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Abstract
Autonomic computing is a key challenge for system engineers. It promises to address issues related to
system configuration and maintenance by leaving the responsibility of configuration and reparation
to the components themselves. If considered in the area of microservices, it could help in fully
decoupling executing platforms from microservices because they permit to avoid coupling at the
level of non functional features. In this paper, I explore the case of self-architecting autonomic
microservices through the illustration of a proof of concept. The key points and the main challenges
of such an approach are discussed.
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1 Introduction

In recent years, the push towards the digitisation of processes has led to an increase of system
complexity, both in terms of the number of applications and integration processes. Such a
fact had impacts both on the organizations and the system architectures.

As far as organizations are concerned, the necessity for software that is increasingly aligned
with business needs, has led to the adoption of organizational processes targeted to minimize
the delivering time and to increase the frequency of releases. The most important example
in this case is represented by DevOps[12, 16] that is a software development approach
used for reducing the distance between development and operational activities. On the
other hand, if we consider the evolution of architectures, we have observed the raise of
microservices, that is a distributed oriented architectural approach which introduces a new
transformative force in the design and deployment phases of a software system. Following a
microservices approach, functionalities are isolated by responsibility, independently deployed
and distributed into the system in order to allow for independent scaling and management.
Each microservice is designed, developed and managed by a different team where all the
required competences are present. Both DevOps and microservices can be considered as
two complementary forces that, when combined, aims to:(i) increase the organization’s
speed; (ii) create a software application, or more generally, a software system, by integrating
multiple independent components. They contribute to make the final system more resilient,
flexible and scalable. The price to pay is a general rise of the overall complexity of the
systems. DevOps and microservice platforms, even if they are commercial or custom, play a
fundamental role for addressing such a complexity. In real cases, these platforms are usually
a mix of technologies that address different functionalities. As an example Jenkins[6] is
used for programming automatic tasks for DevOps, GitLab[3] is used as a code repository,
Docker[2] and Kubernetes[9] are used for managing the containerization layer, OpenShift[11]
is used for addressing the infrastructural layer and so on.

Automation is a key aspect of DevOps, especially when applied in the context of mi-
croservices, as these considerably increase the number of deployed components and, therefore,
increasingly require automated tools for their management. In this context, autonomic
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computing is a key challenge for system engineers [21] and it may be considered as a further
step forward in automating systems. It promises to address issues related to configuration,
maintenance, updating and security by leaving all the responsibilities to the software itself
without any human intervention. In the vision of autonomic computing, an autonomic
component possesses all the capabilities for self-detecting errors, performance deterioration
and security threats, and consequently take actions for repairing and adjusting their status.
Moreover, they are able to detect when their internal modules need to be updated, and they
are able to correctly install and configure the new versions of them. Differently from DevOps,
that is developer and IT operator-oriented focusing on collaboration and automation in the
software development lifecycle, autonomic computing aims to create fully autonomous and
self-sufficient computing systems that can adapt, optimize, and protect themselves. While
DevOps is a widespread system of practices applied in many different contexts, autonomic
computing is still a new and little explored field, especially in production environments.

In this scenario, autonomic computing could be considered as a contribution to the
evolution of DevOps, applied specifically to microservices, for reducing human intervention.
In order to understand the role it could play, we can start by noting that, even if microservices
should be agnostic with respect to the technologies used for developing, they are actually
coupled with the platforms due to non functional constraints and limitations inherently
present. For example the set of programming technologies could be limited because only some
of them are managed in the existing DevOps pipelines. Indeed, developing and maintaining
a DevOps pipeline for a given technology comes with an organizational cost that could
be not convenient if the related stream of work is not relevant. Furthermore, since the
observability of components and their fault management processes are often centralised
and delivered exploiting different platforms, depending on how an organization approaches
their management (e.g. following ITIL[5] strategies Service Operation and Continual Service
Improvement), microservices must be equipped with specific connectors or even specially
programmed to adhere to general guidelines of the organization. Summarizing, if from a
functional point of view a microservice can be designed to be independent and decoupled
with respect of the rest of the system, from a non functional point of view it could be
strongly coupled with the platform where it is developed and deployed. Such a coupling could
represent an issue when some modifications at the level of the platform must be performed.
Depending on their impact, the risk is that all the microservices must be revised in order to
adhere to the new platform standards. Moreover, in case of migration from a platform to
another, an important refactor of the microservices must be considered and made. Minimising
non-functional coupling between microservices and the platforms on which they are deployed
can enable their truly independent design, development and deployment. Such a milestone
could be achieved by introducing autonomic computing at the level of the microservices, thus
making them independent and autonomous in managing non-functional properties w.r.t. the
execution environment where they are deployed. At the present, in the current practices,
microservices are not equipped with any self-adaptation logic, they are never aware of the
context where they are executed. Every operational activity on a microservice, also those
that are automatic and related to some non functional aspects like auto-scaling, are always
demanded to the external platforms where they are executed.

In this paper, I investigate the possibility to make a step forward in the direction of
a non functional decoupling between microservices and platforms by exploring the idea of
self-architecting autonomic behaviours in microservices. In particular, I propose a proof of
concept where an autonomic microservice is able to negotiate the scaling, and the de-scaling,
of one of its internal components with the execution environment. The main contribution of
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this paper is to show how a microservice of this kind could be developed, which are the key
points to be considered and which are the main challenges to overcome for achieving these
results.

Section 2 reports a conceptual view of what a self-architecting autonomic microservice is,
Section 3 describes the proof of concept by focusing on those elements that are relevant for
this paper; Section 4 and Section 5 report discussions on some key points and challenges
that can be extracted from the proof of concept; finally Section 6 contains conclusions and
comments about references.

2 Self-architecting conceptual view

This section is devoted to provide a conceptual overview of what is meant here by self-
architecting autonomous microservices. The discussion is kept as abstract as possible in
order to illustrate only the basic concepts, focusing on the architecture of the components
of the microservice application, without taking into account other details and, above all,
without considering the execution context in which the microservice is deployed.

Figure 1 Expected architectural evolution of a microservice application which abstractly refers
to what is going to be detailed with the proof of concept.

Microservices 2020/2022



7:4 Towards Self-Architecting Autonomic Microservices

Such an abstraction will allow us to highlight the main contribution behind the adoption of
an autonomic behaviour in modifying the architecture of a microservice application, and will
make it easier to understand the description of the proof of concept that will be presented in
the next section.

Figure 1 reports a conceptual architectural evolution of the microservice application
targeted in the proof of concept. In Step 1, the microservice application is initially deployed:
it is a single executable artifact, internally composed by different business logic modules
which deal with different functionalities. In Step 2, in order to improve the performances due
to an increase of load, a decision is taken: one of its internal module is promoted to become
an independent microservice and it is deployed separately from the initial artifact. In Step 3,
the new microservice is scaled up to specifically improve its own performances. In Step 4,
since the external load is being reduced, the new microservice is scaled down and absorbed
back in the initial artifact. In Step 5, the microservice is operating as it was initially.

The architectural evolution described in Figure 1 has been kept deliberately abstracted
to focus on concepts about architecture modification, without specifying any actor which
is responsible to perform the steps. Some questions easily emerge: in which steps there is
a human intervention? In which steps does the microservice act autonomously? Moreover,
which are the differences if we approach the same evolution in a conventional way, or
using an autonomic approach? So far, a discussion on how such an architectural evolution
could be approached and which impacts it could have on the microservice development and
maintenance, has not been reported. The same evolution indeed, could be achieved following
a conventional approach to the development of microservices, or using an autonomic one. A
brief comparison between the conventional approach and the autonomic one, together with
an analysis of the roles involved in each step, will help us to focus on better highlighting
the impact of a self-architecting autonomic microservice, which is the subject of this paper.
In Table 1, a comparison between the convectional approach and the autonomic one, is
reported, whereas in Table 2, there is a more detailed analysis about the actors involved in
each step where, for the sake of this discussion, the roles developer and sysadmin are merely
indicative and they must be considered as just abstract references to two archetypal roles
into an organization. A deep analysis on the impacts that an autonomic microservice could
have on the different strategies adopted for managing software, is out of the scope of this
paper.

As can be seen, as far as the autonomic microservice is concerned, quite all the steps are
managed by the microservice itself which possesses the capability to dramatically modify its
architecture, whereas in a conventional approach, all the steps involve developers, system
administrators, or both. In particular, in the autonomic approach all the steps are managed
by the microservice, with the exception of Step 1 that is related to the first release of the
software and that is in charge to the developer in both cases. In the conventional case steps
2 and 4 are in charge to human roles, whereas Step 3, if auto-scaling feature is used, it
is in charge to the execution environment. In any case, in the conventional scenario, the
microservice does not take decisions or performs activities which implies a change on its own
architecture, but all the actions are delegated to external actors. On the contrary, in the
autonomic scenario all the actions are delegated to the microservice itself.
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Table 1 Differences between a conventional approach and an autonomic one. Step 5 is reported
together with Step 1 because they are equivalent.

Step Conventional Approach Autonomic Approach
1 (5) (i) The developer implements the mi-

croservice in a standard way as a unique
artifact, internally composing different
business logic modules; (ii) The de-
veloper releases the artifact and auto-
matically (or manually) the artifact is
deployed and executed (as container or
a process) into a target execution envir-
onment (e.g. a containerization layer).

(i) The developer implements the mi-
croservice as an autonomic one, by
envisioning the possibility for the mi-
croservice to make some modifications
about its own architecture; (ii) The de-
veloper releases the artifact and auto-
matically (or manually) the artifact is
deployed and executed (as container or
a process) into a target execution envir-
onment (e.g. a containerization layer).

2 (i) The developer and the sysadmin
analyze the performances of the mi-
croservice; (ii) the developer decides to
divide the artifact into two by promot-
ing one of its internal modules as a mi-
croservice. She extracts the code of the
module to expunge, from the initial arti-
fact, then she puts it into another pro-
ject; (iii) the developer releases both the
initial artifact, without the expunged
module, and the new one; both of them
are deployed replacing the former one.
Optionally, the new one can be deployed
together with some directives to the exe-
cution platform for auto-scaling it, if not
the number of replica must be defined
at deploying time.

(i-iii) The microservice auto-detects that
its performance is deteriorating and it
decides to promote one of its internal
components as a microservice. Thus, it
directly deploys the new microservice by
interacting with the executing environ-
ment.

3 (i) The sysadmin analyzes the perform-
ances of the microservice; (ii) The sysad-
min decides to scale up or down the new
microservice, in order to tune its per-
formances. If the auto-scaling feature
has been set at the previous step, the
execution platform does it automatically.
Note that if it is the case of a manual
intervention, such a decision should be
a long-term one because it is not reason-
able to manually change the number of
replica day by day.

(i-ii) The microservice autonomously de-
cides to scale up or down the new com-
ponent by defining the number of current
replicas by interacting with the execu-
tion environment.

4 (i) The sysadmin analyzes the perform-
ances of the microservice; (ii) The de-
veloper decides to restore the initial ver-
sion of the microservice because the load
is now very low and there is no need to
have two microservices. Note that, in
this case, usually, the developer would
leave the last architecture (that of Step
3) with just one replica for the new mi-
croservice, in order to avoid the costs
of a new release; (iii) The developer re-
leases the previous artifact.

(i-iii) The microservice decides to absorb
new microservice ang restoring the initial
architecture.

Microservices 2020/2022
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Table 2 Detailed steps with the focus on the involved actors.

Step Description Conventional Approach Autonomic Approach
1 (i) Design and develop-

ment
Developer Developer

1 (ii) Release and deploy-
ment

Developer Developer

2 (i) Analysis of the per-
formance metrics

Developer or Sysadmin Microservice

2 (ii) Decision to modify
the architecture,
and its related
implementation

Developer Microservice

2 (iii) Release (in case of
auto-scaling, config-
uration of the envir-
onment)

Developer and Sysadmin Microservice

3 (i) Analysis of the per-
formance metrics of
the new component

Execution Environment (or
Sysadmin, if auto-scaling is
not set)

Microservice

3 (ii) Decision and imple-
mentation of scaling
up or down

Execution Environment (or
Sysadmin, if auto-scaling is
not set)

Microservice

4 (i) Analysis of the per-
formance metrics

Developer or Sysadmin Microservice

4 (ii) Decision to restore
the initial version
and its related im-
plementation

Developer or Sysadmin Microservice

4 (iii) Deployment of the
initial version

Developer Microservice

3 Proof of concept

The main objective of the proof of concept described in this section is to show the basic
mechanisms behind the implementation of an Autonomic Microservice, which is able to
modify its own architecture depending on its own performances by negotiating it with the
Execution Environment.

In Figure 2, a representation of the architecture developed in the proof of concept is
reported. The Autonomic Microservice is deployed within a Docker[2] container, controlled
using standard Docker API by the Execution Environment. Moreover, it is able to self-
calculate the average response time of its own API and, depending on the results, it is able to
negotiate with the Execution Environment a change of its architecture by scaling a specific
sub-component, which takes the form of another microservice.

3.1 Architecture
Since it is a proof of concept, some assumptions have been made in order to keep it as simpler
as possible:

Simplified model for the Autonomic Microservice: The Autonomic Microservice models a
microservice which implements some basic functionalities for managing a set of data, and
it is assumed it implements autonomic features modelled following a MAPE-K loop[13, 20].
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Figure 2 Logical representation of the architecture developed in the proof of concept.

In particular, all the different autonomic functionalities of the MAPE-K model have
been simplified and condensed into a single internal component of the microservice. For
the same reasons, all the algorithms for decision making and performance deterioration
detection have been kept very basic and raw.
Simplified model for the Execution Environment: the Execution Environment ideally
models a general platform which is able to manage microservice deployment. A full
representation of all of its parts is out of the scope of this paper. Here it has been modelled
with a simple service that, on the one hand, it is able to interact with a containerization
layer by invoking its standard API and, on the other hand, it exhibits a new set of API
that are specific to be invoked by autonomic microservices in general.
Execution Environment agnosticism: here we assume that the Execution Environment is
agnostic with respect to the actual deployment an autonomic microservice may have at
runtime. Apart from the first deployment, the Execution Environment does not own other
container images nor it is aware about other components the autonomic microservice
may request to have. Moreover, no specific rules for monitoring or scaling have been set
in the Execution Environment. All the knowledge about the Autonomic Microservice
management is in charge to the Autonomic Microservice itself.

Figure 3 Autonomic Microservice inner logical architecture.

Microservices 2020/2022
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In Figure 3 the inner architecture of the Autonomic Microservice is reported. The
microservice manages a generic set of data about a list of hotels that, for the sake of
simplicity, has been modelled with a JSON[8] file1. Such a persistence layer is accessed by
two internal services: Writer and Reader. The former is in charge to implement writing APIs
(insertHotel, updateHotel and removeHotel), whereas the latter is in charge to implement
the reading ones (getHotel and getHotelList). Neither of the two services directly exposes
the APIs to the end consumer, but they are aggregated and embedded within the service
Autonomic Manager, resulting in a single deployable artifact. A consumer can access all the
APIs aggregated into the Autonomic Manager, by invoking its public listener where they are
all available. Besides playing the role of a gateway for the reading and writing APIs listed
above, the Autonomic Manager is also in charge to manage some autonomic features that
allows for scaling the sub-service Reader. In particular, following a MAPE-K approach, the
autonomic features of the Autonomic Manager can be summarized as it follows:

Monitor . Since it is proxying all the requests to the inner services (Reader and Writer) it
is able to capture all the metrics related to the API invocations, like invocation timestamp,
reply timestamp and duration. In particular, it retrieves only those of the Reader because
it is the component that can be scaled.
Analyse. It calculates the average duration of the last ten invocation of the API of the
Reader.
Plan. It decides for a scaling or a de-scaling of the Reader depending on a threshold for
API duration time.
Execute. It interacts with the Execution Environment in order to ask for scaling or
de-scaling the Reader.
Knowledge. It manages the definitions of all the internal components (e.g. the Reader),
their actual configuration (e.g. the number of active replica), and their configuration.

3.2 Runtime behaviour
In Figure 4 two scenarios, before scaling on the left and after scaling on the right, are reported.
The before scaling represents a normal scenario where the Autonomic Microservice is simply
deployed within a container. On the other hand, the after scaling represents a scenario where
the Autonomic Microservice has been stressed with an extra load by a test consumer, and it
negotiated with the Execution Environment for a scaling of the service Reader. In particular,
it has been supposed that the Autonomic Microservice requested n instances of the service
Reader. It is worth noting that all the instances of the service Reader are dynamically proxied
by the Autonomic Manager which is in charge also to load the balance among them.

In Figure 5 the sequence chart, which describes the message exchanges between the
Autonomic Microservice and the Execution Environment in case of scaling, is reported. A
test client forces an extra load by continuously sending messages on the API getHotelList
(1,2); concurrently the Autonomic Microservice calculate the average response time and
detects a deterioration of such a metric (3). It is worth noting that, in order to trigger the
scaling mechanism, the response time delay is simulated within the Autonomic Manager by
augmenting the real measure with an extra delay. When the average time is greater than

1 For the sake of simplicity the persistence layer has been mapped into a JSON file instead of using a
structured one like a database. In the proof of concept, data consistency issues have been taken into
account adding simple guards on writing and reading operations. A deep analysis about the impacts of
self-architecting autonomic microservices and data consistency in a distributed scenario, is out of the
scope of thsi paper.
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Figure 4 Microservice architecture before scaling and after scaling.

a threshold (AV ERAGE_MAX), the Autonomic Manager requests an instance of service
Reader to the Execution Environment by sending also its definition (4). The Execution
Environment creates the image for service Reader if it is not already stored in the internal
catalogue of the containerization layer (5), and then run the container (6). Finally, it sends
back the binding details of the new container to the Autonomic Manager (7). As a last
step, the Autonomic Manager binds the new container into its gateway and starts to balance
the load towards the new container too. Similarly, the Autonomic Manager can detect an
improvement of the response times and request the removal of the containers that are not
more necessary.

3.3 Implementation choices

The system has been realized using the service-oriented programming language Jolie[7] which
has been chosen because it allows to easily implement the following aspects:

Embedding services. It permits to dynamically embed a service into another. Thanks
to the operator called embedding[19], a set of services can be executed in a distributed
manner or run in the same engine. When executed within the same engine, the inner
communication among the services are automatically resolved at the level of the memory
without network exploitation. In the proof of concept, the Autonomic Microservice
initially embeds both the Writer and the Reader.
Aggregating services. Thanks to the operator aggregate[19], it permits to collect and
expose APIs of different services into one single listener (in Jolie it is called inputPort),
thus permitting to easily develop light API gateways. The aggregator plays the role of a
proxy by receiving an API invocation and delivering it to the aggregated service that
actually implements it. In the proof of concept, the Autonomic Microservice plays the
role of the gateway by delivering all the incoming requests to the replica of the service
Reader.

Microservices 2020/2022
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Figure 5 Sequence chart diagram for scaling.

Implements service functionality mobility. It implements service functionality mobility[18]
by permitting to easily send a service definition from a service to another by message.
The engine which receives a service definition can dynamically embed and run it. In the
proof of concept, the Autonomic Manager sends the definition of service Reader to the
Execution Environment in order to instantiate a new replica.
Fast API modelling. It permits to easily model an API using its specific syntax without
following standards like openAPI[10] or gRPC[4], while preserving a comparable level of
expressiveness w.r.t. them. Such a technological feature permits to reduce the technology
stack burden and keep the proof of concept as simple as possible.

The code repository is public and available for inspection in [17].

4 Key points

Starting from the experience matured with the developing of the proof of concept, and
following a MAPE-K loop approach, in the following some important key points that must
be considered when designing and developing a self-architecting autonomic microservice, are
reported:

1. Monitor: The Autonomic Microservice must collect all the required metrics for taking
decisions about its own architecture that depends on the Service Level Agreements defined
for that service. They can be application related, infrastructure related or both. In the
former case, the microservice must be able to internally collect the metrics; in the latter
case, the microservice must ask for them to the Execution Environment, thus implying
that there are specific API for retrieving infrastructure metrics when needed. In general,
the developer must be aware about the metrics to collect, and she has to know where
and when they must be measured in the code.

In the proof of concept the Autonomic Manager directly retrieves the response time of
each API invocation and it keeps on memory the last ten measures.
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2. Analysis: In general, the analysis of the metrics should be condensed in few parameters
calculated at runtime, thus avoiding to persist a log storage. In order to not interfere
with the business logic, such a calculation should be performed concurrently. Some kind
of extra volatile memory components could be introduced for persisting a limited buffer
of logs. In any case, as for the monitor phase, also for the analysis, the developer must
be aware of the parameters to calculate and their algorithms, and she has to design and
implement a proper architecture for dealing with them.

In the proof of concept, after each invocation call, the Autonomic Manager asynchron-
ously calculates the average duration of the last ten invocations and, depending on the
result, it sends a request for a new replica of the service Reader.

3. Planning: This phase can be as complex as desired depending on the level of transform-
ation that the service can achieve. In general, the implementation of these algorithms
requires a deep knowledge about the possible evolution of the architecture. The developer
must identify the degrees of freedom of the microservice and must be familiar with all
the possible architectures that can be derived from it. The more degrees of freedom there
are, the more the system can reach unexpected and unpredictable configurations.

In the proof of concept, the microservice had just one degree of freedom: it can choose
to scale or remove instances of the service Reader. As a first glance, it looks very
simple and straightforward. But it is worth noting that, in the example, there is no
programmed upper limit in the algorithm. This means that the planning relies solely
on the assumption that scaling the service Reader will eventually lead to a decrease in
response times. However, if, for some reason, the variation of the response times in the
real system is not strictly dependent on the number of running instances of the service
Reader, the microservice may potentially require an infinite number of its instances,
thus harming the entire system.

4. Execution: The Autonomic Microservice must implement the mechanics for transform-
ing its own architecture. It must be able to perform the right calls to the Execution
Environment for requesting new instances and removing the existing ones, but it also
needs to provide all the components for integrating the new instances within its execution
boundary.

In the proof of concept, the Autonomic Manager plays also the role of proxy and
load balancer for correctly dispatching the requests to the instances of the service
Reader. In this case, the load balancing strategy has been encoded at developing
time, but it is possible to imagine making it configurable or even negotiable with the
Execution Environment. Moreover, it is reasonable to assume that also the Autonomic
Microservice must exhibit a set of API for being invoked by the Execution Environment,
thus permitting a two-sided negotiation. Indeed, some architectural changes could be
triggered by the environment (e.g. for optimizing the resources).

5. Knowledge: the Autonomic Microservice must manage the knowledge about its own
architecture and its dynamic modification at runtime, thus it must be able to reconstruct
the state of the architecture at any given time and in any condition (e.g. after a
malfunctioning).

In the proof of concept the Autonomic Manager actually collects all the definitions of
the components it asks to instantiate and it is able to properly configure them. But,
in the current implementation, the mapping of the replicas of the service Reader are
managed only in the volatile memory and in case of crash, the service is not able to
restore such a list, thus making the existing replicas useless.

Microservices 2020/2022
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5 Main Challenges

Starting from what was outlined in the previous section, here I highlight three main challenges
that need to be addressed in order to envision an engineered utilization of self-architecting
autonomic microservices. In particular, these three challenges specifically focus on three
different aspects: Development activities, Preparation of the execution environment and
Security management. Development activities were considered because of the huge impacts
autonomic computing could have on the development phase; Adaptation of the execution
environment was considered because the adoption of an autonomic computing strategy is
strongly coupled with an execution environment capable of managing it; finally Security
management was considered because of the high level of risks that could be raised by shifting
the responsibilities of many controls to the component itself.

It is important to bear in mind that the following list is not intended to cover all the
critical aspects, but it is the result of a first internal evaluation about applying the approach
presented in this paper, on products and applications of the author’s company.

1. Development activities: alleviating developer’s cognitive burden. In general, it is
possible to state that the implementation of a self-architecting autonomic microservice
requires an increment of the cognitive burden in charge to the developer that must be
aware of all the aspects regarding the autonomic features: monitor, analysis, planning,
execution and knowledge. The topic of tests deserves a special mention, because it will be
necessary to test the different architectural configurations achievable by the microservice by
simulating the various expected triggers and possibly mocking the execution environment,
thus increasing the complexity of this task. Such a challenge could be addressed by
introducing a development framework that already takes into account the various aspects
necessary for the implementation of an autonomous service and partially manages them on
behalf of the developer, moreover we could imagine to define the autonomic behaviour by
using a specific declarative language which could help in better defining and controlling it.

2. Adaptation of the execution environment: standardization of API. In general, the
Execution Environment should be enabled for accepting autonomic microservices, and
the message exchange protocols between it and the autonomic microservice must be
previously defined. Thus, the API of the Execution Environment, but also those that must
be possibly offered by the microservice, should be standardized in order to make them
equally available in any execution context where autonomic capabilities are accepted.
This challenge requires a shared understanding among the developer community and,
above all, among platform providers. A manifesto could be prepared and shared in order
to attract valuable stakeholders for paving the way for standardization.

3. Security management: security must be guaranteed by the Execution Environment.
Since an autonomic microservice is potentially able to completely change its initial
architecture, thus transforming a service that it is initially safe into an harmful software
artifact, the Execution Environment must take the responsibility to perform security
checks on the autonomic microservices. In particular, the Execution Environment should
be able to inspect the microservice and all its components before creating running
instances, thus determining if the components contain malicious code. Such an aspect
could be addressed by avoiding the execution of pre-compiled code, but postponing
the compilation inside the Execution Environment and installing a microservice from
sources. Constraints could be added in the allowed programming languages, thus reducing
the security checks to formal ones as much as possible. As an example, languages like
Ballerina[1] and Jolie[7] directly provide a linguistic tool for programming services that
are then interpreted by an underlying engine that, like it happens in the proof of concept,
could be directly provided by the Execution Environment.
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6 Conclusions

The main contribution of this article is to take a step forward in the investigation of
autonomous microservices capable of dynamically transforming their architecture at runtime
to respond to a change in execution context. In literature there exist some general overviews
about challenges and opportunity of autonomic components[15] and microservices[22] too, but
a specific insight about self-architecting microservices is not reported. Other authors explored
the possibility to implement autonomic microservices[25], but they focus on self-healing and
versioning instead of self-architecting autonomic features.

The main benefit of the introduction of autonomic behaviours in microservices is the fully
decoupling between execution environments and microservices. Such an objective is ambitious
and disruptive, because it can potentially change the way microservices are developed and
deployed. At the same time, however, in the long term, it could permit to reduce maintenance
costs and platform’s lock-in. In particular, self-architecting autonomic microservices could
simplify the deployment phases because almost all the steps are delegated to the microservice.
As a counterpart, issues like security, standardization and the increase of complexity on the
developments side must be considered. In general new models and references are needed
like in [14], where the authors propose a MAPE-K loop based reference for identifying the
different responsibilities between the execution environment and the autonomic microservice.

As an evolution of this work, it could be interesting to investigate the relationship of self-
architecting microservices with infrastructure as a code (IAC) approach[23] that is exploited
for increasing automation in DevOps contexts. In particular, it could be interesting to apply
a self-architecting behaviour over a IAC layer, thus extending the autonomic behaviour, so
far restricted at the containerization level, to the infrastructure. Moreover, a non-functional
decoupling between microservices and execution platforms could potentially impact internal
organizational processes based on established standards, as for example ITIL[24]. Therefore,
a potential area of investigation could involve analyzing how autonomic computing might
influence these standards.
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