

The product ordering on Rn, n > 0, is written ⪯. It is defined as usual as v ⪯ v′ iff vi ≤ v′
i

for 1 ≤ i ≤ n. The strict version is written ≺. A relevant intuition for the product ordering
is that v ⪯ v′ iff pT (v′ − v) ≥ 0 for any “price” vector p with positive coordinates. The
positive part of a vector v ∈ Rn, written v+, is defined as (v+)i = max(vi, 0), for 1 ≤ i ≤ n.
We write 1 for the vector with all components equal to 1.

A function f : Rn → R is said to be non-decreasing (increasing) if it preserves the (strict)
product ordering.

It is easy to see that a function f : Rn → R is increasing iff it is locally increasing,
meaning it preserves ≺ on a neighbourhood of each point.

A function f : Rn → R is called homogenous of degree k ≥ 0 if for every v ∈ Rn and
s ̸= 0, f(sv) = skf(v). It is called positively homogenous if the identity holds for s > 0.

We write R∗
+ for the set of positive reals.
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2.2 Trading functions

A trading function on n ≥ 1 tokens is an increasing function ψ : (R∗
+)n → R∗

+. We say ψ is
1-homogenous if for s > 0, ψ(sv) = sψ(v).

For a vector of reserves R ∈ (R∗
+)n, ψ(R) ∈ R∗

+ specifies the total amount of LP tokens
currently distributed (up to a positive constant multiplicative factor). We also pick ϵ a
(small) constant 0 ≤ ϵ ≤ 1 specifying the LP fees.

Given ψ, ϵ, we define a notion of AMM trading on n tokens.

Specifically, we distinguish two types of transitions: Swaps and Transfers. Both types
take current reserves R to new reserves R′. Swaps correspond to trade events, transfers
correspond to liquidity provision events (deposits and withdrawals).

Swaps: a swap R →s R′ must satisfy ψ(R) = ψ(R′ − ϵ(R′ −R)+)
The vector (R′ −R)+ is the amount of tokens received by the AMM, while the vector

(R − R′)+ is the amount paid out to the trader. As ψ is increasing, it must be that
ψ(R) ≤ ψ(R′). The excess amount ψ(R′) − ψ(R) of LP tokens is divided between LPs in
proportion to their current amounts of LP tokens.2

When ϵ = 0 the swap constraint becomes simply ψ(R) = ψ(R′). This is the reason ψ is
often referred to as the invariant of the AMM. For (small) ϵ > 0, swaps induce a (small)
increase of the invariant. In the limit case ϵ = 1, R′ − ϵ(R′ − R)+ = R ∧ R′, hence the
constraint can be rewritten ψ(R) = ψ(R ∧ R′), which implies R = R ∧ R′ because ψ in
increasing, or equivalently R′ ⪰ R. In words, the AMM never pays out anything on a swap.

Transfers: a transfer R →t R′ must satisfy either R ⪯ R′ (deposit), or R ⪰ R′ (with-
drawal).

Deposits (withdrawals) increase (decrease) the current value of the invariant. The excess
amount ψ(R′) − ψ(R) of LP tokens (negative in the case of a withdrawal) is given to (taken
from) the user who initiated the transfer.

A transfer is said to be balanced if there exists λ ∈ R+ such that R′ = λR, and perfectly
balanced if ψ(λR) = λψ(R).

In the next section, we show (Prop. 4) that, if ψ is homogenous, imbalanced transfers can
be decomposed as a swap without fees followed by a balanced transfer. Imbalanced transfers
are best understood as a compound transition which is convenient to users.3

2.3 Example (verified on-chain [10])
Uniswap v2 is a two-token AMM with trading function ψ(R) := (R1R2) 1

2 , and fee ϵ = 0.003.
Say the tokens are named A and B. We start in the following configuration:

The AMM’s pool has 5A+ 20B tokens.
Alice has 10 LP tokens and is the only LP, since ψ(5, 20) = 10
Bob has 50A+ 200B tokens
Charlie has 10A tokens

2 In other words, no-one gets diluted. In reality AMMs do not literally offer LP tokens to their LPs at
each swap. For reasons of efficiency, they keep track of the total number of LP tokens separately, to
preserve the proportions of LP tokens for each user on swaps, and determine transfers appropriately.

3 Indeed, in practice, imbalanced transfers are subject to a fee, In the words of the Balancer AMM
documentation “Since Balancer allows for depositing and withdrawing liquidity to Balancer pools using
only one of the tokens present in the pool, this could be used to do the equivalent of a swap: provide
liquidity depositing token A, and immediately withdraw that liquidity in token B. Therefore a swap fee
has to be charged, proportional to the tokens that would need to be swapped for an all-asset deposit.”
(See single asset deposit withdrawal.)

Tokenomics 2022
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Figure 1 A sequence of aout 40,000 transitions (recorded during the first two weeks of November
2021) on the WETH/DAI Uniswap v2 Ethereum market; colours represent succession in time.

We want to illustrate the various types of transitions:
(Transfer) Bob deposits 50A+ 200B tokens (balanced deposit, λ = 11).
The pool has now 55A+ 220B tokens, and Bob receives

√
50 · 200 = 100 LP tokens.

(Swap) Charlie swaps As for Bs, using 10A tokens.
The pool has now 65A tokens and 55·220

65−10ϵ = 186.239803B tokens, while Bob receives
220 − 186.239803 = 33.760197B tokens.
The excess amount of LP tokens generated by Charlie’s swap is shared proportionally,
so that Alice has now 10

110
√

65 · 186.239803 = 10.002308 LP tokens, and Bob has now
100.023085 LP tokens.
(Transfer) Alice withdraws all her 10.002308 LP tokens (balanced withdrawal)
Alice receives 10.002308√

65·186.239803 = 10
110 from the pool, i.e. 10

110 · 65 = 5.909091A tokens and
10

110 · 186.239803 = 16.930891B tokens.
The pool ends up with 59.090909A+ 169.308912B tokens.

Fig. 1 gives a historical example (sampled during Nov 2021) of a far longer sequence
(of circa 40,000 transitions) on a Uniswap v2 market (on the ETH/DAI token pair). Swaps
correspond to motions along the hyperbolic contour lines of the trading function. Transfers
correspond to jumps from one contour line to a lower (higher) one if a withdrawal (deposit).

2.4 Price machines
The simple example above shows that to properly record the effect of a sequence of transitions
on an AMM one needs to incorporate in its state two additional components:

the (proportions of) LP tokens held by each user,
as well as their own reserves in the tokens of interest.
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To keep things simple we now suppose ϵ = 0. (Fees can be computed for each swap a
posteriori anyways.) The resulting model is defined below as a labelled transition system,
with its state space, labels, and labelled transitions.

▶ Definition 1. A price machine with n-token trading function ψ and user set U is a labelled
transition system with:

state space S = (R∗
+)n × RU

+ × RU×n
+

transition labels Σ = {s, t} × U × Rn
+

(labelled) transition relation described below

States are of the form (R, θ, R̂) ∈ S where:
R ∈ (R∗

+)n is the vector of reserves of the price machine
θ ∈ RU

+ is the vector of fractions of LP tokens held by users, so that 1T θ = 1
R̂ ∈ RU×n

+ is the vector of users’ net wealths

The net wealth of user u is defined as the amount of tokens user u would own after
withdrawing all its LP tokens. The vector Rloc

u := R̂u − θuR, represents u’s local reserves,
that is to say the amount of capital which u has not invested as an LP.

Labels are of the form (s/t, u, λ) where:
s/t indicates whether the transition is a swap (s) or a transfer (t)
u is the user causing the transition
λ ∈ Rn

+ is a vector expressing multiplicatively the change in reserves induced by the
transition

That is to say, for a transition in reserves R → R′, λ is the unique (positive) vector such
that R′ = λR, where multiplication is understood component-wise.

Transitions form a ternary relation over S × Σ × S and come in two types.

Swaps: (R, θ, R̂) su(λ)−−−→ (λR, θ, R̂′) with ψ(R) = ψ(λR).
Fractions θ of ownership are invariant under swaps (as new LP tokens are distributed

proportionally). New net wealths of u and v ̸= u are respectively given by:

R̂′
u = R̂u + (1 − θu)(1 − λ)R

R̂′
v = R̂v − θv(1 − λ)R

Transfers: (R, θ, R̂) tu(µ)−−−→ (µR, θ′, R̂′)
We set ν := ψ(µR)/ψ(R).
New ownership fractions and net wealths of u and v ̸= u are respectively given by:{
θ′

u = θu + (1 − θu)(1 − ν−1)
R̂′

u = R̂u + (1 − θu)(1 − µν−1)R

{
θ′

v = θvν
−1

R̂′
v = R̂v − θv(1 − µν−1)R

With this long definition in place, we can make a number of remarks.
As said, factors λ, µ in the (Swap) and (Transfer) transitions above are in general vectors,

not scalars.
In (Swap) transitions, tokens received and paid out by the price machine can be written

explicitly in multiplicative form:

(R′ −R)+ = (λ− 1)+R

(R−R′)+ = (1 − λ)+R

Tokenomics 2022
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The pre-factor (1 − θu) occurring in u’s post-swap net wealth R̂′
u expresses the fact that u is

partly self-trading if s/he also holds LP tokens. This pre-factor can therefore be interpreted
as a “wash trading” factor. In particular, if θu = 1 (and therefore θv = 0 for v ̸= u) net
wealths are invariant under swap; which is to be expected as, in this case, user u is entirely
trading with self.

The total amount of tokens is conserved under any transition: 1T R̂ = 1T R̂′.
Transitions are subject to a budget constraint, R̂′

u ⪰ 0 for u a user; ie user u holds
non-negative amounts of tokens post-transition. For a Transfer the constraint can be written
R̂′

u − θ′
uR

′ ⪰ 0.
Finally, notice that R̂ = R̂′ under perfectly balanced transfers (because in this case

µ = ν1). (This makes it convenient to work with net wealths and multiplicative transitions
rather than local reserves and additive transitions.)

2.5 Single user price machines
In the following, we only need to consider the case of a single user u (the attacker) interacting
with the price machine. Caveat: this does not mean that other users are not present as LPs,
just that they do not interact with the machine while u is. In particular, u is allowed to have
varying amounts of fraction of ownership of the pools. (A similar two-user version of a price
machine is a convenient model to study the so-called MEV attacks on a price machine.)

▶ Definition 2. In the single user case, the data presented in the preceding definition simplifies
as follows.

Single user states reduce to the simpler form (R, θu, R̂u) ∈ (R∗
+)n × R+ × Rn

+.
Labelled transitions simplify to:

Swaps:

(R, θu, R̂u) su(λ)−−−→ (λR, θu, R̂u + (1 − θu)(1 − λ)R)

with ψ(λR) = ψ(R)

Transfers:

(R, θu, R̂u) tu(µ)−−−→ (µR, θu + (1 − θu)(1 − ν−1), R̂u + (1 − θu)(1 − ν−1µ)R)

with ν := ψ(µR)/ψ(R)

Let us verify that the transitions above are correct.
For a Swap (R, θ, R̂u) su(λ)−−−→ (λR, θ, R̂′

u), θ = θu is unchanged.
Local reserves become:

R′loc
u := R̂u − θuR− (λ− 1)R

hence

R̂′
u := R′loc

u + θuλR

= R̂u + (1 − θu)(1 − λ)R

as in the expression given above.
For a Transfer (R, θ, R̂u) tu(µ)−−−→ (µR, θ′, R̂′

u), the total amount of LP tokens post transition
is ψ(µR). The difference in LP tokens, ψ(µR) − ψ(R) (negative for a withdraw), is given
to u. Therefore the amount of LP tokens held by u after the transition is θ′

uψ(µR) =
θuψ(R) + ψ(µR) − ψ(R). Hence:

θ′
u = θu + (1 − θu)(1 − ν−1)
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The amount given by u is (µ− 1)R, so R′loc
u = Rloc

u − (µ− 1)R, and:

R̂′
u = R′loc

u + θ′
uµR

= Rloc
u − (µ− 1)R+ (θu + (1 − θu)(1 − ν−1))µR

= R̂u − θuR− (µ− 1)R+ (θu + (1 − θu)(1 − ν−1))µR
= R̂u + (1 − θu)R− µR+ (θu + (1 − θu)(1 − ν−1))µR

and the expression given above for R̂′
u follows.

In the special case of a perfectly balanced transfer, ν−1µ = 1 and R̂′
u = R̂u, ie the net

wealth of u is unchanged.

3 Consistency

Intuitively, a price machine is consistent if no attacker can extract price-independent profit,
regardless of the machine’s initial state. With the vocabulary developed in the preceding
section, we can now formulate this precisely.

Given a price machine, a sequence of transitions caused by the same user u is called a
trace. We say that two traces are equivalent if they have the same initial and final state.
Clearly, equivalence is compatible with composition.

Equivalent traces may induce different budget constraints. (See an example below.)
Concretely, in a blockchain with a sequential execution model, the attacker can drive the

price machine to execute any trace of his choice into one single transaction (that is to say
atomically).

▶ Definition 3 (Consistency). A price machine is said to be consistent if, for any trace σ
caused by u:

(R, θu, R̂u) σ−−−−→ (R′, θ′
u, R̂

′
u)

R̂u ⪯ R̂′
u implies R̂u = R̂′

u.

As we will see below, it is easy to show that a trace which includes only Swap transitions
cannot be a counter-example to consistency [2]. (Essentially because along such a sequence
the invariant ψ(R) cannot decrease.) The idea of the consistency proof is to reduce a trace
into an equivalent one, where Swaps are all executed before any Transfer transition happens,
and Transfers are perfectly balanced. Perfectly balanced transfers do not alter the user net
wealth (as noticed a few lines above). So the conclusion would follow.

▶ Proposition 4. Given a price machine with 1-homogenous trade function, an arbitrary
transfer is equivalent to a swap (without fees) followed by a balanced transfer.

Proof. We use reduced states and transitions (Def. 2). Consider an arbitrary transfer tu(µ).
Define ν := ψ(µR)/ψ(R).

We have the following trace:

R, θu, R̂u
su(ν−1µ)−−−−−−→ ν−1µR, θu, R̂u + (1 − θu)(1 − ν−1µ)R
tu(ν1)−−−−→ µR, θu + (1 − θu)(1 − ν−1

∗ ),
R̂u + (1 − θu)(1 − ν−1µ)R+ (1 − θu)(1 − ν−1

∗ ν1)R

with ν∗ = ψ(µR)/ψ(ν−1µR) = ν, because ψ is 1-homogenous, and therefore, the above trace
is equivalent to a direct Transfer tu(µ), as can be read directly from Def. (2). We also have
to check that the first transition is correct:

ψ(ν−1µR) = ψ(ψ(R)/ψ(µR)µR) = ψ(R)

again by 1-homogeneity of ψ. ◀

Tokenomics 2022
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▶ Proposition 5. Given a price machine with 1-homogenous trade function, swaps and
balanced transfers due to the same user commute.

Proof. Given a reduced state (R, θu, R̂u), we have

(R, θu, R̂u) tu(µ)su(λ)−−−−−−−→ (λµR, θu + (1 − θu)(1 − ν−1), R̂u + (1 − θu)(1 − λµν−1)R),

(R, θu, R̂u) su(λ)tu(µ)−−−−−−−→ (λµR, θu + (1 − θu)(1 − ν−1
∗ ), R̂u + (1 − θu)(1 − λµν−1

∗ )R),

where ν = ψ(µR)/ψ(R) = ψ(µλR)/ψ(λR) = ν∗, with the middle equality because ψ is
1-homogenous. ◀

The “commutation” above has to be understood up to budget constraints. Indeed, if we
consider the constant product ψ (see §2.3), with initial state (R, θu, R̂u), where R = (60, 60),
θu = 0.5, R̂u = (80, 80), and transitions tu(µ), su(λ), are defined by µ = (0.5, 0.5) (balanced),
and λ = (0.5, 2). The budget constraint prevents the expected equivalence between tu(µ)su(λ)
and su(λ)tu(µ).

We can now wrap up the proof.

▶ Theorem 6. A price machine is consistent if its trading function is 1-homogenous.

Proof. Given a state (R, θu, R̂u) and an attack trace σ. Since the feasibility of swaps and
transfers is preserved under a positive translation on R̂u, we may suppose that R̂u is large
enough (the attacker has deep pockets).

By Prop. 4 (decomposition of non-balanced transfers), σ is equivalent to a trace σ1 where
every transfer is balanced.

By Prop. 5 (postponement of transfers), σ1 is in turn equivalent to a trace σ2 of the form
su(λ1) · · · su(λn)tu(µ1) · · · tu(µm), where each tu(µi) is balanced.

It is easy to see that sequences of single-user balanced transfers can be aggregated,
meaning tu(µ1) · · · tu(µm) is equivalent to a one step transfer tu(µ) with µ = µ1 · · ·µm.
Likewise, sequences of single-user swaps su(λ1) · · · su(λn) are equivalent to a one step swap
su(λ) with λ = λ1 · · ·λn.

By combining both remarks we can obtain a trace σ3 equivalent to the original σ and of
the simple form su(λ)tu(µ).

Let now R̂′
u be the net wealth of user u at the end of σ3 (equivalently at the end of σ).

Since tu(µ) is perfectly balanced, R̂′
u is also the net wealth of u after the combined swap

su(λ). Hence R̂′
u = R̂u + (1 − θu)(1 − λ)R.

Now suppose that R̂u ⪯ R̂′
u, it must be that λ ⪯ 1. Since ψ(R) = ψ(λR) (no fees) and ψ

is (strictly) increasing, it must be in fact that λ = 1. Hence R̂u = R̂′
u. ◀

We do not really need to suppose that swaps have zero fees. The proof above can handle
the case where su(λ1) · · · su(λn)tu(µ) consists of swaps with and without fees.

4 Applications

It remains to show that our approach applies to some interesting AMMs.
Recall that the epigraph and the hypograph of a function f : X → R, where R =

R ∪ {−∞,+∞}, are defined as:

epi(f) := {(x, r) ∈ X × R : r ≥ f(x)},
hyp(f) := {(x, r) ∈ X × R : r ≤ f(x)}.

To do this we define a specific class of candidate trading functions.
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▶ Definition 7. Let a triple (f, g, F ) be given with:
f , g : (R∗

+)n → R+
f ≤ g

F : epi f ∩ hyp g → R
Suppose that for all R ∈ (R∗

+)n, there is a unique D such that F (R,D) = 0 and f(R) ≤ D ≤
g(R). The candidate trading function associated to (f, g, F ) is then defined as ψ(R) := D.

Intuitively, f(R), g(R) give bounds on the amount of LP tokens ψ(R) available for a given
level of reserves R.

Now we ask for sufficient conditions for such a function to be increasing, i.e. to be an
actual trading function.

▶ Theorem 8. Let ψ be as in Def. 7. For ψ to be increasing, it is sufficient that the following
holds:
1. ∀R ∈ domψ, F (R, ·) is of class C1 on [f(R), g(R)], with F ′(R, ·) < 0
2. ∀D ∈ imψ, F (·, D) is strictly increasing
3. f , g are continuous, and, f < ψ < g almost everywhere

Proof. From condition 1, we know that ψ is of class C1, by the inverse function theorem.
Since we also have condition 3, it suffices to prove that ψ is locally strictly increasing, for
every R such that f(R) < ψ(R) < g(R).

Now, pick R ∈ domψ such that f(R) < ψ(R) < g(R). By condition 3 and the continuity
of ψ, there is an open neighbourhood NR of R such that for almost every R′ ∈ NR, both
f(R′) < ψ(R′) < g(R′) and f(R) < ψ(R′) < g(R) hold.

Suppose, without loss of generality, that R ≺ R′. By definition, we have F (R,ψ(R)) =
F (R′, ψ(R′)) = 0. By condition 2, we have F (R,ψ(R′)) < F (R′, ψ(R′)), so that
F (R,ψ(R)) > F (R,ψ(R′)). By condition 1, we have ψ(R) < ψ(R′). Done! ◀

▶ Theorem 9. Let ψ be a trading function defined as in Def. 7 via a triple F , f , g. Suppose
F is positively homogenous, and f , g are 1-homogenous. Then ψ is positively homogenous of
degree 1.

Proof. Suppose that F is positively homogenous of degree k. Pick R ∈ domψ, and s > 0.
We have F (sR, sψ(R)) = skF (R,ψ(R)) = 0, therefore F (sR, sψ(R)) = 0. On the other
hand, by definition ψ(R) ≥ f(R), hence sψ(R) ≥ sf(R) = f(sR). Similarly ψ(R) ≤ g(R),
hence sψ(R) ≤ sg(R) = g(sR) Therefore by unicity of the solution to F (sR,_) = 0 in the
interval [f(sR), g(sR)], it must be that sψ(R) = ψ(sR). ◀

4.1 The Balancer family
Balancer v1 is a multi-token AMM that generalizes [7] Uniswap v2’s [1]. It is one of the
formulas supported by Balancer v2. The trading function for Balancer with n tokens, denoted
by ψB , is defined as in the general framework, with f := 0, g := +∞, and

F (R,D) :=
n∏

i=1
Rwi

i −D,

where the weights in w ∈ (R∗
+)n satisfy 1Tw = 1.

The trading function for Uniswap v2 (seen above) can be seen as a special case of that of
Balancer, with n = 2 and w1 = w2 = 0.5.

▶ Proposition 10. ψB is increasing and positively homogenous of degree 1.
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Proof. Clear. We even have ψB(R) :=
∏n

i=1 R
wi
i . ◀

▶ Corollary 11. The Balancer family is consistent.

We can remark that the on-chain implementation of a non-balanced deposit R →t R′

actually only returns τ := mini(R′ −R) LP tokens [9], so that the balanced deposit R → τR

is already more advantageous. A reasonable user always makes balanced transfers.

4.2 Application: the Curve family
Curve v1 is a multi-token AMM that offers arguably fairer trades than Uniswap v2 [5]. It is
also one of the formulas supported by Balancer v2. Curve v2 is based on the same idea as
Curve v1, but with some notable changes [6]. In these AMMs, transfers do not need to be
balanced.

The trading function(s) for Curve with n tokens, denoted by ψC , is defined as in the
general framework:

f(R) := n(
∏n

i=1 Ri)
1
n ≤ 1TR =: g(R)

with

F (R,D) := Dn
[
K(R,D)

(
g(R)D−1 − 1

)
+ n−n

((
f(R)D−1)n − 1

)]
where K(R,D) is defined as either of:

K(R,D) := A(f(R)D−1)n (Curve v1)
:= A(f(R)D−1)n γ2

(γ+1−(f(R)D−1)n)2 (Curve v2)

and A ≥ 0 is called the amplification coefficient, and γ > 0 is a small constant.

▶ Proposition 12. F is positively homogenous of degree n.

Proof. Clear, since f , g are 1-homogenous, and K is 0-homogenous. ◀

▶ Proposition 13. Condition 1 is verified.

Proof. It’s not hard to check that ∀D ∈ πn+1 ◦ domF , for Curve v1,

F ′(R, ·)(D) = −Dn−1n−n+1 −D−2Af(R)ng(R) < 0

and, for Curve v2, by denoting T (R,D) := γ + 1 − (f(R)D−1)n > 0,

F ′(R, ·)(D) = −Dn−1n−n+1 −D−2(f(R))ng(R)Aγ2T (R,D)−2

−2D−n−2(f(R))2n(g(R) −D)Anγ2T (R,D)−3

< −Dn−1n−n+1 < 0,

so that condition 1 is verified. ◀

▶ Proposition 14. ψC is well-defined. In addition, condition 3 is verified.

Proof. We have ∀R ∈ (R∗
+)n, F (R, g(R)) ≤ 0 ≤ F (R, f(R)), so that ψC is well-defined, by

the arithmetic-geometric mean inequality. Since the equalities hold if and only if R−1
1 R = 1,

condition 3 is verified. ◀

It is worth noting that for Curve v1, F can be analytically continued to (R∗
+)n × R∗

+,
where ∀R ∈ (R∗

+)n, F (R, 0+) > 0, and F ′(R, ·) has at most one stationary point, so that
ψC(R) is in fact the unique solution of F (R, ·) = 0 on R∗

+.
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▶ Proposition 15. Condition 2 is verified.

Proof. Clearly, it suffices to prove that ∀D ∈ imψ, K(·, D) is strictly increasing. This is
clear for Curve v1, but also for Curve v2, by the fact that (fD−1)n ≤ 1 ≤ γ + 1, and that
(fD−1)n is strictly increasing on domK(·, D). ◀

▶ Corollary 16. ψC is strictly increasing and homogenous of degree 1.

▶ Corollary 17. The Curve family is consistent.

5 Conclusion

We have proved the consistency of a specific family of (zero-fees) AMMs which are based on
increasing and 1-homogenous invariants (also called trading functions). This is a new result.
Note again that consistency says nothing of an AMM’s suitability or efficiency as a market
mechanism, just that it is not outright flawed.

Some generalisations can be expected. For example, while it is fairly intuitive that the
consistency of AMMs with fees follows from that without, it remains to be proven rigorously.

One way to use our result is in the course of designing new AMMs. For instance, it
follows directly from our result that the trading function ψ(X,Y ) = (X3Y + XY 3)1/4

which has been proposed recently generates a consistent AMM. In the same vein, one could
generalise the Curve approach of mixing two existing price machines (in the specific Curve
construction one mixes the linear X + Y invariant and the product XY one) to obtain a
general consistency-preserving mixing combinator on the space of price machines.

However, note that our method only offers a sufficient condition. A typical example that
does not fall under our result is the non-homogenous trading function ψ(X,Y ) = X+Y +XY .
It can be shown independently that this particular choice is indeed inconsistent in the sense
of Def. 3 and can be exploited, but the results obtained in this paper do not give us a specific
method to look for such an attack.

The reader might wonder if our approach applies also to the Uniswap v3 protocol. Uniswap
v3 is not exactly an AMM but rather a (n efficient) aggregator of AMMs each based on a
concentrated version of the original (Uniswap v2) product invariant. In general, in the case
of protocols aggregating AMMs, the consistency question boils down to the consistency of
the individual AMMs being aggregated. Now in Uniswap v3 every LP-position has a single
liquidity provider, hence transfers are trivial (θu = 1 at all times in the language of Section
2) and consistency follows from the monotony of the (concentrated) product invariant.
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