
Microservices Beyond COVID-19
Antonio Brogi # Ñ

Department of Computer Science, University of Pisa, Italy

Abstract
This article summarises the contents of the invited keynote that I gave back in September 2020 at
the “Microservices 2020” Conference, which was held entirely online during the COVID-19 pandemic.

In that keynote, I started from the question of how we can check whether a software application
satisfies the main principles of microservices and –if not– of how should we refactor it. To answer that
question, I discussed the capacity of existing techniques to automatically extract an architectural
description of a microservice-based application, to identify architectural smells possibly violating
microservices’ principles, and to select suitable refactorings to resolve them. I also discussed how a
(minimal) modelling of microservice-based applications can considerably simplify their design and
automate their container-based deployment. Finally, I tried to point to some interesting directions
for future research on microservices.

2012 ACM Subject Classification Software and its engineering

Keywords and phrases Microservice-based systems

Digital Object Identifier 10.4230/OASIcs.Microservices.2020-2022.1

Category Invited Paper

Funding Work partly funded by UNIPI PRA_2022_64 “OSMWARE - hOlistic Sustainable Man-
agement of distributed softWARE systems” project, funded by the University of Pisa, Italy.

Acknowledgements I would like to thank all the colleagues with whom I had the pleasure of
carrying on the research activities that were described in this keynote, starting from Jacopo Soldani,
with whom I shared most of this work, and continuing with (in alphabetical order) Matteo Bogo,
Giuseppe Muntoni, Davide Neri, Luca Rinaldi, and Olaf Zimmermann. I would like to thank also
Hernan Astudillo, Edoardo Baldini, Javier Berrocal, Giuseppe Bisicchia, Stefano Chessa, Giorgio
Dell’Immagine, Stefano Forti, Marco Gaglianese, Juan Luis Herrera, Javad Khalili, Juan M. Murillo,
Federica Paganelli, and Francisco Ponce, with whom I co-authored the more recent work (after
Microservices 2020) cited in the last part of this article.

1 Design principles, architectural smells and refactorings

I started my keynote by recalling the main motivations and characteristics of microservices,
and then I considered the following question:

How can architectural smells affecting design principles of microservices be detected
and resolved via refactoring?

Informally speaking, an architectural smell is a “suspect” that the defined architecture
may affect a design principle. As an example of possible answer to the above question, I
presented the results of the multi-vocal review [8], aimed at identifying the most recognised
architectural smells for microservices, and the architectural refactorings to resolve them.
That review identified seven architectural smells potentially affecting four design principles
of microservices, and 13 refactoring techniques to resolve those architectural smells.

I then presented the µFreshener tool [13], which automatically identifies the architectural
smells present in a microservice-based application, and which allows applying architectural
refactorings to resolve the identified smells.

© Antonio Brogi;
licensed under Creative Commons License CC-BY 4.0

Joint Post-proceedings of the Third and Fourth International Conference on Microservices (Microservices
2020/2022).
Editors: Gokila Dorai, Maurizio Gabbrielli, Giulio Manzonetto, Aomar Osmani, Marco Prandini, Gianluigi
Zavattaro, and Olaf Zimmerman; Article No. 1; pp. 1:1–1:3

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:antonio.brogi@unipi.it
http://pages.di.unipi.it/brogi/
https://orcid.org/0000-0003-2048-2468
https://doi.org/10.4230/OASIcs.Microservices.2020-2022.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


1:2 Microservices Beyond COVID-19

2 From incomplete specifications to running applications

I then moved to considering the question of how to select an appropriate runtime enviroment
for each microservice of an application, during the design phase. As an example of possible
answer to the above question, I presented the TosKeriser tool [3], which automatically
completes a TOSCA application specifications by discovering and including Docker-based
runtime environments providing the software support needed by each microservice.
I then moved to considering the question of how to suitably package each microservice into
the selected runtime environment. As an example of possible answer to the above question, I
presented the TosKose tool [2], which enables deploying microservice-based applications on
top of existing container orchestrators, and to manage each service independently from the
container used to run it.

3 Mining the architecture of microservice-based applications

Manually generating the description of the software architecture of an application consisting
of dozens, when not hundreds, of microservices is a complex, time-consuming, and error-prone
process. Software architects need to be supported by tools capable of automatically mining
the software architecture of their microservice-based application.
As an example of such support, I presented the µMiner tool [13], which automatically extracts
the software architecture of a “ black-box” microservice-based application. Without accessing
the application source code, µMiner derives the software architecture from the declarative
specification of its Kubernetes deployment, by performing both static and dynamic analyses.

4 Concluding remarks

At the end of the keynote, I summarised the toolchain sketched in Figure 1, obtainined by
pipelining the four tools described during the talk.

Figure 1 Toolchain example.

Take-home message: The toolchain can be taken as an example of how a (minimal) modelling
of microservice-based applications can considerably simplify their design and analysis and
allow automating their container-based completion and deployment.
Finally, here is a non-exhaustive list of possible interesting directions for future research on
microservices on which I am working with my group and other colleagues:

improve the techniques for detecting and resolving architectural smells in microservice-
based applications – with alternative techniques (e.g. like [12]) for automatically ex-
tracting the software architecture of an application from its Kubernetes deployment, and
for resolving architectural smells by directly modifying the Kubernetes manfiest of an
application,



A. Brogi 1:3

improve the techniques for detecting security smells in microservice-based applications –
by identifying the most recognised security smells for microservices (e.g. like in [9]), and
by developing automated detectors (e.g. like the extensible KubeHound tool [4]),
improve the tecnhiques for determining the root causes of microservices’ failures [10] and
for explaining how failures propagate across microservices (e.g. as in [11]),
improve the techniques for achieving a lightweight but effective monitoring of microservice-
based applications deployed on a distributed infrastructure [6],
consider sustainaibility aspects during the entire life-cycle of microservice-based applica-
tions [1],
develop and apply continuous reasoning techniques to efficently manage distributed
applications in continuity with existing CI/CD pipelines and monitoring tools (e.g. like
in [5, 7]).

References
1 Edoardo Baldini, Stefano Chessa, and Antonio Brogi. Estimating the environmental impact of

green IoT deployments. Sensors, 23(3), 2023. doi:10.3390/S23031537.
2 Matteo Bogo, Jacopo Soldani, Davide Neri, and Antonio Brogi. Component-aware Orches-

tration of Cloud-based Enterprise Applications, from TOSCA to Docker and Kubernetes.
Software: Practice and Experience, 50:1793–1821, 2020. doi:10.1002/SPE.2848.

3 Antonio Brogi, Davide Neri, Luca Rinaldi, and Jacopo Soldani. Orchestrating incomplete
TOSCA applications with Docker. Science of Computer Programming, 166:194–213, 2018.
doi:10.1016/J.SCICO.2018.07.005.

4 Giorgio Dell’Immagine, Jacopo Soldani, and Antonio Brogi. KubeHound: Detecting Mi-
croservices’ Security Smells in Kubernetes Deployments. Future Internet, 15(7), 2023.
doi:10.3390/FI15070228.

5 Stefano Forti, Giuseppe Bisicchia, and Antonio Brogi. Declarative Continuous Reasoning
in the Cloud-IoT Continuum. Journal of Logic and Computation, 32(2):206–232, 2022.
doi:10.1093/LOGCOM/EXAB083.

6 Marco Gaglianese, Stefano Forti, Federica Paganelli, and Antonio Brogi. Assessing and
enhancing a Cloud-IoT monitoring service over federated testbeds. Future Generation Computer
Systems, 147:77–92, 2023. doi:10.1016/J.FUTURE.2023.04.026.

7 Juan Luis Herrera, Javier Berrocal, Stefano Forti, Antonio Brogi, and Juan M. Murillo.
Continuous QoS-Aware Adaptation of Cloud-IoT Application Placements. Computing,
105:2037–2059, 2023. doi:10.1007/S00607-023-01153-1.

8 Davide Neri, Jacopo Soldani, Olaf Zimmermann, and Antonio Brogi. Design principles,
architectural smells and refactorings for microservices: A multivocal review. Software-Intensive
Cyber-Physical Systems, 35:3–15, 2020. doi:10.1007/S00450-019-00407-8.

9 Francisco Ponce, Jacopo Soldani, Hernan Astudillo, and Antonio Brogi. Smells and Refactorings
for Microservices Security: A Multivocal Literature Review. Journal of Systems & Software,
4(C), 2023. doi:10.1016/J.JSS.2022.111393.

10 Jacopo Soldani and Antonio Brogi. Anomaly Detection and Failure Root Cause Analysis
in (Micro)Service-Based Cloud Applications. ACM Computing Surveys, 55(3):1–39, 2022.
doi:10.1145/3501297.

11 Jacopo Soldani, Stefano Forti, and Antonio Brogi. yRCA: An explainable failure root cause
analyser. Science of Computer Programming, 230, 2023. doi:10.1016/J.SCICO.2023.102997.

12 Jacopo Soldani, Javad Khalili, and Antonio Brogi. Offline Mining of Microservice-Based
Architectures. SN Computer Science, 4, 2023. doi:10.1007/S42979-023-01721-4.

13 Jacopo Soldani, Giuseppe Muntoni, Davide Neri, and Antonio Brogi. The µTOSCA toolchain:
Mining, analyzing, and refactoring microservice-based architectures. Software: Practice and
Experience, 51(7):1591–1621, 2021. doi:10.1002/SPE.2974.

Microservices 2020/2022

https://doi.org/10.3390/S23031537
https://doi.org/10.1002/SPE.2848
https://doi.org/10.1016/J.SCICO.2018.07.005
https://doi.org/10.3390/FI15070228
https://doi.org/10.1093/LOGCOM/EXAB083
https://doi.org/10.1016/J.FUTURE.2023.04.026
https://doi.org/10.1007/S00607-023-01153-1
https://doi.org/10.1007/S00450-019-00407-8
https://doi.org/10.1016/J.JSS.2022.111393
https://doi.org/10.1145/3501297
https://doi.org/10.1016/J.SCICO.2023.102997
https://doi.org/10.1007/S42979-023-01721-4
https://doi.org/10.1002/SPE.2974

	1 Design principles, architectural smells and refactorings
	2 From incomplete specifications to running applications
	3 Mining the architecture of microservice-based applications
	4 Concluding remarks

