
Commit-Reveal Schemes Against Front-Running
Attacks
Andrea Canidio #

IMT School for Advanced Studies, Lucca, Italy
CoW Protocol, Paris, France

Vincent Danos
CNRS, Paris, France
École Normale Supérieure, Paris, France

Abstract
We provide a game-theoretic analysis of the problem of front-running attacks. We use it to study a
simple commit-reveal protocol and discuss its properties. This protocol has costs because it requires
two messages and imposes a delay. However, we show that it prevents the most severe front-running
attacks (“bad MEV”) while preserving legitimate competition between users, guaranteeing that the
earliest transaction in a block belongs to the honest user who values it the most (“good MEV”).

2012 ACM Subject Classification Computer systems organization → Dependable and fault-tolerant
systems and networks

Keywords and phrases Front running, Game theory, MEV, Transactions reordering, commit-reveal

Digital Object Identifier 10.4230/OASIcs.Tokenomics.2022.7

Category Extended Abstract

Related Version Full Version: https://arxiv.org/abs/2301.13785

Funding We gratefully acknowledge the financial support of the Ethereum Foundation (grant
FY22-0840).

Acknowledgements We are grateful to Agostino Capponi, Jiasun Li, Christof Ferreira Torres, Arthur
Gervais, Ari Juels, and the participants to UBRI Connect 2022, Tokenomics 2022 for their comments
and suggestions.

1 Introduction

On the Ethereum network, each validator decides how to order pending transactions to
form the next block, hence determining the order in which these transactions are executed.
As a consequence, users often compete with each other to have their transactions included
earlier in a block, either by paying transaction fees or by making side payments directly
to validators.1 This form of competition can be beneficial because it ensures that a scarce
resource (i.e., having a transaction included earlier in the block) is allocated to the user who
values it the most.2 But at the same time, it opens the possibility of front-running attacks:
because pending transactions are public, a malicious user can observe a victim’s incoming
transaction, craft a new transaction and then pay to place it before that of the victim.

1 Competition through higher transaction fees occurs via “gas replacement” transactions, whereby a
pending transaction is resubmitted with a higher fee. The resulting game is akin to an auction
(see [3]). The most popular way to make side payments to validators is to use flashbots (see https:
//github.com/flashbots/pm).

2 Whether it is the most efficient to achieve this goal is a different issue we do not address here.

© Andrea Canidio and Vincent Danos;
licensed under Creative Commons License CC-BY 4.0

4th International Conference on Blockchain Economics, Security and Protocols (Tokenomics 2022).
Editors: Yackolley Amoussou-Guenou, Aggelos Kiayias, and Marianne Verdier; Article No. 7; pp. 7:1–7:5

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:acanidio@gmail.com
https://orcid.org/0000-0002-8482-8782
https://doi.org/10.4230/OASIcs.Tokenomics.2022.7
https://arxiv.org/abs/2301.13785
https://github.com/flashbots/pm
https://github.com/flashbots/pm
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


7:2 Commit-Reveal Schemes Against Front-Running Attacks

In this paper, we propose a game-theoretic model of front-running. We use it to study a
simple commit-reveal protocol that can be implemented at the smart contract level without
modifying the underlying Ethereum infrastructure or introducing third parties (or layer-2
networks). We derive conditions under which an honest player is better off using the protocol
than Ethereum’s standard procedure. On the cost side, the protocol requires sending two
messages instead of one and imposes a delay. Hence, if the cost of sending messages or
waiting is high, the protocol is worse than the standard way to send transactions; if they are
low, the protocol is preferred. On the benefit side, the protocol can eliminate front-running
attacks, especially when it is difficult for an attacker to guess, that is, when the expected
payoff of an attacker who commits without knowing whether the victim committed and what
message was committed is low. We also argue that our protocol does not impede legitimate
competition between honest users, that is, competition to have a transaction included earlier
in a block between users who do not rely on observing each other’s message.

Prior work

Our commit-reveal protocol is novel but similar to existing proposals. Our main contribution
is the type of analysis. In particular, we show that our protocol can reduce front-running
attacks while maintaining legitimate users’ competition. Existing solutions instead are either
primarily concerned with eliminating attacks (at the cost of also eliminating legitimate
competition, see, for example, Aequitas protocol and the hedera-hashgraph project) or better
organizing competition (at the cost of exacerbating attacks, see, for example, Flashbots).
Furthermore, most of the literature has proposed solutions to reduce or eliminate front-
running in Ethereum by changing its infrastructure or introducing third parties (See [5] for
a review of the literature). Instead, our solution does not require third parties and can be
implemented at the smart contract level, allowing for flexibility in its implementation.

With respect to existing solutions, our protocol can be seen as a simplified version of the
submarine commitments protocol in [1]: in both cases, a message is first committed and then
revealed, and the commitment can be hidden in the sense that the identity of the sender
and receiver of the commit message cannot be observed. The main difference is that we
adopt a weaker notion of “commitment” because we allow users not to send a transaction
after committing it. The notion of “commitment” in [1] is instead stronger because users are
penalized for not following through with their commitment.

As already mentioned, we provide a game-theoretic analysis of the properties of this
protocol, applicable to any smart contract.3 With this respect, our work is inspired by [4],
who develop a game-theoretic analysis of the problem of front-running arising when an honest
user and an attacker claim the same reward. They also propose a protocol that eliminates
these types of attacks. Their key assumption is that the legitimate claimant strictly prefers
the reward to be burned rather than paid to the attacker. Therefore, these results are
useful in some environments where front-running may emerge, but not all. For example,
front-running attacks are a serious concern in the AMMs, but in this context, it may not be
possible to “burn the reward”.

3 [1] analyze the properties of the submarine commitment scheme in the context of a bug-bounty scheme
they propose.



A. Canidio and V. Danos 7:3

2 The problem: front-running attacks

We start by developing a simple model of front-running attacks and later introduce the
commit-reveal protocol.4 There is a smart contract SC and two players: Alice and Bob.
Absent front-running attacks, player A sends a message σA ∈ Σ to the mempool (i.e., the set
of pending transactions), where Σ is the set of possible messages that A may send. When the
message σA is included in a block, the smart contract SC performs an action that generates
a benefit PA to player A.5 Front-running attacks arise because messages in the mempool are
public. Hence, after A sends a message to the mempool, this message is observed by B, who
can send a counter-message σB ∈ Σ. If σB is included in the blockchain before A’s message,
then B earns PB(σA) while A earns nothing. Else, B earns nothing and A earns PA.

Sending messages is costly. Each player can send a regular message by paying c > 0. If
multiple regular messages are sent, they are included in the block in the order they are sent.
Player B, however, can also pay f > c to send a “fast” message that, with probability q, is
included in the block before A’s regular message, despite A’s message being sent first. For
example, f could be the cost of sending a transaction via a service such as flashbots, or could
be a regular mempool transaction with a transaction fee significantly above the base fee. We
consider the parameters q, c, and f as exogenous and determined by the technology available
to A and B.

Equilibrium

We can easily solve the game by backward induction and assuming that each player maximizes
his/her expected payoff. If A sends a message, then B attempts to front-run if and only if:

qPB(σA) > f

Given this, we can derive A’s optimal strategy. Suppose that qPB(σA) < f , so that A expects
no front running. In this case, she sends a message if and only if

PA > c

If, instead, qPB(σA) > f , then A anticipates that B will try to front-run. In this case, A

sends a message if and only if

(1 − q)PA > c

Hence, front running does not happen when its benefit is low (i.e., PB(σA) ≤ f/q). If,
instead, its benefit is large (i.e., PB(σA) > f/q), B will attempt to front run A whenever A

sends a message. In particular, when PA > c but (1 − q)PA < c the threat of front running
prevents A from sending the message in the first place, therefore destroying the value of the
exchange between A and SC.

3 Preventing front-running via commitment

We now use the model developed in the previous section to study how a commit-reveal
protocol can mitigate front-running attacks. In terms of notation, we call player A’s commit
message σA,1 and reveal message σA,2. Similarly, player B’s counter-messages are σB,1 and
σB,2.

4 For a more detailed analysis, see [2].
5 For simplicity, here we assume that PA is independent on the message σA. See [2] for the case in which

A’s payoff depends on her message.

Tokenomics 2022



7:4 Commit-Reveal Schemes Against Front-Running Attacks

Formally, the protocol has a commitment period and a reveal period, which here are two
subsequent blocks. If player A wants to send message σA ∈ Σ to SC, in the commit period
A sends the commit message

σA,1 = S(addr, σA)

to SC where addr is an address that A controls and S() is a function with an intractable pre-
image problem (for example, Hash (addr|σA) where Hash() is the SHA-256 hash function).
Once the commit message is included in a block, A sends the reveal message σA,2 = σA to
SC from the address addr, which is then included in the next block. Upon receiving the
message, SC computes S(addr, σA) and checks whether it received message S(addr, σA) in
the previous block.

It follows that if B wants to front run A he will need to commit a message at the commit
stage and then reveal it at the reveal stage. There is a common discount factor β ∈ [0, 1], so
when a given payoff is earned with a block delay, this payoff is discounted by β. Finally, A

does not observe B’s commit message and hence cannot detect B’s attempt to front running.
At the same time, we assume B observes A’s commit message.

3.1 Equilibrium
The first, rather immediate, result is that there is no equilibrium in which B sends the
same commit message as A. To see this, suppose that player A sends the commit message
S(addr, σA) and player B sends the same commit message. If in the next period B sends
the message revealB = σA, then the SC will consider B’s reveal message as invalid because
sent from an address different from addr. It is also easy to see that there is no equilibrium
in which A commits but then does not reveal because A can do better by not committing at
all. The next lemma summarizes these observations.

▶ Lemma 1 (No cloning in equilibrium). There is no equilibrium in which σB,1 = σA,1. There
is also no equilibrium in which A sends the commit message but not the reveal message.

In equilibrium, therefore, if B wants to attack, he needs to craft a commit message while
being completely uninformed about the contents of A’s message. However, B anticipates
that he will observe A’s message and, at that point, will decide whether or not to send the
message he initially committed. Therefore, the protocol severely limits but does not fully
eliminate B’s ability to act upon his observation of A’s message.

Formally, suppose σA,1 ̸= ∅ (so that A sent the commit message), B committed a message
with content σB and then observed A’s reveal message. In this case, B’s expected payoff
from front-running is

q · PB(σB , σA) − f.

Hence, B will try to front run if and only if q · PB(σB , σA) > f .
In the commitment phase, B’s choice of what message to commit is made in anticipation

that he will decide to front run after observing A’s reveal message. We assume that B has a
prior belief over what message A may send. His expected future payoff is, therefore:

π ≡ maxσB∈ΣEσA
[max{q · PB(σB , σA) − f, 0}|σA,1 ̸= ∅] ,

where the expectation is with respect to σA. Hence, if A sends a commit message and B tries
to front run, B’s expected payoff is βπ − c. We, therefore, have the following proposition:6

6 The existence of the equilibrium follows from the fact that the players’ strategy space is finite, as noted
already in [6].



A. Canidio and V. Danos 7:5

▶ Proposition 2. If π ≤ c
β (i.e., “guessing is hard for B”), then there is no front-running

in equilibrium. If instead π > c
β (i.e., “guessing is easy for B”), front running occurs with

strictly positive probability in equilibrium.

Note that in case “guessing is easy for B”, there could be a pure strategy equilibrium in
which B commits with probability 1 whenever A commits, or a mixed strategy equilibrium
in which B commits with some probability. In either case, after committing, B attempts to
front-run A or not depending on A’s reveal message.

It is easy to check that in the “guessing is hard for B” case, A’s equilibrium payoff is

max {−c + β(PA − c), 0}

Therefore, the protocol generates both costs and benefits for player A. The benefit is that
the simple commit-reveal protocol effectively dissuades B from attacking, yet this comes at
a cost: one additional message is required, and the payoff is earned with a one-block delay
(and hence is discounted by the parameter β).

4 Conclusion

We conclude by informally discussing two properties of the commit-reveal protocol. As
already mentioned, π measures “how easy” it is for B to guess what message he should
commit. Therefore, it measures how much, absent the commit-reveal protocol, B relies on
observing A’s message to attack. At an intuitive level, it can be interpreted as a proxy for
the severity of a front-running attack: high values of π imply less severe attacks because B

is already informed and relies less on observing σA; low values of π imply less severe attacks
because B is uninformed and relies heavily on observing σA. Therefore, our protocol is most
effective at preventing the most severe front-running attacks.

Finally, it is also possible that π is so large that B always wants to commit and reveal
a message, whether he observes A’s commit message or not. In this case, B acts more like
a legitimate competitor because he would commit even if he were to move first. In this
case, our commit-reveal protocol preserves competition because both A and B commit their
messages and then compete in the reveal stage to have their message included earlier in the
block.

References
1 Lorenz Breidenbach, Phil Daian, Florian Tramèr, and Ari Juels. Enter the hydra: Towards

principled bug bounties and exploit-resistant smart contracts. In 27th USENIX Security
Symposium (USENIX Security 18), pages 1335–1352, 2018.

2 Andrea Canidio and Vincent Danos. Commitment against front running attacks, 2023.
arXiv:2301.13785.

3 Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo Bentov, Lorenz
Breidenbach, and Ari Juels. Flash boys 2.0: Frontrunning, transaction reordering, and
consensus instability in decentralized exchanges. arXiv preprint, 2019. arXiv:1904.05234.

4 Joshua S Gans and Richard T Holden. A solomonic solution to ownership disputes: An
application to blockchain front-running. Technical report, National Bureau of Economic
Research, 2022.

5 Lioba Heimbach and Roger Wattenhofer. Sok: Preventing transaction reordering manipulations
in decentralized finance. arXiv preprint, 2022. arXiv:2203.11520.

6 John Nash. Equilibrium points in n-person games. Proceedings of the national academy of
sciences, 36(1):48–49, 1950.

Tokenomics 2022

https://arxiv.org/abs/2301.13785
https://arxiv.org/abs/1904.05234
https://arxiv.org/abs/2203.11520

	1 Introduction
	2 The problem: front-running attacks
	3 Preventing front-running via commitment
	3.1 Equilibrium

	4 Conclusion

