
4th International Conference on
Blockchain Economics, Security
and Protocols

Tokenomics 2022, December 12–13, 2022, Paris, France

Edited by

Yackolley Amoussou-Guenou
Aggelos Kiayias
Marianne Verdier

OASIcs – Vo l . 110 – Tokenomics 2022 www.dagstuh l .de/oas i c s

Editors

Yackolley Amoussou-Guenou
Université Paris-Panthéon-Assas, CRED, Paris, France
Yackolley.Amoussou-Guenou@u-paris2.fr

Aggelos Kiayias
University of Edinburgh, UK
IOG, Edinburgh, UK
Aggelos.Kiayias@ed.ac.uk

Marianne Verdier
Université Paris-Panthéon-Assas, CRED, Paris, France
marianne.verdier@u-paris2.fr

ACM Classification 2012
Theory of computation → Distributed algorithms; Security and privacy → Cryptography; Mathematics of
computing → Mathematical analysis

ISBN 978-3-95977-274-7

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-274-7.

Publication date
July, 2023

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/OASIcs.Tokenomics.2022.0

ISBN 978-3-95977-274-7 ISSN 1868-8969 https://www.dagstuhl.de/oasics

mailto:Yackolley.Amoussou-Guenou@u-paris2.fr
mailto:Aggelos.Kiayias@ed.ac.uk
mailto:marianne.verdier@u-paris2.fr
https://www.dagstuhl.de/dagpub/978-3-95977-274-7
https://www.dagstuhl.de/dagpub/978-3-95977-274-7
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/OASIcs.Tokenomics.2022.0
https://www.dagstuhl.de/dagpub/978-3-95977-274-7
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/oasics

0:iii

OASIcs – OpenAccess Series in Informatics

OASIcs is a series of high-quality conference proceedings across all fields in informatics. OASIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Daniel Cremers (TU München, Germany)
Barbara Hammer (Universität Bielefeld, Germany)
Marc Langheinrich (Università della Svizzera Italiana – Lugano, Switzerland)
Dorothea Wagner (Editor-in-Chief, Karlsruher Institut für Technologie, Germany)

ISSN 1868-8969

https://www.dagstuhl.de/oasics

Tokenomics 2022

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/oasics

Contents

Preface
Yackolley Amoussou-Guenou, Aggelos Kiayias, and Marianne Verdier 0:vii

List of Authors
. 0:ix

Program Committee
. 0:xi

Invited Talks

Algorithmic Game Theory and Blockchains
Elias Koutsoupias . 1:1–1:2

How Blockchain Tokens Are Changing Platform Economics
Hanna Halaburda . 2:1–2:7

Regular Papers

1DLT: Rapid Deployment of Secure and Efficient EVM-Based Blockchains
Simone Bottoni, Anwitaman Datta, Federico Franzoni, Emanuele Ragnoli,
Roberto Ripamonti, Christian Rondanini, Gokhan Sagirlar, and
Alberto Trombetta . 3:1–3:15

Consistency of Automated Market Makers
Vincent Danos and Weijia Wang . 4:1–4:12

Interest Rate Rules in Decentralized Finance: Evidence from Compound
Amit Chaudhary, Roman Kozhan, and Ganesh Viswanath-Natraj 5:1–5:6

Maximal Extractable Value (MEV) Protection on a DAG
Dahlia Malkhi and Pawel Szalachowski . 6:1–6:17

Extended Abstracts

Commit-Reveal Schemes Against Front-Running Attacks
Andrea Canidio and Vincent Danos . 7:1–7:5

The Demand for Programmable Payments: Extended Abstract
Charles M. Kahn and Maarten R.C. van Oordt . 8:1–8:1

4th International Conference on Blockchain Economics, Security and Protocols (Tokenomics 2022).
Editors: Yackolley Amoussou-Guenou, Aggelos Kiayias, and Marianne Verdier

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

Preface

This volume includes the published papers of Tokenomics 2022, the fourth edition of the
International Conference on Blockchain Economics, Security and Protocols which took place
on December 12th – 13th 2022 and was hosted at Sorbonne Université, Paris, France.

Tokenomics is an international forum for theory, design, analysis, implementation and
applications of blockchains and smart contracts. The goal of the conference is to bring
together economists, computer science researchers and practitioners working on blockchains
in a unique program featuring outstanding invited talks and academic presentations.

Following the tradition since its very beginning, the Program Committee of the conference
was divided into two complementary sub-committees. The Distributed Computing sub-
committee consisted of 23 expert computer science researchers, chaired by Aggelos Kiayias,
and the Economics sub-committee consisted of 28 expert economics researchers, and was
chaired by Marianne Verdier, with Yackolley Amoussou-Guenou as co-chair.

In total there were 55 submissions for consideration 11 mainly targeted to the distributed
computing sub-committee and 44 mainly targeted toward the economics sub-committee. On
average, submissions toward the distributed computing sub-committee got three reviews each,
and submissions to the economics sub-committee got two reviews each. After the collection
of all the reviews from the program committee members, the program committee chairs met
to choose the accepted papers for the conference, and, given the reviews, took into account
some constraints such as the topic of the papers. We would like to mention that the selection
was done irrespective to which sub-committee they were submitted to. The objective was
to have presentations fitting the goals of the conference and create interdisciplinary and
coherent sessions. The program committee deliberations concluded with 16 papers being
accepted for the final program, ranging from studies of consensus protocols to distributed
applications. We give below the list of the contributions presented by session.

MEV and front-running. This session grouped papers analyzing the problem of front-
running attacks in distributed applications. In particular the papers studied different
ways to mitigate them. It consisted of the following presentations: “Credible Decentralized
Exchange Design via Verifiable Sequencing Rules” by Ferreira and Parkes; “The Evolution
of Blockchain: From Public to Private Mempools” by Jia, Capponi and Wang; and
“Commitment Against Front Running Attacks” by Canidio and Danos.
DeFi. In this session the presentations analyzed different aspects of decentralised finance
and possible ways to improve them. It consisted of the following presentations: “The
Need for Fees at a DEX: How Increases in Fees Can Increase DEX Trading Volume” by
Hasbrouck, Rivera, and Saleh; “Interest Rate Parity in Decentralized Finance” by Chaud-
hary, Kozhan, and Viswanath-Natraj; and “Token Incentives and Platform Competition:
a Tale of two swaps” by Liu, Chen, and Zhu.
Blockchain, CBDC and Payments. This session covered various presentations related
to central bank digital currencies (CBDC), payments platforms, and user adoption of
innovative payment instruments. It consisted of the following presentations: “The Demand
for Programmable Payments” by Kahn and van Oort; “CBDC and Payment Platform
Competition” by Liu, Reshidi, and Rivadeneyra; and “Central Bank Digital Currency and
Banking Choice: The Impact of Service Location” by Usher, Li, and Zhu.
Smart contracts, oracles and AMMs. The presentations of this session were about smart
contracts. In particular, some works studied the functioning of automated market makers
from a theoretical perspective, and the last presentation exposed why truth-telling cannot

4th International Conference on Blockchain Economics, Security and Protocols (Tokenomics 2022).
Editors: Yackolley Amoussou-Guenou, Aggelos Kiayias, and Marianne Verdier

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

0:viii Preface

always be guaranteed with oracles. It consisted of the following presentations: “Axioms
for Constant Function AMMs” by Schlegel and Mamageishvili; “Consistency of automated
market makers” by Danos and Wang; and “An Impossibility Theorem on Truth-Telling in
Fully Decentralized Systems” by Garratt and Monnet.
Efficiency of Blockchain protocols. This session focused on improving the efficiency and
the analytical tools for blockchain (or more broadly, consensus) protocols. It consisted of
the following presentations: “Equilibrium Staking Levels in a Proof-of-Stake Blockchain”
by John, Rivera, and Saleh; “Maximal Extractable Value (MEV) Protection on a DAG”
by Malkhi and Szalachowski; “An Economic Model of Consensus on Distributed Ledgers”
by Halaburda, He, and Li; and “QPQ 1DLT: A System For the Rapid Deployment of
Secure and Efficient EVM-Based Blockchains” by Bottoni, Datta, Franzoni, Ragnoli,
Ripamonti, Rondanini, Sagirlar, and Trombetta.

At the end of the conference, on the basis of an assessment of the content of the article as
well as the presentation, Charles Kahn and Maarten van Oort received the best-paper prize
for their paper on “The Demand for Programmable Payments”, thanks to the sponsoring of
Keyrock.1

In addition to the accepted papers, the program included three stimulating keynote
presentations. The topics were chosen after discussing with the speakers about three
important directions for future research: the regulation of cryptoassets, the role of tokens in
shaping firms’ incentives to adopt a platform business model, and the analysis of the players’
strategies via the use of algorithmic game theory. Claudine Hurman (Banque de France,
France), director of Infrastructures, Innovation and Payments Regulating crypto-assets and
experimenting at the French central bank presented “CBDC: two sides of the same coin”;
Hanna Halaburda (New York University, Stern School of Business, USA) presented “How
Blockchain Tokens are Changing Platform Economics”; and Elias Koutsoupias (Oxford
University, UK), 2012 Gödel prize, presented “Algorithmic game theory and blockchains”.

Overall, the topical works presented at the conference, as well as the numerous interactions
(also between different disciplines), make us think that the conference was a success. We
hope this venue will continue fostering interactions between economists, computer science
researchers and practitioners, and will further stimulate interdisciplinary research in the
broader area.

We are grateful to the sponsors of this fourth edition of the Tokenomics conference: the
Blockchain@Polytechnique chair, the Finance Digitale chair, Keyrock, IOG, and the LIP6,
Sorbonne Université.

We would like to thank the authors for submitting their work to the conference and
the program committee members who worked very hard in reviewing papers and giving
feedback to the authors. We are grateful for their help in building this great program. A
special thanks to all the presenters for their well prepared and clear presentations, and to
the audience for all the discussions that took place. We also thank all the volunteers who
helped the conference run smoothly.

Last but not least, we would like to thank Julien Prat and Maria Potop-Butucaru, the
general co-chairs of Tokenomics 2022 for their help and advice for the organization of the
conference.

Aggelos, Marianne, and Yackolley

1 Keyrock (https://keyrock.eu/) sponsored the best paper award, as part of having industrial practi-
tioners at the conference, one of the conference’s goals.

https://keyrock.eu/

List of Authors

Simone Bottoni (3)
RTM, Lugano, Switzerland

Andrea Canidio (7)
IMT School for Advanced Studies, Lucca, Italy;
CoW Protocol, Paris, France

Amit Chaudhary (5)
Warwick Business School, University of Warwick,
Coventry, UK

Vincent Danos (4, 7)
CNRS, Paris, France;
DI ENS, INRIA, PSL, Paris, France

Anwitaman Datta (3)
Nanyang Technological University, Singapore,
Singapore

Federico Franzoni (3)
Unaffiliated Researcher, Barcelona, Spain

Hanna Halaburda (2)
Stern School of Business, New York University,
NY, USA

Charles M. Kahn (8)
Department of Finance, University of Illinois,
Urbana-Champaign, IL, USA

Elias Koutsoupias (1)
University of Oxford, UK

Roman Kozhan (5)
Warwick Business School, University of Warwick,
Coventry, UK

Dahlia Malkhi (6)
Chainlink Labs, UK

Maarten R.C. van Oordt (8)
Tinbergen Institute, Amsterdam,
The Netherlands;
Vrije Universiteit Amsterdam, The Netherlands

Emanuele Ragnoli (3)
RTM, Lugano, Switzerland

Roberto Ripamonti (3)
RTM, Lugano, Switzerland

Christian Rondanini (3)
RTM, Lugano, Switzerland

Gokhan Sagirlar (3)
RTM, Lugano, Switzerland

Pawel Szalachowski (6)
Chainlink Labs, UK

Alberto Trombetta (3)
Insubria University, Varese, Italy

Ganesh Viswanath-Natraj (5)
Warwick Business School, University of Warwick,
Coventry, UK

Weijia Wang (4)
ENS, Paris, France

4th International Conference on Blockchain Economics, Security and Protocols (Tokenomics 2022).
Editors: Yackolley Amoussou-Guenou, Aggelos Kiayias, and Marianne Verdier

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/OASIcs.Tokenomics.2022.3
https://orcid.org/0000-0002-8482-8782
https://doi.org/10.4230/OASIcs.Tokenomics.2022.7
https://doi.org/10.4230/OASIcs.Tokenomics.2022.5
https://doi.org/10.4230/OASIcs.Tokenomics.2022.4
https://doi.org/10.4230/OASIcs.Tokenomics.2022.7
https://doi.org/10.4230/OASIcs.Tokenomics.2022.3
https://doi.org/10.4230/OASIcs.Tokenomics.2022.3
https://doi.org/10.4230/OASIcs.Tokenomics.2022.2
https://doi.org/10.4230/OASIcs.Tokenomics.2022.8
https://orcid.org/0000-0002-2226-6737
https://doi.org/10.4230/OASIcs.Tokenomics.2022.1
https://doi.org/10.4230/OASIcs.Tokenomics.2022.5
https://doi.org/10.4230/OASIcs.Tokenomics.2022.6
https://doi.org/10.4230/OASIcs.Tokenomics.2022.8
https://doi.org/10.4230/OASIcs.Tokenomics.2022.3
https://doi.org/10.4230/OASIcs.Tokenomics.2022.3
https://doi.org/10.4230/OASIcs.Tokenomics.2022.3
https://doi.org/10.4230/OASIcs.Tokenomics.2022.3
https://doi.org/10.4230/OASIcs.Tokenomics.2022.6
https://doi.org/10.4230/OASIcs.Tokenomics.2022.3
https://doi.org/10.4230/OASIcs.Tokenomics.2022.5
https://doi.org/10.4230/OASIcs.Tokenomics.2022.4
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

Program Committee

General Chairs

Julien Prat, ENSAE, CREST, Ecole Polytechnique
Maria Potop-Butucaru, LIP6, Sorbonne Université

Distributed Computing

Aggelos Kiayias, University of Edinburgh and IOG (Chair)
Elli Androulaki, IBM Research – Europe
Vincent Danos, CNRS
Ittay Eyal, Technion
Matheus Xavier Ferreira, Harvard
Juan Garay, Texas A&M University
Arthur Gervais, Imperial College
Maurice Herlihy, Brown University and Algorand
Dimitris Karakostas, University of Edinburgh
William J. Knottenbelt, Imperial College
Philip Lazos, IOG
Andrew Lewis-Pye, London School of Economics
Francisco Marmolejo, Harvard
Tal Rabin, University of Pennsylvania and Algorand Foundation
Tim Roughgarden, Columbia University and a16z Crypto
Jan Christoph Schlegel, City University of London
David Siska, University of Edinburgh
Qiang Tang, University of Sydney
Vanessa Teague, Thinking Cybersecurity
Sara Tucci-Piergiovanni, CEA-LIST, Université Paris-Saclay
Catherine Tucker, MIT Chryssis Georgiou, University of Cyprus
Dimitrios Vasilopoulos, IMDEA Software Institute
Dionysis Zindros, Stanford

Economics

Marianne Verdier, Université Paris-Panthéon-Assas (chair)
Yackolley Amoussou-Guenou, Université Paris-Panthéon-Assas (co-chair)
Arash Aloosh, NEOMA Business School
Vlad Babich, Georgetown University
Christophe Bisière, Toulouse School of Economics
Matthieu Bouvard, Toulouse School of Economics
Agostino Capponi, Columbia University
Catherine Casamatta, Toulouse School of Economics
Jonathan Chiu, Bank of Canada
Will Cong, Cornell University
Bertrand Crettez, Université Paris-Panthéon-Assas
Michele Fabi, ENSAE, CREST, Ecole Polytechnique
Rod Garratt, BIS
Guillaume Haeringer, Baruch College

4th International Conference on Blockchain Economics, Security and Protocols (Tokenomics 2022).
Editors: Yackolley Amoussou-Guenou, Aggelos Kiayias, and Marianne Verdier

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

0:xii pcmembers

Zhiguo He, University of Chicago
Samuel Haefner, Web 3.0 Technologies Foundation
Gur Huberman, Columbia University
Thorsten Koeppl, Queens University
Jiasun Li, George Mason University
Simon Mayer, HEC
Julien Prat, ENSAE, CREST, Ecole Polytechnique
Mariana Rojas Breu, Université Paris-Panthéon-Assas
Fahad Saleh, Wake Forest University
Linda Schilling, Washington University in St Louis
Alexander Teytelboym, Dept of economics, University of Oxford
Katrin Tinn, McGill University
Marteen Van Oord, Vrije University Amsterdam
Russell Wang, Federal Reserve Bank of Richmond
Luana Zaccaria, EIEF
Marius Zoican, University of Toronto

Algorithmic Game Theory and Blockchains
Elias Koutsoupias # Ñ

University of Oxford, UK

Abstract
Algorithmic game theory has developed into a mature field over the past three decades. However,
the emergence of blockchains has raised new fundamental questions at the intersection of computer
science, economics, and game theory.

2012 ACM Subject Classification Theory of computation → Algorithmic game theory

Keywords and phrases Blockchains, Mining games, Reward sharing schemes, Distributed game
theory

Digital Object Identifier 10.4230/OASIcs.Tokenomics.2022.1

Category Invited Talk

1 Algorithmic game theory

Incentives play an increasingly important role in computer science. It is now hard to imagine
a time when game-theoretic issues were not part of computer science, but it was a mere three
decades ago that incentives entered the computer science narrative.

To be clear, algorithmic issues of game theory questions have been considered since the
inception of game theory in the 1940s. Similarly, game theorists have traditionally contributed
significantly to the algorithmic theory. For example, the development of prediction algorithms
in the 1950s was part of the game theory agenda, and algorithms for equilibria in the 1960s
were great examples of successful algorithms.

About three decades ago there was a significant shift when it became clear that the
traditional analysis of algorithms was insufficient. The reason was the widespread adoption
of the internet and the web, whose protocols run at the participating nodes. It was realized
that the users may have an incentive not to follow the prescribed use. One can argue that
algorithmic game theory was born out of such considerations.

Research in the new field have been mainly concentrating around three research branches:

Computational issues of game theory and economics. This research area focuses on the
algorithmic aspects of game theory and economics. A significant breakthrough in this area
was the proof that the computation of a Nash equilibrium of a game is PPAD-complete,
which strongly suggests that the problem is intractable.

Price of anarchy. This research area investigates the quality of equilibria. A major success
in this area has been the discovery that congestion games have relatively small price of
anarchy, meaning that even when players act selfishly, the outcome is close to the socially
optimal one.

Algorithmic mechanism design. This research branch studies how to design mechanisms
that incentivize participants to behave in a desired way, even when they have conflicting
interests. Some notable achievements in this field include the development of efficient
algorithms for computing almost optimal mechanisms, and the resolution of the Nisan-
Ronen conjecture, which had been an open problem for many years.

© Elias Koutsoupias;
licensed under Creative Commons License CC-BY 4.0

4th International Conference on Blockchain Economics, Security and Protocols (Tokenomics 2022).
Editors: Yackolley Amoussou-Guenou, Aggelos Kiayias, and Marianne Verdier; Article No. 1; pp. 1:1–1:2

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:elias@cs.ox.ac.uk
http://cs.ox.ac.uk/people/elias.koutsoupias
https://orcid.org/0000-0002-2226-6737
https://doi.org/10.4230/OASIcs.Tokenomics.2022.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

1:2 Algorithmic Game Theory and Blockchains

2 Incentives and blockchains

Many research directions are still active in traditional algorithmic game theory, but the
advent of blockchains has changed the game. Blockchains have brought new fundamental
questions at the intersection of computer science, games, and economics. Here are a few
examples.

2.1 Mining games
An ideal blockchain is a sequence of blocks and the process of adding blocks to it is known
as “mining.” In proof of work blockchains, users can add a block only by solving a crypto-
puzzle, while proof of stake systems randomly select users with probability proportional
to their stake. However, the distributed nature of the system means that changes are not
immediately communicated to all users, which can result in multiple users extending the
blockchain from the same point, creating a tree structure instead of a path. To address this,
the protocol advises miners to create blocks at the end of the longest known branch and
immediately propagate them to the network. If all miners follow this advice, the reward
structure guarantees revenue proportional to computational power or stake. Nevertheless,
selfish miners may deviate from the advice if it serves their interests, raising the question of
which “mining game” they play and what equilibria exist in these games. Unlike games in
classical game theory where players’ strategies and utilities are given explicitly or implicitly,
mining games are indirectly defined by the blockchain protocol.

2.2 Reward sharing schemes
Blockchains require an adequate number of active participants to maintain the system.
Blockchain consensus protocols incentivize every user to be an active participant by paying
them for mining a new block. However, this has led to undesirable effects, such as excessive
energy consumption and a concentration of power among a small number of mining pools.
Reward sharing schemes attempt to address these issues by incentivizing the formation of
pools of users in a transparent manner. To form a pool, users delegate their stake to one of
its members, the pool leader, who runs the protocol on their behalf.

These schemes are based on payments that attempt to encourage a good selection of pool
leaders. The quality of a reward scheme is determined by criteria such as liveness, efficiency,
decentralization, and Sybil resiliency.

2.3 Distributed computing with incentives
In traditional mechanism design, a mediator collects inputs from participants and runs
payment and allocation algorithms. However, in blockchains, this takes the form of smart
contracts. Smart contracts are algorithms that have a state, which updates when appropriate
transactions are issued by members. While there is a lot of hype surrounding the potential
of smart contracts, there are also significant risks associated with them due to the complex
game-theoretic analysis required even for simple contracts. Despite these challenges, the
number of deployed smart contracts on actual blockchains is growing at a rapid pace, making
it crucial to develop a robust theory to understand their power and limitations.

Smart contracts are fundamentally distributed algorithms with incentives. The theory
of distributed computation has been studied extensively, but without incentives. A notable
success in this area was the characterization of what can be computed by distributed protocols,
which involved discovering a surprising connection to algebraic topology. The question now is
whether a similar characterization exists for distributed tasks when participants act selfishly.

How Blockchain Tokens Are Changing Platform
Economics
Hanna Halaburda #

Stern School of Business, New York University, NY, USA

Abstract
Blockchain technologies are technologies inspired by Bitcoin, which emerged in 2008. Since then,
many cryptocurrencies, altcoins, and other blockchain applications have emerged. For example,
Ethereum introduced smart contracts, and with them came tokens, fungible tokens, non-fungible
tokens, decentralized finance (DeFi), and decentralized autonomous organizations (DAOs). All these
technologies can be grouped under the umbrella term “blockchain technologies.”

Each new generation of blockchain technology promises decentralization, disintermediation, a
level playing field for entry, and improved value creation and distribution. However, it is essential to
examine to what extent and under what conditions blockchain technologies deliver on these promises.
It turns out that sometimes they do, and sometimes they do not. This distinction is essential to
apply blockchain technologies effectively for large-scale practical applications.

I focus here on blockchain-based cryptographic tokens and their impact on platform economics.
Blockchain-based tokens, in conjunction with smart contracts, allow for new design choices in
platforms. Therefore, I explore how these new design choices may help solve old problems in platform
economics.

2012 ACM Subject Classification Applied computing → Digital cash; Applied computing → E-
commerce infrastructure; Applied computing → Electronic funds transfer; Applied computing →
Online banking; Social and professional topics → Consumer products policy

Keywords and phrases blockchain, token, platform economics

Digital Object Identifier 10.4230/OASIcs.Tokenomics.2022.2

Category Invited Talk

1 Problems in Platform Economics

The main problems in platform economics come from network effects. Network effects occur
when the value of a good or product increases as more people use it. Platforms create value
by bringing users together. For example, social media platforms like Facebook bring people
together to interact, while Uber brings different types of users, such as drivers and passengers.
As more users join the platform, its value increases due to the network effects. This distinct
dynamic is not found in other types of goods.

When a platform has no users, potential users are hesitant to join. They will only consider
joining if they anticipate that others will also join. This dynamic creates a challenge for new
platforms to enter the market with network effects. They must have a significant presence
early on, or they risk being unable to enter the market. For example, starting Facebook with
just a few users would be difficult. The platform needs a critical mass of users before it can
expand.

Once a platform has a large-scale market, network effects create barriers to entry for
competitors. These barriers allow the platform to enjoy considerable market power and
extract value from the system. For example, Facebook can extract data from its users, while
other platforms may charge high prices or impose burdensome conditions on users to extract
value. For example, in the past, platforms have charged high prices for long-distance calls.

© Hanna Halaburda;
licensed under Creative Commons License CC-BY 4.0

4th International Conference on Blockchain Economics, Security and Protocols (Tokenomics 2022).
Editors: Yackolley Amoussou-Guenou, Aggelos Kiayias, and Marianne Verdier; Article No. 2; pp. 2:1–2:7

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hhalaburda@gmail.com
https://doi.org/10.4230/OASIcs.Tokenomics.2022.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

2:2 How Blockchain Tokens Are Changing Platform Economics

Currently, there is ongoing debate about Facebook’s ability to extract data. The result of
these network effects is the creation of powerful intermediaries that can extract value from
the system.

I explore the potential of blockchain-enabled tokens to address these challenges of barriers
to entry and value capture. Tokens have been around for a long time, but their use in the
context of blockchain is relatively new. Blockchain-enabled tokens offer two key features
that traditional tokens do not: commitment and traceability. Commitment refers to the
fact that platforms can commit to specific uses, acceptances, or restrictions of tokens, while
tradability means that tokens can be traded independently of the platform that issued them.
This independence enables tokens to be listed on cryptocurrency exchanges, such as Helium
or Filecoin, and traded freely.

I focus here on two types of tokens: utility tokens and governance tokens. Utility tokens
enable the platform to issue tokens instead of charging prices directly. This approach can
make entry into a market with network effects easier, as it lowers the barriers to entry for
new players. However, we also find that utility tokens lower the overall platform’s profit and
decrease overall welfare, which may limit their usefulness in certain conditions.

Governance tokens, in turn, facilitate voting and thus enable the creation of decentralized
autonomous organizations, which can help distribute value more equitably. We find that
governance tokens can lead to more value creation and equitable value distribution, but
their treatability may also lead to actual re-centralization in equilibrium and value capture
by anonymous users. This outcome may be different or even worse than value capture by
regulated parties, which can be brought to court.

My research indicates that blockchain-based tokens may help to mitigate the challenges
of platform economics, although they may not eliminate them entirely. While tokens present
exciting opportunities, it is essential to be aware of potential risks and limitations associated
with their use. By understanding the conditions under which tokens can be beneficial, we
can evaluate their potential for enhancing economic outcomes.

2 Utility tokens and barriers to entry

Let’s start by discussing utility tokens and platform entry. The inspiration for our research
comes from great examples like Filecoin and Helium. Filecoin is a peer-to-peer competitor to
Dropbox for file storage. It is a peer-to-peer file storage system where users give access to
their computer’s space to store other people’s files. Users need to be willing to pay for this
storage, and they pay those who provide storage with Filecoin. Another example, Helium,
is a peer-to-peer hotspot network designed for use with IoT devices. Its design relies on
people allowing the system to use their hotspots to some capacity, and together they can
connect large spaces and allow for connectivity. In both of these services, there are strong
network effects. Thus, each system is only attractive if numerous users have already joined
the system. The systems are not useful with just a few people offering storage or hotspot
capacity.

Both Filecoin and Helium use tokens. Initially, Helium had difficulty getting off the
ground and entering the market. However, later it started to use cryptographic tokens,
and with those tokens, it successfully took off and is now an active network. In both cases,
we have network effects and potential users want to join only if other users join as well.
This dependency results in two equilibria, one where everybody adopts and another where
nobody adopts. Such multiplicity of equilibria, in turn, leads to a coordination problem.
This observation for markets with network effects has a long history going back to Katz and
Shapiro (1985) [5] in the case of one-sided networks or Caillaud and Jullien (2001, 2003) [3, 4]
and Rochet and Tirole (2003, 2006) [6, 7] in the case of two-sided platforms.

H. Halaburda 2:3

The traditional way to solve this coordination problem is through subsidy, also called a
divide-and-conquer strategy. It means subsidizing early users and then profiting from those
who join later when it is clear that the platform is successful. Since the platform can charge
high prices later when it is successful, it is profitable to subsidize early users so that they
join and try the platform. There are many examples of applications of that strategy. Two of
my favorite examples are PayPal and Uber because they would give early users a ten-dollar
credit for setting up an account and joining the network. It is a very successful strategy, but
the problem is that it requires upfront capital, which may be expensive and create barriers
to entry.

In Overcoming the Coordination Problem in New Marketplaces via Cryptographic Tokens
(Bakos and Halaburda 2022 [1]), Yannis Bakos and I build a simple multi-period model
analyzing whether blockchain-based utility tokens allow the platform to overcome the barriers
to entry without the need for subsidy. Every period, new people arrive at the market and
decide whether to join the platform. With the subsidy, the platform sets the access price
every period, and the price may be negative. Typically the early users are subsidized. The
people arriving at the market may not be fully aware of how much they will like the platform.
They only learn that after they join. So if they try it, they may learn that they do not like
the platform. If they leave the platform under the subsidy scheme, they get their outside
option (which we normalize to 0).

But instead of subsidy, the platform may decide to issue utility tokens. A utility token
may allow you to access the platform service, and conversely, you can access the service only
with these tokens. This is the case with Helium or Filecoin platforms. The platform can set
the price of the tokens in the first period. In the future, however, the platform only decides
on the number of additional tokens it issues, and the market determines the price of the
tokens by balancing the supply and demand because the tokens are tradable independently
of the platform.

If, after experiencing the platform, a user wants to exit, he can sell his token. The price
of those tokens is positive (in expectations). This is because even though the platform can
issue an arbitrary number of additional tokens, it will never be optimal to issue so many
that the price drops to 0 (barred some shock realization in an uncertain environment). Thus,
the users expect that they will be able to sell the token at a positive price if they do not like
the platform.

Thus, utility tokens may induce agents to try the platform without subsidy. They may
even be willing to pay for the token, while without the token, they would need to be paid to
join. So the platform’s first-period profit is higher with tokens than under the subsidy, and
tokens may eliminate the need for subsidy altogether.

However, the platform’s future profit is lower with tokens for two reasons. First, the
platform will sell fewer tokens in the future because some new users buy tokens from existing
early users rather than from the platform directly. Second, the price at which the platform
can sell the tokens in the future is lower than the price it could charge under the subsidy.
This is because an additional supply of tokens from the existing users puts pressure on the
price. But also, the future network is smaller, so less valuable for the new users. The network
is smaller under tokens than under subsidy because the positive resale price of the token
makes leaving more attractive for early users. Recall that under the subsidy, the leaving
users get nothing, but with tokens, they can sell their tokens at a positive price. Hence, some
early users who would stay on the platform and provide some network benefit under subsidy
are enticed to leave with the token’s positive resale price.

Tokenomics 2022

2:4 How Blockchain Tokens Are Changing Platform Economics

Note that the platform can shut down both forces leading to lower prices in the future
by reneging on accepting old tokens or limiting the trading of tokens. And if the platform
realizes higher first-period profit and successfully enters without the need for subsidy, it will
have a strong incentive to intervene in this way to increase its future profits. But if agents
expect such reneging, they would refrain from acquiring the tokens in the first place.

Blockchain and smart contracts play a crucial role in this result. With smart contracts,
the platform can commit to accepting the tokens in the future. Moreover, the platform
cannot interfere with trading because trading occurs on a censorship-resistant blockchain.
These two features were not available with pre-blockchain tokens but are crucial to realizing
the benefit of overcoming the barrier to entry arising from network effects.

With tokens, there are two competing forces affecting platform profit. The platform earns
higher early profits with tokens than under subsidy and lower future profits. It turns out
that the second effect is always more prominent, and the platforms’ overall profit is lower
under tokens. Furthermore, the overall welfare is lower. And this is again because more
early users exit with tokens due to the positive resale price, and thus overall network will be
smaller in the future, which means that overall network effects generated by the platforms
are smaller. Moreover, a bigger part of the welfare goes to the users because they resell
the tokens. So tokens redistribute welfare from the platform to the users, but not evenly.
The users who exit benefit, but the users who stay are worse off because they don’t get to
participate in the larger network that would be there under the subsidy.

Overall, blockchain-based cryptographic tokens help overcome the coordination problem
for new entrants, and they can make entry possible without a subsidy. They do so by moving
the revenue from the future to the entry stage. However, the overall profit and welfare are
smaller. So wherever subsidy is (cheaply) available, it would be preferable for the platform.
Nonetheless, in many cases, especially for novel technologies, up-front capital needed for a
subsidy may come at a high cost or even be unavailable altogether. In such a case, tokens
provide a viable entry option. This may explain why we see Hellium and Filecoin successfully
entering the market using utility tokens, while it is unlikely an attractive option for more
traditional businesses such as Uber or Lyft.

Governance tokens and value distribution

The second type of tokens we considered are the governance tokens and their effect on
value creation and distribution?these governance tokens power decentralized autonomous
organizations (DAOs). Despite the spectacular failure of The Dao in 2016, many DAOs
have been operating quite successfully, like MakerDao or UniSwap. DAOs are set up using
smart contracts and governance tokens with the purpose of decentralizing decision-making
by allowing a large number of people to vote with their governance tokens. Moreover, other
smart contracts can automatically implement those decisions after the vote.

DAOs boast the ability to prevent powerful intermediaries from capturing the value.
They aim to achieve this goal by decentralization, much like other blockchain technologies.
The argument goes that instead of relying on intermediaries that charge higher prices due
to network effects, DAOs offer decision-making power to voters who are also users of the
platform. Thus, they will have no incentive to increase the prices and will not extract the value
created by the growing network. Furthermore, DAOs typically operate in a permissionless
environment to prevent authority figures from excluding users and capturing value. If an
agent or entity has the power to exclude others from the DAO, they may extract payments
for access.

H. Halaburda 2:5

In Will Blockchains Disintermediate Platforms? The Problem of Credible Decentralization
in DAOs (Bakos and Halaburda 2023 [2]), Yannis Bakos and I discovered that DAOs
could realize the promise of better value creation and distribution, but only under specific
circumstances. However, under more general circumstances, DAOs experience strong forces
returning to centralization that can hinder this outcome. Hence, it may be challenging or
even impossible for platform intermediaries controlled by democratic DAOs to exist in the
long run due to these re-centralization forces. Therefore, we suggest that additional measures
are required to maintain these intermediaries.

Let me here illustrate our point in a simple example. Imagine there are n potential
platform users, and everyone’s benefit or “utility” from using the platform ranges from
0 to 1. Those who don’t use the platform receive no benefit. This scenario results in a
45-degree demand curve, 1 − p, often seen in Microeconomics 101 textbooks. Additionally,
we will assume that there is no cost to providing the platform. In such a market, the most
profitable price for a monopoly platform is pm = 1/2, which generates a monopoly profit of
pm(1 − pm) = 1/4n. However, this also creates a deadweight loss because half of the market
cannot benefit from using the platform.

Now, let’s explore an alternative approach where the price for accessing the platform
is determined by the DAO as a collective decision. We focus here on the pricing decision
because this is the most straightforward textbook decision and will easily demonstrate our
point. But this approach could be applied to any value-extracting decision, such as selling
data or allowing advertising on a platform. In this scenario, there is no central authority
controlling pricing. Instead, all potential users have a governance token that allows them to
vote on the price. Once the price is set, users can choose to pay it and join the platform or
decline and not join. If the price is positive, the DAO earns a profit which is then distributed
as a dividend to token holders.

Such a DAO can vote for a price of zero. At this price, everybody would participate in
the platform and benefit from its utility, leading to maximum social welfare without any
deadweight loss. Next, we examine under what conditions the DAO will ultimately set this
price.

First, let’s notice that some potential users who do not find much value in joining the
platform may prefer to set a higher price and earn more of a dividend rather than setting a
lower price and participating in the platform. However, the cost of joining outweighs the
dividend for those who plan on using the platform, so they prefer to set the price at zero.
Each token can bring a maximum dividend of pm(1−pm)

n = 1/4 when the monopoly price
is set; therefore, those who value joining the platform at less than 1/4 will vote for the
monopoly price, while those who value it higher will vote for zero price. In our example, 3/4
of token holders vote for the zero price, resulting in the DAO setting the socially-optimal
price through a simple majority rule. This is a very encouraging result. Note, however, that
until now, we have assumed that all token holders hold at most one token.

It turns out that it is no longer guaranteed that the DAO would set zero access price
when users hold multiple tokens. A user with multiple tokens prefers setting a higher access
price as his token holdings increase. To see that, note that the net benefit of a user owning t

tokens with the access price pDAO is

θ︸︷︷︸
∈ [0, 1]

usage utility

− pDAO︸ ︷︷ ︸
price

(user pays)

+ t pDAO (1 − pDAO)︸ ︷︷ ︸
dividend

(others pay)

.

The access price that would maximize the net benefit for a user owning t tokens is p∗(t) = t−1
2t ,

which increases with the user’s token holdings. Thus, the more tokens the user holds, the
higher price he would prefer to set. For example, even with just two tokens, a user would

Tokenomics 2022

2:6 How Blockchain Tokens Are Changing Platform Economics

rather set a price of 1/4 than a zero price. This is because, with more tokens, the dividend
contributes more to the user’s payoff, making a larger dividend more valuable relative to the
cost of paying for access themselves.

Moreover, tradeable tokens can lead to a significant level of concentration. If the access
price is positive, the governance token will have a positive value due to the expected dividend.
As a result, users may choose to purchase more tokens to receive more dividends. However,
purchasing a majority of tokens will yield even greater benefits, as it allows the user to
influence the price increase, further raising their dividend earnings. We have found that
in equilibrium one user will purchase enough tokens to gain a majority. This is another
encouraging outcome because it means that although re-centralization may occur, there will
be a limit to concentration.

However, this limit to concentration may have little effect on the value capture. Note
that if one user holds n+1

2 tokens, the dao will set pDAO = 1
2 − 1

n+1 , which for large n is very
close to 1/2, the monopoly price. As a result, the value is indeed more distributed, as the
holders of the remaining tokens also receive high dividends, but the efficiency of the market
is only marginally improved.

How can such dynamics be prevented? One possibility is to limit the number of governance
tokens that a single person can acquire, but this can be challenging in a permissionless
environment where one individual may control multiple wallets. Another option is to restrict
or disable the trading of tokens, as seen in the Soulboud token proposal (Weyl, Ohlhaver
and Buterin 2022 [8]). However, many DAOs value the transferability of governance tokens
and have not yet implemented such restrictions.

3 Conclusions

Blockchain-based cryptographic tokens, like utility and governance tokens, offer new solutions
to old problems in platform economics. But they may come at a price or not work as expected.
As we have shown, utility tokens may improve the viability of a new platform, but at the
cost of its overall profits. So it means that there is still room for banks and VCs alongside
the tokens.

The governance tokens may allow for decentralization and an increase in welfare, but
they do not remove the tendency to re-centralize and extract surplus. Notice that when the
Internet emerged, it also promised decentralization, disintermediation, and democratization.
But after the initial years of decentralization, the Internet enabled the rise of intermediaries
with more power than ever before – Google, Amazon, or Facebook. As we are looking toward
blockchain and DAOs for the new wave of decentralization, it is possible that without changes
in design or additional safeguards, we may end up on the same trajectory leading to a new
generation of powerful intermediaries.

References
1 Yannis Bakos and Hanna Halaburda. Overcoming the coordination problem in new mar-

ketplaces via cryptographic tokens. Info. Sys. Research, 33(4):1368–1385, December 2022.
doi:10.1287/isre.2022.1157.

2 Yannis Bakos and Hanna Halaburda. Will blockchains disintermediate platforms? The problem
of credible decentralization in daos. SSRN, April 8, 2023. doi:10.2139/ssrn.4221512.

3 Bernard Caillaud and Bruno Jullien. Competing cybermediaries. European Economic Review,
45(4):797–808, 2001. 15th Annual Congress of the European Economic Association. doi:
10.1016/S0014-2921(01)00123-4.

https://doi.org/10.1287/isre.2022.1157
https://doi.org/10.2139/ssrn.4221512
https://doi.org/10.1016/S0014-2921(01)00123-4
https://doi.org/10.1016/S0014-2921(01)00123-4

H. Halaburda 2:7

4 Bernard Caillaud and Bruno Jullien. Chicken & egg: Competition among intermediation
service providers. The RAND Journal of Economics, 34(2):309–328, 2003. URL: http:
//www.jstor.org/stable/1593720.

5 Michael L. Katz and Carl Shapiro. Network externalities, competition, and compatibility.
The American Economic Review, 75(3):424–440, 1985. URL: http://www.jstor.org/stable/
1814809.

6 Jean-Charles Rochet and Jean Tirole. Platform Competition in Two-Sided Markets.
Journal of the European Economic Association, 1(4):990–1029, June 2003. doi:10.1162/
154247603322493212.

7 Jean-Charles Rochet and Jean Tirole. Two-sided markets: A progress report. The RAND
Journal of Economics, 37(3):645–667, 2006. URL: http://www.jstor.org/stable/25046265.

8 E Glen Weyl, Puja Ohlhaver, and Vitalik Buterin. Decentralized society: Finding web3’s soul.
SSRN, May 10, 2022. doi:10.2139/ssrn.4105763.

Tokenomics 2022

http://www.jstor.org/stable/1593720
http://www.jstor.org/stable/1593720
http://www.jstor.org/stable/1814809
http://www.jstor.org/stable/1814809
https://doi.org/10.1162/154247603322493212
https://doi.org/10.1162/154247603322493212
http://www.jstor.org/stable/25046265
https://doi.org/10.2139/ssrn.4105763

1DLT: Rapid Deployment of Secure and Efficient
EVM-Based Blockchains
Simone Bottoni #

RTM, Lugano, Switzerland
Anwitaman Datta #

Nanyang Technological University,
Singapore, Singapore

Federico Franzoni #

Unaffiliated Researcher, Barcelona, Spain
Emanuele Ragnoli #

RTM, Lugano, Switzerland

Roberto Ripamonti #

RTM, Lugano, Switzerland
Christian Rondanini #

RTM, Lugano, Switzerland

Gokhan Sagirlar #

RTM, Lugano, Switzerland
Alberto Trombetta #

Insubria University, Varese, Italy

Abstract
Limited scalability and transaction costs are some of the critical issues that hamper a wider adoption
of distributed ledger technologies (DLTs). That is particularly true for the Ethereum [58] blockchain,
which, so far, has been the ecosystem with the highest adoption rate. Several solutions have been
attempted in the last few years, most of which adopt the approach to offload transactions from the
blockchain mainnet, a.k.a. Level 1 (L1), to a separate network. Such solutions are collectively known
as Level 2 (L2) systems. While improving scalability, the adoption of L2 introduces additional
drawbacks: users have to trust that the L2 system has correctly performed transactions or, conversely,
high computational power is required to prove transactions’ correctness. In addition, significant
technical knowledge is needed to set up and manage such an L2 system. To tackle such limitations,
we propose 1DLT1: a novel system that enables rapid deployment of an Ethereum Virtual Machine
based (EVM-based) blockchain that overcomes those drawbacks.

2012 ACM Subject Classification Computer systems organization → Distributed architectures

Keywords and phrases Blockchain, EVM, Layer Two, Scalability, Network Fees

Digital Object Identifier 10.4230/OASIcs.Tokenomics.2022.3

Funding Anwitaman Datta’s research is supported by Ministry of Education (MOE) Singapore’s
grant MOE-T2EP20120-0003 (award number #020931-00001).

1 Introduction

The current high demand for Ethereum [58] leads to slow transaction throughput (15-30
transactions per second [15]), expensive gas prices, and poor user experience for the majority
of dapps (decentralised apps), Web3 projects, and end users. This limits the potential use
cases, like in DeFi (decentralised finance), where high fees and scalability drawbacks enable
only entities with vast economic power to trade profitably.

A notable example of extremely high gas prices and network congestion occurred with
the launch of a new NFT for the Bored Ape Yacht Club metaverse [52]: during the launch,
the Ethereum blockchain crashed due to traders outbidding each other by paying higher gas
fees to execute their transactions faster. Users spent up to 7,000$ (2.6 ethers) to mint a
5,846$ NFT land deed for the virtual world, which sometimes resulted nevertheless in a failed
transaction. A user trying to send 100$ in crypto between two wallets would need to pay a
fee of 1,700$. As of July 2022, the cost of the above-mentioned NFT floats around 3,000$.

1 Work done while all the authors were at QPQ AG.

© Simone Bottoni, Anwitaman Datta, Federico Franzoni, Emanuele Ragnoli, Roberto Ripamonti,
Christian Rondanini, Gokhan Sagirlar, and Alberto Trombetta;
licensed under Creative Commons License CC-BY 4.0

4th International Conference on Blockchain Economics, Security and Protocols (Tokenomics 2022).
Editors: Yackolley Amoussou-Guenou, Aggelos Kiayias, and Marianne Verdier; Article No. 3; pp. 3:1–3:15

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:simone.bottoni94@gmail.com
mailto:anwitaman@ntu.edu.sg
mailto:ffranzoni@qpq.io
mailto:emanuele.ragnoli@gmail.com
mailto:roberto95ripamonti@gmail.com
mailto:rondaz90@gmail.com
mailto:gokhansagirlar@gmail.com
mailto:alberto.trombetta@uninsubria.it
https://doi.org/10.4230/OASIcs.Tokenomics.2022.3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

3:2 QPQ 1DLT

Therefore, scaling solutions become crucial to increase network capacity in terms of speed
and throughput. However, improvements to scalability should not be at the expense of
decentralisation or trustlessness. Traditionally, scalability solutions are based on off-chain
systems, collectively known as “Layer 2” (L2). L2 solutions are implemented separately
from the “Layer 1” (L1) Ethereum mainnet, and do not require changes to its protocol.
In L2 solutions, transactions are submitted to nodes of the L2 system instead of directly
to L1 nodes. Thus, L2 solutions handle transactions outside the Ethereum mainnet and
take advantage of its architectural features to ensure decentralisation and security. Existing
L2 systems show a wide array of trade-offs among critical aspects like throughput, energy
consumption, security guarantees, scalability, gas fees, and loss of trustlessness.

In this work, we present One DLT (1DLT), a novel, modular system for the rapid
deployment of EVM-based blockchains, that avoids the pitfalls of many of the existing
L2 solutions. Section 2 reviews the trade-offs of current solutions; Sections 3, 4, and 5
describe our system; Section 6 describes the Consensus-as-a-Service mechanism at the core of
1DLT; Section 7 show the 1DLT Bridge architecture; Section 8 exhibits a set of preliminary
experimental results; finally, Section 9 concludes the work and describes our next steps.

2 Layer 2 limitations

There are several solutions available in the L2 ecosystem [13] (e.g., Optimistic Rollups [33],
ZK-rollups [51], State channels [43], Sidechains [39]), with many different advantages and
limitations. Due to space limitations, we do not present the main solutions adopted and we
refer to the comprehensive surveys [53] and [54]. In the following, we list the most fundamental
limitations and correlate them to some of the solutions adopted by the Ethereum ecosystem:

Limited expressive power: some solutions do not support EVMs (e.g., several ZK-
rollups, Plasma [34], Validium [48]); others support application-specific computations
and require specialised languages (e.g., StarkWare’s Cairo [55]);
Reduced trustlessness: some solutions use operators and validators that can influence
transaction ordering, leading to potential abuses (e.g., Optimistic Rollups, Sidechains);
Liveness requirement: some solutions need to periodically watch the network or
delegate this task to someone else to ensure security (e.g., Plasma);
High computational power to compute proofs: some solutions require high com-
putational power to compute proofs, which can be too expensive for dapps with little
on-chain activity (e.g., ZK-rollups, Validium);
Reduced decentralisation: some solutions adopt centralised methods to mediate the
implementation of weak security schemes (e.g., Sidechains);
Limited throughput: some solutions claim to theoretically achieve high transactions
per second (tps) but are practically limited in their implementations (e.g, StarkWare [56]
theoretically achieves 2,000 tps, while in real-world deployments is limited to 650 tps);
Not L2: some solutions cannot be technically considered as L2 since they use separate
consensus mechanisms that are not secured by the respective L1 (e.g., Sidechains). As
such, these solutions cannot inherit from the L1 its security guarantees (e.g., resilience
against chain tampering for Ethereum);
Private channels: some solutions implement private channels, which is not a viable
solution for infrequent transactions (e.g., State channels);
Long on-chain wait times: some solutions require long wait times for on-chain
transactions due to potential fraud challenges (e.g., Optimistic Rollups, Validium);
Data availability: some solutions generate proofs that require off-chain data to be
always available (e.g., Validium).

S. Bottoni et al. 3:3

While the list above is not exhaustive (indeed, the L2 landscape is so dynamic that novel
solutions, prototypes, and products are introduced to the market frequently), it is indicative
of how, while there clearly exist attempts at overcoming these limitations, there is no single
solution that can fix them all. It is important to note that a consequence of some of the
limitations is the generation of security risks. Indeed, chains with relatively small ecosystems
that provide consensus can lead to fallacies of abuse and fraud. Attackers, or the node
maintainers themselves, may tamper with blockchain data ordering or validation, which
allows them to redirect funds, perform flash loans or double-spending attacks, etc.

Lastly, in most solutions, users willing to create a private or public Ethereum network
must rely on Ethereum clients (also known as implementations)2 like Geth [20] and Erigon [8].
This approach requires the user to have significant technical knowledge and resources to
maintain the nodes, with all the related costs and requirements of technical know-how.

3 An overview of 1DLT

This work has been inspired by the user experience of Cloud Service Providers (CSP) and
Web-based applications, guided by the principles of DLTs. Indeed, in Cloud services, users are
directed via graphical interfaces and dashboards through all processes (setup, configuration,
billing, management, etc.). Such interaction is performed without any need of deep knowledge
of the underlying technologies. Similarly, our goal is to provide a system that:

streamlines and simplifies the deployment of a (public/private) EVM-based blockchain,
as customarily happens for web-based services and CSP dashboards, without discarding
the programmability of the EVM;
maintains security while improving scalability and lowering fees;
removes the risks associated with the L2 governance and fraud or abuse detection.

This is achieved with a modular, multilayered, cloud-native architecture (see Section 4) that
decouples the transaction layer from the consensus layer. Thus:

1DLT connects to different blockchains and leverages their consensus mechanisms. We
refer to this as Consensus-as-a-Service (CaaS) (see Section 6 for further details);
1DLT removes the risks associated with the L2 governance and fraud detection. Indeed,
all transactions processed by 1DLT are sent to a L1 public blockchain, which is used as a
consensus resource, allowing to inherit its security guarantees;
1DLT does not suffer from long wait times used in L2 to detect and avoid frauds. Fraud
detection can be performed by checking receipts and confirmation messages of the public
blockchain used as the consensus provider and local transactions’ meta-data sent by CaaS;
1DLT is EVM-based, supports smart contracts written in the Ethereum programming
language, Solidity, without requiring the adoption of L2 specific languages, such as Cairo;
1DLT transaction throughput is limited by that of the public blockchain that it connects
to via CaaS. Thus, 1DLT outperforms Ethereum by connecting to blockchains with higher
throughput and better scalability. Its performance can be further improved by connecting
to different blockchains over time based on their load. The modular architecture makes it
ready to plug in new, faster blockchain networks as they come into being;
1DLT allows to significantly reduce the transaction fees required to perform operations
like payments, smart contract deployments, and token swaps, thanks to CaaS.

In the following, we show an example of user experience with 1DLT.

2 A client is an implementation of Ethereum that verifies all transactions in each block, keeping the
network secure and the data accurate [11].

Tokenomics 2022

3:4 QPQ 1DLT

▶ Example 3.1. Due to high transaction fees and long confirmation times, Alice wishes to
move her dapp performing NFTs Auctions from the Ethereum mainnet to 1DLT to reduce
operating costs. However, she does not want to change her codebase. To do that, Alice
deploys a small, private EVM-based blockchain with 1DLT.

(i) Alice registers with the authentication system3 and receives a redemption code for
1DLT blockchain creation;

(ii) Alice specifies the blockchain name and description, and token name and symbol. Then,
with the redemption code, she creates a 1DLT Ethereum node in the private blockchain,
configuring parameters such as cloud provider, virtual machine, etc.;

(iii) after specifying blockchain and nodes’ parameters, Alice waits a short period for the
execution of the setup procedure to start the deployment of her dapp;

(iv) Alice is now ready to deploy her dapp using the same procedure she used in Ethereum,
that is, by sending a deployment transaction through the Web3 API;

(v) finally, upon receiving the deployment confirmation within few seconds, she and her
customers are ready to interact with the dapp.

4 Architecture of 1DLT

1DLT has a modular architecture, consisting of two main components: a private EVM-based
node (called 1DLT Ethereum Node) and Consensus-as-a-Service (CaaS), a module that
connects to external DLTs. When no confusion arises, from now on we refer to the 1DLT
Ethereum Node simply as Ethereum Node. CaaS allows the Ethereum Node to leverage
an external DLT to achieve consensus on transactions. Therefore, the 1DLT architecture
abstracts and decouples the transaction layer from the consensus layer.

DLT adopts a very simple trust model in which the CaaS module is trusted. Hence, there
are no checks from the Ethereum Node about the correctness of the responses from the CaaS
module. Such trust assumption can be overcome by adding a verification mechanism to the
Ethereum Node. In this work we focus on showing that 1DLT provides a low-cost scaling
approach allowing high transaction outputs and fast transaction finality.

An overview of the 1DLT components and their interactions is shown in Figure 1. The
structure of the Ethereum Node is detailed in the next section.

Figure 1 1DLT architecture.

▶ Example 4.1. We continue with the scenario introduced in Example 3.1, where Alice sets
up a node, and interacts with it by deploying a smart contract and sending a transaction.
We expand on the operation flow sketched in Figure 1:

3 A user must be authenticated to perform any action, thus a trusted authentication system is entitled
to handle the user registration and management. Note that this trusted entity, while serving as a
gateway for participants, is not relied upon for accountability of the actions of the participants. With
our approach, the latter is achieved in a trustless manner using CaaS.

S. Bottoni et al. 3:5

(i) Alice calls the Web3 API provided by the Ethereum Node to send a transaction, i.e.
eth_sendRawTransaction;

(ii) the Ethereum Node receives the transaction and forwards it to CaaS using a POST
message. This allows to achieve consensus on the transaction. The mechanisms used
by CaaS to select a DLT for transaction dispatching is shown in Section 6;

(iii) CaaS forwards the transaction to the chosen DLT for confirmation;
(iv) when the transaction is confirmed, CaaS retrieves it using a blockchain explorer service

(e.g., Hedera mirror service [24]);
(v) finally, CaaS sends the confirmation of the transaction to the Ethereum Node, which

updates its state accordingly.

5 1DLT Ethereum Node

Figure 2 1DLT Ethereum node architecture.

While there are well-known and widely used implementations of Ethereum nodes, like
Geth and Erigon, to overcome some of the limitations of Section 2, we engineered our
own Ethereum node with a simpler architecture (see Figure 2). Section 5.2 describes the
differences with a standard implementation. Usually, an Ethereum node contains a Web3
API, a state handling mechanism (i.e., the set of tries storing information on the state [29]), a
database, an Ethereum Virtual Machine (EVM) [18], a p2p network, a transaction pool, and
a consensus protocol. In the following, we describe the modules of our proposed architecture:

EVM module: it is a sandboxed virtual stack machine that computes the system state
transitions by executing an instruction specified in a transaction. In order to connect the
node to a local, private EVM, the Ethereum Client-VM Connector API (EVMC) is used,
as shown in Figure 3. The EVMC is the low-level interface between Ethereum Virtual
Machines (EVMs) and Ethereum clients, which – on the EVM side – supports classic
EVM14 and ewasm5. On the client side, EVMC defines the interface for accessing the
Ethereum environment and state. A very relevant feature of EVMC is that nodes can
connect with other non-Solidity based virtual machines.
1DLT deploys a standalone C++ EVM implementation, called EVMone [19]. The
EVMone EVM can be imported as a module by an Ethereum client and provides efficient
execution of smart contracts written in an EVM-compliant language.
Web3 API module: It handles incoming transactions and the communication with
CaaS. It mostly works in the same way as in an Ethereum implementation, except for a
customization that allows it to interact with CaaS. The module exposes a Web3-compatible
API supporting modern Ethereum development tools and wallets (e.g., Metamask [30],

4 Ethereum 1.x is a codename for a comprehensive set of upgrades to the Ethereum mainnet intended for
near-term adoption.

5 Ethereum flavoured WebAssembly is a subset of the WebAssembly format used for contracts in Ethereum.

Tokenomics 2022

3:6 QPQ 1DLT

Hardhat [22] and Web3.js [49]). E.g., the eth_sendRawTransaction API method is
supported as in other implementations, but mining-related methods like eth_isMining

are not supported, since consensus is handled through CaaS without any need for mining.
Ledger and state transitions module: To store transactions and state, we use an
Ethereum-compatible ledger implementation based on Merkle Patricia Trees (also known
as (Merkle) Tries). This allows us to rely on the same structures as a standard Ethereum
node (i.e., a State Trie, Receipt Trie, Transaction Trie, and Storage Trie [58]).
Instead of the LevelDB [28] used in other Ethereum implementations, we opted for
Sled [40], an embedded key-value store written in Rust optimised for modern hardware.
It uses lock-free data structures to improve scalability and organises storage on disk in a
log-structured way optimised for SSDs. We do not perform complex operations to achieve
state transitions, such as the staged sync [9] in Erigon, as well as for block cutting. Since,
CaaS validates transactions using an external consensus resource, it is possible to perform
the block cutting in multiple ways. We opted to cut the block every ∆ seconds (e.g., 10
seconds), after checking that the block is not empty.
Core module: This module manages and coordinates the interaction of the other
modules. It retrieves consensus updates of the processed transactions from CaaS (see
Section 6) to perform state changes.

5.1 The execution flow
In what follows, we briefly describe the steps needed to perform a state update in a 1DLT
Ethereum node upon receiving a transaction (see the sequence diagram in Figure 4).
1. the transaction is sent to the Ethereum node through the Web3 API;
2. the Web3 API module handles the transaction and sends a POST request to CaaS with

the transaction wrapped inside the data field;
3. CaaS handles the transaction and connects to one of the chosen DLTs (e.g., Hedera) to

confirm the transaction;
4. CaaS communicates with an external service (e.g. a Hedera mirror node) to retrieve the

transaction confirmation;
5. CaaS then sends the confirmation message (i.e., the hash of the transaction with the

consensus proof) of the transaction only to the Ethereum nodes that are part of the
source network of the message.

6. the EVM of the Ethereum node executes the transaction, updating the state;
7. a block is then created if ∆ seconds are passed (the time interval is a configurable

parameter whose default is set to 10 seconds);
8. finally, the state transition result is stored in the Sled database.

5.2 Differences with current Ethereum implementations
Several relevant changes differentiate our node implementation from the standard one:

External Consensus: in general, a consensus protocol has to be included in the internal
architecture of a standard Ethereum node – like PoS for a mainnet, or PoA for a testnet
node. Instead, we do not rely on an internal module, and delegate consensus to CaaS.
This enables us to have the same liveness and safety guarantees of the chosen DLT while
decreasing the complexity of the node.
No transaction pools: in general, in a standard Ethereum node the transactions
waiting for confirmation are placed into a transaction pool. Since our solution relies
on an external consensus, all newly arrived transactions are forwarded directly to CaaS
for confirmation without putting them in a queue. The benefits from this choice are a
significantly simplified design and overall increased performance, as shown in Section 8.

S. Bottoni et al. 3:7

Figure 3 EVMC API. Figure 4 Sequence Diagram of a state update
in a 1DLT Ethereum node.

Lightweight Core module: as already mentioned in Section 5, the Core module is
thoroughly simplified, since there is no transaction pool to manage, and it does not have
complex state transitions (e.g., staged sync) as the consensus is retrieved from CaaS.
Difference in the Web3 support: several methods are not supported by our implement-
ation, such as those related to mining (e.g., eth_getMining, eth_coinbase), to uncles
(e.g., eth_submitHashrate), and to Ethereum protocol (e.g., eth_protocolV ersion).

6 Consensus-as-a-Service

Consensus-as-a-Service (CaaS) is the module that allows a 1DLT Ethereum node to access
an external, public consensus protocol with an on-demand approach. Its key feature is the
introduction of an abstract layer that enables the access to different DLTs through a single,
uniform interface. This layer allows 1DLT Ethereum node to offload consensus complexity
allowing it to achieve higher throughput and faster transaction finality with low transaction
costs. Moreover, relying on an external consensus provider enables 1DLT to inherit the
security model of the chosen DLT. Lastly, we remark that the CaaS approach eliminates any
issue that may arise from the presence of a trusted third party, since transactions are public
and easily auditable.

While in principle CaaS could attempt to tamper with handled transactions, such an
attempt would make the transaction proof invalid, preventing the transaction execution, as
each transaction proof required for an audit process can be retrieved from the target DLT.
We acknowledge that this does not prevent CaaS to act in a malicious way and we leave as a
future work the addition of a more efficient verification mechanism.

After choosing a suitable DLT, CaaS interacts with it by creating a channel that is used to
publish messages containing transactions’ information using the CaaS’s DLT interface. The
exchanged messages are stored in a time-series database (the current implementation uses
timescale v2.6.0-pg1) to guarantee benefits over traditional relational database management
systems like time-oriented features, higher data ingest rates and query performance. Addi-
tionally, each delivered message comes with the receipt of the transaction from the chosen
DLT (e.g., an Hedera transaction receipt), which is an auditable proof that the transaction
has been correctly processed by the DLT.

CaaS manages communication channels, I/O operations, and DB operations in a concur-
rent way, by spawning and managing multiple threads dedicated to the message exchange
of different 1DLT networks. In particular, each 1DLT network has at least one dedicated
communication channel, allowing high message processing throughput with low latency while
also isolating multiple co-existing 1DLT networks from each other.

Tokenomics 2022

3:8 QPQ 1DLT

7 Bridge

Blockchains are siloed environments that cannot communicate with each other, as each
network has its own protocols, native assets, data, and consensus mechanisms. Blockchain
bridges, or cross-chain bridges [26][2], are a possible solution for enabling interoperability
between different blockchains. The interoperability trilemma [45] allows for different bridge
designs, for which, a non-standard classification can be based on [3]:

Trust model – How they work: the type of authority used to synchronise the
operations. The bridge is referred to as a “trusted bridge” if there is a central-trusted
authority (e.g., Binance bridge [1]). If not, smart contracts make the bridge a “trustless
bridge” by removing the necessity for a reliable third party (e.g., Connext [5], Hop [25],
and other bridges with an atomic swap mechanism).
Validation – Validator or oracle-based bridges: the type of mechanism the bridge
relies on to validate cross-chain transfers, such as external validator or oracles.
Level – What they connect to: the type of systems it connects to, such as a connection
between blockchains or between a blockchain and an L2 system.
Sync – How they move assets: the type of mechanism used to transfer assets between
blockchains, such as Lock and mint, Burn and mint, or Atomic swaps.
Functionality – Their function: the specialized interoperability task they are meant
for, such as Chain-To-Chain, Multi-Chain, Specialized, Wrapped Asset, Data Specific,
dapps Specific, and Sidechain.

1DLT offers a unique solution for bridges, enabling users to deploy a bridge by providing them
with all the necessary tools and components (e.g., smart contracts). Since it operates via
smart contracts, which serve as trusted parties, the 1DLT bridge belongs to the set of trustless
bridges. It allows for the bi-directional transfer of ERC20 and ERC721 tokens between 1DLT
nodes and EVM-compatible blockchains. 1DLT uses a Lock and mint mechanism: on the
origin chain (e.g., Ethereum), a lock over the asset is performed, while on the destination
chain (e.g., 1DLT), a mint is performed. Figure 5 provides a high-level breakdown of the
bridge’s core elements and how they interact. Essentially, the bridge is composed of a two
of smart contracts, Bridge.sol and Token.sol, that are deployed on both the source and
destination blockchain. Their interaction is coordinated via a cross-chain message dispatcher,
called Mediator, using HTTP and WebSocket. The Bridge smart contracts implementation
differ, as on the destination chain (i.e., Bridge1DLT for 1DLT) the contract design is for burn
and mint, while on the origin chain is lock and withdraw (i.e., BridgeETH) for Ethereum).
For the Token smart contract the implementation is the same for both the chains.

Figure 5 1DLT bridge architecture.

In what follows, we briefly describe the steps needed to perform the deposit of some
ERC20 tokens from Ethereum to 1DLT (see Figure 6). The process relies on locking the
asset on the source blockchain, and then mint the corresponding amount in the destination
blockchain6.

6 To prevent the user from minting an arbitrary amount of token, only the bridge smart contract is
entitled to call the mint method in the token smart contract.

S. Bottoni et al. 3:9

1. The user sends a transaction to Ethereum, calling the lock method defined in the BridgeEth
smart contract;

2. The transaction locks the tokens on Ethereum, transferring them to the BridgeEth address;
3. The BridgeEth emits a custom Deposit event with the address of the receiver on 1DLT

and the amount;
4. The Mediator detects the event and retrieves the information;
5. The Mediator builds a transaction to call the mint method defined in Bridge1DLT with

the event information as parameters;
6. The Mediator sends the new transaction to 1DLT;
7. 1DLT executes the transaction, which calls the mint method of Bridge1DLT ;
8. The method calls the mint defined in Token;

Figure 6 Deposit of ERC20 tokens from
Ethereum to 1DLT.

Figure 7 Withdraw of ERC20 tokens from
1DLT to Ethereum.

In what follows, we briefly describe the steps needed to perform the withdrawal of some
ERC20 tokens from 1DLT to Ethereum (see Figure 7).
1. The user sends a transaction to 1DLT calling the burn method defined in Bridge1DLT ;
2. The transaction burns the tokens on 1DLT;
3. The Bridge1DLT emits a custom event with the address of the receiver and the amount;
4. The Mediator detects the event and retrieves the information;
5. The Mediator builds a transaction to call the withdraw method defined in BridgeEth with

the event information as parameters;
6. The Mediator sends the transaction to Ethereum;
7. Ethereum executes the transaction, which calls the withdraw method of BridgeEth;
8. The method calls the transferFrom defined in Token;
As virtually all complex, interacting systems, bridges are exposed to security risks related to:

Smart Contracts: bugs in their code can be exploited for malicious behaviours;
Underlying Blockchain: the underlying blockchain may be breached or act improperly;
Users: users not following best practices can incur non-secure behaviours;
Censorship and Custodial: bridge operators may act in malicious ways (e.g. they can
suspend their activities or collude to gain sensitive information about the bridge’s users)7.

There are numerous examples of bridge attacks that resulted in multimillion dollar losses. [27].
It is worth to mention that bridge hacks mainly happen due to a vulnerability identified and
exploited within the bridge contract, such as in the Wormhole attack [50] or the Optimism

7 Applies to bridges that require the presence of trusted operators.

Tokenomics 2022

3:10 QPQ 1DLT

smart contract bug [32]. In the remaining cases, user mistakes take place, such as in the
Optimism Wintermute case [31], where a Wintermute user inserted the wrong destination
address for a transaction.

To overcome some of the previously mentioned risks, we give the user the ability to set up
its 1DLT bridge without 1DLT system taking control of the bridge or custody of the assets.
1DLT offers reliable smart contracts that adhere to community-tested security best practices,
such as Optimism [46] or Polygon[35]). Thus, an internal and external auditing procedure
of the smart contracts, bridge, and the node is conducted to ensure the users’ safety. For
the external audit process, we use well-known auditors, such as CertiK[4], Hacken[21], and
Trail of Bits [47]. As part of the internal audit process, we use a smart contract bytecode
verification similar to the one of Etherscan [17] and Sourcify [42]. To this end, to have the
smart contracts verified, a user must share with 1DLT the transaction hash of the exploited
smart contracts via a dedicated page.

8 Experiments and Performance Discussion

A set of preliminary experiments were performed to benchmark and test 1DLT. We run
experiments according to the following metrics:

1. Total transaction cost: the cost of sending a transaction, which is computed as:
Costtotal = costtransaction + feegas + feeDLT where: costtransaction is the cost associated
to the transaction, which may involve the execution cost of a smart contract or an amount
of tokens; feegas and feeDLT are the fee costs associated to the transaction from the
node and for the target DLT. We note that the data field is where the difference between
a transaction and an interaction lies; in a transaction, the field is empty; in an interaction,
it has a value.

2. Transaction finality: the amount of time a user has to wait, on average, to obtain a
confirmation of a transaction, measured in seconds. In the case of 1DLT, the finality time
includes the transaction processing time and consensus finality time of the public DLT.

3. Total smart contract deployment cost: the cost of deploying a smart contract, which
is computed as: Costtotal = costtransaction+feegas+feeDLT +costcreateContract+costdata

where: costtransaction is the cost associated with the contract creation transaction; feegas

and feeDLT are the fee costs associated to the transaction from the node and for the
target DLT; costcreateContract is the cost associated to a contract creation, fixed to 32000
gas; and costdata is the cost associated to the contract complexity. As of today, we do
not support only the legacy format (before EIP 2930 [7]).

4. Throughput: the transaction rate of a blockchain, measured in transactions per second
(TPS). It is known that throughput is not the inverse of latency. For example, the
transaction throughput for Bitcoin is about 7tx/second [37] due to relatively small blocks
and long block time. Instead, Ethereum has a short block time but tiny blocks, which
results in a 15tx/second [38]. 1DLT’s throughput is limited by the total throughput of
public blockchains that CaaS connects to. In fact, all transactions submitted to CaaS
by the 1DLT Ethereum nodes are forwarded to the public blockchains like Hedera and
Algorand. Therefore, 1DLT throughput varies proportionally with the throughput of the
blockchain CaaS connects to.

S. Bottoni et al. 3:11

The experiments are executed on an Azure Virtual Machine8 configured as Standard_
D2_v39, with 2 vCPUs, 8 GB of RAM, 256 GB SSD, and running Ubuntu 21.10. We
use Hedera Consensus Service (HCS) [23] on the Testnet as the consensus resource. We
simulate the Web3 API interaction using Web3.js API [49]. We use Metamask [30] as
the wallet application to verify the state of the transactions and Hardhat as development
environment [22], as it is the de-facto standard tool for developing dapps [41].

8.1 Total transaction cost
We consider the token in Alice’s 1DLT network, with token name and symbol Alice_Token

and APT, respectively. In Figure 8, we show the steps done from Metamask’s user interface
to transfer tokens from Alice to Bob: first, we specify Bob’s account as the destination, the
APT token as the asset, and 1,000 as the amount. Next, we check the calculated fees and
send the transaction. Initially, the transaction state is on pending, then, after 6 seconds, the
state changes from pending to confirmed, allowing the balance update for Alice and Bob.

The total cost (Costtotal) for Alice is as follows: feeGas is 0.000021 APT, costtransaction

is 1000 APT, and feeDLT is 0.00051779 HBAR, which is 0.00000003 APT (assuming that 1
ETH = 1 APT). So the cumulative cost is 1, 000.00002103 APT and the cumulative cost for
the fees is 0.00002103 (0.056 USD). On the Ethereum Testnet (Ropsten [14]) the cumulative
cost is 0.00005093 (total of 0.14 USD), while on the Ethereum mainnet, with a gas fee of 47
Gwei, it’s 0.000819 (for a total of 2.95 USD).

Figure 8 Setup and send transaction from Alice to Bob state transition and account update.

8.2 Transaction finality
We evaluate the consensus finality of 1DLT using a client app that generates payment
transactions, and submits them to a 1DLT Ethereum node in its 1DLT network. We compute
the overall time from the generation of the transaction to the balance update in the Metamask
wallet as: Overall_time = Generate_Sendtx+1DLT _Finalitytx+Update_wallettx where:

Generate_Sendtx is the time our client application takes to generate and send the
payment transaction to a 1DLT Ethereum Node of 1DLT;
1DLT _Finalitytx is the time for 1DLT to process a transaction;
Update_wallettx is the time the Metamask wallet takes to update the balance via a call
sent by 1DLT.

8 https://azure.microsoft.com/
9 https://docs.microsoft.com/en-gb/azure/virtual-machine/dv3-dsv3-series

Tokenomics 2022

https://azure.microsoft.com/
https://docs.microsoft.com/en-gb/azure/virtual-machine/dv3-dsv3-series

3:12 QPQ 1DLT

In Figure 9, we present the experiment results, showing the Overall_Finality_Time that
we measured executing 200 transactions. We observe that average execution time for
Overall_Finality_Time is 4.526 seconds.

Figure 9 Transaction Finality experiment Diagram.

8.3 Smart contract deployment cost
We consider the example in 3.1 where Alice deploys the smart contract for her NFTs Auction
dapp. To deploy the auction smart contract, we write a deployment script in JavaScript. We
add the 1DLT node information, Node IP address, chain ID and private key of Alice account
to the Hardhat configuration file, hardhat.config.js. Then, from terminal, we execute the
deployment script with the command:

$ pnpm hardhat run --network AliceNetwork deploySmartContract .js

Once the deployment is completed, we receive the address of the created smart contract, like:
$ Contract deployed to address : 0 x6cd7d44516a20882cEa2DE9f205bF401c0d23570

The transaction cost for deploying the smart contract on 1DLT is 0.000013402 APT
(suppose that 1 ETH = 1 APT). On the Ethereum Testnet (Ropsten) the cumulative cost is
0.0015402 (for a total of 1.74 USD), while on the Ethereum mainnet, with a gas fee of 30
Gwei, it’s 0.0117055 (for a total of 13.91 USD). Note that the cost to interact with a smart
contract, that is, to call a method that changes the state (e.g., a set method), is calculated
the same as a transaction since a setter method is implemented by sending a transaction.

8.4 Transaction per second (TPS)
We evaluate the performance of CaaS using Hedera as the consensus resource. We use a
different Azure virtual machine configuration than before. We run CaaS on an Azure VM
in the Switzerland North region configured as Standard DS3 v2, with 4 vCPUs, 14 GB of
RAM, 1 TB SSD, and running Ubuntu 20.04. Then, to simulate the client, we use a VM
configured with Standard D2s v3, 2 vCPUs, 8 GB memory, and running Ubuntu 20.04.
In this experiment, we configured CaaS to run on a small VM to demonstrate that it is
very lightweight and can achieve high performance even with this setup. Ideally, and in the
production environment, CaaS will run on a Kubernetes cluster that allows to scale up with
the increased transaction requests. The client runs a Python v3.8.10 script that generates
a total of ten thousand transactions across five Hedera topics (which corresponds to five
communication channels in CaaS), sends transactions to CaaS, and waits for confirmations
from CaaS. Running the experiment 10 times with a single client results in an average of
1120 tps. The results are promising, as this experiment proves that a single client can process
around 1120 transactions per second with a minimal CaaS setup as discussed above.

S. Bottoni et al. 3:13

8.5 Discussion
The energy consumption of operating the Ethereum network has decreased by 99.9% after
the Merge, occurred in mid September 2022 [44].

However, the gas fees’ costs have not changed and this results in high costs for deploying
Ethereum as a computing platform. In fact, each finalized block includes 30 million Gas,
which is the amount of Gas used for all the transactions in a block [10]. The current
transaction fees for 30 million of consumed gas is more than 1 Ether, which (as of July 2022)
is valued at 1,479 USD. This implies that the computation costs of the Ethereum Network
are around 133 USD per second, which is ∼25 times more than 15 days of an EC2 instance
(currently around 20 USD).

In order to estimate the cost of the Ethereum network itself (measured in gas), fol-
lowing [57], we consider a very basic computational task like adding two 256-bit integers.
Since this operation costs 3 Gas [12] and the Ethereum network’s total compute is 2 million
gas/second, the Ethereum network may perform 600,000 additions per second. In contrast,
Raspberry Pi 4 [36], a 45 USD single-board computer with four processors running at 1.5 GHz,
can perform around 3,000,000,000 additions per second. As such, the Ethereum network,
considered as a general-purpose computational environment, has roughly 1/5,000 of the
computing power of a Raspberry Pi 4. At the current gas price, this means that performing
256-bit additions on the Ethereum network, costs about 60 USD per month.

Ethereum as a computational environment has the drawback to be expensive, in terms of
gas fees. Since 1DLT follows a modular approach and separates the EVM-based computational
layer from the consensus layer, it minimises energy consumption and computational effort.
Thanks to the deployment of CaaS, the consensus engine does not require a mining algorithm
in the consensus retrieval. Additionally, 1DLT offers the same level of computational power
as Ethereum at a significantly lower cost, as shown in experiments 1 and 3 in Section 8. As
an example, the cost to execute 50,000 transactions is 0.04 USD.

9 Conclusion and Future work

Scaling solutions are crucial to increase the Ethereum network’s capacity in terms of speed
and throughput, but they come at the cost of reduced decentralisation, increased transaction
finality times. 1DLT, inspired by the user experience of Cloud Service Providers (CSP)
and Web-based applications, overcomes the limitations of the existing scaling solutions
enabling low gas fees, high transaction throughput, and fast transaction finality. Additionally,
1DLT removes the risk associated with the L2 governance and fraud detection, since all the
transactions processed in 1DLT networks are submitted to the consensus protocols of L1
public DLTs. Lastly, the programmability and user experience of the Ethereum ecosystem is
maintained thanks to an EVM-based architecture.

We demonstrated the feasibility of our architecture with a set of preliminary experiments
in Section 8, benchmarking transaction costs and finality.

Future work includes: (i) a proper experimental benchmark to execute advanced ex-
periments that fully accounts for the real-world landscape of L2 solutions and 1DLT; (ii)
Extend the 1DLT Ethereum Node with a verification mechanism for proving the correctness
of Caas module’s responses; (iii) enhance the bridge with support for blockchains that are not
compatible with EVM; (iv) the integration of 1DLT with Trusted Execution Environments;
(v) full integration with a proprietary wallet that will enhance the Metamask solution; (vi)
provision of user tools like Etherscan [16] for Ethereum or DragonGlass [6] for Hedera, to
audit the status of the blockchains in the 1DLT ecosystem.

Tokenomics 2022

3:14 QPQ 1DLT

References
1 Binance bridge. https://www.bnbchain.org/en/bridge.
2 Blockchain bridges. https://ethereum.org/en/developers/docs/bridges.
3 Blockchain bridges classification. https://li.fi/knowledge-hub/bridge-classification.
4 CertiK. https://www.certik.com.
5 Connext bridge. https://bridge.connext.network.
6 DragonGlass. https://app.dragonglass.me.
7 EIPS 2930. https://eips.ethereum.org/EIPS/eip-2930.
8 Erigon. https://github.com/ledgerwatch/erigon.
9 Erigon stage sync. https://github.com/ledgerwatch/erigon/blob/devel/eth/stagedsync.

10 Ethereum gas. https://ethereum.org/en/developers/docs/gas.
11 Ethereum nodes. https://ethereum.org/en/developers/docs/nodes-and-clients.
12 Ethereum opcodes. https://ethereum.org/it/developers/docs/evm/opcodes.
13 Ethereum Scaling. https://ethereum.org/en/developers/docs/scaling.
14 Ethereum testnets. https://ethereum.org/en/developers/docs/networks.
15 Ethereum TPS. https://ethtps.info.
16 Etherscan. https://etherscan.io.
17 Etherscan smart contract verification. https://etherscan.io/verifyContract.
18 EVM. https://ethereum.org/en/developers/docs/evm.
19 EVMone. https://github.com/ethereum/evmone.
20 Geth. https://geth.ethereum.org/docs.
21 Hacken. https://hacken.io.
22 Hardhat. https://hardhat.org.
23 Hedera Consensus Service. hedera.com/consensus-service.
24 Hedera mirror service. https://hedera.com/learning/hedera-hashgraph/what-is-the-

hedera-mirror-network.
25 Hop. https://app.hop.exchange.
26 Introduction to blockchain bridges. https://ethereum.org/en/bridges/.
27 Leaderboard of Ethereum bridge attacks. https://rekt.news/leaderboard.
28 Leveldb database. https://github.com/google/leveldb.
29 Merkle Patricia Trie. https://eth.wiki/fundamentals/patricia-tree.
30 Metamask. https://metamask.io.
31 Optimism Attack. https://cointelegraph.com/news/optimism-loses-20m-tokens-after-

l1-and-l2-confusion-exploited.
32 Optimism Bounty. https://cryptoslate.com/critical-bug-in-ethereum-l2-optimism-

2m-bounty-paid.
33 Optimistic Rollups. https://ethereum.org/en/developers/docs/scaling/optimistic-

rollups.
34 Plasma. https://ethereum.org/en/developers/docs/scaling/plasma.
35 Polygon-Ethereum Bridge. https://docs.polygon.technology/docs/develop/ethereum-

polygon/getting-started.
36 Raspberry. https://datasheets.raspberrypi.com/rpi4/raspberry-pi-4-datasheet.pdf.
37 Real time Bitcoin finality. https://statoshi.info/d/000000006.
38 Real time Ethereum finality. https://ethtps.info.
39 Sidechains. https://ethereum.org/en/developers/docs/scaling/sidechains.
40 Sled database. https://github.com/spacejam/sled.
41 Solidity report. https://blog.soliditylang.org/2022/02/07/solidity-developer-survey-

2021-results.
42 Sourcify. https://docs.sourcify.dev/docs/intro.
43 State Channels. https://ethereum.org/en/developers/docs/scaling/state-channels.
44 The Ethereum merge. https://ethereum.org/en/upgrades/merge.

https://www.bnbchain.org/en/bridge
https://ethereum.org/en/developers/docs/bridges
https://li.fi/knowledge-hub/bridge-classification
https://www.certik.com
https://bridge.connext.network
https://app.dragonglass.me
https://eips.ethereum.org/EIPS/eip-2930
https://github.com/ledgerwatch/erigon
https://github.com/ledgerwatch/erigon/blob/devel/eth/stagedsync
https://ethereum.org/en/developers/docs/gas
https://ethereum.org/en/developers/docs/nodes-and-clients
https://ethereum.org/it/developers/docs/evm/opcodes
https://ethereum.org/en/developers/docs/scaling
https://ethereum.org/en/developers/docs/networks
https://ethtps.info
https://etherscan.io
https://etherscan.io/verifyContract
https://ethereum.org/en/developers/docs/evm
https://github.com/ethereum/evmone
https://geth.ethereum.org/docs
https://hacken.io
https://hardhat.org
hedera.com/consensus-service
https://hedera.com/learning/hedera-hashgraph/what-is-the-hedera-mirror-network
https://hedera.com/learning/hedera-hashgraph/what-is-the-hedera-mirror-network
https://app.hop.exchange
https://ethereum.org/en/bridges/
https://rekt.news/leaderboard
https://github.com/google/leveldb
https://eth.wiki/fundamentals/patricia-tree
https://metamask.io
https://cointelegraph.com/news/optimism-loses-20m-tokens-after-l1-and-l2-confusion-exploited
https://cointelegraph.com/news/optimism-loses-20m-tokens-after-l1-and-l2-confusion-exploited
https://cryptoslate.com/critical-bug-in-ethereum-l2-optimism-2m-bounty-paid
https://cryptoslate.com/critical-bug-in-ethereum-l2-optimism-2m-bounty-paid
https://ethereum.org/en/developers/docs/scaling/optimistic-rollups
https://ethereum.org/en/developers/docs/scaling/optimistic-rollups
https://ethereum.org/en/developers/docs/scaling/plasma
https://docs.polygon.technology/docs/develop/ethereum-polygon/getting-started
https://docs.polygon.technology/docs/develop/ethereum-polygon/getting-started
https://datasheets.raspberrypi.com/rpi4/raspberry-pi-4-datasheet.pdf
https://statoshi.info/d/000000006
https://ethtps.info
https://ethereum.org/en/developers/docs/scaling/sidechains
https://github.com/spacejam/sled
https://blog.soliditylang.org/2022/02/07/solidity-developer-survey-2021-results
https://blog.soliditylang.org/2022/02/07/solidity-developer-survey-2021-results
https://docs.sourcify.dev/docs/intro
https://ethereum.org/en/developers/docs/scaling/state-channels
https://ethereum.org/en/upgrades/merge

S. Bottoni et al. 3:15

45 The interoperability trilemma. https://blog.connext.network/the-interoperability-
trilemma-657c2cf69f17.

46 The Optimism bridge. https://ethereum.org/en/developers/tutorials/optimism-std-
bridge-annotated-code.

47 Trail of Bits. https://www.trailofbits.com.
48 Validium. https://ethereum.org/en/developers/docs/scaling/validium.
49 web3.js API. https://web3js.readthedocs.io/en/v1.7.4/.
50 Wormhole hack. https://rekt.news/wormhole-rekt.
51 Zk Rollups. https://ethereum.org/en/developers/docs/scaling/zk-rollups.
52 Bored ape crush Ethereum. https://www.cnet.com/personal-finance/crypto/bored-ape-

yacht-club-just-broke-the-ethereum-blockchain, 2022.
53 Lewis Gudgeon, Pedro Moreno-Sanchez, Stefanie Roos, Patrick McCorry, and Arthur Gervais.

Sok: Layer-two blockchain protocols. In Financial Cryptography and Data Security - 24th
International Conference, FC, Lecture Notes in Computer Science, pages 201–226. Springer,
2020.

54 Maxim Jourenko, Kanta Kurazumi, Mario Larangeira, and Keisuke Tanaka. Sok: A taxonomy
for layer-2 scalability related protocols for cryptocurrencies. IACR Cryptol. ePrint Arch., page
352, 2019.

55 Starkware. Starkware Cairo. https://starkware.co/cairo.
56 Starkware. Starkware Libs. https://github.com/starkware-libs.
57 Nicholas Weaver. The Web3 Fraud. https://www.usenix.org/publications/loginonline/

web3-fraud, 2021.
58 Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger. Ethereum

Project Yellow Paper, 2014.

Tokenomics 2022

https://blog.connext.network/the-interoperability-trilemma-657c2cf69f17
https://blog.connext.network/the-interoperability-trilemma-657c2cf69f17
https://ethereum.org/en/developers/tutorials/optimism-std-bridge-annotated-code
https://ethereum.org/en/developers/tutorials/optimism-std-bridge-annotated-code
https://www.trailofbits.com
https://ethereum.org/en/developers/docs/scaling/validium
https://web3js.readthedocs.io/en/v1.7.4/
https://rekt.news/wormhole-rekt
https://ethereum.org/en/developers/docs/scaling/zk-rollups
https://www.cnet.com/personal-finance/crypto/bored-ape-yacht-club-just-broke-the-ethereum-blockchain
https://www.cnet.com/personal-finance/crypto/bored-ape-yacht-club-just-broke-the-ethereum-blockchain
https://starkware.co/cairo
https://github.com/starkware-libs
https://www.usenix.org/publications/loginonline/web3-fraud
https://www.usenix.org/publications/loginonline/web3-fraud

Consistency of Automated Market Makers
Vincent Danos #

CNRS, France
DI ENS, INRIA, PSL, Paris, France

Weijia Wang #

ENS, Paris, France

Abstract
Decentralised Finance has popularised Automated Market Makers (AMMs), but surprisingly little
research has been done on their consistency. Can a single attacker extract risk-free revenue from an
AMM, regardless of price or other users’ behaviour? In this paper, we investigate the consistency of
a large class of AMMs, including the most widely used ones, and show that consistency holds.

2012 ACM Subject Classification Theory of computation → Algorithmic mechanism design

Keywords and phrases Automated Market Makers, Decentralised Finance

Digital Object Identifier 10.4230/OASIcs.Tokenomics.2022.4

Acknowledgements The first author wishes to thank Jérôme de Tichey for introducing him to the
problem of consistency, Guillaume Terradot and Hamza El Khalloufi for numerous conversations.

1 Introduction

Blockchains offer in principle a neutral computational medium, where anyone can deploy and
interact with smart contracts without interference from external parties. It has been long
thought that the ability for parties to enter into interactions that have to follow rules captured
un-ambiguously by code could change finance [8]. Indeed, there is now an emerging domain
known as decentralized finance (DeFi) re-defining financial primitives and functionalities
using smart contracts. Its progresses and potentials were recently recognised in a report
of the IMF.1 One key component of any financial system is the mechanism for matching
participants willing to trade. DeFi has brought to the fore a novel class of protocols, namely
automated market makers (AMMs), to perform this task. In this paper, we investigate the
consistency of such AMMs.

An automated market maker (AMM) is a specific type of decentralized exchange, ie a
market place which is fully automatised and implemented as a smart contract. An AMM
protocol typically maintains reserves, also referred to as pools, of different assets and employs
mathematical algorithms to determine the price of assets and identify which trades it is
willing to execute with a particular trader. The AMM pools are populated by users known
as liquidity providers (LPs). In return for providing liquidity, LPs receive LP tokens, also
referred to as pool tokens, representing their ownership fraction of the pools, and receive
accordingly a fraction of the fees paid by traders on each trade. Nothing prevents a user
from taking on both roles, that is to say, to deposit/withdraw assets as an LP, while at the
same time trading assets with the AMM.

1 “By taking innovation to a new level [. . .] DeFi has had extraordinary growth in the past two years,
potentially offering higher efficiency and investment opportunities.” “DeFi offers broad access to players
of any size and has no need for custodian service, potentially improving efficiency and financial inclusion.”
(IMF report, Apr 2022)

© Vincent Danos and Weijia Wang;
licensed under Creative Commons License CC-BY 4.0

4th International Conference on Blockchain Economics, Security and Protocols (Tokenomics 2022).
Editors: Yackolley Amoussou-Guenou, Aggelos Kiayias, and Marianne Verdier; Article No. 4; pp. 4:1–4:12

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:vincent.danos@ens.fr
mailto:weijia.wang1@ens.psl.eu
https://doi.org/10.4230/OASIcs.Tokenomics.2022.4
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

4:2 Consistency of Automated Market Makers

The top-performing AMMs in 2022 achieved weekly trading volumes in the billions of
euros [3]. Despite those substantial volumes, little is known about the consistency of the
underpinning mathematical mechanisms. Of course, providing liquidity can lead to losses
depending on the evolution of prices. In the context of AMMs, loss due to price movement
is called impermanent loss. However, in this paper, we address a different risk which is
unrelated to price action, arbitrage (exploiting price discrepancies on different markets),
or the exploitation of other players’ moves (as in various types of front-running). We ask
whether a single attacker with unbounded capital can initiate a sequence of interactions
with a given AMM, which would lead to a risk-free and price-independent profit. If there
is no such sequence, regardless of the initial state of the AMM, then we say the AMM
is consistent. There are examples of such attacks, making the question of consistency a
practically important one [4].

The latest and only known result on the consistency problem, published in 2020, showed
that under reasonable conditions on the AMM mechanics, the AMM is consistent as long as
the attacker is only allowed to trade (and not to provide liquidity) [2]. This weaker notion of
consistency can be readily proved for a large class of AMMs. It leaves open the question of
consistency where the attacker is allowed to combine LP actions and trading.

Outline

We begin with the definition of a large class of AMMs which we call price machines, and
narrow down their definition to the case of a single attacker (§2). We turn to the definition
of consistency and prove our main abstract result which gives a simple sufficient condition
for the consistency of a price machine (§3). The third part of the paper (§4) is devoted
to applications. We establish the consistency of DeFi’s most popular AMMs: Uniswap [1],
Balancer [7], and both versions of the Curve AMM [5, 6].

2 Basic definitions

Throughout the paper we use the terms assets and tokens as synonymous. We call market
participants simply users. In this section, we define and discuss price machines which form
the class of AMMs we investigate.

2.1 Preliminaries

The product ordering on Rn, n > 0, is written ⪯. It is defined as usual as v ⪯ v′ iff vi ≤ v′
i

for 1 ≤ i ≤ n. The strict version is written ≺. A relevant intuition for the product ordering
is that v ⪯ v′ iff pT (v′ − v) ≥ 0 for any “price” vector p with positive coordinates. The
positive part of a vector v ∈ Rn, written v+, is defined as (v+)i = max(vi, 0), for 1 ≤ i ≤ n.
We write 1 for the vector with all components equal to 1.

A function f : Rn → R is said to be non-decreasing (increasing) if it preserves the (strict)
product ordering.

It is easy to see that a function f : Rn → R is increasing iff it is locally increasing,
meaning it preserves ≺ on a neighbourhood of each point.

A function f : Rn → R is called homogenous of degree k ≥ 0 if for every v ∈ Rn and
s ̸= 0, f(sv) = skf(v). It is called positively homogenous if the identity holds for s > 0.

We write R∗
+ for the set of positive reals.

V. Danos and W. Wang 4:3

2.2 Trading functions

A trading function on n ≥ 1 tokens is an increasing function ψ : (R∗
+)n → R∗

+. We say ψ is
1-homogenous if for s > 0, ψ(sv) = sψ(v).

For a vector of reserves R ∈ (R∗
+)n, ψ(R) ∈ R∗

+ specifies the total amount of LP tokens
currently distributed (up to a positive constant multiplicative factor). We also pick ϵ a
(small) constant 0 ≤ ϵ ≤ 1 specifying the LP fees.

Given ψ, ϵ, we define a notion of AMM trading on n tokens.

Specifically, we distinguish two types of transitions: Swaps and Transfers. Both types
take current reserves R to new reserves R′. Swaps correspond to trade events, transfers
correspond to liquidity provision events (deposits and withdrawals).

Swaps: a swap R →s R′ must satisfy ψ(R) = ψ(R′ − ϵ(R′ −R)+)
The vector (R′ − R)+ is the amount of tokens received by the AMM, while the vector

(R − R′)+ is the amount paid out to the trader. As ψ is increasing, it must be that
ψ(R) ≤ ψ(R′). The excess amount ψ(R′) − ψ(R) of LP tokens is divided between LPs in
proportion to their current amounts of LP tokens.2

When ϵ = 0 the swap constraint becomes simply ψ(R) = ψ(R′). This is the reason ψ is
often referred to as the invariant of the AMM. For (small) ϵ > 0, swaps induce a (small)
increase of the invariant. In the limit case ϵ = 1, R′ − ϵ(R′ − R)+ = R ∧ R′, hence the
constraint can be rewritten ψ(R) = ψ(R ∧ R′), which implies R = R ∧ R′ because ψ in
increasing, or equivalently R′ ⪰ R. In words, the AMM never pays out anything on a swap.

Transfers: a transfer R →t R′ must satisfy either R ⪯ R′ (deposit), or R ⪰ R′ (with-
drawal).

Deposits (withdrawals) increase (decrease) the current value of the invariant. The excess
amount ψ(R′) − ψ(R) of LP tokens (negative in the case of a withdrawal) is given to (taken
from) the user who initiated the transfer.

A transfer is said to be balanced if there exists λ ∈ R+ such that R′ = λR, and perfectly
balanced if ψ(λR) = λψ(R).

In the next section, we show (Prop. 4) that, if ψ is homogenous, imbalanced transfers can
be decomposed as a swap without fees followed by a balanced transfer. Imbalanced transfers
are best understood as a compound transition which is convenient to users.3

2.3 Example (verified on-chain [10])
Uniswap v2 is a two-token AMM with trading function ψ(R) := (R1R2) 1

2 , and fee ϵ = 0.003.
Say the tokens are named A and B. We start in the following configuration:

The AMM’s pool has 5A+ 20B tokens.
Alice has 10 LP tokens and is the only LP, since ψ(5, 20) = 10
Bob has 50A+ 200B tokens
Charlie has 10A tokens

2 In other words, no-one gets diluted. In reality AMMs do not literally offer LP tokens to their LPs at
each swap. For reasons of efficiency, they keep track of the total number of LP tokens separately, to
preserve the proportions of LP tokens for each user on swaps, and determine transfers appropriately.

3 Indeed, in practice, imbalanced transfers are subject to a fee, In the words of the Balancer AMM
documentation “Since Balancer allows for depositing and withdrawing liquidity to Balancer pools using
only one of the tokens present in the pool, this could be used to do the equivalent of a swap: provide
liquidity depositing token A, and immediately withdraw that liquidity in token B. Therefore a swap fee
has to be charged, proportional to the tokens that would need to be swapped for an all-asset deposit.”
(See single asset deposit withdrawal.)

Tokenomics 2022

https://balancer.gitbook.io/balancer/core-concepts/protocol/index#single-asset-deposit-withdrawal

4:4 Consistency of Automated Market Makers

Figure 1 A sequence of aout 40,000 transitions (recorded during the first two weeks of November
2021) on the WETH/DAI Uniswap v2 Ethereum market; colours represent succession in time.

We want to illustrate the various types of transitions:
(Transfer) Bob deposits 50A+ 200B tokens (balanced deposit, λ = 11).
The pool has now 55A+ 220B tokens, and Bob receives

√
50 · 200 = 100 LP tokens.

(Swap) Charlie swaps As for Bs, using 10A tokens.
The pool has now 65A tokens and 55·220

65−10ϵ = 186.239803B tokens, while Bob receives
220 − 186.239803 = 33.760197B tokens.
The excess amount of LP tokens generated by Charlie’s swap is shared proportionally,
so that Alice has now 10

110
√

65 · 186.239803 = 10.002308 LP tokens, and Bob has now
100.023085 LP tokens.
(Transfer) Alice withdraws all her 10.002308 LP tokens (balanced withdrawal)
Alice receives 10.002308√

65·186.239803 = 10
110 from the pool, i.e. 10

110 · 65 = 5.909091A tokens and
10

110 · 186.239803 = 16.930891B tokens.
The pool ends up with 59.090909A+ 169.308912B tokens.

Fig. 1 gives a historical example (sampled during Nov 2021) of a far longer sequence
(of circa 40,000 transitions) on a Uniswap v2 market (on the ETH/DAI token pair). Swaps
correspond to motions along the hyperbolic contour lines of the trading function. Transfers
correspond to jumps from one contour line to a lower (higher) one if a withdrawal (deposit).

2.4 Price machines
The simple example above shows that to properly record the effect of a sequence of transitions
on an AMM one needs to incorporate in its state two additional components:

the (proportions of) LP tokens held by each user,
as well as their own reserves in the tokens of interest.

V. Danos and W. Wang 4:5

To keep things simple we now suppose ϵ = 0. (Fees can be computed for each swap a
posteriori anyways.) The resulting model is defined below as a labelled transition system,
with its state space, labels, and labelled transitions.

▶ Definition 1. A price machine with n-token trading function ψ and user set U is a labelled
transition system with:

state space S = (R∗
+)n × RU

+ × RU×n
+

transition labels Σ = {s, t} × U × Rn
+

(labelled) transition relation described below

States are of the form (R, θ, R̂) ∈ S where:
R ∈ (R∗

+)n is the vector of reserves of the price machine
θ ∈ RU

+ is the vector of fractions of LP tokens held by users, so that 1T θ = 1
R̂ ∈ RU×n

+ is the vector of users’ net wealths

The net wealth of user u is defined as the amount of tokens user u would own after
withdrawing all its LP tokens. The vector Rloc

u := R̂u − θuR, represents u’s local reserves,
that is to say the amount of capital which u has not invested as an LP.

Labels are of the form (s/t, u, λ) where:
s/t indicates whether the transition is a swap (s) or a transfer (t)
u is the user causing the transition
λ ∈ Rn

+ is a vector expressing multiplicatively the change in reserves induced by the
transition

That is to say, for a transition in reserves R → R′, λ is the unique (positive) vector such
that R′ = λR, where multiplication is understood component-wise.

Transitions form a ternary relation over S × Σ × S and come in two types.

Swaps: (R, θ, R̂) su(λ)−−−→ (λR, θ, R̂′) with ψ(R) = ψ(λR).
Fractions θ of ownership are invariant under swaps (as new LP tokens are distributed

proportionally). New net wealths of u and v ̸= u are respectively given by:

R̂′
u = R̂u + (1 − θu)(1 − λ)R

R̂′
v = R̂v − θv(1 − λ)R

Transfers: (R, θ, R̂) tu(µ)−−−→ (µR, θ′, R̂′)
We set ν := ψ(µR)/ψ(R).
New ownership fractions and net wealths of u and v ̸= u are respectively given by:{
θ′

u = θu + (1 − θu)(1 − ν−1)
R̂′

u = R̂u + (1 − θu)(1 − µν−1)R

{
θ′

v = θvν
−1

R̂′
v = R̂v − θv(1 − µν−1)R

With this long definition in place, we can make a number of remarks.
As said, factors λ, µ in the (Swap) and (Transfer) transitions above are in general vectors,

not scalars.
In (Swap) transitions, tokens received and paid out by the price machine can be written

explicitly in multiplicative form:

(R′ −R)+ = (λ− 1)+R

(R−R′)+ = (1 − λ)+R

Tokenomics 2022

4:6 Consistency of Automated Market Makers

The pre-factor (1 − θu) occurring in u’s post-swap net wealth R̂′
u expresses the fact that u is

partly self-trading if s/he also holds LP tokens. This pre-factor can therefore be interpreted
as a “wash trading” factor. In particular, if θu = 1 (and therefore θv = 0 for v ̸= u) net
wealths are invariant under swap; which is to be expected as, in this case, user u is entirely
trading with self.

The total amount of tokens is conserved under any transition: 1T R̂ = 1T R̂′.
Transitions are subject to a budget constraint, R̂′

u ⪰ 0 for u a user; ie user u holds
non-negative amounts of tokens post-transition. For a Transfer the constraint can be written
R̂′

u − θ′
uR

′ ⪰ 0.
Finally, notice that R̂ = R̂′ under perfectly balanced transfers (because in this case

µ = ν1). (This makes it convenient to work with net wealths and multiplicative transitions
rather than local reserves and additive transitions.)

2.5 Single user price machines
In the following, we only need to consider the case of a single user u (the attacker) interacting
with the price machine. Caveat: this does not mean that other users are not present as LPs,
just that they do not interact with the machine while u is. In particular, u is allowed to have
varying amounts of fraction of ownership of the pools. (A similar two-user version of a price
machine is a convenient model to study the so-called MEV attacks on a price machine.)

▶ Definition 2. In the single user case, the data presented in the preceding definition simplifies
as follows.

Single user states reduce to the simpler form (R, θu, R̂u) ∈ (R∗
+)n × R+ × Rn

+.
Labelled transitions simplify to:

Swaps:

(R, θu, R̂u) su(λ)−−−→ (λR, θu, R̂u + (1 − θu)(1 − λ)R)

with ψ(λR) = ψ(R)

Transfers:

(R, θu, R̂u) tu(µ)−−−→ (µR, θu + (1 − θu)(1 − ν−1), R̂u + (1 − θu)(1 − ν−1µ)R)

with ν := ψ(µR)/ψ(R)

Let us verify that the transitions above are correct.
For a Swap (R, θ, R̂u) su(λ)−−−→ (λR, θ, R̂′

u), θ = θu is unchanged.
Local reserves become:

R′loc
u := R̂u − θuR− (λ− 1)R

hence

R̂′
u := R′loc

u + θuλR

= R̂u + (1 − θu)(1 − λ)R

as in the expression given above.
For a Transfer (R, θ, R̂u) tu(µ)−−−→ (µR, θ′, R̂′

u), the total amount of LP tokens post transition
is ψ(µR). The difference in LP tokens, ψ(µR) − ψ(R) (negative for a withdraw), is given
to u. Therefore the amount of LP tokens held by u after the transition is θ′

uψ(µR) =
θuψ(R) + ψ(µR) − ψ(R). Hence:

θ′
u = θu + (1 − θu)(1 − ν−1)

V. Danos and W. Wang 4:7

The amount given by u is (µ− 1)R, so R′loc
u = Rloc

u − (µ− 1)R, and:

R̂′
u = R′loc

u + θ′
uµR

= Rloc
u − (µ− 1)R+ (θu + (1 − θu)(1 − ν−1))µR

= R̂u − θuR− (µ− 1)R+ (θu + (1 − θu)(1 − ν−1))µR
= R̂u + (1 − θu)R− µR+ (θu + (1 − θu)(1 − ν−1))µR

and the expression given above for R̂′
u follows.

In the special case of a perfectly balanced transfer, ν−1µ = 1 and R̂′
u = R̂u, ie the net

wealth of u is unchanged.

3 Consistency

Intuitively, a price machine is consistent if no attacker can extract price-independent profit,
regardless of the machine’s initial state. With the vocabulary developed in the preceding
section, we can now formulate this precisely.

Given a price machine, a sequence of transitions caused by the same user u is called a
trace. We say that two traces are equivalent if they have the same initial and final state.
Clearly, equivalence is compatible with composition.

Equivalent traces may induce different budget constraints. (See an example below.)
Concretely, in a blockchain with a sequential execution model, the attacker can drive the

price machine to execute any trace of his choice into one single transaction (that is to say
atomically).

▶ Definition 3 (Consistency). A price machine is said to be consistent if, for any trace σ
caused by u:

(R, θu, R̂u) σ−−−−→ (R′, θ′
u, R̂

′
u)

R̂u ⪯ R̂′
u implies R̂u = R̂′

u.

As we will see below, it is easy to show that a trace which includes only Swap transitions
cannot be a counter-example to consistency [2]. (Essentially because along such a sequence
the invariant ψ(R) cannot decrease.) The idea of the consistency proof is to reduce a trace
into an equivalent one, where Swaps are all executed before any Transfer transition happens,
and Transfers are perfectly balanced. Perfectly balanced transfers do not alter the user net
wealth (as noticed a few lines above). So the conclusion would follow.

▶ Proposition 4. Given a price machine with 1-homogenous trade function, an arbitrary
transfer is equivalent to a swap (without fees) followed by a balanced transfer.

Proof. We use reduced states and transitions (Def. 2). Consider an arbitrary transfer tu(µ).
Define ν := ψ(µR)/ψ(R).

We have the following trace:

R, θu, R̂u
su(ν−1µ)−−−−−−→ ν−1µR, θu, R̂u + (1 − θu)(1 − ν−1µ)R
tu(ν1)−−−−→ µR, θu + (1 − θu)(1 − ν−1

∗),
R̂u + (1 − θu)(1 − ν−1µ)R+ (1 − θu)(1 − ν−1

∗ ν1)R

with ν∗ = ψ(µR)/ψ(ν−1µR) = ν, because ψ is 1-homogenous, and therefore, the above trace
is equivalent to a direct Transfer tu(µ), as can be read directly from Def. (2). We also have
to check that the first transition is correct:

ψ(ν−1µR) = ψ(ψ(R)/ψ(µR)µR) = ψ(R)

again by 1-homogeneity of ψ. ◀

Tokenomics 2022

4:8 Consistency of Automated Market Makers

▶ Proposition 5. Given a price machine with 1-homogenous trade function, swaps and
balanced transfers due to the same user commute.

Proof. Given a reduced state (R, θu, R̂u), we have

(R, θu, R̂u) tu(µ)su(λ)−−−−−−−→ (λµR, θu + (1 − θu)(1 − ν−1), R̂u + (1 − θu)(1 − λµν−1)R),

(R, θu, R̂u) su(λ)tu(µ)−−−−−−−→ (λµR, θu + (1 − θu)(1 − ν−1
∗), R̂u + (1 − θu)(1 − λµν−1

∗)R),

where ν = ψ(µR)/ψ(R) = ψ(µλR)/ψ(λR) = ν∗, with the middle equality because ψ is
1-homogenous. ◀

The “commutation” above has to be understood up to budget constraints. Indeed, if we
consider the constant product ψ (see §2.3), with initial state (R, θu, R̂u), where R = (60, 60),
θu = 0.5, R̂u = (80, 80), and transitions tu(µ), su(λ), are defined by µ = (0.5, 0.5) (balanced),
and λ = (0.5, 2). The budget constraint prevents the expected equivalence between tu(µ)su(λ)
and su(λ)tu(µ).

We can now wrap up the proof.

▶ Theorem 6. A price machine is consistent if its trading function is 1-homogenous.

Proof. Given a state (R, θu, R̂u) and an attack trace σ. Since the feasibility of swaps and
transfers is preserved under a positive translation on R̂u, we may suppose that R̂u is large
enough (the attacker has deep pockets).

By Prop. 4 (decomposition of non-balanced transfers), σ is equivalent to a trace σ1 where
every transfer is balanced.

By Prop. 5 (postponement of transfers), σ1 is in turn equivalent to a trace σ2 of the form
su(λ1) · · · su(λn)tu(µ1) · · · tu(µm), where each tu(µi) is balanced.

It is easy to see that sequences of single-user balanced transfers can be aggregated,
meaning tu(µ1) · · · tu(µm) is equivalent to a one step transfer tu(µ) with µ = µ1 · · ·µm.
Likewise, sequences of single-user swaps su(λ1) · · · su(λn) are equivalent to a one step swap
su(λ) with λ = λ1 · · ·λn.

By combining both remarks we can obtain a trace σ3 equivalent to the original σ and of
the simple form su(λ)tu(µ).

Let now R̂′
u be the net wealth of user u at the end of σ3 (equivalently at the end of σ).

Since tu(µ) is perfectly balanced, R̂′
u is also the net wealth of u after the combined swap

su(λ). Hence R̂′
u = R̂u + (1 − θu)(1 − λ)R.

Now suppose that R̂u ⪯ R̂′
u, it must be that λ ⪯ 1. Since ψ(R) = ψ(λR) (no fees) and ψ

is (strictly) increasing, it must be in fact that λ = 1. Hence R̂u = R̂′
u. ◀

We do not really need to suppose that swaps have zero fees. The proof above can handle
the case where su(λ1) · · · su(λn)tu(µ) consists of swaps with and without fees.

4 Applications

It remains to show that our approach applies to some interesting AMMs.
Recall that the epigraph and the hypograph of a function f : X → R, where R =

R ∪ {−∞,+∞}, are defined as:

epi(f) := {(x, r) ∈ X × R : r ≥ f(x)},
hyp(f) := {(x, r) ∈ X × R : r ≤ f(x)}.

To do this we define a specific class of candidate trading functions.

V. Danos and W. Wang 4:9

▶ Definition 7. Let a triple (f, g, F) be given with:
f , g : (R∗

+)n → R+
f ≤ g

F : epi f ∩ hyp g → R
Suppose that for all R ∈ (R∗

+)n, there is a unique D such that F (R,D) = 0 and f(R) ≤ D ≤
g(R). The candidate trading function associated to (f, g, F) is then defined as ψ(R) := D.

Intuitively, f(R), g(R) give bounds on the amount of LP tokens ψ(R) available for a given
level of reserves R.

Now we ask for sufficient conditions for such a function to be increasing, i.e. to be an
actual trading function.

▶ Theorem 8. Let ψ be as in Def. 7. For ψ to be increasing, it is sufficient that the following
holds:
1. ∀R ∈ domψ, F (R, ·) is of class C1 on [f(R), g(R)], with F ′(R, ·) < 0
2. ∀D ∈ imψ, F (·, D) is strictly increasing
3. f , g are continuous, and, f < ψ < g almost everywhere

Proof. From condition 1, we know that ψ is of class C1, by the inverse function theorem.
Since we also have condition 3, it suffices to prove that ψ is locally strictly increasing, for
every R such that f(R) < ψ(R) < g(R).

Now, pick R ∈ domψ such that f(R) < ψ(R) < g(R). By condition 3 and the continuity
of ψ, there is an open neighbourhood NR of R such that for almost every R′ ∈ NR, both
f(R′) < ψ(R′) < g(R′) and f(R) < ψ(R′) < g(R) hold.

Suppose, without loss of generality, that R ≺ R′. By definition, we have F (R,ψ(R)) =
F (R′, ψ(R′)) = 0. By condition 2, we have F (R,ψ(R′)) < F (R′, ψ(R′)), so that
F (R,ψ(R)) > F (R,ψ(R′)). By condition 1, we have ψ(R) < ψ(R′). Done! ◀

▶ Theorem 9. Let ψ be a trading function defined as in Def. 7 via a triple F , f , g. Suppose
F is positively homogenous, and f , g are 1-homogenous. Then ψ is positively homogenous of
degree 1.

Proof. Suppose that F is positively homogenous of degree k. Pick R ∈ domψ, and s > 0.
We have F (sR, sψ(R)) = skF (R,ψ(R)) = 0, therefore F (sR, sψ(R)) = 0. On the other
hand, by definition ψ(R) ≥ f(R), hence sψ(R) ≥ sf(R) = f(sR). Similarly ψ(R) ≤ g(R),
hence sψ(R) ≤ sg(R) = g(sR) Therefore by unicity of the solution to F (sR,_) = 0 in the
interval [f(sR), g(sR)], it must be that sψ(R) = ψ(sR). ◀

4.1 The Balancer family
Balancer v1 is a multi-token AMM that generalizes [7] Uniswap v2’s [1]. It is one of the
formulas supported by Balancer v2. The trading function for Balancer with n tokens, denoted
by ψB , is defined as in the general framework, with f := 0, g := +∞, and

F (R,D) :=
n∏

i=1
Rwi

i −D,

where the weights in w ∈ (R∗
+)n satisfy 1Tw = 1.

The trading function for Uniswap v2 (seen above) can be seen as a special case of that of
Balancer, with n = 2 and w1 = w2 = 0.5.

▶ Proposition 10. ψB is increasing and positively homogenous of degree 1.

Tokenomics 2022

4:10 Consistency of Automated Market Makers

Proof. Clear. We even have ψB(R) :=
∏n

i=1 R
wi
i . ◀

▶ Corollary 11. The Balancer family is consistent.

We can remark that the on-chain implementation of a non-balanced deposit R →t R′

actually only returns τ := mini(R′ −R) LP tokens [9], so that the balanced deposit R → τR

is already more advantageous. A reasonable user always makes balanced transfers.

4.2 Application: the Curve family
Curve v1 is a multi-token AMM that offers arguably fairer trades than Uniswap v2 [5]. It is
also one of the formulas supported by Balancer v2. Curve v2 is based on the same idea as
Curve v1, but with some notable changes [6]. In these AMMs, transfers do not need to be
balanced.

The trading function(s) for Curve with n tokens, denoted by ψC , is defined as in the
general framework:

f(R) := n(
∏n

i=1 Ri)
1
n ≤ 1TR =: g(R)

with

F (R,D) := Dn
[
K(R,D)

(
g(R)D−1 − 1

)
+ n−n

((
f(R)D−1)n − 1

)]
where K(R,D) is defined as either of:

K(R,D) := A(f(R)D−1)n (Curve v1)
:= A(f(R)D−1)n γ2

(γ+1−(f(R)D−1)n)2 (Curve v2)

and A ≥ 0 is called the amplification coefficient, and γ > 0 is a small constant.

▶ Proposition 12. F is positively homogenous of degree n.

Proof. Clear, since f , g are 1-homogenous, and K is 0-homogenous. ◀

▶ Proposition 13. Condition 1 is verified.

Proof. It’s not hard to check that ∀D ∈ πn+1 ◦ domF , for Curve v1,

F ′(R, ·)(D) = −Dn−1n−n+1 −D−2Af(R)ng(R) < 0

and, for Curve v2, by denoting T (R,D) := γ + 1 − (f(R)D−1)n > 0,

F ′(R, ·)(D) = −Dn−1n−n+1 −D−2(f(R))ng(R)Aγ2T (R,D)−2

−2D−n−2(f(R))2n(g(R) −D)Anγ2T (R,D)−3

< −Dn−1n−n+1 < 0,

so that condition 1 is verified. ◀

▶ Proposition 14. ψC is well-defined. In addition, condition 3 is verified.

Proof. We have ∀R ∈ (R∗
+)n, F (R, g(R)) ≤ 0 ≤ F (R, f(R)), so that ψC is well-defined, by

the arithmetic-geometric mean inequality. Since the equalities hold if and only if R−1
1 R = 1,

condition 3 is verified. ◀

It is worth noting that for Curve v1, F can be analytically continued to (R∗
+)n × R∗

+,
where ∀R ∈ (R∗

+)n, F (R, 0+) > 0, and F ′(R, ·) has at most one stationary point, so that
ψC(R) is in fact the unique solution of F (R, ·) = 0 on R∗

+.

V. Danos and W. Wang 4:11

▶ Proposition 15. Condition 2 is verified.

Proof. Clearly, it suffices to prove that ∀D ∈ imψ, K(·, D) is strictly increasing. This is
clear for Curve v1, but also for Curve v2, by the fact that (fD−1)n ≤ 1 ≤ γ + 1, and that
(fD−1)n is strictly increasing on domK(·, D). ◀

▶ Corollary 16. ψC is strictly increasing and homogenous of degree 1.

▶ Corollary 17. The Curve family is consistent.

5 Conclusion

We have proved the consistency of a specific family of (zero-fees) AMMs which are based on
increasing and 1-homogenous invariants (also called trading functions). This is a new result.
Note again that consistency says nothing of an AMM’s suitability or efficiency as a market
mechanism, just that it is not outright flawed.

Some generalisations can be expected. For example, while it is fairly intuitive that the
consistency of AMMs with fees follows from that without, it remains to be proven rigorously.

One way to use our result is in the course of designing new AMMs. For instance, it
follows directly from our result that the trading function ψ(X,Y) = (X3Y + XY 3)1/4

which has been proposed recently generates a consistent AMM. In the same vein, one could
generalise the Curve approach of mixing two existing price machines (in the specific Curve
construction one mixes the linear X + Y invariant and the product XY one) to obtain a
general consistency-preserving mixing combinator on the space of price machines.

However, note that our method only offers a sufficient condition. A typical example that
does not fall under our result is the non-homogenous trading function ψ(X,Y) = X+Y +XY .
It can be shown independently that this particular choice is indeed inconsistent in the sense
of Def. 3 and can be exploited, but the results obtained in this paper do not give us a specific
method to look for such an attack.

The reader might wonder if our approach applies also to the Uniswap v3 protocol. Uniswap
v3 is not exactly an AMM but rather a (n efficient) aggregator of AMMs each based on a
concentrated version of the original (Uniswap v2) product invariant. In general, in the case
of protocols aggregating AMMs, the consistency question boils down to the consistency of
the individual AMMs being aggregated. Now in Uniswap v3 every LP-position has a single
liquidity provider, hence transfers are trivial (θu = 1 at all times in the language of Section
2) and consistency follows from the monotony of the (concentrated) product invariant.

References
1 Hayden Adams, Noah Zinsmeister, and Dan Robinson. Uniswap v2 Core, 2020.
2 Guillermo Angeris and Tarun Chitra. Improved price oracles. In Proceedings of the 2nd

ACM Conference on Advances in Financial Technologies. ACM, 2020. doi:10.1145/3419614.
3423251.

3 CoinMarketCap. Top cryptocurrency decentralized exchanges ranked, 2022. URL: https:
//coinmarketcap.com/rankings/exchanges/dex/.

4 CryptoSec. Comprehensive list of defi hacks and exploits, 2022. URL: https://cryptosec.
info/defi-hacks/.

5 Michael Egorov. Stableswap-efficient mechanism for stablecoin liquidity. Retrieved Feb, 24:2021,
2019.

6 Michael Egorov. Automatic market-making with dynamic peg. Retrieved Dec 2021, June 2021.
URL: https://curve.fi/files/crypto-pools-paper.pdf.

Tokenomics 2022

https://doi.org/10.1145/3419614.3423251
https://doi.org/10.1145/3419614.3423251
https://coinmarketcap.com/rankings/exchanges/dex/
https://coinmarketcap.com/rankings/exchanges/dex/
https://cryptosec.info/defi-hacks/
https://cryptosec.info/defi-hacks/
https://curve.fi/files/crypto-pools-paper.pdf

4:12 Consistency of Automated Market Makers

7 Fernando Martinelli and Nikolai Mushegian. Balancer: A non-custodial portfolio manager,
liquidity provider, and price sensor, 2019.

8 Nick Szabo. Formalizing and securing relationships on public networks, September 1997. URL:
https://firstmonday.org/ojs/index.php/fm/article/view/548.

9 Uniswap. Core smart contracts of Uniswap v2, 2020. URL: https://github.com/Uniswap/
v2-core/blob/master/contracts/UniswapV2Pair.sol.

10 Chiqing Zhang. Test cases implementing the example, 2022. retrieved Sep 2022. URL: https:
//github.com/zhangchiqing/v2-periphery/blob/master/test/WalkThrough.spec.ts.

https://firstmonday.org/ojs/index.php/fm/article/view/548
https://github.com/Uniswap/v2-core/blob/master/contracts/UniswapV2Pair.sol
https://github.com/Uniswap/v2-core/blob/master/contracts/UniswapV2Pair.sol
https://github.com/zhangchiqing/v2-periphery/blob/master/test/WalkThrough.spec.ts
https://github.com/zhangchiqing/v2-periphery/blob/master/test/WalkThrough.spec.ts

Interest Rate Rules in Decentralized Finance:
Evidence from Compound
Amit Chaudhary #

Warwick Business School, University of Warwick, Coventry, UK

Roman Kozhan #

Warwick Business School, University of Warwick, Coventry, UK

Ganesh Viswanath-Natraj #

Warwick Business School, University of Warwick, Coventry, UK

Abstract
We study the fundamentals of interest rate rules on the decentralized finance protocol Compound.
Interest rates are set by the governance of the protocol, and are based on the utilization of an
asset: which is the ratio of a cryptocurrency that is borrowed to its total supply in the protocol.
We discuss factors that determine the slope parameters of interest rate rules. Slope parameters
are typically higher for more volatile cryptocurrencies. We argue liquidation risk can explain the
cross-sectional variation in interest rate rules. We also draw parallels between these rules to the
demand for loanable funds in traditional money markets.

2012 ACM Subject Classification Applied computing

Keywords and phrases Cryptocurrency, decentralized finance lending protocols, monetary policy,
stablecoins, governance token

Digital Object Identifier 10.4230/OASIcs.Tokenomics.2022.5

1 Introduction and Motivation

DeFi is a blockchain based form of finance that runs on smart contracts and does not need a
centralized financial intermediary, such as a market maker or a bank. Lending platforms
running on the Ethereum blockchain, such as Compound, set interest rates and allocate
funds automatically through algorithms. They allow users to deposit multiple collateral
types, for example ETH and Wrapped Bitcoin (WBTC), and borrow multiple currencies,
such as stablecoins like DAI and USDC. Benefits include the instantaneous settlement of
contracts, and minimizing counterparty risk for lenders, so reducing the likelihood that any
party involved will default. This is done through a system of smart contracts where borrowers
are required to post sufficient collateral.

A unique feature of decentralized lending protocols is that interest rates are determined
algorithmically by the utilization in the market, which is calculated as the ratio of total
borrowing to total supply. This is in contrast to traditional money markets where the interest
rate is typically set exogenously by monetary policy. In this paper we will discuss interest
rate rules on the Compound protocol. We will show that parameters governing the rule,
such as the sensitvity of interest rates to utilization, are typically higher for more volatile
cryptocurrencies. We also draw parallels between these interest rate models and models of
demand for loanable funds in traditional money markets.

Empirical work on lending protocols has focused on understanding market efficiency, such
as uncovered interest rate parity, the behavior of liquidations during risk-off events, the
dynamics of the COMP governance token, and theoretical work on the stability of interest
rate rules [4, 8, 11, 3, 6, 1, 9, 14, 7, 2, 13, 10]. Within this literature, our paper shows that
interest rate rules differ between risky cryptocurrencies and stablecoins.

© Amit Chaudhary, Roman Kozhan, and Ganesh Viswanath-Natraj;
licensed under Creative Commons License CC-BY 4.0

4th International Conference on Blockchain Economics, Security and Protocols (Tokenomics 2022).
Editors: Yackolley Amoussou-Guenou, Aggelos Kiayias, and Marianne Verdier; Article No. 5; pp. 5:1–5:6

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:a.chaudhary.1@warwick.ac.uk
mailto:roman.kozhan@wbs.ac.uk
mailto:ganesh.viswanath-natraj@wbs.ac.uk
https://doi.org/10.4230/OASIcs.Tokenomics.2022.5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

5:2 Interest Rate Rules in Decentralized Finance: Evidence from Compound

In section 2 we outline interest rate rules on Compound. Section 3 discusses sources of
risk that explain the interest rate rule parameters, and compares the algorithmic setting of
interest rates to traditional money markets. Section 4 concludes.

2 Interest rate rules

Collateralized lending markets like Compound allow users to borrow and lend in multiple
currencies by tapping into liquidity pools of multiple assets. Users supply a collateral asset,
and can borrow a fraction as tokens in another asset that is based on the collateral factor of
a given asset. Each market has separate interest rate curves on borrowing and lending that
is based on the relative utilization (ratio of borrowing to lending) of that asset. The supply
and borrow interest rates are compounded every block. 1

One key feature of governance is to vote on interest rate rules.2 Parameters like the
base-rate and slope of the interest rate model are chosen by voters as part of the governance
protocol. The interest rate model for borrowing rates is given by the piece-wise equation (1).3
a0 is the base rate, and is the rate corresponding to zero utilization. The slope parameter
b0 > 0 measures the sensitivity of interest rates to utilization. The utilization rate u is
used as an input parameter to a formula that determines the interest rates. Interest rates
are determined by the utilization percentage in the market. Utilization is calculated as
the ratio of total borrowings to total supply of the asset. All else equal, a positive slope
parameter implies higher utilization leads to higher interest rates. An additional feature
of the interest rate model is the kink, in which the slope parameter changes for utilization
above a threshold rate ū, typically 80 per cent. The kink makes interest rates more sensitive
to a higher utilization rate, b1 > b0.

iL =
{

a0 + b0u, u ≤ ū

a0 + b0ū + b1(u − ū), u > ū
(1)

Deposit rates iD is a function of utilization and borrowing rates. θ captures the fraction
of interest income that is in a reserve buffer managed by the interest rate protocol.

iD = uiL(1 − θ) (2)

In Panel A of Figure 1, we plot the utilization percentage of the 6 principal cryptocurrencies
offered in the Compound protocol. The sample period is from August 5th 2020 to October
22nd, 2022. Utilization rates of stablecoins (USDC, Tether and DAI) are systematically
higher than risky cryptocurrencies (ETH, ZRX and WBTC). In Panel B, we plot the interest
rate model for currencies on the Compound platform. Interest rate rules for more volatile
cryptocurrencies typically have a higher slope parameter. Figure 2 estimates the slope
parameters for each currency. Stablecoins have an average slope parameter of approximately
0.07 to 0.10. In contrast, risky cryptocurrencies like WBTC and ZRX have an average slope

1 Blocks are measured approximately 15 seconds on Ethereum therefore producing approximately con-
tinuous compounding.

2 Governance token COMP used to vote on interest rate rule parameters. To create a proposal a user
requires at least 100,000 COMP tokens. A user with 100 COMP can initiate a proposal but require
community to support through delegating tokens. All proposals are first discussed publicly in an official
governance forum, are written in smart contracts.

3 For a discussion of alternative interest rate models on other protocols like Aave, we refer readers to [4].
While the functional forms may vary, other protocols typically posit interest rates as a positive function
of utilization.

A. Chaudhary, R. Kozhan, and G. Viswanath-Natraj 5:3

parameter of approximately 0.3. Therefore a 1 per cent increase in utilization raises interest
rates of stablecoins by 7 to 10 basis points, and risky cryptocurrencies by 30 basis points, all
else equal. We now turn to factors that determine the cross-sectional variation in interest
rate rule parameters.

3 Discussion

Interest rate rules for more risky assets typically have higher slope parameters. Parameters
like the slope of the interest rate model are chosen by voters as part of the governance
protocol. While higher utilization rates will increase net interest income to the protocol,
it will also increase systemic risks in the protocol, such as liquidations, which are when
individuals become over-leveraged and borrow too much relative to the collateral they post on
the protocol. Liquidation risk has systemic effects in the pricing of collateral assets [6, 3, 13].
If liquidations trigger fire sales of collateral, and the protocol does not have sufficient net
interest income, the protocol will mint governance tokens (COMP) to repay the debt. This
will result in a devaluation of the governance token and incur losses for users of the protocol.4

Second, the interest rate schedule in equation (1) shows that slope parameters are higher
after a threshold rate of utilization. This feature has parallels to models for excess reserves
in traditional money markets. In [12], the authors find that in money markets the interest
rate schedule becomes steeper when excess reserves are smaller, and model excess reserve
balances with a logistic function. When utilization is high, excess reserves of the protocol,
which we define as the difference between the collateral supplied and the amount that is
borrowed, diminishes. Therefore, the non-linear kink in the Compound interest rate model
helps preserve excess reserves in the protocol.

4 Conclusion

DeFi lending platforms like Compound, running on Ethereum, allow users to deposit various
types of collateral and borrow multiple currencies. Smart contracts help minimize counter-
party risks, and interest rates are determined algorithmically by market utilization. The
parameters of the interest rate rule, such as the slope parameter, are typically higher for more
volatile cryptocurrencies. Differences in interest rate rules are due to the role of liquidation
risk. The interest rate model parallels traditional money markets’ demand for loanable funds.

References
1 Carlos Castro-Iragorri, Julian Ramirez, and Sebastian Velez. Financial intermediation and

risk in decentralized lending protocols. Available at SSRN 3893278, 2021.
2 Amit Chaudhary and Daniele Pinna. Market risk assessment: A multi-asset, agent-based

approach applied to the 0vix lending protocol. arXiv preprint, 2022. arXiv:2211.08870.
3 Jonathan Chiu, Emre Ozdenoren, Kathy Yuan, and Shengxing Zhang. The fragility of defi

lending, 2022.
4 Lewis Gudgeon, Sam Werner, Daniel Perez, and William J Knottenbelt. Defi protocols for

loanable funds: Interest rates, liquidity and market efficiency. In Proceedings of the 2nd ACM
Conference on Advances in Financial Technologies, pages 92–112, 2020.

4 Examples of liquidations leading to a devaluation of the governance token occurred for MakerDAO’s
DAI protocol. During the Black Thursday Crypto crash on March 12th 2020, MKR governance tokens
were minted to pay off the DAI debt triggered by liquidations. For more details we refer readers to [5].

Tokenomics 2022

https://arxiv.org/abs/2211.08870

5:4 Interest Rate Rules in Decentralized Finance: Evidence from Compound

5 Roman Kozhan and Ganesh Viswanath-Natraj. Fundamentals of the MakerDAO governance
token. In 3rd International Conference on Blockchain Economics, Security and Protocols
(Tokenomics 2021). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/
OASIcs.Tokenomics.2021.11.

6 Alfred Lehar and Christine A Parlour. Systemic fragility in decentralized markets, 2022.
7 Peter Mueller. Defi leveraged trading: Inequitable costs of decentralization. Available at SSRN

4241356, 2022.
8 Daniel Perez, Sam M Werner, Jiahua Xu, and Benjamin Livshits. Liquidations: DeFi on a

Knife-edge. arXiv preprint, 2020. arXiv:2009.13235.
9 Kaihua Qin, Liyi Zhou, Pablo Gamito, Philipp Jovanovic, and Arthur Gervais. An empirical

study of defi liquidations: Incentives, risks, and instabilities. In Proceedings of the 21st ACM
Internet Measurement Conference, pages 336–350, 2021.

10 Thomas J Rivera, Fahad Saleh, and Quentin Vandeweyer. Equilibrium in a DeFi lending
market. Available at SSRN 4389890, 2023.

11 Kanis Saengchote. Decentralized lending and its users: Insights from compound. Available at
SSRN 3925344, 2021.

12 Mr Romain M Veyrune, Guido Della Valle, and Shaoyu Guo. Relationship Between Short-Term
Interest Rates and Excess Reserves: A Logistic Approach. International Monetary Fund, 2018.

13 Jakub Warmuz, Amit Chaudhary, and Daniele Pinna. Toxic liquidation spirals: Evidence
from the bad debt incurred by AAVE. arXiv preprint, 2022. arXiv:2212.07306.

14 Jiahua Xu and Nikhil Vadgama. From banks to defi: the evolution of the lending market. In
Enabling the Internet of Value, pages 53–66. Springer, 2022.

https://doi.org/10.4230/OASIcs.Tokenomics.2021.11
https://doi.org/10.4230/OASIcs.Tokenomics.2021.11
https://arxiv.org/abs/2009.13235
https://arxiv.org/abs/2212.07306

A. Chaudhary, R. Kozhan, and G. Viswanath-Natraj 5:5

A Appendix

2020-10
2021-01

2021-04
2021-07

2021-10
2022-01

2022-04
2022-07

2022-10
0

20

40

60

80

ut
iliz

at
io

n
ra

te
 (%

)
Panel A: utilization rate

usdt
dai
eth
usdc
wbtc
zrx

0 20 40 60 80 100
Utilization Rate (%)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Bo
rro

wi
ng

 R
at

e
(%

)

Panel B: Interest Rate Model
usdt
dai
eth
usdc
wbtc
zrx

Note: Figure top panel presents utilization rates (in percentage points) on multiple assets, calculated as a
historical rolling average over the last 30 days. Bottom panel plots interest rate models on multiple assets,
in which borrowing rates are determined as a function of the utilization rate, Source: Compound API.
Sample period is from August 5th, 2020 to October 22nd, 2022.

Figure 1 Utilization Rate and Interest Rate Rules.

Tokenomics 2022

5:6 Interest Rate Rules in Decentralized Finance: Evidence from Compound

0 100 200 300 400 500 600 700
standard deviation of returns (% daily)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

slo
pe

 o
f i

nt
er

es
t r

at
e

ru
le

s

usdtdai
eth

usdc

wbtc zrx

Note: Figure plots slope of interest rate rules as a function of the standard deviation of daily returns.
Source: Compound API and Cryptocompare. Sample period is from August 5th, 2020 to October 22nd,
2022.

Figure 2 Slope parameters of interest rate rules and cryptocurrency volatility.

Maximal Extractable Value (MEV) Protection on a
DAG
Dahlia Malkhi
Chainlink Labs, UK

Pawel Szalachowski
Chainlink Labs, UK

Abstract
Many cryptocurrency platforms are vulnerable to Maximal Extractable Value (MEV) attacks [12],
where a malicious consensus leader can inject transactions or change the order of user transactions
to maximize its profit.

A promising line of research in MEV mitigation is to enhance the Byzantine fault tolerance
(BFT) consensus core of blockchains by new functionalities, like hiding transaction contents, such
that malicious parties cannot analyze and exploit them until they are ordered. An orthogonal line
of research demonstrates excellent performance for BFT protocols designed around Directed Acyclic
Graphs (DAG). They provide high throughput by keeping high network utilization, decoupling
transactions’ dissemination from their metadata ordering, and encoding consensus logic efficiently
over a DAG representing a causal ordering of disseminated messages.

This paper explains how to combine these two advances. It introduces a DAG-based protocol
called Fino, that integrates MEV-resistance features into DAG-based BFT without delaying the
steady spreading of transactions by the DAG transport and with zero message overhead. The scheme
operates without complex secret share verifiability or recoverability, and avoids costly threshold
encryption.

2012 ACM Subject Classification Security and privacy → Distributed systems security

Keywords and phrases DAG, MEV, consensus, BFT

Digital Object Identifier 10.4230/OASIcs.Tokenomics.2022.6

Acknowledgements We are grateful to Soumya Basu, Christian Cachin, Ari Juels, Mahimna Kelkar,
Lefteris Kokoris-Kogias, Oded Naor, Mike Reiter for many comments that helped improve this
writeup.

1 Introduction

1.1 MEV
Over the last few years, we have seen exploding interest in cryptocurrency platforms and
applications built upon them, like decentralized finance protocols offering censorship-resistant
and open access to financial instruments; or non-fungible tokens. Many of these systems are
vulnerable to MEV attacks, where a malicious consensus leader can inject transactions or
change the order of user transactions to maximize its profit. Thus it is not surprising that
at the same time we have witnessed rising phenomena of MEV professionalization, where
an entire ecosystem of MEV exploitation, comprising of MEV opportunity “searchers” and
collaborating miners, has arisen.

Daian et al. [12] introduced a measure of the “profit that can be made through including,
excluding, or re-ordering transactions within blocks”. The original work called the measure
miner extractable value, which was later extended by maximal extractable value (MEV) [33]
and blockchain extractable value (BEV) [36], to include other forms of attacks, not necessarily
performed by miners. At the time of this writing, an “MEV-explore” tool [1] estimates the
amount of MEV extracted on Ethereum since the 1st of Jan 2020 to be close to $700M.

© Dahlia Malkhi and Pawel Szalachowski;
licensed under Creative Commons License CC-BY 4.0

4th International Conference on Blockchain Economics, Security and Protocols (Tokenomics 2022).
Editors: Yackolley Amoussou-Guenou, Aggelos Kiayias, and Marianne Verdier; Article No. 6; pp. 6:1–6:17

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/OASIcs.Tokenomics.2022.6
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

6:2 Maximal Extractable Value (MEV) Protection on a DAG

However, it is safe to assume that the total MEV extracted is much higher, since MEV-
explore limits its estimates to only one blockchain, a few protocols, and a limited number of
detectable MEV techniques. Although it is difficult to argue that all MEV is “bad” (e.g.,
market arbitrage can remove market inefficiencies), it usually introduces some negative
externalities like: network congestion: especially on low-cost chains, MEV actors often try
to increase their chances of exploiting an MEV opportunity by sending a lot of redundant
transactions, spamming the underlying peer-to-peer network; chain congestion: many such
transactions finally make it to the chain, making the chain more congested; higher blockchain
costs: while competing for profitable MEV opportunities, MEV actors bid higher gas prices
to prioritize their transactions, which results in overall higher blockchain costs for regular
users; consensus stability: some on-chain transactions can create such a lucrative MEV
opportunity that it may be tempting for miner(s) to create an alternative chain fork with
such a transaction extracted by them, which introduces consensus instability risks.

1.2 Blind Order-Fairness on a DAG
A promising way of thwarting some forms of MEV on blockchains is to extend their BFT
(Byzantine fault tolerance) consensus core by new properties like Blind Order-Fairness, where
no consensus “validator” can learn the content of transactions until they are committed to
a total ordering. This notion of “commit-reveal” is the key mechanism we focus on in this
paper.

An orthogonal line of research concentrates on scaling the BFT consensus of blockchains via
a DAG communication substrate. A DAG transport can spread yet-unconfirmed transactions
in parallel, every message having utility and carrying transactions that eventually become
committed to a total ordering. The DAG provides Reliability, Non-equivocation, and Causal-
ordering delivery guarantees, enabling a simple and “zero-overhead” consensus ordering on top
of it. That is, validators can interpret their DAG locally without exchanging more messages
and determine a total ordering of accumulated transactions. Several recent DAG-based
BFT systems, including Blockmania [13], Aleph [19], Narwhal [14], DAG-Rider [23], and
Bullshark [20], demonstrate excellent performance.

This paper combines these two advances in a solution called Fino, that integrates smoothly
two ingredients: A framework for commit-reveal consensus protocols, and a simple DAG-based
BFT consensus that leverages the Reliability, Non-Equivocation, and Causality properties of
the DAG transport to integrate the commit-reveal framework smoothly and efficiently into
consensus.

A commit-reveal framework. The core of the commit-reveal framework of Fino is a standard
k-of-n secret sharing approach consisting of two functionalities, Disperse() and Retrieve().
Users first send transactions to validators encrypted, so that the consensus protocol commits
to an ordering of transactions blindly. Disperse() entrusts shares of the secret decryption
key for each transaction to validators. After an ordering is committed, Retrieve() opens
encrypted transactions by collecting shares from F + 1 validators.

Implementing Disperse()/Retrieve() efficiently enough to meet DAG-based consensus
throughput is the core challenge Fino addresses. Two straw man approaches are (i) threshold
cryptography, but it would incur an order of milliseconds per transaction, (ii) using polynomial
secret-sharing and verifying shares during dispersal, also requiring costly cryptography as
well as implementing a share-recovery protocol.

The third approach, and the one we recommend using, shares transaction encryption
keys using Shamir’s secret-sharing scheme [38], but without secret share verifiability or
recoverability (slow and complex), and without threshold encryption (slow). Instead, to

D. Malkhi and P. Szalachowski 6:3

guarantee a unique, deterministic outcome of encrypted transactions, Fino borrows a key
insight from DispersedLedger [40] called AVID-M, protecting against share manipulation
attacks by verifying that the sharing was correct post reconstruction. If the dispersal was
incorrect and fails post-reconstruction verification, the transaction is rejected.

Notably, this approach works in microseconds latency and is orders of magnitude faster
than threshold encryption.

section 3 describes a fourth approach, a hybrid combining AVID-M with threshold
cryptography. Hybrid tackles adversarial conditions where Disperse() partially fails, at the
cost of a slower post-reconstruction verification.

We repeat that all four approaches above are compatible with the Fino framework, though
the fastest and simplest one is AVID-M.

DAG-based integration. Fino integrates Disperse()/Retrieve() into a DAG-based consensus
without delaying the steady spreading of transactions by the DAG transport and with zero
message overhead. Validators interpret their local DAGs to arrive at commit decisions on
blind ordering. After an ordering has committed for a batch of transactions, validators invoke
Retrieve() and present decryption shares piggybacked on DAG broadcasts. Finally, validators
interpret their local DAGs to arrive at unanimous, deterministic outcome of transaction
opening.

During periods of synchrony, Fino has a happy path for transaction commit of two DAG
latencies, plus a single DAG latency for determining an opening outcome.

2 Background and Preliminaries

2.1 System Model
The Byzantine fault tolerance (BFT) Consensus core of blockchains implements state machine
replication (SMR), where non-faulty parties–also known as validators–agree on an order of
transactions and execute them consistently. The goal of our work is to extend BFT consensus
and build into it protection against MEV attacks which rely on transaction content analysis.

We assume that the system should be resilient to Byzantine faults, i.e., faulty validators
can implement any adversarial behavior (like crashing, equivocating, or colluding). We
assume a partially synchronous network [18], where asynchronous periods last up to unknown
global stabilization time (GST), while in synchronous periods there is a known bound ∆ on
delays for message delivery. This model requires a BFT threshold N ≥ 3F + 1, where N and
F is the number of all and Byzantine faulty validators, respectively.

2.2 MEV and Blind Order-Fairness
In this paper, we focus on consensus-level MEV mitigation techniques. There are fundament-
ally two types of MEV-resistant Order-Fairness properties:

Blind Order-Fairness. A principal line of defense against MEV stems from committing to
transaction ordering without seeing transaction contents. This notion of MEV resistance,
referred to here as Blind Order-Fairness, is used in a recent SoK on Preventing Transaction
Reordering by Heimbach and Wattenhofer [21], and is defined as: “when it is not possible for
any party to include or exclude transactions after seeing their contents. Further, it should
not be possible for any party to insert their own transaction before any transaction whose
contents it already been observed.”

Tokenomics 2022

6:4 Maximal Extractable Value (MEV) Protection on a DAG

Time-Based Order-Fairness. Another measure for MEV protection is brought by sending
transactions to all BFT parties simultaneously and using the relative arrival order at a
majority of the parties to determine the final ordering. In particular, this notion of order
fairness ensures that “if sufficiently many parties receive a transaction tx before another tx’,
then in the final commit order tx’ is not sequenced before tx.”

This defines the transactions order and prevents adversaries that can analyze network
traffic and transaction contents from reordering, censoring, and front-/back-running transac-
tions received by Consensus parties. Moreover, Time-Based Order-Fairness protects against
a potential collusion between users and BFT leaders/parties because parties explicitly input
relative ordering into the protocol. Time-Based Order-Fairness is used in various flavors
in several recent works, including Pompe [43], Aequitas [26], Themis [25], “Wendy Grows
Up” [28], and “Quick Order Fairness” [11]. We briefly discuss some of those protocols in
section 8.

Another notion of fairness found in the literature, that does not provide Order-Fairness,
revolves around participation fairness:

Participation Fairness. A different notion of fairness aims to ensure censorship-resistance
or stronger notions of participation equity. Participation Fairness guarantees that the
committed sequence of transactions includes a certain portion of honest contribution (aka
“Chain Quality”). Several BFT protocols address Participation Fairness, including Prime [2],
Fairledger [29], HoneyBadger [31]. As mentioned in section 4, some DAG-based BFT protocols
like Aleph [19], DAG-Rider [23], Tusk [14], and Bullshark [20] use a layered DAG paradigm.
In this approach, Participation Fairness comes essentially for free because every DAG layer
must include messages from 2F+1 participants. It is worth noting that Participation Fairness
does not prevent a corrupt party from injecting transactions after it has already observed
other transactions, nor a corrupt leader from reordering transactions after reading them,
violating both Blind and Time-Based Order-Fairness.

2.3 Threshold Methods
Beside standard cryptographic primitives, like a symmetric encryption scheme or a crypto-
graphic hash function H(), we employ primitives specifically designed for hiding and opening
transactions.

Secret Sharing. For positive integers k, n, where k ≤ n, a (k,n)-threshold scheme is a
technique where a secret is distributed among n parties , such that it can be reconstructed
by any k parties, while any group of k − 1 parties cannot learn the secret. The secret S

is selected by a trusted third party, called dealer, who splits it into n individual shares by
calling: s1, ..., sn ← SS.Split(S). After at least k parties exchange shares, they can combine
them and recover the secret by calling S ← SS.Combine(s′

1, ..., s′
k).

Shamir’s Secret Sharing (SSS) [38] is one of the first and most widely used (k,n)-threshold
schemes. In SSS, Split(S) chooses a polynomial f of degree k− 1 that hides S at the origin
point, and generates n points on the polynomial. Then, any k points allow to interpolate the
polynomial and compute its value at f(0).

Threshold Encryption. A (k,n)-threshold encryption is a scheme where messages encrypted
under a single public encryption key pk can be decrypted by a private decryption key, shared
among n parties – each with its secret key ski, where any group of k parties can decrypt a
message. The message m is encrypted with an encryption algorithm: c← TE.Enc(pk, m).

D. Malkhi and P. Szalachowski 6:5

We consider schemes where each party, upon receiving a ciphertext c, computes its own
decryption share by invoking: dsi ← TE.ShareGen(ski, c); and any set of k unique decryption
shares is enough to recover the plaintext, which we denote m←TE.Dec(c, ds′

1, ..., ds′
k).

Moreover, some threshold encryption schemes, like shown by Shoup and Gennaro [39],
allow parties to verify that a given decryption share corresponds to the ciphertext, which
we denote by the TE.Verify(c, dsi) function. Note that, without such a verification, it is
trivial for a malicious party, providing an incorrect share, to cause decryption failures.

3 The commit-reveal Framework

The core of blind fairness-ordering is a standard k-of-n secret sharing approach. For each
transaction tx, a user (“Alice”) picks a secret symmetric key tx-key, and sends tx encrypted
with it to validators. Secret sharing allows Alice to share tx-key with validators such that
F + 1 shares are required to reconstruct tx-key, and no set of F bad validators can open
it before it is committed (blindly) to the total order. Honest validators wait to commit
to a blind order of transactions first, and only later open them. At the same time, before
committing a transaction to the total ordering, validators ensure that they can open it.

More formally, a sharing protocol has two abstract functionalities, Disperse(tx) and
Retrieve(tx). Disperse() allows a dealer to disseminate shares of the secret tx-key to
validators, with the following guarantees:
Hiding: A set of F bad validators cannot reconstruct tx-key.
Binding: After Disperse(tx-key) completes successfully at an honest validator, any set of

honest F + 1 validators doing Retrieve(tx-key) can reconstruct tx-key generating a
unique outcome.

Validity: If the dealer is honest, then the outcome from Retrieve(tx-key) by any F + 1 honest
validators is tx-key.

It is worth noting that Disperse()/Retrieve() does not require certain properties which
some use-cases in the literature may need, but not the framework here:

When Disperse() completes, it does not guarantee that Retrieve() can reconstruct an
output value that a dealer commits to.
It doesn’t require that individual shares can be recovered.
It doesn’t require being able to use tx-key to derive other values while keeping tx-key
itself secret.

We proceed to present four approaches for implementing Disperse()/Retrieve(). All of
them are compatible with the DAG-based consensus protocol in the next section, though the
fastest and simplest one, which we recommend using, is AVID-M.

Approach-1: Threshold Cryptography
It is straight-forward to implement Disperse/Retrieve using threshold encryption, such that
the public encryption TE.Enc() is known to users and the private decryption TE.Dec()
is shared (at setup time) among validators. To Disperse(tx-key), the user attaches
TE.Enc(tx-key), the transaction key encrypted with the global threshold key. Once a
tx is committed to the total-ordering, Retrieve(tx-key) is implemented by each validator
generating its decryption share via TE.ShareGen(). Validators can try applying TE.Dec()
over F + 1 valid decryption shares to decrypt tx.

Tokenomics 2022

6:6 Maximal Extractable Value (MEV) Protection on a DAG

Binding stems from two properties. First, a threshold of honest validators can always
succeed in generating F + 1 valid decryption shares. Second, as indicated in section 2, some
threshold cryptography schemes allow verifying that a validator is contributing a correct
decryption share, hence by retrieving F + 1 valid threshold shares, a unique outcome is
guaranteed.

Unfortunately, this method is computationally somewhat heavy: Disperse() takes about
300µs to encrypt using TDH2 on standard hardware, and Retrieve() takes about 3500µs for
in a 6-out-of-16 scheme (see section 7).

Approach-2: VSS
Another way for users to Disperse(tx-key) is Shamir’s secret sharing (SSS) scheme. To
Disperse(tx-key), a user employs SS.Split(tx-key) to send individual shares of tx-key
to each validator. A set of F + 1 share holders reveal their shares during Retrieve() and
combine shares via SS.Combine() to reconstruct tx-key.

Combining shares is three orders of magnitude faster than threshold crypto and takes a
few microseconds in today’s computing environment (see section 7). However, after Disperse()
completes with N − F validators, “vanilla” SS.Split()/SS.Combine() does not guarantee
Binding: first, not every set of F + 1 honest validators may hold shares from the Disperse()
phase. Second, retrieving shares from different sets of F + 1 validators may result in different
outcome from SS.Combine().

VSS schemes support Binding through a share-verification functionality
VSS.Verification(share, commit value). Verification allows validators to check
that shares are consistent with some committed value S′, such that any set of F + 1 shares
applied to SS.Combine() results in output S′. When a validator receives a share, it should
verify the share before acknowledging it. Disperse() completes when there are N − F

acknowledgements of verifiable shares, certifying that valid shares are held by F + 1 honest
validators and guaranteeing a unique reconstruction by any subset of F + 1. It is possible to
add a share-recovery functionality to allow a validator to obtain its individual share prior to
Retrieve().

However, despite the vast progress in VSS schemes (see subsection 8.1), share recov-
ery requires linear communication. Additionally, implementing VSS requires non-trivial
cryptography.

AVID-M
VSS provides stronger guarantees than necessary to satisfy the Binding requirement of
commit-reveal. Specifically, Disperse() only needs to guarantee a unique outcome from
Retrieve(), not success. Borrowing a technique called AVID-M, which was introduced in
DispersedLedger [40] for reliable information dispersal, validators can completely avoid
verifying shares during Disperse(). Instead, they verify during Retrieve() that the (entire)
sharing would have a unique outcome, which is very cheap to do. This works as follows.

To Disperse(tx), a user employs SS.Split(tx-key) to send individual shares to validators.
This operation requires a deterministic way of splitting secret shares which, in particular,
can be based on validator identifiers (e.g., si = P (idi), where P is the polynomial hiding
tx-key). Additionally, the user combines all shares in a Merkle-tree, certifies the root, and
sends with each share a proof of membership, i.e., a Merkle tree path to the root.

When a validator receives a share, it should verify the Merkle tree proof against the
certified root before acknowledging the share. Disperse() completes when there are N − F

acknowledgements, guaranteeing that untampered shares are held by F + 1 honest validators.

D. Malkhi and P. Szalachowski 6:7

During Retrieve(), F + 1 validators reveal individual shares, attaching the Merkle tree
path to prove shares have not been tampered with. Note that F +1 shares can be validated by
checking only one signature on the root. Validators use SS.Combine() to try to reconstruct
tx-key.

Then they post-verify that every subset of F + 1 (untampered) shares sent to validators
would have the same outcome. To do this, a validator does not need to wait for missing
shares nor try combinations of F + 1 shares. Moreover, it does not need to communicate
with others. A validator simply generates missing shares and re-encodes the Merkle tree.
Then, it compares the re-generated Merkle tree with the root certified by the sender. If the
comparison fails, the dealer was faulty and the validator rejects tx. The unique reconstruction
is guaranteed because the post-verification outcome – succeed or fail – becomes fixed upon
Disperse completion. Each validator arrives at the same outcome no matter which subset of
F + 1 (untampered) shares are input.

AVID-M takes roughly 50µs to SS.split() and generate Merkle tree commitments, and
roughly 50µs for Retrieve(), including post-verification, in a 6-out-of-16 scheme.

Hybrid
Even after Disperse() has completed, both VSS and AVID-M may need to interact with a
specific set of F + 1 honest validators during Retrieve(). This implies that the latency of
Retrieve() is impacted by this specific set of F + 1 share holders, and not the speed of the
fastest F + 1 honest validators. Employing threshold cryptography removes this dependency
but incurs a costly computation.

A Hybrid approach combines the benefits of threshold cryptography with AVID-M. In
Hybrid, Retrieve() works with (fast) secret-sharing during steady-state, and falls back to
threshold cryptography, avoiding waiting for specific F + 1 validators, during a period of
network instability.

Disperse(tx-key) is implemented in two parts. First, a user applies AVID-M to send valid-
ators individual shares and proofs. Second, as a fallback, it sends validators TE.Enc(tx-key).
Once tx is committed to the total ordering, Retrieve(tx-key) has a fast track and a slow
track. In the fast track, every validator that holds an AVID-M share reveals it. A validator
that doesn’t hold an AVID-M share for tx-key reveals a threshold key decryption share. In
the slow track, validators may give up on waiting for AVID-M shares and reveal threshold
key decryption shares, even if they already revealed AVID-M shares.

Post-verification after F + 1 valid shares of either kind are revealed checks that both the
AVID-M and threshold encryption were shared correctly and would have the same outcome.
More specifically, a validator both re-encrypts tx-key and re-encodes the AVID-M Merkle
tree after reconstruction. It compares both outcomes with the sender’s. If the comparison
fails, the dealer was faulty and the validator rejects tx. Binding holds because the post-
verification outcome – succeed or fail – becomes fixed upon Disperse() completion. Each
validator arrives at the same outcome no matter which scheme and what subset of F + 1
(untampered) shares are retrieved, thus ensuring Binding.

4 DAG transport

In a DAG-based BFT protocol, validators store messages delivered via reliable and caus-
ally ordered broadcast in a local graph. A message inserted into the local DAG has the
following guarantees: Reliability: there are copies of the message stored on sufficiently many
participants, such that eventually, all honest validators can download it. Non-equivocation:

Tokenomics 2022

6:8 Maximal Extractable Value (MEV) Protection on a DAG

messages by each validator are numbered. If a validator delivers some message as the k’th
from a particular sender, then the message is authenticated by its sender and other validators
deliver the same message as the sender k’th message. Causal Ordering: the message carries
explicit references to messages which the sender has previously delivered (including its own).
Predecessors are delivered locally before the message.

Note that the DAGs at different validators may be slightly different at any moment in
time. This is inevitable in a distributed system due to message scheduling. However, a
DAG-based Consensus protocol allows each participant to interpret its local DAG, reaching
an autonomous conclusion that forms total ordering. Reliability, Non-equivocation and
Causal Ordering make the design of such protocols extremely simple as we shall see below.

DAG API. A DAG transport exposes two basic API’s, broadcast() and deliver().

Broadcast. broadcast() is an asynchronous API for a validator to present payload for the
DAG transport to be transmitted to all other validators. The main use of DAG messages
in a DAG-based Consensus protocol is to pack meta-information on transactions into
a block and present the block for broadcast. The DAG transport adds references to
previously delivered messages, and broadcasts a message carrying the block and the
causal references to all validators.

Deliver. When another validator receives the message carrying the block, it checks whether
it needs to retrieve a copy of any of the transactions in the block and in causally preceding
messages. Once it obtains a proof-of-availability of all transactions in the block and
its causal past, it can acknowledge it. A validator’s upcall deliver(m) is triggered
when sufficiently many acknowledgments for it are gathered, guaranteeing that the
message itself, the transactions it refers to, and its entire causal past maintain Reliability,
Non-equivocation and Causal Ordering.
It is worth noting that in the protocol discussed in this paper, the Consensus protocol
injects meta-information (e.g., complaints), DAG broadcast never stalls or waits for input
from it.

Implementing a DAG. There are various ways to implement reliable, non-equivocating and
causally-ordered broadcast among N = 3F + 1 validators, at most F of which are presumed
Byzantine faulty and the rest are honest.

Lifetime of a message. A validator packs transaction information and meta-information
into a message, adds references to previously delivered messages (including the sender’s
own preceding messages), and broadcasts the message to all validators.

Echoing. The key mechanism for reliability and non-equivocation is for validators to echo a
digest of the first message they receive from a sender with a particular index. When 2F +1
echoes are collected, the message can be delivered. There are two ways to echo, one is
all-to-all broadcast over authenticated point-to-point channels a la Bracha Broadcast [9];
the other is converge-cast with cryptographic signatures a la Rampart [37] and Cachin
et al. [10]. In either case, echoing can be streamlined so the amortized per-message
communication is linear, which is anyway the minimum necessary to spread the message.

Layering. Transports are often constructed in a layer-by-layer regime. In this regime, each
sender is allowed one message per layer, and a message may refer only to messages in the
layer preceding it. Layering is done so as to regulate transmissions and saturate network
capacity, and has been demonstrated to be highly effective by various projects [13, 19, 14].
We reiterate that Fino does not require a layered structure.

D. Malkhi and P. Szalachowski 6:9

5 Fino

Fino incorporates MEV protection into a BFT protocol for the partial synchrony model, riding
on a DAG transport. BFT validators periodically pack pending encrypted transactions into a
batch and use the DAG transport to broadcast them. The key insight for operating commit-
reveal on a DAG is that each view must wait until Retrieve() completes on transactions tx
of the previous view.

5.1 The Protocol
Views. The protocol operates in a view-by-view manner. Each view is numbered, as in
view(r), and has a designated leader known to everyone.

View change. A validator enters view(r+1) when two conditions are met, viewA and
viewB: viewA is satisfied when the local DAG of a validator contains F + 1 valid votes
on proposal(r) or 2F + 1 valid complaint(r) on view(r). viewB is satisfied when every
committed transaction tx in the local DAG has F +1 valid shares revealed, hence Retrieve(tx)
can be completed. Note that viewB prevents BFT validators that do not reveal (correct)
shares from enabling the protocol to make progress without opening committed transactions.

Proposing. When a leader enters a new view(r), it broadcasts proposal(r).1 Implicitly,
proposal(r) suggests to commit to the global ordering of transactions all the messages in
the causal history of the proposal. A leader’s proposal(r) is valid if it is well-formatted
and is justified in entering view(r).

Voting. When a validator sees a valid leader proposal, it broadcasts vote(r). A validator’s
vote(r) is valid if it follows a valid proposal(r).

Committing. Whenever a leader’s proposal(r) has F + 1 valid votes in the local DAG, the
proposal and its causal history become committed. The commit order induced by a commit
decision is described below.

Share revealing. When a validator observes that a transaction tx becomes committed, it
starts Retrieve(tx) and calls broadcast() to present its share of the decryption key tx-key.

Complaining. If a validator gives up waiting for a commit to happen in view(r), it broad-
casts complaint(r). Note, a vote(r) by a validator that causally follows a complaint(r)
by the validator, if exists, is not interpreted as a valid vote.

Ordering Commits. When a validator observes that a leader’s proposal(r) becomes
committed, it orders newly committed transactions as follows:
1. Let r’ be the highest view r’ < r for which proposal(r’) is in the causal history of

proposal(r). proposal(r’) is recursively ordered.

1 Recall, broadcast() merely presents payload to be transmitted as scheduled by the DAG transport, e.g.,
piggybacked on messages carrying other transaction info.

Tokenomics 2022

6:10 Maximal Extractable Value (MEV) Protection on a DAG

Figure 1 A commit of proposal(r) is followed by share retrieval. A commit of proposal(r+2)
causes an indirect commit of proposal(r+1), followed by share revealing of both.

2. The remaining causal predecessors of proposal(r) which have not yet been ordered are
appended to the committed sequence (within this batch, ordering can be done using any
deterministic rule to linearize the partial ordering into a total ordering.)

Opening Transactions. When a validator observes that a leader’s proposal(r) becomes
committed, it decrypts every committed transaction tx in its causal past that hasn’t been
decrypted already. That is, let c be the highest view c < r for which proposal(r) causally
follows F + 1 valid votes. Transactions in the causal past of proposal(c) are opened as
follows:
1. Let r’ be the highest view r’ < c for which proposal(r’) is in the causal history of

proposal(c). proposal(r’) is recursively opened.
2. The remaining (committed) transactions tx in proposal(c)’s causal past are opened

using Retrieve(tx) to either produce a key tx-key that decrypts tx or to reject tx.
Figure 1 illustrates a couple of Fino scenarios.

Happy-path scenario. In the first view (view(r)), proposal(r) becomes committed. The
commit sets an ordering for transactions in the causal past of proposal(r), enabling retrieval
of shares for transactions from proposal(r).

Scenario with a slow leader. A slightly more complex scenario occurs when a view expires
because validators do not observe a leader’s proposal becoming committed and they broadcast
complaints. Figure 1 depicts this happening in view(r+1). Entering view(r+2) is enabled
by 2F + 1 complaints about view(r+1). When proposal(r+1) itself becomes committed,
it indirectly commits proposal(r+1) as well. Thereafter, validators reveal shares for all
pending committed transactions, namely, those in both proposal(r+1) and proposal(r+2).

6 Analysis

Fino is minimally integrated with a DAG transport. BFT commit-reveal logic is embedded into
the DAG structure simply by broadcasting (more precisely, injecting payloads into broadcasts)
in the form of protocol proposals/votes/complaints and revealing shares. Importantly, at
no time is DAG broadcast slowed down by the Fino protocol. The reliability and causality
properties of the DAG transport make arguing about safety and liveness relatively easy.

D. Malkhi and P. Szalachowski 6:11

6.1 Safety
▶ Lemma 1. Assume a proposal(r) ever becomes committed. Denote by r′ the minimal view,
where r′ > r, such that proposal(r’) ever becomes committed. Then for every r ≤ q < r′,
proposal(q+1) causally follows proposal(r).

Proof (Sketch). Since proposal(r) becomes committed, by definition F + 1 parties sent
votes for it. There are two possibilities for a leader’s proposal(q+1) to be valid. The first
is proposal(q+1) may reference F + 1 valid vote(q) messages. This case occurs only for
q == r by the lemma assumption that r′ ≥ q + 1 is the minimal view that ever becomes
committed. The second possibility can occur for all r ≤ q < r′, namely, proposal(q+1)
references 2F + 1 valid complaint(q) messages.

In the first case, valid vote(r) causally follows proposal(r), and a fortiori
proposal(r+1) causally follows proposal(r).

In the second case, one of 2F + 1 complaint(q) messages is sent by a party who sent
a valid vote(r). By definition, vote(r) must precede complaint(q), otherwise it is not
considered a (valid) vote. Hence, proposal(q+1) causally follows complaint(q) which
follows proposal(r). ◀

▶ Lemma 2. If ever a proposal(r) becomes committed, then every valid proposal(q),
where q > r, causally follows proposal(r).

Proof (Sketch). The proof follows by a simple induction on Lemma 1. ◀

▶ Lemma 3. If an honest party commits proposal(r), and another honest party commits
proposal(r’), where r′ > r, then the sequence of transactions committed by proposal(r)
is a prefix of the sequence committed by proposal(r’).

Proof (Sketch). When proposal(r’) becomes committed, the commit ordering rule is
recursively applied to valid proposals in its causal past. By Lemma 2, the (committed)
proposal(r) is a causal predecessor of every valid proposal(s), for r < s ≤ r′, and
eventually the recursion gets to it. ◀

▶ Lemma 4. If ever a proposal(r) becomes committed, then every committed transaction
proposed by a valid proposal(r’), where r’ < r, can be uniquely decrypted.

Proof (Sketch). When proposal(r) becomes committed, then by Lemma 3, all the trans-
actions from previously committed proposals are part of the committed transaction history.
Moreover, committing proposal(r) implies the view change (from r-1) which occurs only if
the condition viewB (see section 5) is met, i.e., every committed transaction tx in the local
DAG can complete Retrieve(tx), hence can be uniquely decrypted (or rejected). ◀

6.2 Liveness
Liveness is guaranteed after GST, i.e., after communication has become synchronous with a
known ∆ upper bound on transmission delays.

After GST, views are semi-synchronized through the DAG. In particular, suppose that
after GST, every broadcast by an honest party arrives at all honest parties within DD. Once
a view(r) with an honest leader is entered by the first honest party, within DD all the
messages seen by one party are delivered by both the leader and all other honest parties.
Hence, within DD, all honest parties enter view(r) as well. Within two additional DAG
latencies, 2 · DD, the view(r) proposal and votes from all honest parties are spread to
everyone.

Tokenomics 2022

6:12 Maximal Extractable Value (MEV) Protection on a DAG

Assuming view timers are set to be at least 3 ·DD, once view(r) is entered, a future view
will not interrupt a commit. In order to start a future view, its leader must collect either
F + 1 vote(r) messages, hence commit proposal(r); or 2F + 1 complaint(r) expiration
messages, which is impossible as argued above.

6.3 Communication complexity
Protocols for the partial synchrony model have unbounded worst case by nature, hence,
we concentrate on the costs incurred during steady state when a leader is honest and
communication with it is synchronous:

DAG message cost. In order for DAG messages to be delivered reliably, it must implement
reliable broadcast. This incurs either a quadratic number of messages carried over authentic-
ated channels, or a quadratic number of signature verifications, per broadcast. In either case,
the quadratic cost may be amortized by pipelining, driving it in practice to (almost) linear
per message.

Commit message cost. Fino sends F + 1 broadcast messages, a proposal and votes, per
decision. A decision commits the causal history of the proposal, consisting of (at least) a
linear number of messages. Moreover, each message may carry multiple transactions in its
payload. As a result, in practice the commit cost is amortized over many transactions.

6.4 Latency
Commit latency. The commit latency in terms of DAG messages is 2, one proposal followed
by votes.

Opening latency. During periods of stability, there are no complaints about honest leaders
by any honest party. If tx is proposed by an honest leader in view(r), it will receive F + 1
votes and become committed within two DAG latencies. Within one more DAG latency,
every honest party will post a message containing a share for tx. Thereafter, whenever F + 1
are available, everyone will be able to complete Retrieve(tx) with a unique outcome.

6.5 Faulty User
One drawback of the proposed protocol is that it assumes a well-connected and honest
user (dealer), able to entrust F + 1 honest validators with their shares. If the dealer is
malicious or unable to broadcast shares it can lead to the situation where the transport
layer buffers a transaction indefinitely without being able to deliver() it. The Hybrid
approach we presented in section 3 solves this issue by using threshold encryption as a fallback
mechanisms (i.e., whenever enough shares cannot be received, parties would proceed with
threshold decryption). However, the hybrid construction suffers the slowness of threshold
encryption to verify a unique outcome even in faultless executions.

7 Evaluation (prelim)

We implemented the proposed variants of the Fino Disperse and Retrieve functionalities and
investigated the computational overhead that these schemes introduce. For secret sharing we
implemented SSS [38], while for threshold encryption we implemented the TDH2 scheme [39].

D. Malkhi and P. Szalachowski 6:13

Table 1 Comparison of the implementations’ performance.

Scheme Disperse ShareGen ShareVerify Reconstruct

TDH2-based 311.6µs 434.8µs 492.5µs 763.9µs

SSS-AVID-M 52.7µs N/A 2.7µs 52.5µs

Hybrid opt. 360.3µs N/A 2.7µs 361.5µs

Hybrid pess. 360.3µs 434.8µs 492.5µs 828.9µs

We selected the schemes with the most efficient cryptographic primitives we had access to,
i.e., the secret sharing scheme uses the Ed25519 curve [7], while TDH2 uses ristretto255 [15]
as the underlying prime-order group. Performance for both schemes is presented in a setting
where 6 shares out of 16 are required to recover the plaintext.

The results presented in Table 1 are obtained on an Apple M1 Pro. Disperse refers to
the overhead on the client-side while ShareGen is the operation of deriving a decryption
share from the TDH2 ciphertext (it is absent in SSS and the optimistic path of the hybrid
scheme). In TDH2, ShareVerify verifies if a decryption share matches the ciphertext, while
in SSS-based Fino it only checks whether a share belongs to the tree aggregated by the signed
Merkle root attached by the client. Reconstruct recovers the plaintext from the ciphertext
and the number of shares and verifies the outcome integrity (i.e., AVID-M and threshold
re-encryption verification, where applicable).

As demonstrated by these micro-measurements, the SSS-AVID-M scheme is the most
efficient: in our blind ordering scenario using threshold encryption, each party processing a
TDH2 ciphertext would call ShareGen once to derive its decryption share, ShareVerify k-1
times to verify the threshold number of received shares, and Reconstruct once to obtain
the plaintext. Assuming k=6, the total computational overhead for a single transaction to
be recovered would take around 3.7ms CPU time. With secret-sharing based Fino, the party
would also call ShareVerify k-1 times and Reconstruct once, which requires only 66µs

CPU time. The hybrid approach introduces an interesting trade-off between its properties
and performance. In the optimistic path, it requires around 378µs CPU time per transaction,
while its fallback introduces negligible overhead to the plain threshold-encryption scheme.

We emphasize that these are micro-benchmarks of the blinding/unblinding of transactions;
in the future, we plan to complete a performance evaluation of the entire DAG-based blind-
ordering protocol.

8 Related Work and Discussion

Despite the MEV problem being relatively new, there already exist consensus-related systems
aiming at solving it. For instance, Flash Freezing Flash Boys (F3B) [42] is a commit-and-reveal
architecture, where clients send TDH2-encrypted ciphertexts to be ordered by Consensus, and
afterward to be decrypted via shares released by a dedicated secret-management committee.
Other closely related techniques and schemes helpful in mitigating MEV are discussed below.

8.1 Verifiable Secret Sharing (VSS)
Although we ultimately end up forgoing verifiability/recoverability of shares, VSS is used
in many settings like ours. The overall communication complexity incurred in VSS on the
dealer sharing a secret and on a party recovering a share has dramatically improved in recent
years. VSS can be implemented inside the asynchronous echo broadcast protocol in O(n3)

Tokenomics 2022

6:14 Maximal Extractable Value (MEV) Protection on a DAG

communication complexity using Pederson’s original two-dimensional polynomial scheme
Non-Interactive Polynomial Commitments [34]. Kate et al. [22] introduce a VSS scheme with
O(n2) communication complexity, utilized for asynchronous VSS by Backes et al. [4]. Basu
et al. [5] propose a scheme with linear O(n) communication complexity.

A related notion is robust secret sharing (RSS) introduced by Krawczyk [27] and later
revised by Bellare and Rogaway [6]. RSS allows recoverability in case of incorrect (not just
missing) shares, however, these schemes assume an honest dealer. Duan et al. [17] propose
ARSS extending RSS to the asynchronous setting.

8.2 Time-Based Order-Fairness
Blind Order-Fairness is achieved by deterministically ordering encrypted transactions and
then, after the order is final, decrypting them. The deterministic order can be enhanced by
sophisticated ordering logic present in other protocols. In particular, Fino can be extended
to provide Time-Based Fairness additionally ensuring that the received transactions are not
only unreadable by parties, but also their relative order cannot be influenced by malicious
parties (the transaction order would be defined by the time of its ciphertext arrival).

For instance, Pompē [43] proposes a property called Ordering Linearizability: “if all
correct parties timestamp transactions tx, tx’ such that tx’ has a lower timestamp than tx by
everyone, then tx’ is ordered before tx.” It implements the property based on an observation
that if parties exchange transactions associated with their receiving timestamps, then for each
transaction its median timestamp, computed out of 2F+1 timestamps collected, is between
the minimum and maximum timestamps of honest parties. Fino can be easily extended by
the Linearizability property offered by Pompē and the final protocol is similar to the Fino
with Blind Order-Fairness (see above) with only one modification. Namely, every time a new
batch of transactions becomes committed, parties independently sort transactions by their
aggregate (median) timestamps.

More generally, Fino can easily incorporate other Time-based Fairness ordering logic.
Note that in Fino, the ordering of transactions is determined on encrypted transactions,
but time ordering information should be open. The share revealing, share collection, and
unique decryption following a committed ordering are the same as presented previously. The
final protocol offers much stronger properties since it not only hides payloads of unordered
transactions from parties, but also prevents parties from reordering received transactions.

One form of Time-based Order-Fairness introduced in Aequitas [26] is Batch-Order
Fairness: “if sufficiently many (at least ½ of the) parties receive a transaction tx before
another transaction tx’, then no honest party can deliver tx in a block after tx’, ” and a
protocol achieving it. Other forms of Time-Based Order-Fairness which may be used in Fino
include “Wendy Grows Up” [28], which introduced Timed Relative Fairness, “if there is a
time t such that all honest parties saw (according to their local clock) tx before t and tx’ after
t , then tx must be scheduled before tx’, ” and “Quick Order Fairness” [11], which defined
Differential-Order Fairness, “when the number of correct parties that broadcast tx before tx’
exceeds the number that broadcast tx’ before tx by more than 2F + κ, for some κ ≥ 0, then
the protocol must not deliver tx’ before tx (but they may be delivered together).”

Themis [25] is a protocol realizing Batch-Order Fairness, where parties do not rely on
timestamps (as in Pompē) but only on their relative transaction orders reported. Themis
can also be integrated with Fino, however, to make it compatible this design requires some
modifications to Fin’s underlying DAG protocol. More concretely, Themis assumes that
the fraction of bad parties cannot be one quarter, i.e., F out of 4F+1. A leader makes a
proposal based on 3F+1 out of 4F+1 transaction orderings (each reported by a distinct
party). Therefore, we would need to modify the DAG transport so that parties reference
3F+1 preceding messages (rather than 2F+1).

D. Malkhi and P. Szalachowski 6:15

8.3 DAG-based BFT
There are many known BFT solutions for partial synchrony, and more specifically, several
recent solutions that ride on a DAG [14, 20, 24]. When constructing Fino, we wanted to build
MEV protection into a simple DAG-based BFT solution, described below. Notwithstanding,
we remark that Fino’s MEV protection can possibly be incorporated into other DAG-riding
BFT solutions.

We borrowed a subprotocol from Bullshark [20] that deals with partial synchrony, modi-
fying it so that DAG transmissions would never stall waiting for BFT protocol steps or
timers. Fino is different from the borrowed Bullshark component in that BFT protocol steps
(e.g., view changes, proposals, votes, and complaints) are injected into the DAG at any time,
independent of DAG layers. It uses broadcast() (defined in section 2) to present these
steps as payloads to the DAG transport, completely asynchronously, while normal DAG
transmissions continue. A hallmark of the DAG-riding approach, which Fino preserves while
adding Blind Order-Fairness, is zero message overhead.

Narwhal [14] is a recent DAG transport that has a layer-by-layer structure, each layer
having at most one message per sender and referring to 2F+1 messages in the preceding
layer. A similarly layered DAG construction appears earlier in Aleph [19], but it does not
underscore the separation of transaction dissemination from DAG messages. Narwhal-HS
is a BFT Consensus protocol within [14] based on HotStuff [41] for the partial synchrony
model, in which Narwhal is used as a “mempool”. In order to drive Consensus decisions,
Narwhal-HS adds messages outside Narwhal, using the DAG only for spreading transactions.

DAG-Rider [23] and Tusk [14] build randomized BFT Consensus for the asynchronous
model riding on Narwhal, These protocols are zero message overhead over the DAG, not
exchanging any messages outside the Narwhal protocol. Both are structured with purpose-
built DAG layers grouped into “waves” of 4 (2) layers each. Narwal waits for the Consensus
protocol to inject input value every wave, though in practice, this does not delay the DAG
materially.

Bullshark [20] builds BFT Consensus riding on Narwhal for the partial synchrony model.
It is designed with 8-layer waves driving commit, each layer purpose-built to serve a different
step in the protocol. Bullshark is a “zero message overhead” protocol over the DAG, however,
due to a rigid wave-by-wave structure, the DAG is modified to wait for Bullshark timers/steps
to insert transactions into the DAG. In particular, if leader(s) of a wave are faulty or slow,
some DAG layers wait to fill until consensus timers expire.

More generally, since the eighties, causally ordered reliable broadcast has been utilized in
forming distributed Consensus protocols, e.g., [8, 35, 30, 32, 3, 16].

The notion of the secure, causal, reliable broadcast was introduced by Reiter and
Birman [37], and later refined by Cachin [10] and Duan et al. [17]. This primitive was
utilized in a variety of BFT replicated systems, but not necessarily in the form of zero
message overhead protocols riding on a DAG. Several of these pre blockchain-era BFT
protocols are DAG based, notably Total [32] and ToTo [16], both of which are BFT solutions
for the asynchronous model.

9 Conclusions

In this paper, we show how DAG-based BFT protocols can be enhanced to mitigate MEV
– arguably one of the main threats to the success of cryptocurrencies. We investigate the
design space of achieving Blind Order-Fairness, and we propose an approach that focuses
on practicality. We present preliminary correctness and performance results which indicate
that our scheme is secure and efficient. In the future, we plan to extend our analysis and
experiments, and investigate other cryptographic tools which can improve our scheme.

Tokenomics 2022

6:16 Maximal Extractable Value (MEV) Protection on a DAG

References
1 Mev-explore v1. https://explore.flashbots.net/, 2022. Accessed: 2022-07-18.
2 Yair Amir, Brian Coan, Jonathan Kirsch, and John Lane. Prime: Byzantine replication under

attack. IEEE TDSC, 2010.
3 Yair Amir, Danny Dolev, Shlomo Kramer, and Dalia Malki. Transis: A communication

sub-system for high availability. Hebrew University of Jerusalem. Leibniz Center for Research
in Computer . . . , 1991.

4 Michael Backes, Amit Datta, and Aniket Kate. Asynchronous computational vss with reduced
communication complexity. In CT-RSA. Springer, 2013.

5 Soumya Basu, Alin Tomescu, Ittai Abraham, Dahlia Malkhi, Michael K Reiter, and Emin Gün
Sirer. Efficient verifiable secret sharing with share recovery in bft protocols. In ACM CCS,
2019.

6 Mihir Bellare and Phillip Rogaway. Robust computational secret sharing and a unified account
of classical secret-sharing goals. In ACM CCS, 2007.

7 Daniel J Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. High-speed
high-security signatures. Journal of cryptographic engineering, 2012.

8 Ken Birman and Thomas Joseph. Exploiting virtual synchrony in distributed systems. In
ACM SOSP, 1987.

9 Gabriel Bracha. Asynchronous byzantine agreement protocols. Information and Computation,
1987.

10 Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. Secure and efficient
asynchronous broadcast protocols. In CRYPTO. Springer, 2001.

11 Christian Cachin, Jovana Mićić, and Nathalie Steinhauer. Quick order fairness. arXiv preprint,
2021. arXiv:2112.06615.

12 Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo Bentov, Lorenz
Breidenbach, and Ari Juels. Flash boys 2.0: Frontrunning in decentralized exchanges, miner
extractable value, and consensus instability. In IEEE SP. IEEE, 2020.

13 George Danezis and David Hrycyszyn. Blockmania: from block dags to consensus. arXiv
preprint, 2018. arXiv:1809.01620.

14 George Danezis, Lefteris Kokoris-Kogias, Alberto Sonnino, and Alexander Spiegelman. Narwhal
and tusk: a dag-based mempool and efficient bft consensus. In EuroSys, 2022.

15 Henry de Valence, Jack Grigg, George Tankersley, Filippo Valsorda, and Isis Lovecruft. The
ristretto255 group. IETF CFRG Internet Draft, 2020.

16 Danny Dolev, Shlomo Kramer, and Dalia Malki. Early delivery totally ordered multicast in
asynchronous environments. In FTCS. IEEE, 1993.

17 Sisi Duan, Michael K Reiter, and Haibin Zhang. Secure causal atomic broadcast, revisited. In
IEEE/IFIP DSN. IEEE, 2017.

18 Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of partial
synchrony. Journal of the ACM, 1988.

19 Adam Gągol and Michał Świętek. Aleph: A leaderless, asynchronous, byzantine fault tolerant
consensus protocol. arXiv preprint, 2018. arXiv:1810.05256.

20 Neil Giridharan, Lefteris Kokoris-Kogias, Alberto Sonnino, and Alexander Spiegelman. Bull-
shark: Dag bft protocols made practical. arXiv preprint, 2022. arXiv:2201.05677.

21 Lioba Heimbach and Roger Wattenhofer. Sok: Preventing transaction reordering manipulations
in decentralized finance. arXiv preprint, 2022. arXiv:2203.11520.

22 Aniket Kate, Gregory M Zaverucha, and Ian Goldberg. Constant-size commitments to
polynomials and their applications. In ASIACRYPT. Springer, 2010.

23 Idit Keidar, Eleftherios Kokoris-Kogias, Oded Naor, and Alexander Spiegelman. All you need
is dag. In ACM PODC, 2021.

24 Idit Keidar, Oded Naor, and Ehud Shapiro. Cordial miners: A family of simple, efficient and self-
contained consensus protocols for every eventuality. arXiv preprint, 2022. arXiv:2205.09174.

https://explore.flashbots.net/
https://arxiv.org/abs/2112.06615
https://arxiv.org/abs/1809.01620
https://arxiv.org/abs/1810.05256
https://arxiv.org/abs/2201.05677
https://arxiv.org/abs/2203.11520
https://arxiv.org/abs/2205.09174

D. Malkhi and P. Szalachowski 6:17

25 Mahimna Kelkar, Soubhik Deb, Sishan Long, Ari Juels, and Sreeram Kannan. Themis: Fast,
strong order-fairness in byzantine consensus. Cryptology ePrint Archive, 2021.

26 Mahimna Kelkar, Fan Zhang, Steven Goldfeder, and Ari Juels. Order-fairness for byzantine
consensus. In CRYPTO. Springer, 2020.

27 Hugo Krawczyk. Secret sharing made short. In CRYPTO. Springer, 1993.
28 Klaus Kursawe. Wendy grows up: More order fairness. In Financial Crypto. Springer, 2021.
29 Kfir Lev-Ari, Alexander Spiegelman, Idit Keidar, and Dahlia Malkhi. Fairledger: A fair

blockchain protocol for financial institutions. arXiv preprint, 2019. arXiv:1906.03819.
30 Peter M Melliar-Smith, Louise E. Moser, and Vivek Agrawala. Broadcast protocols for

distributed systems. IEEE TPDS, 1990.
31 Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. The honey badger of bft

protocols. In ACM CCS, 2016.
32 Louise E Moser and Peter M Melliar-Smith. Byzantine-resistant total ordering algorithms.

Information and Computation, 1999.
33 Alexandre Obadia, Alejo Salles, Lakshman Sankar, Tarun Chitra, Vaibhav Chellani, and

Philip Daian. Unity is strength: A formalization of cross-domain maximal extractable value.
arXiv preprint, 2021. arXiv:2112.01472.

34 Torben Pryds Pedersen. Non-interactive and information-theoretic secure verifiable secret
sharing. In CRYPTO. Springer, 1991.

35 Larry L Peterson, Nick C Buchholz, and Richard D Schlichting. Preserving and using context
information in interprocess communication. ACM TOCS, 1989.

36 Kaihua Qin, Liyi Zhou, and Arthur Gervais. Quantifying blockchain extractable value: How
dark is the forest? arXiv preprint, 2021. arXiv:2101.05511.

37 Michael K Reiter and Kenneth P Birman. How to securely replicate services. ACM TOPLAS,
1994.

38 Adi Shamir. How to share a secret. Communications of the ACM, 1979.
39 Victor Shoup and Rosario Gennaro. Securing threshold cryptosystems against chosen ciphertext

attack. In EUROCRYPT. Springer, 1998.
40 Lei Yang, Seo Jin Park, Mohammad Alizadeh, Sreeram Kannan, and David Tse. Dis-

persedLedger: High-throughput byzantine consensus on variable bandwidth networks. In
USENIX NSDI, 2022.

41 Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abraham. Hotstuff:
Bft consensus with linearity and responsiveness. In ACM PODC, 2019.

42 Haoqian Zhang, Louis-Henri Merino, Vero Estrada-Galinanes, and Bryan Ford. Flash freezing
flash boys: Countering blockchain front-running. In DINPS, 2022.

43 Yunhao Zhang, Srinath Setty, Qi Chen, Lidong Zhou, and Lorenzo Alvisi. Byzantine ordered
consensus without byzantine oligarchy. In USENIX OSDI, 2020.

Tokenomics 2022

https://arxiv.org/abs/1906.03819
https://arxiv.org/abs/2112.01472
https://arxiv.org/abs/2101.05511

Commit-Reveal Schemes Against Front-Running
Attacks
Andrea Canidio #

IMT School for Advanced Studies, Lucca, Italy
CoW Protocol, Paris, France

Vincent Danos
CNRS, Paris, France
École Normale Supérieure, Paris, France

Abstract
We provide a game-theoretic analysis of the problem of front-running attacks. We use it to study a
simple commit-reveal protocol and discuss its properties. This protocol has costs because it requires
two messages and imposes a delay. However, we show that it prevents the most severe front-running
attacks (“bad MEV”) while preserving legitimate competition between users, guaranteeing that the
earliest transaction in a block belongs to the honest user who values it the most (“good MEV”).

2012 ACM Subject Classification Computer systems organization → Dependable and fault-tolerant
systems and networks

Keywords and phrases Front running, Game theory, MEV, Transactions reordering, commit-reveal

Digital Object Identifier 10.4230/OASIcs.Tokenomics.2022.7

Category Extended Abstract

Related Version Full Version: https://arxiv.org/abs/2301.13785

Funding We gratefully acknowledge the financial support of the Ethereum Foundation (grant
FY22-0840).

Acknowledgements We are grateful to Agostino Capponi, Jiasun Li, Christof Ferreira Torres, Arthur
Gervais, Ari Juels, and the participants to UBRI Connect 2022, Tokenomics 2022 for their comments
and suggestions.

1 Introduction

On the Ethereum network, each validator decides how to order pending transactions to
form the next block, hence determining the order in which these transactions are executed.
As a consequence, users often compete with each other to have their transactions included
earlier in a block, either by paying transaction fees or by making side payments directly
to validators.1 This form of competition can be beneficial because it ensures that a scarce
resource (i.e., having a transaction included earlier in the block) is allocated to the user who
values it the most.2 But at the same time, it opens the possibility of front-running attacks:
because pending transactions are public, a malicious user can observe a victim’s incoming
transaction, craft a new transaction and then pay to place it before that of the victim.

1 Competition through higher transaction fees occurs via “gas replacement” transactions, whereby a
pending transaction is resubmitted with a higher fee. The resulting game is akin to an auction
(see [3]). The most popular way to make side payments to validators is to use flashbots (see https:
//github.com/flashbots/pm).

2 Whether it is the most efficient to achieve this goal is a different issue we do not address here.

© Andrea Canidio and Vincent Danos;
licensed under Creative Commons License CC-BY 4.0

4th International Conference on Blockchain Economics, Security and Protocols (Tokenomics 2022).
Editors: Yackolley Amoussou-Guenou, Aggelos Kiayias, and Marianne Verdier; Article No. 7; pp. 7:1–7:5

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:acanidio@gmail.com
https://orcid.org/0000-0002-8482-8782
https://doi.org/10.4230/OASIcs.Tokenomics.2022.7
https://arxiv.org/abs/2301.13785
https://github.com/flashbots/pm
https://github.com/flashbots/pm
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

7:2 Commit-Reveal Schemes Against Front-Running Attacks

In this paper, we propose a game-theoretic model of front-running. We use it to study a
simple commit-reveal protocol that can be implemented at the smart contract level without
modifying the underlying Ethereum infrastructure or introducing third parties (or layer-2
networks). We derive conditions under which an honest player is better off using the protocol
than Ethereum’s standard procedure. On the cost side, the protocol requires sending two
messages instead of one and imposes a delay. Hence, if the cost of sending messages or
waiting is high, the protocol is worse than the standard way to send transactions; if they are
low, the protocol is preferred. On the benefit side, the protocol can eliminate front-running
attacks, especially when it is difficult for an attacker to guess, that is, when the expected
payoff of an attacker who commits without knowing whether the victim committed and what
message was committed is low. We also argue that our protocol does not impede legitimate
competition between honest users, that is, competition to have a transaction included earlier
in a block between users who do not rely on observing each other’s message.

Prior work

Our commit-reveal protocol is novel but similar to existing proposals. Our main contribution
is the type of analysis. In particular, we show that our protocol can reduce front-running
attacks while maintaining legitimate users’ competition. Existing solutions instead are either
primarily concerned with eliminating attacks (at the cost of also eliminating legitimate
competition, see, for example, Aequitas protocol and the hedera-hashgraph project) or better
organizing competition (at the cost of exacerbating attacks, see, for example, Flashbots).
Furthermore, most of the literature has proposed solutions to reduce or eliminate front-
running in Ethereum by changing its infrastructure or introducing third parties (See [5] for
a review of the literature). Instead, our solution does not require third parties and can be
implemented at the smart contract level, allowing for flexibility in its implementation.

With respect to existing solutions, our protocol can be seen as a simplified version of the
submarine commitments protocol in [1]: in both cases, a message is first committed and then
revealed, and the commitment can be hidden in the sense that the identity of the sender
and receiver of the commit message cannot be observed. The main difference is that we
adopt a weaker notion of “commitment” because we allow users not to send a transaction
after committing it. The notion of “commitment” in [1] is instead stronger because users are
penalized for not following through with their commitment.

As already mentioned, we provide a game-theoretic analysis of the properties of this
protocol, applicable to any smart contract.3 With this respect, our work is inspired by [4],
who develop a game-theoretic analysis of the problem of front-running arising when an honest
user and an attacker claim the same reward. They also propose a protocol that eliminates
these types of attacks. Their key assumption is that the legitimate claimant strictly prefers
the reward to be burned rather than paid to the attacker. Therefore, these results are
useful in some environments where front-running may emerge, but not all. For example,
front-running attacks are a serious concern in the AMMs, but in this context, it may not be
possible to “burn the reward”.

3 [1] analyze the properties of the submarine commitment scheme in the context of a bug-bounty scheme
they propose.

A. Canidio and V. Danos 7:3

2 The problem: front-running attacks

We start by developing a simple model of front-running attacks and later introduce the
commit-reveal protocol.4 There is a smart contract SC and two players: Alice and Bob.
Absent front-running attacks, player A sends a message σA ∈ Σ to the mempool (i.e., the set
of pending transactions), where Σ is the set of possible messages that A may send. When the
message σA is included in a block, the smart contract SC performs an action that generates
a benefit PA to player A.5 Front-running attacks arise because messages in the mempool are
public. Hence, after A sends a message to the mempool, this message is observed by B, who
can send a counter-message σB ∈ Σ. If σB is included in the blockchain before A’s message,
then B earns PB(σA) while A earns nothing. Else, B earns nothing and A earns PA.

Sending messages is costly. Each player can send a regular message by paying c > 0. If
multiple regular messages are sent, they are included in the block in the order they are sent.
Player B, however, can also pay f > c to send a “fast” message that, with probability q, is
included in the block before A’s regular message, despite A’s message being sent first. For
example, f could be the cost of sending a transaction via a service such as flashbots, or could
be a regular mempool transaction with a transaction fee significantly above the base fee. We
consider the parameters q, c, and f as exogenous and determined by the technology available
to A and B.

Equilibrium

We can easily solve the game by backward induction and assuming that each player maximizes
his/her expected payoff. If A sends a message, then B attempts to front-run if and only if:

qPB(σA) > f

Given this, we can derive A’s optimal strategy. Suppose that qPB(σA) < f , so that A expects
no front running. In this case, she sends a message if and only if

PA > c

If, instead, qPB(σA) > f , then A anticipates that B will try to front-run. In this case, A

sends a message if and only if

(1 − q)PA > c

Hence, front running does not happen when its benefit is low (i.e., PB(σA) ≤ f/q). If,
instead, its benefit is large (i.e., PB(σA) > f/q), B will attempt to front run A whenever A

sends a message. In particular, when PA > c but (1 − q)PA < c the threat of front running
prevents A from sending the message in the first place, therefore destroying the value of the
exchange between A and SC.

3 Preventing front-running via commitment

We now use the model developed in the previous section to study how a commit-reveal
protocol can mitigate front-running attacks. In terms of notation, we call player A’s commit
message σA,1 and reveal message σA,2. Similarly, player B’s counter-messages are σB,1 and
σB,2.

4 For a more detailed analysis, see [2].
5 For simplicity, here we assume that PA is independent on the message σA. See [2] for the case in which

A’s payoff depends on her message.

Tokenomics 2022

7:4 Commit-Reveal Schemes Against Front-Running Attacks

Formally, the protocol has a commitment period and a reveal period, which here are two
subsequent blocks. If player A wants to send message σA ∈ Σ to SC, in the commit period
A sends the commit message

σA,1 = S(addr, σA)

to SC where addr is an address that A controls and S() is a function with an intractable pre-
image problem (for example, Hash (addr|σA) where Hash() is the SHA-256 hash function).
Once the commit message is included in a block, A sends the reveal message σA,2 = σA to
SC from the address addr, which is then included in the next block. Upon receiving the
message, SC computes S(addr, σA) and checks whether it received message S(addr, σA) in
the previous block.

It follows that if B wants to front run A he will need to commit a message at the commit
stage and then reveal it at the reveal stage. There is a common discount factor β ∈ [0, 1], so
when a given payoff is earned with a block delay, this payoff is discounted by β. Finally, A

does not observe B’s commit message and hence cannot detect B’s attempt to front running.
At the same time, we assume B observes A’s commit message.

3.1 Equilibrium
The first, rather immediate, result is that there is no equilibrium in which B sends the
same commit message as A. To see this, suppose that player A sends the commit message
S(addr, σA) and player B sends the same commit message. If in the next period B sends
the message revealB = σA, then the SC will consider B’s reveal message as invalid because
sent from an address different from addr. It is also easy to see that there is no equilibrium
in which A commits but then does not reveal because A can do better by not committing at
all. The next lemma summarizes these observations.

▶ Lemma 1 (No cloning in equilibrium). There is no equilibrium in which σB,1 = σA,1. There
is also no equilibrium in which A sends the commit message but not the reveal message.

In equilibrium, therefore, if B wants to attack, he needs to craft a commit message while
being completely uninformed about the contents of A’s message. However, B anticipates
that he will observe A’s message and, at that point, will decide whether or not to send the
message he initially committed. Therefore, the protocol severely limits but does not fully
eliminate B’s ability to act upon his observation of A’s message.

Formally, suppose σA,1 ̸= ∅ (so that A sent the commit message), B committed a message
with content σB and then observed A’s reveal message. In this case, B’s expected payoff
from front-running is

q · PB(σB , σA) − f.

Hence, B will try to front run if and only if q · PB(σB , σA) > f .
In the commitment phase, B’s choice of what message to commit is made in anticipation

that he will decide to front run after observing A’s reveal message. We assume that B has a
prior belief over what message A may send. His expected future payoff is, therefore:

π ≡ maxσB∈ΣEσA
[max{q · PB(σB , σA) − f, 0}|σA,1 ̸= ∅] ,

where the expectation is with respect to σA. Hence, if A sends a commit message and B tries
to front run, B’s expected payoff is βπ − c. We, therefore, have the following proposition:6

6 The existence of the equilibrium follows from the fact that the players’ strategy space is finite, as noted
already in [6].

A. Canidio and V. Danos 7:5

▶ Proposition 2. If π ≤ c
β (i.e., “guessing is hard for B”), then there is no front-running

in equilibrium. If instead π > c
β (i.e., “guessing is easy for B”), front running occurs with

strictly positive probability in equilibrium.

Note that in case “guessing is easy for B”, there could be a pure strategy equilibrium in
which B commits with probability 1 whenever A commits, or a mixed strategy equilibrium
in which B commits with some probability. In either case, after committing, B attempts to
front-run A or not depending on A’s reveal message.

It is easy to check that in the “guessing is hard for B” case, A’s equilibrium payoff is

max {−c + β(PA − c), 0}

Therefore, the protocol generates both costs and benefits for player A. The benefit is that
the simple commit-reveal protocol effectively dissuades B from attacking, yet this comes at
a cost: one additional message is required, and the payoff is earned with a one-block delay
(and hence is discounted by the parameter β).

4 Conclusion

We conclude by informally discussing two properties of the commit-reveal protocol. As
already mentioned, π measures “how easy” it is for B to guess what message he should
commit. Therefore, it measures how much, absent the commit-reveal protocol, B relies on
observing A’s message to attack. At an intuitive level, it can be interpreted as a proxy for
the severity of a front-running attack: high values of π imply less severe attacks because B

is already informed and relies less on observing σA; low values of π imply less severe attacks
because B is uninformed and relies heavily on observing σA. Therefore, our protocol is most
effective at preventing the most severe front-running attacks.

Finally, it is also possible that π is so large that B always wants to commit and reveal
a message, whether he observes A’s commit message or not. In this case, B acts more like
a legitimate competitor because he would commit even if he were to move first. In this
case, our commit-reveal protocol preserves competition because both A and B commit their
messages and then compete in the reveal stage to have their message included earlier in the
block.

References
1 Lorenz Breidenbach, Phil Daian, Florian Tramèr, and Ari Juels. Enter the hydra: Towards

principled bug bounties and exploit-resistant smart contracts. In 27th USENIX Security
Symposium (USENIX Security 18), pages 1335–1352, 2018.

2 Andrea Canidio and Vincent Danos. Commitment against front running attacks, 2023.
arXiv:2301.13785.

3 Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo Bentov, Lorenz
Breidenbach, and Ari Juels. Flash boys 2.0: Frontrunning, transaction reordering, and
consensus instability in decentralized exchanges. arXiv preprint, 2019. arXiv:1904.05234.

4 Joshua S Gans and Richard T Holden. A solomonic solution to ownership disputes: An
application to blockchain front-running. Technical report, National Bureau of Economic
Research, 2022.

5 Lioba Heimbach and Roger Wattenhofer. Sok: Preventing transaction reordering manipulations
in decentralized finance. arXiv preprint, 2022. arXiv:2203.11520.

6 John Nash. Equilibrium points in n-person games. Proceedings of the national academy of
sciences, 36(1):48–49, 1950.

Tokenomics 2022

https://arxiv.org/abs/2301.13785
https://arxiv.org/abs/1904.05234
https://arxiv.org/abs/2203.11520

The Demand for Programmable Payments:
Extended Abstract
Charles M. Kahn # Ñ

Department of Finance, University of Illinois, Urbana-Champaign, IL, USA

Maarten R.C. van Oordt # Ñ

Tinbergen Institute, Amsterdam, The Netherlands
Vrije Universiteit Amsterdam, The Netherlands

Abstract
In [1], we examine the desirability of programmable payments, arrangements in which transfers
are automatically executed conditional upon preset objective criteria. We study optimal payment
arrangements in a continuous-time framework where a buyer and a seller of a service interact.
We stack the cards in favor of programmable payments by considering an environment where
neither agent has any legal recourse if the other fails to deliver upon their promises. We identify
scenarios where programmable payments could improve economic outcomes and scenarios where
they cannot. Direct payments increase the surplus by avoiding the liquidity cost of locking-up funds
in a programmable payment arrangement until the moment where the conditions are satisfied to
release those funds to the payee.

Programmable payments will be desirable, and may in fact be the only viable payment arrange-
ment, in situations where economic relationships are of a short duration. Nonetheless, there is
a limit to the length of the arrangement a single programmable payment can support, because
eventually the additional liquidity cost of locking up more funds for a longer period starts to exceed
the additional surplus generated from extending the length of the arrangement. For longer periods
multiple payments are necessary.

Sufficiently long optimal chain-of-payments arrangements always start with direct payments
because of the lower liquidity costs. Only towards the end of a relationship do the parties switch to
the use of programmable payments. Moreover, the optimum for infinitely long payment arrangements
consists of direct payments only. These results suggest that programmable payments are unlikely to
become the new “standard” for all payment arrangements.

Many have argued that technological developments in the payments space will lead to an explosion
of so-called micro-payments. Our results suggest a more complex relationship between transactions
cost and the number of payments. Lower transaction costs increase the number of payments for the
extensive margin in the sense of increasing the set of potential buyer-seller pairs where transaction
costs are no longer prohibitively expensive. For the intensive margin, that is, within buyer-seller
pairs, we find the opposite effect: lower transaction costs are associated with fewer payments, as
trust becomes easier to achieve.

2012 ACM Subject Classification Applied computing → Digital cash; Applied computing → E-
commerce infrastructure; Applied computing → Electronic funds transfer; Applied computing →
Online banking; Social and professional topics → Consumer products policy

Keywords and phrases Electronic payment, smart contracts, programmable payment

Digital Object Identifier 10.4230/OASIcs.Tokenomics.2022.8

Category Extended Abstract

Funding Maarten R.C. van Oordt: gratefully acknowledges financial support from the Fintech Chair
of Université Paris Dauphine – PSL.

References
1 C.M. Kahn and M.R.C. Van Oordt. The Demand for Programmable Payments. Tinbergen

Institute Discussion Paper, 2022-076, 2022.

© Charles M. Kahn and Maarten R.C. van Oordt;
licensed under Creative Commons License CC-BY 4.0

4th International Conference on Blockchain Economics, Security and Protocols (Tokenomics 2022).
Editors: Yackolley Amoussou-Guenou, Aggelos Kiayias, and Marianne Verdier; Article No. 8; pp. 8:1–8:1

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:c-kahn@illinois.edu
http://kahnfrance.com/cmk
mailto:m.van.oordt@vu.nl
https://research.vu.nl/en/persons/maarten-van-oordt
https://doi.org/10.4230/OASIcs.Tokenomics.2022.8
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

	p000-Frontmatter
	Preface
	pcmembers

	p001-Koutsoupias
	1 Algorithmic game theory
	2 Incentives and blockchains
	2.1 Mining games
	2.2 Reward sharing schemes
	2.3 Distributed computing with incentives

	p002-Halaburda
	1 Problems in Platform Economics
	2 Utility tokens and barriers to entry
	3 Conclusions

	p003-Bottoni
	1 Introduction
	2 Layer 2 limitations
	3 An overview of 1DLT
	4 Architecture of 1DLT
	5 1DLT Ethereum Node
	5.1 The execution flow
	5.2 Differences with current Ethereum implementations

	6 Consensus-as-a-Service
	7 Bridge
	8 Experiments and Performance Discussion
	8.1 Total transaction cost
	8.2 Transaction finality
	8.3 Smart contract deployment cost
	8.4 Transaction per second (TPS)
	8.5 Discussion

	9 Conclusion and Future work

	p004-Danos
	1 Introduction
	2 Basic definitions
	2.1 Preliminaries
	2.2 Trading functions
	2.3 Example (verified on-chain [10])
	2.4 Price machines
	2.5 Single user price machines

	3 Consistency
	4 Applications
	4.1 The Balancer family
	4.2 Application: the Curve family

	5 Conclusion

	p005-Chaudhary
	1 Introduction and Motivation
	2 Interest rate rules
	3 Discussion
	4 Conclusion
	A Appendix

	p006-Malkhi
	1 Introduction
	1.1 MEV
	1.2 Blind Order-Fairness on a DAG

	2 Background and Preliminaries
	2.1 System Model
	2.2 MEV and Blind Order-Fairness
	2.3 Threshold Methods

	3 The commit-reveal Framework
	4 DAG transport
	5 Fino
	5.1 The Protocol

	6 Analysis
	6.1 Safety
	6.2 Liveness
	6.3 Communication complexity
	6.4 Latency
	6.5 Faulty User

	7 Evaluation (prelim)
	8 Related Work and Discussion
	8.1 Verifiable Secret Sharing (VSS)
	8.2 Time-Based Order-Fairness
	8.3 DAG-based BFT

	9 Conclusions

	p007-Canidio
	1 Introduction
	2 The problem: front-running attacks
	3 Preventing front-running via commitment
	3.1 Equilibrium

	4 Conclusion

	p008-Kahn

