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Abstract
This article summarises the contents of the invited keynote that I gave back in September 2020 at
the “Microservices 2020” Conference, which was held entirely online during the COVID-19 pandemic.

In that keynote, I started from the question of how we can check whether a software application
satisfies the main principles of microservices and –if not– of how should we refactor it. To answer that
question, I discussed the capacity of existing techniques to automatically extract an architectural
description of a microservice-based application, to identify architectural smells possibly violating
microservices’ principles, and to select suitable refactorings to resolve them. I also discussed how a
(minimal) modelling of microservice-based applications can considerably simplify their design and
automate their container-based deployment. Finally, I tried to point to some interesting directions
for future research on microservices.
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1 Design principles, architectural smells and refactorings

I started my keynote by recalling the main motivations and characteristics of microservices,
and then I considered the following question:

How can architectural smells affecting design principles of microservices be detected
and resolved via refactoring?

Informally speaking, an architectural smell is a “suspect” that the defined architecture
may affect a design principle. As an example of possible answer to the above question, I
presented the results of the multi-vocal review [8], aimed at identifying the most recognised
architectural smells for microservices, and the architectural refactorings to resolve them.
That review identified seven architectural smells potentially affecting four design principles
of microservices, and 13 refactoring techniques to resolve those architectural smells.

I then presented the µFreshener tool [13], which automatically identifies the architectural
smells present in a microservice-based application, and which allows applying architectural
refactorings to resolve the identified smells.
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2 From incomplete specifications to running applications

I then moved to considering the question of how to select an appropriate runtime enviroment
for each microservice of an application, during the design phase. As an example of possible
answer to the above question, I presented the TosKeriser tool [3], which automatically
completes a TOSCA application specifications by discovering and including Docker-based
runtime environments providing the software support needed by each microservice.
I then moved to considering the question of how to suitably package each microservice into
the selected runtime environment. As an example of possible answer to the above question, I
presented the TosKose tool [2], which enables deploying microservice-based applications on
top of existing container orchestrators, and to manage each service independently from the
container used to run it.

3 Mining the architecture of microservice-based applications

Manually generating the description of the software architecture of an application consisting
of dozens, when not hundreds, of microservices is a complex, time-consuming, and error-prone
process. Software architects need to be supported by tools capable of automatically mining
the software architecture of their microservice-based application.
As an example of such support, I presented the µMiner tool [13], which automatically extracts
the software architecture of a “ black-box” microservice-based application. Without accessing
the application source code, µMiner derives the software architecture from the declarative
specification of its Kubernetes deployment, by performing both static and dynamic analyses.

4 Concluding remarks

At the end of the keynote, I summarised the toolchain sketched in Figure 1, obtainined by
pipelining the four tools described during the talk.

Figure 1 Toolchain example.

Take-home message: The toolchain can be taken as an example of how a (minimal) modelling
of microservice-based applications can considerably simplify their design and analysis and
allow automating their container-based completion and deployment.
Finally, here is a non-exhaustive list of possible interesting directions for future research on
microservices on which I am working with my group and other colleagues:

improve the techniques for detecting and resolving architectural smells in microservice-
based applications – with alternative techniques (e.g. like [12]) for automatically ex-
tracting the software architecture of an application from its Kubernetes deployment, and
for resolving architectural smells by directly modifying the Kubernetes manfiest of an
application,
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improve the techniques for detecting security smells in microservice-based applications –
by identifying the most recognised security smells for microservices (e.g. like in [9]), and
by developing automated detectors (e.g. like the extensible KubeHound tool [4]),
improve the tecnhiques for determining the root causes of microservices’ failures [10] and
for explaining how failures propagate across microservices (e.g. as in [11]),
improve the techniques for achieving a lightweight but effective monitoring of microservice-
based applications deployed on a distributed infrastructure [6],
consider sustainaibility aspects during the entire life-cycle of microservice-based applica-
tions [1],
develop and apply continuous reasoning techniques to efficently manage distributed
applications in continuity with existing CI/CD pipelines and monitoring tools (e.g. like
in [5, 7]).
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