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Abstract
We present Modular Choreographies, a new choreographic programming language that features
modular functions. Modular Choreographies is aimed at simplicity: its communication abstraction
follows the simple tradition from the “Alice and Bob” notation. We develop a compiler toolchain
that translates choreographies into modular Java libraries, which developers can use to participate
correctly in choreographies. The key novelty is to compile through the Choral language, which
was previously proposed to define object-oriented choreographies: our toolchain compiles Modular
Choreographies to Choral, and then leverages the existing Choral compiler to generate Java code.
Our work is the first to bridge the simplicity of traditional choreographic programming languages
with the requirement of generating modular libraries in a mainstream language (Java).
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1 Introduction

A recognised best practice for the development of microservices [19] is to coordinate them
according to choreographies: coordination plans that prescribe how processes in a distributed
system should interact with each other, by exchanging messages [32]. However, writing
programs that comply with a choreography falls under the shadow of writing correct concurrent
and distributed software, which is notoriously hard even for experts [26]. This is due to the
well-known state explosion problem: even for small programs, the number of possible ways in
which they could interact can grow exponentially and reach unmanageable numbers [6, 35].

Choreographic programming is a programming paradigm where programs are choreograph-
ies [31]. Its aim is to relieve programmers from implementing choreographies manually, by
following two steps: first, programmers can code the choreography that they wish for by using
a programming language equipped with primitives that make interactions syntactically mani-
fest; then, a compiler automatically generates a working implementation of the choreography.
The theory of choreographic programming has been explored in several directions, including
service-oriented computing [4], adaptability [17], cyber-physical systems [28], functional
correctness [25], and security [27, 2].
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3:2 Modular Choreographies

Choreographic programming languages are inspired by security protocol notation (also
known as “Alice and Bob” notation), which was introduced for the definition of security
protocols [33]. The key primitive of these languages is the interaction term A.expr -> B.x
which reads “A communicates the result of expression expr to B, which stores it in its local
variable x”. The participants A and B are called processes, or roles [12, 3].

Until recently, implementations of choreographic programming languages mainly gen-
erated standalone systems and did not provide means to integrate the output code with
mainstream development practices [31, 4, 17]. The Choral programming language was later
proposed as the first choreographic programming language that can be applied to mainstream
programming [20]. In Choral, a choreography is compiled to a Java library for each process
described in the choreography. A developer can then import this library and invoke it to
play the part of that process in a distributed system.

To achieve Java interoperability, choreographies in Choral are less abstract than usual.
Developers have to take care of how communications are supported by concrete communication
channels, how data types can be expressed in Java, and how choreographic functions should be
structured in terms of classes and methods. Also, the simple interaction term A.expr -> B.x
has to be written as a method invocation instead, like the following.

var x@B = channel.com( MyClass@A.expr() );

The previous line of code reads “variable x at B is assigned the result of invoking the static
method expr of MyClass at A and passing it through an invocation of method com of object
channel (which moves data from A to B)”. Understanding Choral code thus requires more
knowledge. While these aspects are essential for bridging choreographies to real-world Java
programs, they force designers to mix choreographies with implementation details that
diminish their level of abstraction, and thus hinder reusability of choreographies for different
settings.

In this paper, we bridge the gap between the traditional simplicity of choreographic
languages with the practicality of Choral. Specifically, we present the following contributions:

A new choreographic programming language, called Modular Choreographies, and its
formal semantics. Modular Choreographies offers a simple choreographic syntax with the
standard “Alice and Bob” communication primitive (A.expr -> B.x), augmented with
linguistic constructs for writing parametric functions. Our design is purposefully inspired
by previous choreographic languages to be familiar (more details are given in Section 2).
A type system for Modular Choreographies, which checks that functions are invoked
correctly: the processes that enact a function have access to the right data and local
functions (e.g., for encryption). Our type system supports the expected property of
subject reduction [37].
An implementation of Modular Choreographies, consisting of a parser and a type checker.
A tool that, given code in Modular Choreographies, synthesises a program in Choral.
The synthesiser automatically generates classes, methods, and the necessary usages of
channels in order to move data correctly as instructed by the choreography.

Taken together, our contributions and Choral enable a new development methodology for
implementing software that follows choreographies correctly, which we depict below.

Modular Choreographies Our tool−−−−−→︸ ︷︷ ︸
This work

Choral Choral compiler−−−−−−−−−−→ Java Libraries︸ ︷︷ ︸
From [20]
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That is, developers can use Modular Choreographies to design protocols expressed in a
simple choreographic language and generate valid Choral code (using our tool), from which
compliant Java libraries can be automatically generated (using the compiler from [20]). This
gives choreography designers the option of using a simple language, without giving up on
Java interoperability. If the decisions made by our tool when synthesising the Choral code
need to be refined, it can be done before the Java libraries are generated; for example, it is
possible to change method names or the type used to denote data that can be transmitted
(the default is Serializable). This is enabled by our two-step approach and, we believe, is
better than editing the Java libraries directly: once we reach that level, code does not have a
choreographic view anymore and therefore introducing concurrency bugs is much easier.

Using Choral as intermediate technology also gives the pragmatic advantage of reusing
what already exists to a reasonable extent. In particular, we do not implement yet another
procedure for compiling choreographies to separate distributed programs – a process known
as Endpoint Projection [3]. This allowed us to focus on the design of Modular Choreographies
and the novel aspect of connecting “Alice and Bob” choreographies to object orientation.

Structure of the Paper. Section 2 discusses relevant related work. Modular Choreographies
and its type system are presented in Section 3. We recap useful background knowledge on
Choral and illustrate how our implementation works in Section 4.1 Conclusions and future
work are given in Section 5.

2 Related Work

We discuss here the most related work and highlight important differences. The reader inter-
ested in an introduction to choreographic languages and their compilation can consult [32].

The design of Modular Choreographies is inspired by the theories of Procedural Cho-
reographies [11] and Recursive Choreographies [32]. Notably, it inherits the features that
processes (can) have mutable states, choreographies are parameterised over the processes that
enact them, and function calls can have continuations (general recursion). Differently from
these theories, Modular Choreographies includes linguistic constructs for defining and using
functions that contain choreographies more modularly, motivated by the intention of using
our language for practical programming. Relevant changes include: functions can have local
variables; choreographies can be parameterised over the local functions that processes can
run; the capability of returning values from a function, possibly at many different processes;
and a type system for checking that procedures are invoked by passing arguments of the right
types. We deal with the combination of mutable state, value return, and general recursion by
introducing call frames to the operational semantics of choreographies. Procedures with local
scopes were already present in the first choreographic programming language, Chor [4, 31],
but they could not be parameterised over processes nor local functions. Other implemented
choreographic programming languages that predate our work but do not offer modularity
include AIOCJ [17] and hacc [9]. One choreographic programming language that does support
modularity is HasChor, an embedded domain-specific language in Haskell [40]. Differently
from our toolchain (and Choral, which we leverage), HasChor requires each participant
to know the entire choreography in order to be executed, whereas we compile separate
individual libraries; also, it injects broadcast communications for coordinating choices that

1 At the time of this writing, the latest version of our implementation is available at https://github.
com/chorlang/modular-choreographies.
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are not always necessary in our case, while we use Choral’s implementation of the “merging”
operator [3] to detect that choices are communicated correctly among participants (a property
known as “knowledge of choice” [5, 32]).

Our development is also based on Choral, which introduced the first integration between
choreographic languages and mainstream programming abstractions [20]. In particular,
Choral’s types give control over the APIs that are generated in the target Java libraries. We
use this control extensively to compile APIs that allow programmers to pass parameters to
our Modular Choreographies (e.g., functions and data locally available at processes) and to
use the values that choreographies return. Choral is also the first choreographic programming
language that introduced returning values and higher-order choreographies (choreographies
parameterised over choreographies), but unlike Modular Choreographies it does not offer a
syntax based on the “Alice and Bob” notation and it does not come with a formal semantics.

Previous work studied theories of choreographic languages based on the “Alice and Bob”
notation for several settings, including verification [8, 25, 7], cyberphysical systems [29, 28],
security [27, 2], web services [3], and transactions [41]. Modular Choreographies has the
potential of being an interesting basis for the future application of these theories.

Another paradigm related to choreographic programming is multitier programming,
which shares the practice of compiling a program into the distributed implementations of
multiple participants [43]. Differently from choreographic programming, multitier programs
are not choreographies. Multitier code describes the local computation that a participant
performs from its own viewpoint. However, this viewpoint can be switched to that of another
participant by performing a “hop” that changes the scope of variables. For example, a
function declared to be located at the client can seamlessly invoke a function declared to
be located at the server. The program would then be split by a compiler to code for the
client and server, and the hop would typically be implemented at runtime by a coordination
middleware. The control that choreographies give over how participants communicate is
known to be important for writing faithful implementations of protocols [30]. Nevertheless,
at least for some multitier languages, it is possible to translate a multitier program into
a choreography that implements it, which basically boils down to synthesising a precise
interaction protocol that runs the multitier program [21].

There are other tools for the generation of libraries that aid developers with following
communication flows, based on “global types”: abstractions of choreographies that specify
only the types of data to be communicated [23]. For example, in [39] global types are
compiled into local specifications for the communication behaviour that each participant
should implement, which are then used to generate libraries with fluid APIs that aid developers
with ordering send/receive actions correctly (like o.send(..).receive(..).send(..)). The
programmer must then implement these actions by hand. This is a less direct approach
than choreographic programming, where the programmer just needs to define the source
choreography and then correct implementations are automatically generated.

3 Modular Choreographies

Syntax. The syntax of Modular Choreographies is given by the grammar in Figure 1. We
denote lists of similar elements with overlines e.g., writing e for e1, . . . , en, and optionally
indicating a index variables e.g., ei. Processes are identified by process names (p, q, . . . ), they
execute concurrently, are equipped with a local (private) memory that supports dynamic
allocation, and can evaluate (local) expressions (e). We fix a minimal syntax for local
expressions: v ranges over value literals, id ranges over identifiers for variables and (local)
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e ::= c | id(e) Local expressions
c ::= v | id
b ::= int | string | boolean | double | . . . Local data types
t ::= b | b -> b Local types

C ::= ε | I;C Choreographies
I ::= var p.id:b Variable declaration

| p.id = e Variable assignment
| var p.id:b = e

| p.e -> q.id Value communication
| p.e -> var q.id:b

| p -> q[l] Label selection
| if p.e {C} else {C} Conditional

| p.(id) = ID(p.(e)) Function call
| return p.(e) Function return

C ::=
{

ID(p:proc(id:t)):(p:proc(b)){C}
}

i∈I
Function definitions

Figure 1 Modular Choreographies, syntax (syntactic sugar is greyed).

functions, and id(e) denotes application. We denote the set of value literals for a local data
type Values(b). Choreographies (C) are sequences of choreographic instructions I with ε

denoting an empty sequence. In the instruction var p.id:b, p declares a variable id with type
b; and in p.id = e it assigns to id of the result of evaluating the expression e; var p.id:b = e,
p performs both a declaration and an assignment. In p.e -> q.id, p communicates the
result of evaluating the local expression e to q which stores it in its local variable id and in
p.e -> var q.id:b the q also declares the variable id. In p -> q[l], p communicates label l

(a constant distinct from values used by local computation) to q; this type of communication
does not alter the state of either process and is used to propagate decisions about control
flow (as common for choreographic languages). In if p.e {C} else {C} , p evaluates
the (boolean) guard e and the choreography proceeds with either branch accordingly. In
p.(id) = ID(p.(e)), p call the choreographic function ID on the values obtained evaluating
the formal arguments p.(e) (each argument is at a single process) and assign the result to
the variables p.(id). Finally, in return p.(e), each process participating in a function call
returns to the caller with the values obtained by evaluating its local expressions as result.
Note that choreographic functions may return multiple values at multiple processes, e.g., a
function for establishing a shared secret among two parties will return a value at each of
them as illustrated in the next example.

▶ Example 1. The Diffie-Hellman key-exchange protocol [18] allows two parties a and b to
establish a shared secret key for symmetric encryption. The protocol assumes that the two
participants share a prime number m and a primitive root modulo m, g, that each has a private
key privKey, and that both can perform modular exponentiation exp. To implement this
protocol we define a choreographic function DH that, for each participant, takes the arguments
privKey:int, g:int, m:int, exp:(int,int,int)->int and returns a value of type int.

Microservices 2020/2022



3:6 Modular Choreographies

// Diffie-Hellman key-exchange protocol
DH(a:proc(privKey:int,g:int,m:int,exp:(int,int,int)->int),

b:proc(privKey:int,g:int,m:int,exp:(int,int,int)->int)
):(a:proc(int),b:proc(int)) {
a.exp(privKey,g,m) -> var b.pubKey:int; // a computes and sends its public key to b
b.exp(privKey,g,m) -> var a.pubKey:int; // b computes and sends its public key to a
var a.key:int = exp(privKey,pubKey,m); // a computes its copy of the shared secret
var b.key:int = exp(privKey,pubKey,m); // b computes its copy of the shared secret
return a.key, b.key; // a and b return the shared secret

}
MC Code

▶ Example 2. In this example we provide an implementation in MC of the Single Sign
On protocol defined in [32] using Recursive Choreographies. In this protocol a client c
gains access to a service s by getting its credentials checked by a third party credential
authentication service a. If the check succeeds the service s will issue a token to c otherwise
they will proceed with another attempt.

SSO(c:proc(creds:()->int),
s:proc(newToken:()->int),
a:proc(valid:(int)->boolean)

):(c:proc(int)) {
c.creds() -> var a.x:int // the client sends credentials to the authority
var c.t:int
if a.valid(x) // the authority checks the credentials it received
{

a -> s[OK] // and informs the service it guarantees for the client
s -> c[TOKEN] // which informs the client it will receive a token
s.newToken() -> c.t // and issues a token

} else {
a -> s[KO]
s -> c[ERROR]
c.t = SSO(c.creds,s.newToken,a.valid) // retry

}
return c.t // return the token at the client

}
MC Code

Semantics. We specify the expected behaviour of Modular Choreographies by means of an
operational semantics which we will later use to validate the design of the MC type system.
Our design follows the same principles used by the models we extend ([12, 11]) but dispenses
from out-of-order execution of actions at distinct processes (e.g., in p.id = e;q.id = e, the
processes p and q can, in practice, carry out their local computations independently).2 The
semantics can be readily extended to account for this aspect following the same approach
based on delay actions used by loc. cit. and minor changes to our proofs. However, the return
on this investment in complexity of the model is limited and does not result in stronger
results for the aims of this work since Choral (the compilation target for MC) lacks a formal
semantics.

2 This simplification is not a first in the literature of choreographic programming: [13] defines both
sequential and concurrent semantics for its choreographic language arguing that the former is precise
enough to support reasoning about program correctness; [12, 14] shows that for establishing many results
of interest it is sufficient to consider “head transitions” which correspond to establishing a sequential
semantics.
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⟨Γ, R, Σ⟩ −→C ⟨Γ′, R′, Σ′⟩

p.id /∈ Γ
⟨Γ,var p.id:b;C, Σ⟩ −→C ⟨Γ, p.id : b, C, Σ[p.id := default(b)]⟩ SDec

Σ(p) ⊢ e ↓ v

⟨Γ, p.id = e;C, Σ⟩ −→C ⟨Γ, C, Σ[p.id := v]⟩ SAss

Σ(p) ⊢ e ↓ v

⟨Γ, p.e -> q.id;C, Σ⟩ −→C ⟨Γ, C, Σ[q.id := v]⟩ SCom

⟨Γ, p -> q[l];C, Σ⟩ −→C ⟨Γ, C, Σ⟩ SSel

Σ(p) ⊢ e ↓ v

⟨Γ, if p.e {Ctrue} else {Cfalse};C, Σ⟩ −→C ⟨Γ, Cv # C, Σ⟩ SCond

Σ(pk) ⊢ ek,l ↓ ck,l ID(qk:proc(idk,l:tk,l)):(q:proc(b)){C ′} ∈ C

⟨Γ, p.(id) = ID(pk.(ek,l));C, Σ⟩ −→C

⟨Γ, ri.(idi,j) = ⟨pk.idk,l : tk,l, C ′[pk/qk], Σ[pk.idk,l := ck,l]⟩;C, Σ⟩

SCall

⟨Γ′, R′, Σ′⟩ −→C ⟨Γ′, R′, Σ′⟩

⟨Γ, p.(id) = ⟨Γ′, R′, Σ′⟩;C, Σ⟩ −→C ⟨Γ, r.(id) = ⟨Γ′, R′, Σ′⟩;C, Σ⟩
SCallRT

Σ′(pi) ⊢ ei,j ↓ vi,j

⟨Γ, pi.(idi,j) = ⟨Γ′, return pi.(ei,j), Σ′⟩;C, Σ⟩ −→C ⟨Γ, C, Σ[pi.idi,j := vi,j ]⟩
SCallRet

Figure 2 Modular Choreographies, semantics.

The semantics of MC is given as a transition whose states are triples ⟨Γ, R, Σ⟩ where:
Γ tracks the variables and functions available at each process together with their type.
R is a choreography term (in the syntax of MC extended with runtime terms that we
will introduce below).
Σ tracks the memory state of each process.

We represent typing environments using the grammar below assuming processes occur at
most once in Γ and identifiers occur at most once in each γ.

Γ ::= · | Γ, p.γ γ ::= · | γ, id : t

We refer to Γ and γ as global and local, respectively and write Γ(p) for the environment γ

local to p in Γ (given that p occurs in Γ). We extend the syntax of MC with a runtime term
for representing the call stack:

R ::= C | p.(id) = ⟨Γ, R, Σ⟩;C

In the p.(id) = ⟨Γ, R, Σ⟩;C, R is executed under Γ and Σ and the result of this execution
will be stored under p.(id) before continuing with C. (This design avoids the need to define
frames for Γ and Σ.) The memory state Σ can be regarded as a mapping assigning each
process p to its local memory state (denoted as Σ(p)). We write Σ[p.id := v] for the state
obtained by assigning v to p.id in Σ. We assume that each basic type b comes with a default
value and denote this value by default(b).

Microservices 2020/2022



3:8 Modular Choreographies

To evaluate local expressions we assume an evaluation function that takes a local state
as a parameter. We write Σ(p) ⊢ e ↓ c to denote that the local expression e evaluates to c

under the state Σ(p) (local at p).
Transitions are specified by the derivation rules reported in Figure 2. Rules SDec–SSel

capture the intuition behind the different choreographic primitives given earlier. Rule SCond
models the behaviour of a conditional where p chooses which choreography to execute based
on the outcome of evaluating its guard (locally). In the transition target, Cv # C denotes the
choreography obtained by “grafting” C onto each continuation point (ε not guarded by a
return) in Cv according to the recursive definition below.

C # C ′ =


C ′ if C = ε

C if C = return p.(e);ε

I;(C # C ′) otherwise

Rules SCall–SCallRet model the initialisation, execution, and termination of a function
call. Rule SCall creates a fresh frame for the execution of function ID where the environment
and choreography are given by the formal parameters of the function and its body where all
processes (qk) are instantiated with those provided by the call site (pk), and the memory
state is initialised with the actual parameters (ck,l). Observe that actual parameters can be
basic values (v) or identifiers (id) since functions in MC can be parametrised in the names of
local functions. Rule SCallRT allows for the execution of a choreography in a call frame.
Rule SCallRet models a call returning a result by removing the corresponding frame and
storing the result in the state of the caller.

Typing and progress. We equip MC with a typing discipline that checks that variables,
values, and functions (local or choreographic) are used according to their declared type
and that results returned by choreographic functions are of the expected type. The typing
judgments and derivation rules that compose the type system are summarised in Figure 3.

The typing discipline uses the local types b and t and signatures of choreographic
functions found in the syntax of MC. Additionally, it uses types given by the following
grammar to express whether every, some, or none of the exit points (ε and return p.(e)) of
a choreography return values of a given type.

S ::= {B} | {⊥} | {⊥, B} B ::= p:proc(b)

A type of the first form describes a choreography where every exit point returns values
according to B, a type of the second describes a choreography where every exit point is
without a return instruction, and the third describes a choreography with exit point for both
cases (returning values of type B or no return at all). This information will be important for
choreographies with conditionals where only few branches return. To combine information
about exit points in different branches of a conditional we introduce a “join” operation
S1⋎S2 which is defined as S1 ∪S2 wherever S1 and S2 agree on the type of returned values in
the sense that B1 ∈ S1, B2 ∈ S2 =⇒ B1 = B2. For instance, {⊥} ⋎ {B} and {⊥} ⋎ {⊥, B}
both yield {⊥, B} whereas {p.int} ⋎ {p.boolean} is undefined.

Additionally to global (Γ) and local (γ) typing environments, the typing discipline relies
on separate typing environments (∆) for recording the choreographic functions available and
their signature. These environments are represented using the grammar below under the
assumption that each ID occurs at most once.

∆ := · | ∆, ID : qi:proc(ti,k) → qi:proc(bi,j)
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γ ⊢ e : t

v ∈ Values(b)
γ ⊢ v : b

TLit
id : b -> b ∈ γ

γ ⊢ id : b -> b
TId γ ⊢ id : b1, . . . , bn -> b γ ⊢ ei : bi

γ ⊢ id(e1, . . . , en) : b
TApp

Γ ⊢ Σ

· ⊢ Σ
Γ(p) ⊢ Σ(p)(id) : t Γ ⊢ Σ

Γ, p.id : t ⊢ Σ

∆; Γ ⊢ R : S

∆; Γ ⊢ ε : {⊥} TNil
Γ(pi) ⊢ ei,j : bi,j

∆; Γ ⊢ return pi.(ei,j); : {pi:proc(bi,j)}
TRet

id /∈ γ ∆; Γ, p.(γ, id : b) ⊢ C : S

∆; Γ, p.γ ⊢ var p.id:b;C : S
TDec

Γ(p) ⊢ e : b Γ(q) ⊢ id : b ∆; Γ ⊢ C : S

∆; Γ ⊢ p.e -> q.id;C : S
TCom

Γ(p) ⊢ id : b Γ(p) ⊢ e : b ∆; Γ: b ⊢ C : S

∆; Γ ⊢ p.id = e;C : S
TAss

p, q ∈ Γ ∆; Γ ⊢ C : S

∆; Γ ⊢ p -> q[l];C : S
TSel

Γ(p) ⊢ e : boolean ∆; Γ ⊢ Ci : Si ⊥ /∈ (S1 ⋎ S2) =⇒ C3 = ε

∆; Γ ⊢ if p.e {C1} else {C2};C3 : S1 ⋎ S2 ⋎ S3
TCond

Γ ⊢ pk.ei,k : ti,k Γ ⊢ pi.idi,j : bi,j ∆; Γ ⊢ C : S

∆, ID : qi:proc(ti,k) → qi:proc(bi,j); Γ ⊢ pi.(idi,j) = ID(pi.(ei,k));C : S
TCall

∆; Γ′ ⊢ R : {pi:proc(bi,j)} Γ′ ⊢ Σ′ Γ ⊢ pi.idi,j : bi,j ∆; Γ ⊢ C : S

∆; Γ ⊢ pi.(idi,j) = ⟨Γ′, R, Σ⟩;C : S
TCallRT

∆ ⊢ C

ID : pi:proc(ti,j) → pi:proc(bi,k) ∈ ∆ ∆; pi.idi,j : ti,j ⊢ C : {pi:proc(bi,k)}

∆ ⊢ ID(pi:proc(idi,j:ti,j)):pi:proc(bi,k) {C}
TDef

Figure 3 Modular Choreographies, typing.

Typing judgments are of four forms. A judgment γ ⊢ e : t indicates that the local
expression e has type t under the local typing environment γ. A judgment Γ ⊢ Σ signifies
that the memory state Σ is consistent with the declarations in Γ i.e., that maps each symbol
defined in Γ to an element of the expected type. A judgment ∆; Γ ⊢ R : S indicates that
under ∆ and Γ, the (runtime) choreography R has return type S. Rules TNil and TRet
type the exit points of a choreography and Rule TCond combines the information about
exit points in each branch (C1, C2) and in the continuation (C3) ensuring that if values
are returned they are all of the same type (by definition of ⋎) and that the continuation is
empty whenever all exit points in both branches return (i.e., ⊥ /∈ C1 ⋎ C2). Rule TCall
ensures that the called function is declared and that the actual parameters (pi.ei,k) and
target variables (pi.idi,j) are of the types specified by the function signature (qi.ti,k for
formal parameters and qi.bi,k for results, respectively). Rule TCall ensures that the type
of the target variables (pi.idi,j) for the call under execution (R) coincides with the type
of the values returned by (every) exit point for the call. The remaining inference rules for
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∆; Γ ⊢ R : S follow the intuition behind the different choreographic primitives. Observe
that rule selection is completely syntax-driven: the outermost construct of a term identifies
uniquely identifies which rule to apply. Finally, a judgment ∆ ⊢ C means that the function
definitions in C agree with the signatures declared in ∆ and are well-typed. The last property
is captured by Rule TDef which states that the body of a choreographic function has the
expected return type under ∆ and the environment Γ given by its formal arguments.

In the remainder we assume subject reduction for local expressions i.e., that evaluating a
well-typed expression in a memory state compatible with the environment used to type the
expression yields a result of the expected type.

▶ Assumption 3. If Γ ⊢ Σ, Γ(p) ⊢ e : t, and, Σ(p) ⊢ e ↓ c, then Γ(p) ⊢ c : t.

Under Assumption 3, well-typed configurations can only evolve into well-typed configurations
i.e., MC enjoys subject reduction.

▶ Theorem 4 (Subject reduction). If ∆ ⊢ C, ∆; Γ ⊢ R : S, Γ ⊢ Σ and ⟨Γ, R, Σ⟩ −→C
⟨Γ′, R′, Σ′⟩, then Γ′ ⊢ Σ′ and ∆; Γ′ ⊢ R′ : S′ for S′ ⊆ S.

Proof. By nested induction on the derivation of ∆; Γ ⊢ R : S and ⟨Γ, R, Σ⟩ −→C ⟨Γ′, R′, Σ′⟩.
Consider the case of Rule TDec. Then, R = var p.id:b;C, p.id /∈ Γ, and ∆; Γ ⊢ C : S.
The only case for ⟨Γ, R, Σ⟩ −→C ⟨Γ′, R′, Σ′⟩ is that of Rule SDec and thus Γ′ = Γ, p.id : b,
R′ = C, and Σ′ = Σ[p.id := default(b)]. By definition default(b) ∈ Values(b) and thus
Γ′ ⊢ Σ′.
Consider the case of Rule TCom. Then, R = p.e -> q.id;C, Γ(p) ⊢ e : b, Γ(q) ⊢ id : b,
and ∆; Γ ⊢ C : S. The only case for ⟨Γ, R, Σ⟩ −→C ⟨Γ′, R′, Σ′⟩ is that of Rule SCom
and thus Γ′ = Γ, R′ = C, and Σ′ = Σ[q.id := v] where Σ(p) ⊢ e ↓ v. It follows from
Γ(p) ⊢ e : b and Assumption 3 that Γ′ ⊢ Σ′.
Consider the case of Rule TCond. Then, R = if p.e {C1} else {C2};C3, Γ(p) ⊢
e : boolean, and ∆; Γ ⊢ Ci : Si for i ∈ {1, 2, 3}. It follows from Γ(p) ⊢ e : boolean, Γ ⊢ Σ
and Assumption 3 that Σ(p) ⊢ e ↓ v for v ∈ Values(boolean) and thus that the only
case for ⟨Γ, R, Σ⟩ −→C ⟨Γ′, R′, Σ′⟩ is that of Rule SCond. If Σ(p) ⊢ e ↓ true then
R′ = C1 # C3, S′ = S1 ⋎ S3, Γ′ = Γ, Σ′ = Σ. To derive ∆; Γ′ ⊢ C ′ : S′ it suffices to
take all applications Rule TNil in the derivation of ∆; Γ ⊢ C1 : S1 that correspond to an
occurrence of ε replaced with C3 in C1 #C3 and replace them with a copy of the derivation
for ∆; Γ ⊢ C3 : S3. By definition of ⋎, S′ ⊆ S. The case for Σ(p) ⊢ e ↓ false is similar.
Consider the case of Rule TCallRT. Then, R = pi.(idi,j) = ⟨Γ1, R1, Σ1⟩;C, ∆; Γ1 ⊢
R1 : {pi:proc(bi,j)}, Γ1 ⊢ Σ1, Γ ⊢ pi.idi,j : bi,j , and ∆; Γ ⊢ C : S. Any derivation
of ⟨Γ, R, Σ⟩ −→C ⟨Γ′, R′, Σ′⟩ starts with an application of either Rule SCallRet or
Rule SCallRT.

In the first case, R1 = return pi.(ei,j), R′ = C, Γ′ = Γ, Σ′ = Σ[pi.idi,j := vi,j ] where
Σ1(pi) ⊢ ei,j ↓ vi,j , and S′ = S. By ∆; Γ1 ⊢ R1 : {pi:proc(bi,j)} and Assumption 3,
vi,j ∈ Values(bi,j) and thus Γ′ ⊢ Σ′.
In the second case, ⟨Γ1, R1, Σ1⟩ −→C ⟨Γ2, R2, Σ2⟩, R′ = pi.(idi,j) = ⟨Γ2, R2, Σ2⟩;C,
Γ′ = Γ, Σ′ = Σ, and S′ = S. By inductive hypothesis, Γ2 ⊢ Σ2 and ∆; Γ2 ⊢
R2 : {pi:proc(bi,j)} and by Rule TCallRT, ∆; Γ′ ⊢ R′ : S′.

Remaining cases are straightforward adaptations of the ones above. ◀

Well-typed choreographies enjoy progress: a choreography equipped with memory com-
patible with its typing environment can always perform a transition unless it is terminated
(it consists of a return instruction or no instruction at all).
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▶ Theorem 5 (Progress). If ∆ ⊢ C, ∆; Γ ⊢ R : S, Γ ⊢ Σ, then either
⟨Γ, R, Σ⟩ −→C ⟨Γ′, R′, Σ′⟩ or
R is either ε or a return (i.e., has form return p.(e);).

Proof. By induction on the derivation for ∆; Γ ⊢ R : S.
Consider the case of Rule TNil. Then, R = ε and ⟨Γ, ε, Σ⟩ does not admit any transition.
Consider the case of Rule TRet. Then, R = return p.(e); and ⟨Γ, R, Σ⟩ does not
admit any transition.
Consider the case of Rule TDec. Then, R = var p.id:b;C, p.id /∈ Γ, and ∆; Γ ⊢ C : S.
By Rule SDec, ⟨Γ, R, Σ⟩ −→C ⟨Γ′, C, Σ′⟩ where Γ′ = Γ, p.id : b and Σ′ = Σ[p.id :=
default(b)].
Consider the case of Rule TCom. Then, R = p.e -> q.id;C, Γ(p) ⊢ e : b, Γ(q) ⊢ id : b,
and ∆; Γ ⊢ C : S. It follows from Γ(p) ⊢ e : b, Γ ⊢ Σ and Assumption 3 that Σ(p) ⊢ e ↓ v

for v ∈ Values(b), By Rule SCom, ⟨Γ, R, Σ⟩ −→C ⟨Γ, C, Σ′⟩ where Σ′ = Σ[q.id := v].
Consider the case of Rule TCond. Then, R = if p.e {C1} else {C2};C3, Γ(p) ⊢
e : boolean, and ∆; Γ ⊢ Ci : Si for i ∈ {1, 2, 3}. It follows from Γ(p) ⊢ e : boolean and Γ ⊢
Σ that Σ(p) ⊢ e ↓ v for v ∈ Values(boolean). By Rule SCond, ⟨Γ, R, Σ⟩ −→C ⟨Γ, R′, Σ′⟩
and where R′ is C1 # C3 if Σ(p) ⊢ e ↓ true and C2 # C3 otherwise.
Consider the case of Rule TCall. Then, R = pi.(idi,j) = ID(pi.(ei,k));C, ∆; Γ ⊢ C : S,
∆ = ∆′, ID : qi:proc(ti,k) → qi:proc(bi,j), Γ(pi) ⊢ ei,k : ti,k, and Γ(pi) ⊢ idi,j : bi,j . It
follows that ID(qi:proc(idi,k:ti,k)):(qi:proc(idi,j:bi,j)){C ′} ∈ C, Σ(pi) ⊢ ei,k ↓ ci,k,
and Γ(pi) ⊢ ci,k : ti,k. By Rule SCall, there is ⟨Γ, R, Σ⟩ −→C ⟨Γ, R′, Σ⟩ with R′ =
pi.(idi,j) = ⟨pi.idi,k : ti,k, C ′[pi/qi], Σ[pi.idi,k := ci,k]⟩;C.
Consider the case of Rule TCallRT. Then, R = pi.(idi,j) = ⟨Γ1, R1, Σ1⟩;C, ∆; Γ1 ⊢
R1 : {pi:proc(bi,j)}, Γ1 ⊢ Σ1, Γ ⊢ pi.idi,j : bi,j , and ∆; Γ ⊢ C : S. Because of its type,
R1 cannot be ε. By inductive hypothesis, either ⟨Γ1, R1, Σ1⟩ −→C ⟨Γ2, R2, Σ2⟩ or
R1 = return pi.(ei,j);. Assume the first case. By Rule SCallRT, ⟨Γ, R, Σ⟩ −→C

⟨Γ, R′, Σ⟩ for R′ = pi.(idi,j) = ⟨Γ2, R2, Σ2⟩;C. Assume the second case. By hypothesis,
Σ1(pi) ⊢ ei,j ↓ vi,j and by Rule SCallRet, ⟨Γ, R, Σ⟩ −→C ⟨Γ, C, Σ[pi.idi,j := vi,j ]⟩.
Remaining cases are straightforward adaptations of the ones above. ◀

4 Translation to Choral

In this section we describe how our tool can translate choreographies in our language to Java
implementations via the Choral language [20].

Choral is an object-oriented choreographic programming language: in Choral classes
and interfaces represent distributed data types parametric in the processes participating in
them. For instance, the snippet below contains the definition of a Choral class Tuple2 that
implements a generic tuple distributed over two processes (A and B) each holding one of the
two components of the tuple (left is stored at A and right at B).

public class Tuple2@(A,B)<L@C,R@D> {
public final L@A left; public final R@B right;
public Tuple2(L@A left, R@B right) {
this.left = left; this.right = right;

}
}

Choral Code

The Choral compiler generate Java implementation for each participant of a Choral type.
For instance, Tuple2 is compiled to the following Java classes.
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// Implementation of Tuple2 for A
public class Tuple2_A<L,R> {
public final L left;
public Tuple2_A(L left) {

this.left = left;
}

}
Java Code

// Implementation of Tuple2 for B
public class Tuple2_B<L,R> {

public final R right;
public Tuple2_B(R right) {

this.right = right;
}

}
Java Code

Types like Tuple2 above allow us to represent in Choral the distributed return of MC.
For instance, return (a.true,b.5) is translated into return new Tuple2@(A,B)<Boolean,
Integer>(true@A,5@B).

Differently from other choreographic languages like MC, Choral does not fix a communic-
ation primitive. Instead, communication can be programmed directly: The Choral standard
library provides a framework with several kinds of channels but programmers can provide
their own by writing them directly in Choral or by wrapping implementations written in Java
into Choral types. For instance, the Choral standard library defines the following interface to
represent a generic channel between two processes, abstracted by A and B, for transmitting
data of a given type, abstracted by the type parameter T.

public interface SymDataChannel@(A,B)<T@C> {
public <M@C extends T@C> M@B com(M@A message);
public <M@C extends T@C> M@A com(M@B message);

}
Choral Code

Data transmission is performed by invoking the (overloaded) method com which takes any
value of a subtype M of T located at one process, say A, and returns a value of the same type
at the other process, say B. In the example below, A transmits 5 to B using the channel chAB.

SymDataChannel@(A,B)<Serializable> chAB = /* ... */
Integer@B x = chAB.<Integer>com(5@A);

Choral Code

The interface SymChannel extends SymDataChannel with methods for selecting labels (which
are represented as enums).

public interface SymChannel@(A,B)<T@C> extends SymDataChannel@(A,B)<T> {
public <L@C extends Enum@C<L>> L@B select(L@A label);
public <L@C extends Enum@C<L>> L@A select(L@B label);

}
Choral Code

Building on these features of Choral (and standard constructs like assignments and
conditionals) we can translate any choreography function written in MC into Choral. Given
a choreography function, our translation generates a Choral class with the same name and
parametrised in the participants of the function. For instance, the choreographic function
DH from Example 1 is compiled to a Choral class DH@(A,B), as shown in the example
below. This class exposes a single static method run which implements the behaviour of
the choreographic function. In addition to the parameters specified by the choreography
function, run takes a SymChannel for each pair of participants (we follow a lexicographic
order to avoid ambiguity). The body of the method is generated by mapping communications
and selections to invocations of the methods exposed by these channels, and other constructs
homomorphically. We illustrate the translation in the examples below, we include the original
MC line as comments for readability.



L. Cruz-Filipe, A. Madsen, F. Montesi, and M. Peressotti 3:13

▶ Example 6. Consider the choreographic function DH from Example 1, our tool generates
the following Choral implementation for it (comments are added for readability).

public class DH@(A,B) {
public static Tuple2@(A,B)<Integer,Integer> run(
/* channel between A and B */
SymChannel@(A,B)<Serializable> chAB,
/* parameters for A: proc(privKey:int,g:int,m:int,exp:(int,int,int)->int) */
Integer@A privKey_A, Integer@A g_A, Integer@A m_A,
Function3@A<Integer,Integer,Integer,Integer> exp_A,
/* parameters for B: proc(privKey:int,g:int,m:int,exp:(int,int,int)->int) */
Integer@B privKey_B, Integer@B g_B, Integer@B m_B,
Function3@B<Integer,Integer,Integer,Integer> exp_B

) {
// a computes and sends its public key to b
// a.exp(privKey, g, m) -> var b.pubKey:int;
Integer@B pubKey_B = chAB.<Integer>com( exp_A(privKey_A, g_A, m_A) );
// b computes and sends its public key to a
// b.exp(privKey, g, m) -> var a.pubKey:int;
Integer@A pubKey_A = chAB.<Integer>com( exp_B(privKey_B, g_B, m_B) );
// a computes its copy of the shared secret
// var a.key:int = exp(privKey, pubKey, m);
Integer@A key_A = exp_A(privKey_A,pubKey_A,m_A) );
// b computes its copy of the shared secret
// var b.key:int = exp(privKey, pubKey, m);
Integer@B key_B = exp_B(privKey_B, pubKey_B, m_B) );
// a and b return the shared secret
// return a.key, b.key;
return new Tuple2@(A,B)<Integer,Integer>(key_A,key_B);

}
}

Choral Code

▶ Example 7. Consider the choreographic function SSO from Example 2, our tool generates
the following implementation in Choral for it.

public class SSO@(C, S, A) {
public static Integer@C run(
/* channels */
SymChannel@(A, C)<Serializable> chAC,
SymChannel@(C, S)<Serializable> chCS,
/* parameters for C: proc(creds:()->int) */
Supplier@C<Integer> creds_C,
/* parameters for S: proc(newToken:()->int) */
Supplier@S<Integer> newToken_S,
/* parameters for A: proc(valid:(int)->boolean) */
Function@A<Integer,Boolean> valid_A,

) {
// c.creds() -> var a.x:int
Integer@A x = chAC.<Integer>com( creds_C() );
// var c.t:int;
Integer@C t_C;
// if a.valid(x)
if (valid_A(x)) {

// a -> s[OK];
chAS.<Label>select(Label@A.OK);
// s -> c[TOKEN];
chCS.<Label>select(Label@S.TOKEN);
// s.newToken() -> c.t;
t_C = chCS.<Integer>com( newToken_S() );

} else {
// a -> s[KO];
chAS.<Label>select(Label@A.KO);
// s -> c[ERROR]; Choral Code
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chCS.<Label>select(Label@S.ERROR);
// c.t = SSO(c.creds, s.newToken, a.valid);
t_C = SSO@(C, S, A).run(chAC, chCS, creds_C, newToken_S, valid_A);

}
// return c.t;
return t_C;

}
}

Choral Code

The Choral code generated by our translation is correct and well-typed, provided the
original choreography is also well-typed. To enforce this requirement, our tool implements
the typing discipline described in Section 3. First, the typing environment ∆ is populated
using the signatures of the function definitions provided to the tool. Then, each procedure
definition if checked as specified by Rule TDef using the syntax to guide the selection of the
corresponding typing rule.

To obtain Java implementations, we then rely on the Choral compiler.

▶ Example 8. Continuing Example 6, the Choral compiler produces the following imple-
mentation for A (the one for B is similar).

public class DH_A {
public static Tuple2_A<Integer,Integer> run(

SymChannel_A<Serializable> chAB,
Integer privKey_A, Integer g_A, Integer m_A,
Function3<Integer,Integer,Integer,Integer> exp_A

) {
chAB.com<Integer>( exp_A(privKey_A,g_A,m_A) );
Integer pubKey_A = chAB.com<Integer>();
Integer key_A = exp_A(privKey_A,pubKey_A,m_A) );
return new Tuple2_A<Integer,Integer>(key_A);

}
}

Java Code

▶ Example 9. Continuing Example 7, the Choral compiler produces the following imple-
mentations for A, C, and S.

public class SSO_A {
public static void run(
SymChannel_A<Serializable> chAC,
SymChannel_A<Serializable> chAS,
Function<Integer,Boolean> valid_A

) {
Integer x = chAC.<Integer>com();
if ( valid_A(x) ) {

chAS.<Label>select(Label.OK);
} else {

chAS.<Label>select(Label.KO);
SSO.run(chAC, chAS, valid_A);

}
return;

}
}

Java Code
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public class SSO_C {
public static Integer run(
SymChannel_B<Serializable> chAC,
SymChannel_A<Serializable> chCS,
Suplier<Integer> creds_C

) {
chAC.<Integer>com( creds_C() );
Integer t_C;
switch ( chCS.<Label>select() ):

case Label.TOKEN -> {
t_C = chCS.<Integer>com();

}
case Label.ERROR -> {

t_C = SSO.run(chAC, chCS,
creds_C);

}
}
return t_C;

}
}

Java Code

public class SSO_S {
public static void run(
SymChannel_B<Serializable> chAS,
SymChannel_B<Serializable> chCS,
Suplier<Integer> newToken_S

) {
switch ( chAS.<Label>select() ):

case Label.OK -> {
chCS.<Label>select(Label.TOKEN);
chCS.<Integer>com( newToken_S()

);
}
case Label.KO -> {
chCS.<Label>select(Label.ERROR);
SSO.run(chAS, chCS, newToken_S);

}
}
return;

}
}

Java Code

5 Conclusion and Future Work

Modular Choreographies brings the simplicity of choreographic programming based on the
“Alice and Bob” communication abstraction one step nearer to practical programming.

An immediate direction for future work will be extending our language with more features,
trying to keep the syntax as simple as possible. Inspiration for this could naturally come from
theoretical models of choreographic languages, as those found in the research lines of choreo-
graphic programming and multiparty session types (abstract choreographies without computa-
tion) [32, 23, 24, 1]. For example, adding features for dynamic topologies (e.g., spawning new
processes) is important for capturing some parallel algorithms [10, 34, 42], nondeterministism
is crucial to capturing patterns like barriers and producers/consumers [32], and mixed choices
or unordered communication sets are relevant for modelling exchanges [32, 36, 8, 13]. An-
other source of inspiration might come from the developments of choreographic programming
languages like Choral, whose expressivity benefits significantly from the integration with
mainstream programming abstractions like functions and objects (and their related type
theories). For example, Choral is expressive enough to implement full-duplex asynchronous
communications, where interactions can be triggered by any participant and be interleaved
freely [30]. Another interesting line of future work regards formalising the guarantees provided
by Modular Choreographies. Choreographic programming languages equipped with general
recursion, like ours, are known to provide deadlock-freedom [32]. To prove this with confid-
ence, one could extend previous formalisations of choreographic programming in theorem
provers, as those given in [15, 14, 16, 38, 22].
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