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Abstract
Patterns are a common metaphor in software engineering that denotes reusable solutions for recurring
software engineering problems. Architectural patterns focus on the interplay or organization of two
or more components of a software system, and are particularly helpful in the design of complex
software architectures such as those produced by Microservice Architecture (MSA).

This paper presents an approach for the language-based reification of architectural MSA patterns.
To this end, we introduce a method to flexibly retrofit LEMMA (Language Ecosystem for Modeling
Microservices) with support for modeling and implementing architectural MSA patterns. The method
relies on the (i) specification of aspects to reify pattern applications in MSA models; (ii) validation
of pattern applications; and (iii) code generation from correct pattern applications. Consequently, it
contributes to correct-by-construction microservices by abstracting from the complexity of pattern
implementations, yet still enabling their automated production with Model-Driven Engineering. We
validate our method with the popular Domain Event and Command Query Responsibility
Segregation patterns, and assess its applicability for 28 additional patterns. Our results show that
LEMMA’s expressivity covers the model-based expression of complex architectural MSA patterns
and that its model processing facilities support pattern-specific extensions such that conformance
checking and pattern-conform code generation can be modularized into reusable model processors.
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1 Introduction

Patterns are a common metaphor in software engineering that emerged from urban design [1]
and denotes reusable solutions for recurring software engineering problems [20]. Patterns are
particularly useful to codify and communicate knowledge gained from software engineering
experience [69, 68].

1 This work was conducted while working at IDiAL Institute, University of Applied Sciences and Arts
Dortmund, Germany.
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Considering their area of impact, patterns can be divided into two major categories.
Design patterns [20] focus on software component internals whereas architectural patterns [8]
recognize the interplay or organization of two or more components [68]. This paper focuses
on the latter category in the context of Microservice Architecture (MSA) [36]. The inception
of catalogs of architectural patterns for MSA engineering [55, 70] and the study of patterns’
practical adoption [35, 64] show their relevance in dealing with complexity in microservice
architecture design, implementation, and operation [59]. Language-based approaches to MSA
engineering [21] constitute a paradigm that promotes the use of MSA-oriented software
languages to conceive and deploy microservice architectures, thereby coping with MSA’s
complexity by specialized language primitives, e.g., for microservice interfaces or containers.

This paper presents an approach that combines both means for handling complexity in
MSA engineering, i.e., architectural patterns and MSA-oriented software languages. More
precisely, we show how to retrofit LEMMA – an ecosystem of modeling languages and model
processing facilities for MSA [49] following Model-Driven Engineering (MDE) [10] – with
architectural pattern support with the goal to enable correct-by-construction microservices
via pattern conformance checking and pattern-conform code generation. This paper revises
our abstract [48] accepted at the Third International Conference on Microservices as follows:

Introduction of a reusable method including all steps to systematically extend LEMMA
with support for architectural MSA patterns.
Consideration of code generation as a step to map LEMMA models with architectural
patterns to pattern-conform, executable microservices.
Approach validation with a case study beyond the scope of the abstract’s running example.

With these contributions, we continue our line of work on the intersection of MDE and
MSA by applying LEMMA’s means for the model-based capturing of stakeholder-oriented
concerns in MSA engineering [49], enrichment of MSA models with metadata [51], and model
validation and code generation [21] to (i) integrate pattern concepts in architecture models;
and (ii) ensure pattern conformance on the architecture design and implementation level.
The paper specifically goes beyond previous publications [53, 54] which neither considered
pattern conformance checking nor pattern-conform code generation.

The remainder of the paper is structured as follows. Section 2 provides an overview
of architectural MSA patterns. Section 3 describes our method to systematically extend
LEMMA with architectural pattern support. Section 4 validates our approach. Sections 5
and 6 compare our approach to related work and conclude the paper, respectively.

2 Overview of Microservice Architecture Patterns

To make the paper self-contained, we give a non-exhaustive overview of architectural MSA
patterns, thereby relying on corresponding pattern catalogs [55, 70] and empirical studies [35,
64]. We structure the patterns by the categories introduced by Márquez and Astudillo [35].

Communication Patterns

Communication patterns deal with issues in microservice interaction. The API Gateway
pattern [35, 55] proposes the provisioning of a component that acts as a façade to microservices’
functionality, i.e., it exposes only relevant functionality to architecture-external clients.
With this characteristic, the pattern gives rise to API Composition [55, 64], Gateway
Routing [64], and Gateway Offloading [64]. While API Gateway requests are
often synchronous, patterns like Domain Event [55] and Event Sourcing [55] concern
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asynchronous, event-based service interaction. The former pattern identifies domain concepts
as events and the latter records event instances, e.g., for auditing purposes. Similarly, the
Log Aggregator pattern [35, 55] centralizes the collection of additional log data.

Deployment Patterns

Deployment patterns focus on microservice deployment and deployment pipeline maintenance.
The Sidecar pattern [55, 64] isolates and reuses functionality that crosscuts microservices,
e.g., logging or configuration. Sidecar services cluster such functionality and provide business-
oriented microservices with access. A more intrusive variant of this pattern is Microservice
Chassis [55] which expects microservices’ business logic to delegate handling of crosscutting
concerns to programming frameworks. The Backend for Frontend [35, 55, 64] and
Command Query Responsibility Segregation (CQRS) [55, 64] patterns provide
microservice clients with interfaces for special needs. The former suggests several API
Gateways, each dedicated to certain client needs or types. The CQRS pattern, on the other
hand, considers a logical microservice to consist of (i) a physical command-side microservice
that enables clients to change data; and (ii) one or more physical query-side microservices
that enable clients to access data in client-specific representations. Asynchronous messaging
ensures the synchronization between command-side and query-side microservices. The
Database is the Service pattern [35] lets each microservice store its data in an isolated
database to foster scalability.

Design Patterns

This category clusters patterns that focus on the architectural interplay of microservices,
thereby regarding microservices as black boxes and allow pattern adoption at design time.
We consider all API design patterns from the catalog of Zimmermann et al. [70] to belong
to this category. The catalog organizes patterns along different dimensions in API design,
e.g., Responsibility, Structure, or Quality. For example, the Processing Resource pattern
(Responsibility) supports clustered exposure of application-level functionality in the form of
activities or commands. The Parameter Tree pattern (Structure) concerns the tree-based
design of request and response data structures that comprise containment relationships. On
the Quality level, the API Key pattern [55, 70] secures API access by requiring eligible
clients to provide a unique and valid access token for subsequent API access.

DevOps Patterns

DevOps patterns bridge between developer and operator concerns in MSA. Using the
Externalized Configuration pattern [55, 64], microservices receive configuration values
such as credentials or network location at runtime from specialized configuration services
or stores. The Monitor patterns [35], and derivatives like Application Metrics [55],
Distributed Tracing [55], Exception Tracking [55], and Health Check [35, 55],
cover monitoring as a central DevOps practice [6]. With these patterns, microservices report
events or status updates to a centralized server for visualization and analysis.

Migration Patterns

These patterns guide the decomposition of monoliths into microservice architectures [35].
The Strangler pattern [55, 64] suggests continuous decomposition by (i) steady migration
of existing functionality to microservices; and (ii) direct realization of new functionality

Microservices 2020/2022
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in microservices. The Anti-Corruption Layer pattern [64, 55] defines façades between
monolith and microservice architecture for translating between deviating data representations.
Patterns like Decompose by Business Capability (a microservice covers a business
capability) and Decompose by Subdomain (a microservice covers a part of the application
domain) prescribe strategies to assign functionalities to microservices [55].

Orchestration Patterns

These patterns foster the orchestration of microservices as business process participants. The
Container pattern [35, 55], which suggests to run microservices in lightweight virtualized
environments [60], is a key enabler for horizontal scaling in MSA [12]. Patterns like Service
Registry [35, 55] and Service Discovery [35, 55] abstract from service instances’ network
locations and support service interaction via logical names. It is possible to combine the
Service Discovery pattern with the Load Balancer pattern [35] to optimize request
routing to services with spare processing resources. In such scenarios, the Circuit Breaker
pattern [35, 55] increases reliability as it caps the number of faulty interaction attempts to
prevent failure cascades. The Saga pattern [55] increases data consistency in distributed
transactions by dividing them into local transactions executed by dedicated microservices. If
a local transaction fails, the responsible microservice invokes a compensating transaction for
rollback and informs its predecessor in the transaction chain to also rollback.

3 A LEMMA-Based Method for Pattern-Conform Microservice Design
and Implementation

This section presents our method to retrofit LEMMA with architectural MSA pattern
support – including pattern conformance checking and pattern-conform code generation for
correct-by-construction microservices2. Figure 1 shows the specification of the method.

Pattern-Conform LEMMA Modeling

Model Type (MT)

Identification

PCs CCs MTs
Affected

MTs

Technology Model (TM)
Construction

PCs CCs MTs TM
Pattern-

Specific TM

Model Validator (MV)
Implementation

PCs CCs PF MV
Pattern-

Specific MV
Processing

Framework

2 3

Pattern-Conform LEMMA Code Generation

Code Generator (CG)
Implementation3

EGs PF CCs CG
Pattern-

Specific CG
Existing
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Constraint
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Patterns
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Concepts

PCs CCs
Conformance

Constraints

Pattern Analysis

2

P
Considered
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Figure 1 Overview of our method to retrofit LEMMA with architectural MSA pattern support.
Method phases and activities are depicted as rectangles with dashed and solid lines, respectively.
Required or produced artifacts are depicted as note sheets colored by their producing phase, if any.

2 While we aim for the section to be understandable in a self-contained fashion, Appendices A and B yet
provide additional background information on MDE and LEMMA.
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Sections 3.1 to 3.3 describe the phases of the method and illustrate its instantiation on
the example of the Domain Event pattern (Sect. 2).

3.1 Phase 1: Pattern Analysis
The first phase of the method consists of the three activities Concept Identification, Concept
Reconciliation, and Constraint Formulation.

Concept Identification

This activity expects as input the pattern targeted by the method instance including its
definition. For the Domain Event pattern, we refer to Richardson [55] who defines a domain
event as a domain concept that conveys asynchronous messages between microservices.

Concept Reconciliation

The Concept Reconciliation activity expects the definitions and LEMMA-based specifications
(Sect. 3.2) of all patterns covered by previous method instances as they might impact handling
of the input pattern and its concepts. Suppose that the method instance for Domain Event
is followed by an instance for the Event Sourcing pattern (Sect. 2). Since the latter
leverages domain events, the integration of the former with LEMMA likely impacts the
latter’s integration. For example, it will not be necessary to treat a domain event as a genuine
concept of the Event Sourcing pattern. On the other hand, the Concept Reconciliation
activity helps to identify dependencies between pattern-specific LEMMA model validators
(Sect. 3.2) and code generators (Sect. 3.3). For instance, the Event Sourcing pattern
could require that domain events conforming to the Domain Event pattern are valid and
manifested in source code so that an Event Sourcing code generator can refer to them.

The Concept Reconciliation phase yields a concept catalog for the input pattern. For
Domain Event, this catalog defines the Domain Event concept as a structured domain con-
cept representing asynchronously exchanged messages. Additionally, following the pattern’s
definition [55], the catalog has an entry for the Producer and Consumer concepts which
denote microservices that send and receive domain events, respectively.

Constraint Formulation

The Constraint Formulation activity specifies conformance constraints for the concepts of the
input pattern w.r.t. its definition. Table 1 lists constraints for the Domain Event pattern.

Table 1 Conformance constraints for the Domain Event pattern.

# Constraint Severity

C.1 Producer operations must be able to send asynchronous messages. Error

C.2 Consumer operations must be able to receive asynchronous messages. Error

Constraint C.1 prescribes that microservice operations which produce domain events must
actually be able to send asynchronous messages. Constraint C.2 demands that operations of
event consumers must actually be able to receive asynchronous messages. Both constraints
exhibit the severity level “Error” so that their violation prevents further steps like code

Microservices 2020/2022
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generation. By contrast, the severity level “Warning” would identify constraint violations that
still permit subsequent processing. An example for such a violation could be a microservice
operation that uses a domain event in a synchronous interaction.

3.2 Phase 2: Pattern-Conform LEMMA Modeling
This phase extends LEMMA for modeling and applying the input pattern. It involves the
activities Model Type Identification, Technology Model Construction, and Model Validator
Implementation.

Model Type Identification

This activity requires the pattern concepts and conformance constraints from the previous
activities (Sect. 3.1) to determine the LEMMA model types (Appendix B) for pattern
application. In some cases, the LEMMA modeling language for the construction of models of
a certain type already comprises native constructs for pattern application. For the Domain
Event pattern, LEMMA’s Domain Data Modeling Language supports direct modeling of
structured domain events with the domainEvent keyword as illustrated in Listing 1.

Listing 1 Excerpt of a LEMMA domain model illustrating domain event definition.
1 // Model name: ChargingStationManagement.data
2 structure ParkingAreaCreatedEvent<domainEvent> {
3 immutable long commonId,
4 immutable ParkingAreaInformation info
5 }

In LEMMA’s Domain Data Modeling Language, a domain event is a structured domain
concept that typically consists of one or more immutable fields [16]. Instances of Parking-
AreaCreatedEvent gather a value of the primitive type long3 in the field commonId and an
instance of the structured domain concept ParkingAreaInformation4 in the field info.

Hence, a LEMMA model type affected by extending LEMMA with Domain Event
support is the domain model type because LEMMA’s Domain Data Modeling Language
provides native support for domain event modeling and thus the expression of the Domain
Event concept from the pattern’s concept catalog (Sect. 3.1). By contrast to other MDE-for-
MSA approaches [2, 63, 61, 25], LEMMA does not integrate pattern-specific keywords to
foster language learnability and model comprehension. As a result, LEMMA does not provide
modeling constructs for Domain Event Producers and Consumers (Sect. 3.1). To retrofit
these concepts, the following Technology Model Construction activity relies on the technology
aspect mechanism [51] of LEMMA’s Technology Modeling Language (Appendix B), making
the technology model type also affected by LEMMA Domain Event support. Similarly, the
service and mapping model types (Appendix B) are affected as both enable assignment of
aspects to microservices, e.g., to mark operations as Domain Event Producers.

Technology Model Construction

LEMMA’s technology aspects can be exploited as a flexible mechanism to augment model
elements with metadata. We rely on such metadata to reify pattern concepts and applications
in LEMMA models. Listing 2 shows LEMMA’s Domain Event technology model.

3 LEMMA’s type system integrates all primitive types of Java [22].
4 For the sake of brevity, we omit the specification of this domain concept and refer to the complete

domain model on Software Heritage [46].
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Listing 2 Domain Event technology model in LEMMA’s Technology Modeling Language.
1 // Model name: DomainEvents.technology
2 technology DomainEvents {
3 service aspects {
4 aspect Producer<singleval> for operations { string handlerName<mandatory>; }
5 aspect Consumer<singleval> for operations { string handlerName<mandatory>; }
6 }
7 }

LEMMA supports service-related and operation-related technology aspects. The latter
are applicable to operation nodes expressed in LEMMA’s Operation Modeling Language
(Appendix B). For the Domain Event pattern, however, we rely on service-related technology
aspects which allow augmentation of LEMMA domain and service model elements. The
above technology model for the Domain Event pattern specifies the service aspects
Producer and Consumer. Both can occur at most once (singleval) on modeled microservice
operations (Table 1) and require the configuration of a handlerName. According to the
pattern definition [55], this latter property identifies the program unit, e.g., the Java class,
being responsible for handling domain event production or consumption.

Listing 3 illustrates the application of the Domain Event aspects in a LEMMA service
model and mapping model, respectively.

Listing 3 Excerpts of (a) a service model in LEMMA’s Service Modeling Language; and (b) a
mapping model in LEMMA’s Service Technology Mapping Modeling Language. Both models apply
the Producer concept of the Domain Event pattern based on the technology model in Listing 2.

1 // Model name:
2 // ChargingStationManagementCommandSide.services
3 import datatypes from "ChargingStationManagement.data"
4 as Domain
5 import technology from "DomainEvents.technology"
6 as DomainEvents
7 @technology(DomainEvents)
8 public functional microservice
9 org.example.ChargingStationManagementCommandSide {

10 interface CommandSide {
11 @DomainEvents::_aspects.Producer
12 ("ParkingAreaProducerService")
13 sendParkingAreaCreatedEvent(
14 async out event
15 : Domain::ParkingAreaCreatedEvent
16 );
17 }
18 }

(a)

1 // Model name:
2 // ChargingStationManagementCommandSide.mapping
3 import microservices from
4 "ChargingStationManagementCommandSide.services"
5 as CommandSideServices
6 import technology from
7 "DomainEvents.technology"
8 as DomainEvents
9 @technology(DomainEvents)

10 CommandSideServices
11 ::org.example.ChargingStationManagementCommandSide {
12 operation CommandSide.sendParkingAreaCreatedEvent {
13 aspects {
14 DomainEvents::_aspects.Producer
15 ("ParkingAreaProducerService");
16 }
17 }
18 }

(b)

Listing 3a shows the excerpt of a LEMMA service model that specifies a Domain Event
Producer by applying the eponymous aspect from the Domain Event technology model
(Listing 2). Lines 3 to 4 import the domain model that defines the ParkingAreaCreated-
Event domain event (Listing 1) and Lines 5 to 6 import the Domain Event technology
model. Line 7 uses the built-in @technology annotation of LEMMA’s Service Modeling
Language (Appendix B) to assign the Domain Event technology model to the Charg-
ingStationManagementCommandSide microservice whose definition starts in Lines 8 to 9.
The service consists of the CommandSide interface (Line 10) that clusters the operation
sendParkingAreaCreatedEvent (Lines 13 to 16). This operation is marked as a Domain
Event Producer in Lines 11 to 12. More precisely, the assignment of the Domain Event
technology model to the ChargingStationManagementCommandSide microservice enabled
us to apply the Producer aspect to the operation, thereby semantically identifying it as a
Domain Event Producer (Sect. 3.1).

Listing 3b also performs this semantic enrichment but on the basis of LEMMA’s Service
Technology Mapping Modeling Language (Appendix B). The primary difference to Listing 3a
is the aspect application within the aspects section in Lines 13 to 16. The application of
technology aspects in mapping models is an alternative to aspect application in service models.

Microservices 2020/2022
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Specifically, it externalizes technology aspect application which allows keeping service models
technology-agnostic and thus reusable across different technology stacks, thereby facilitating
technology migration on the model-level to deal with MSA’s technology heterogeneity [36].

Model Validator Implementation

LEMMA’s Technology Modeling Language already integrates certain constructs like manda-
tory, singleval, and the for-selector to constrain aspect application [51] (Listing 2).
However, these constructs are not sufficient to express pattern-related constraints such as
those in Table 1, e.g., because the constraints require traversal of other LEMMA models,
the simultaneous application of aspects from other technology models, or certain aspect
property values. We decided against the extension of the Technology Modeling Language
with modeling support for such complex constraints to keep the language concise.

Instead, we employ LEMMA’s Model Processing Framework (MPF; Appendix B) to
accompany pattern-specific technology models with required conformance constraints. The
result is a LEMMA model processor whose Model Validation phase performs constraint
checking and violation reporting, and is extensible by code generation capabilities (Sect. 3.3).
Listing 4 shows an excerpt of the MPF-based model validator for the Domain Event pattern
written in Kotlin5. The complete source code can be found on Software Heritage [44].

Listing 4 Excerpt of the model validator for the Domain Event pattern in Kotlin.
1 $$@SourceModelValidator$$
2 internal class ServiceModelSourceValidator : AbstractXtextModelValidator() {
3 $$@Check$$
4 private fun checkProducer(operation: Operation) {
5 if (operation.hasServiceAspect("DomainEvents", "Producer") &&
6 !operation.hasResultParameters(CommunicationType.ASYNCHRONOUS))
7 error("The Producer aspect may only be applied to operations with a result " +
8 "parameter", ServicePackage.Literals.OPERATION__NAME)
9 }

10 }

A model validator based on the MPF must exhibit the @SourceModelValidator an-
notation [47] (Line 1) and extend the AbstractXtextModelValidator class [45] (Line 2).
Furthermore, a validation method (Lines 4 to 9) must be preceded by the @Check annotation.
From this annotation and the annotated method’s signature, the MPF recognizes validation
methods and when to invoke them. More specifically, the MPF will traverse the abstract syn-
tax tree (AST) of a parsed LEMMA input model, identify the type of the current AST node,
and, during model validation, invoke all validation methods whose signature matches this
type. Consequently, it executes checkProducer for every modeled microservice Operation.
In case the operation applies the Producer aspect from the DomainEvents technology model
(cf. Line 5 and Listing 2) and does not have an asynchronous result parameter (Line 6),
the validator yields an error using the error method from LEMMA’s MPF (Lines 7 to 8).
checkProducer thus implements Constraint C.1 of the Domain Event pattern (Table 1).

Model processors based on LEMMA’s MPF are commandline tools that can readily be
integrated into continuous integration pipelines [27]. However, the MPF also supports Live
Validation for interactive model validation and error reporting. It relies on the Language
Server Protocol (LSP) [11] to connect to the modeling IDE and display validation errors during
model construction so that modelers need not invoke commandline validation separately
from the IDE and trace errors messages to the erroneous model elements manually. Figure 2
shows the IDE manifestation of violating the check for Constraint C.1 in Listing 4.

5 https://www.kotlinlang.org

https://www.kotlinlang.org
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Figure 2 Model validation error resulting from an unintended application of the Producer aspect
for the Domain Event pattern and reported by LEMMA’s MPF to the modeling IDE via the LSP.

3.3 Phase 3: Pattern-Conform LEMMA Code Generation

This phase consists solely of the Code Generator Implementation activity which has to
consider possibly existing generators (Fig. 1). For example, the realization of the Domain
Event pattern requires a message broker to transmit domain events [55]. As there exist
several alternative broker technologies, e.g., RabbitMQ6 or Kafka7, a Domain Event code
generator has to take into account the possible existence of generators for certain broker
technologies. For Java-based microservices, LEMMA already bundles a Java Base Generator
(JBG) that provides convenience mechanisms to map LEMMA model elements to Java code
and a plugin infrastructure for MPF-based Java code generators.

In the following, we suppose that pattern-specific code generators produce Java code.
Consequently, they can directly be integrated with LEMMA’s JBG. Listing 5 shows an
excerpt of the Domain Event code generator plugin for the JBG. Since the JBG is based on
LEMMA’s MPF, this generator is part of the same model processor as the pattern’s model
validator (Listing 4) and its complete source code is also available on Software Heritage [43].

Listing 5 Excerpt of the Domain Event code generator plugin for the JBG written in Kotlin.
1 $$@CodeGenerationHandler$$
2 internal class DataStructureHandler : GenletCodeGenerationHandlerI {
3 override fun handlesEObjectsOfInstance() = IntermediateDataStructure::class.java
4 override fun generatesNodesOfInstance() = ClassOrInterfaceDeclaration::class.java
5 override fun execute(structure: IntermediateDataStructure,
6 clazz: ClassOrInterfaceDeclaration) {
7 val eventGroup = clazz.getAspectProperty("EventGroup", "name") ?: return null
8 val groupInterface = EventGroups.addOrGetGroupInterface(eventGroup)
9 node.addImplementedType(groupInterface.nameAsString)

10 return node
11 }
12 }

The JBG structures the MPF’s Code Generation phase (Appendix B) into code generation
handlers each of which maps a particular LEMMA model element type to a Java AST node
type [22]. A code generation handler is a class augmented with the @CodeGeneration-
Handler annotation (Line 1) and implementing the GenletCodeGenerationHandlerI inter-
face (Line 2) such that the handler must override the methods handlesEObjectsOfInstance
and generatesNodesOfInstance (Lines 3 and 4). The methods respectively inform the
JBG which LEMMA model element type the handler can process and to which Java AST
node type the element type corresponds. The handler in Listing 5 maps data structures in
LEMMA’s Domain Data Modeling Language (Appendix B) to Java class declarations.

The execute method (Lines 5 to 11) clusters the handler’s logic. It concerns domain
event grouping, and, following the pattern’s definition [55], produces a Java interface for each
event group which is then assigned as an implemented type to the domain event Java class.

6 https://www.rabbitmq.com
7 https://kafka.apache.org

Microservices 2020/2022
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4 Validation

We validate our method (Sect. 3) with CQRS, i.e., one of the most complex patterns in Sect. 2
that (i) spans several LEMMA viewpoints (Appendix B); (ii) requires more than one model
for the same viewpoint and thus ad hoc model parsing; (iii) combines technology-agnostic
and technology-specific validation; and (iv) impacts service configuration and source code.

We present the research questions (RQs; Sect. 4.1), case study (Sect. 4.2), and results
(Sect. 4.3) of our method’s validation, and discuss the latter (Sect. 4.4).

4.1 Research Questions
Our validation focuses on the following RQs:
RQ 1 To what extent do LEMMA and our method for its extension with pattern support

cover patterns whose complexity exceeds that of Domain Event significantly?
RQ 2 How much effort is required to provide such complex extensions?

4.2 Case Study
We validate our method with a case study microservice architecture called Park and Charge
Platform (PACP). The PACP originates from a research project that aims to enable the
offering of private charging stations for electric vehicles for use by other owners of electric
vehicles. We described the PACP’s architecture in more detail in a previous publication [53].
Almost all PACP microservices apply CQRS. Figure 3 provides an overview of the pattern.

Logical Microservice

Physical Command

Side

Physical Query

Sides

Command Side

Database

Message

Broker

Query Side

Databases

Write Operations Read Operations

Key

Microservice

Architecture

Component

Provided Interface

Synchronous Interaction

Asynchronous Interaction

Figure 3 Overview of the CQRS pattern.

As mentioned in Sect. 2, a CQRS application consists of a logical microservice that
provides clients with write and read operations. Depending on an operation’s kind, its actual
implementation resides in a physical command side microservice (write) or one of potentially
several query side microservices (read). Command side microservices allow the alteration of
data in command side databases [55] and asynchronously inform query side microservices
about alterations via message brokers. Query sides then update their databases accordingly.

The benefits of CQRS for the PACP are twofold. First, we can scale read operations
independently of write operations and for the PACP the former are much more frequent.
Second, the pattern allows storage optimization for read operations so that we can preprocess
sensor data from charging stations for time series processing as well as for relational queries.

In the following, we focus on the PACP’s Charging Station Management Microservice. It
is responsible for managing charging station information like location, charging and plug
type, and also receives data from charging stations. While we consider only a single PACP
microservice, our results are directly transferable to the CQRS-conform modeling and code
generation of all other PACP microservices.
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4.3 Results
We structure the presentation of the validation results by the phases of our method (Sect. 3).

Phase 1: Pattern Analysis

Figure 3 is a direct outcome of the Concept Identification activity. Structured by LEMMA’s
viewpoints (Appendix B), a CQRS application consists of the following concepts:

Domain Viewpoint: Domain concepts to be stored in databases and used to convey
asynchronous messages between physical microservices.
Service Viewpoint: Logical CQRS microservice consisting of exactly one command
side and at least one query side microservice. Physical microservices provide synchronous
operations to consumers and interact with each other asynchronously.
Operation Viewpoint: Infrastructure nodes like databases and a message broker.

In the following, we focus on the Domain and Service Viewpoint because they have the
most impact on the upcoming activities.

During the Concept Reconciliation activity (Fig. 1), we not only discovered the above
concepts but also the close relationship between the Domain Event and CQRS pat-
terns. Consequently, we decided to rely on domain events to define the structures for the
asynchronous messages sent from command side to query side microservices.

Table 2 lists the constraints resulting from the Constraint Formulation activity.

Table 2 Conformance constraints for the CQRS pattern.

# Constraint Severity

C.3 Logical microservice consists of command and at least one query side microservice. Error

C.4 Command side microservice should be able to send domain events. Warning

C.5 Query side microservice should be able to receive domain events. Warning

C.6 Incoming domain event parameters of query side operations should be type-
compatible with outgoing domain event parameters of command side operations.

Warning

Violations of Constraints C.4 to C.6 yield warnings to permit iterative CQRS modeling.

Phase 2: Pattern-Conform LEMMA Modeling

From the concerned LEMMA viewpoints, the Model Type Identification activity identified
the domain, service, and operation model types (Appendix B) to be affected by CQRS.

Technology Model Construction resulted in the LEMMA technology model in Listing 6.

Listing 6 CQRS technology model in LEMMA’s Technology Modeling Language.
1 // Model name: Cqrs.technology
2 technology CQRS {
3 service aspects {
4 aspect CommandSide for microservices { string logicalService; }
5 aspect QuerySide for microservices { string logicalService; }
6 }
7 }

The CommandSide and QuerySide aspects allow determination of command side and
query side microservices. Two microservices that apply these aspects belong to the same
logical CQRS microservice when the values for the logicalService property are equal.

Microservices 2020/2022
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In the Model Validator Implementation activity, we developed a LEMMA model validator
for the above technology model. Its Kotlin-based implementation consists of 180 lines of
code (LOC), excluding empty lines, and is available on Software Heritage [42]. The validator
implements Constraints C.4 and C.5 (Table 2).

To realize Constraint C.3, we decided to rely on a built-in construct of LEMMA’s Service
Modeling Language (Appendix B), i.e., the required microservices directive. It allows
modeling of relationships between microservices in the same or distinct service models – in
the latter case based on LEMMA’s import mechanism and inter-model references. Hence,
our CQRS validator checks the constraints in Table 2 only when a query side requires a
command side microservice of the same logical microservice as identified by the logicalSer-
vice property of the corresponding aspect applications (Listing 6). The specification of the
dependency of a query side on a command side microservice is in line with CQRS because
the former relies on events received by the latter to update its database accordingly (Fig. 3).

Concerning Constraint C.6, we decided against its inclusion in the CQRS validator.
Instead, we extended an implementation for the type-checking of sending and receiving
microservice operations in an existing JBG plugin (Sect. 3.3) for the Kafka message broker.

Phase 3: Pattern-Conform LEMMA Code Generation

LEMMA bundles a set of JBG plugins for popular MSA technologies like Kafka and Spring8.
Among others, the Kafka plugin [40] supports the extension of Java codebases produced from
LEMMA models by the JBG, e.g., with configuration code for the connection to a Kafka
broker and with methods for sending events via this broker. For the extension of LEMMA
with CQRS, we were able to reuse the plugin for the most part. As described above, we
only had to extend its validator with a check for Constraint C.6 (Table 2). This extension
concerned 141 LOC between Lines 185 and 343 of the validator’s Kotlin implementation [41].

4.4 Discussion
We discuss the validation of our method w.r.t. the framed RQs (Sect. 4.1).

RQ 1 Method Applicability for Complex Architectural Patterns

Based on the successful application of the method on the CQRS pattern (Sect. 4.3) we
conclude that it is applicable not only to comparatively simple patterns like Domain Event
(Sect. 3) but also to patterns that involve more concepts, validations, and code to be generated.
However, an in-depth evaluation of the method’s applicability would require its usage on
ideally all patterns from Sect. 2. In order to anticipate the structure of such an evaluation,
we assessed the complexity of extending LEMMA with pattern support using our method
for all of these patterns, except for Domain Event and CQRS. Table 3 shows an excerpt
of this assessment for one pattern from each category in Sect. 2, besides Migration. That
is, because Migration is mostly out of LEMMA’s scope. We refer to Appendix C for the
complete list of assessed pattern extension complexity.

API Gateway is the example of a pattern that requires comparatively low effort
to be integrated with LEMMA. That is because it concerns only the Operation viewpoint
(Appendix B) and requires the modeling of one infrastructure node that needs to be augmented
with the technology for an API gateway. The amount of generated code is probably also

8 https://www.spring.io

https://www.spring.io
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Table 3 Assessed complexity of extending LEMMA with support for selected architectural MSA
patterns (see Appendix C for the complete list).

Pattern LEMMA
Viewpoints

Quantitiesa) Extension
Complexityb)

Dom. Serv. Op. Concepts Constraints LOCc)

API Gateway � # # # #

Backend for
Frontend

� � � # #  G#

API Key � � � # G#   

Distributed Tracing � �     

Container � # #  N/A

Symbol key: # = Low; G# = Middle;  = High.
a) Assessed relative across all patterns.
b) Assessed based on quantities, and experiences with Domain Event (Sect. 3) and CQRS (Sect. 4).
c) Assessed quantity of generated code.

low as there exist readily usable implementations of the pattern, e.g., Zuul9. Similarly,
the assumed integration effort for the Backed for Frontend pattern is rather low. In
fact, LEMMA already provides all required concepts for modeling this pattern and, as for
CQRS, only a technology model to link a backend with a frontend service will be needed.
Nonetheless, the amount of generated code will likely be high since backend services are
full-fledged microservices. The API Key pattern, on the other hand, calls for additional
constraints that allow checking whether the additional security infrastructure was configured
correctly. Moreover, we expect the necessity to generate this infrastructure to further increase
the effort for API Key integration. The integration of the Distributed Tracing pattern
will be nearly infeasible as it requires concepts and corresponding constraints for service
interactions. However, LEMMA does currently not exhibit such concepts and the technology
aspect mechanism is likely not sophisticated enough to fully retrofit them. Concerning the
Container pattern, no LEMMA integration is needed as it is already fully supported by
LEMMA’s Operation Modeling Language (Appendix B).

RQ 2 Method Effort for Complex Architectural Patterns

Given our experience with the conceptual and implementation subtleties of LEMMA and the
CQRS pattern, the execution of the method was straightforward. At least for the Pattern
Analysis phase (Sect. 3), we expect the method to not impose significant overhead, even
for stakeholders that are not familiar with LEMMA. That is because the phase does not
require LEMMA knowledge and a basic knowledge of the targeted pattern can be assumed
as otherwise the objective decision to extend LEMMA with support for it would not have
been possible at all. For the first two activities of the Pattern-Conform LEMMA Modeling
phase, basic LEMMA knowledge is necessary to identify the model types affected by pattern
extension and construct the corresponding technology model. However, the amount of
LEMMA knowledge increases significantly for subsequent model validator and code generator

9 https://github.com/Netflix/zuul
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development. Moreover, both these activities require additional implementation effort.
LEMMA’s extension with the CQRS pattern comprises 327 LOC including the technology
model, validator, and extension of the Kafka JBG plugin (Sect. 4.2). For complex patterns
like Gateway Offloading or Microservice Chassis (Appendix C) the LOC count is
likely to increase, especially when no JBG plugin or model processor for extension exists.
We consider the objective quantification of the effort required by our method of high interest
for future research works.

5 Related Work

We present work related to MDE-for-MSA and architectural pattern conformance assurance.

MDE-for-MSA

There exists a plethora of MDE approaches with support for the MSA viewpoints Domain [13,
63, 29], Service [23, 2, 61, 29, 25], and Operation [18, 2, 61, 25] (Appendix B). By contrast
to LEMMA and the presented method (Sect. 3), the majority of these approaches does
not allow pattern integration on the language-level. Only DCSL [13] can be considered to
have basic support for language-level extensibility leveraging meta-attributes. However, it
only covers domain modeling and only a subset of architectural MSA patterns concerns the
Domain viewpoint (Appendix C). Instead, most of the patterns are rooted in the Service
and Operation viewpoints. As opposed to LEMMA, MDE-for-MSA approaches for these
viewpoints integrate pattern-specific concepts like Circuit Breaker [2], APIGatewaySer-
vice [61], or serviceDiscoveryType [25] into provided modeling languages. Hence, these
approaches aggravate learnability by extensive language syntaxes and prevent retrofitting,
thus requiring new releases each time the modeling of a new pattern shall be supported.

Architectural Pattern Conformance Assurance

Conformance checking between the intended design of a software and its actual implementation
is an important activity in software architecting [5] that may also reveal deviations from
pattern specifications. Kim and Shen [30] leverage a divide-and-conquer strategy to assess the
syntactic conformance of UML class diagrams [39] with design patterns that are specified via a
UML extension for role-based metamodeling. Roles in pattern models prescribe contributions
to pattern solutions and can be played by more than one element in assessed class diagrams.
Consequently, the approach is able to also capture pattern variations. Chihada et al. [9]
present an approach to pattern conformance checking based on Support Vector Machines. To
this end, classifiers for design patterns are trained based on the peculiarities of object-oriented
metrics in pattern specifications. In the next step, the classifiers are applied to source code
that has been partitioned into smaller chunks of possible design pattern manifestations.
From the confidence values returned by classifiers, Chihada et al. assess the likeliness for
pattern occurrence. This approach is also able to capture pattern variations. However,
other than Kim and Shen, Chihada et al. operate on source code. Díaz-Pace et al. [14]
suggest a heuristic approach to detect source code deviations from behavioral architecture
scenarios expressed as use-case maps (UCMs) which are graph-based descriptions of expected
system executions. Deviations between UCM specifications and evolved source code are then
detected by exercising the architecture implementation against test cases derived from UCMs.
Similar to Kim and Shen, Díaz-Pace et al. identify conformance by means of an abstract
view on component responsibilities. By contrast to the aforementioned works, our method
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(Sect. 3) aims to ensure pattern conformance by model validation and code generation. While
this approach allows pattern expression in the same constructive source model and on a
level of abstraction that facilitates pattern recognition, it also expects the production of
code that is actually pattern-conform, thereby bundling pattern conformance checking and
pattern-conform code generation in model processors. Furthermore, we focus on architectural
patterns instead of design patterns and do not explicitly consider pattern variations. They
may however be codified as aspect properties in pattern technology models so that code
generators produce varied pattern instances w.r.t. property values. Similar to Chihada et al.,
we also consider pattern analysis a crucial step prior to pattern handling.

There also exist works concerning the assessment and restoration of architectural pattern
conformance in MSA engineering [38, 37]. These works are of particular interest to us because
they define metrics and refactorings on the model-level to determine and resolve pattern
deviations. We regard the integration of these approaches with our method as a sensible
future work as it would permit (i) testing the actual conformance of generated pattern
code, thereby enabling model processor developers to evaluate processor correctness; and (ii)
resolution of pattern deviations from reconstructed architecture models [52].

Similar to us, Falkenthal et al. [17] focus on linking pattern specifications with solution
implementations which may be source code that reifies a pattern realization. Next to
pattern variation, the work by Falkenthal et al. raises an important concern regarding the
modularization and composition of pattern solutions. Our method recognizes this concern in
Phase 3 (Fig. 1), where existing code generators are examined prior to the implementation
of a novel pattern-specific code generator in order to identify generator dependencies and
reusability. In its current form, this examination has to be conducted manually, and thus
requires deep knowledge about existing generators and their implementations. It would
therefore be beneficial to reason about means to describe code generator composability on
a more abstract level, e.g., by extending LEMMA’s Technology Modeling Language with
capabilities to express composition relationships between pattern-specific technology aspects.

6 Conclusion and Future Work

In this paper, we presented an approach that combines two orthogonal means for complexity
reduction in Microservice Architecture (MSA) engineering, i.e., architectural MSA patterns
(Sect. 2) and language-based approaches to MSA. More precisely, we introduced a method
(Sect. 3) for the systematic retrofitting of LEMMA (Language Ecosystem for Modeling
Microservices) with support for modeling and implementing architectural MSA patterns.
The presented method relies on the (i) specification of aspects to reify pattern applications in
MSA models; (ii) validation of pattern applications for correctness; and (iii) code generation
from MSA models with correct pattern applications. We validated the feasibility of our
method for two popular architectural MSA patterns, i.e., Domain Event and Command
Query Responsibility Segregation (CQRS), and provide a complexity assessment
for the integration of 28 other patterns with LEMMA (Sect. 4). Our approach aims at
enabling correct-by-construction microservices by abstracting from the complexity of pattern
implementations, yet still enabling their automated production with techniques from Model-
Driven Engineering (MDE). In particular, our results show that LEMMA’s expressivity
is versatile enough to even allow the model-based expression of comparatively complex
architectural MSA patterns such as CQRS and that the provided model processing facilities
support pattern-specific LEMMA extensions such that pattern conformance checking and
pattern-conform code generation can be modularized into reusable model processors.

Microservices 2020/2022



8:16 Correct-By-Construction Microservices with Model-Driven Engineering

While we are confident that from the 28 remaining architectural MSA patterns, 19
exhibit a low to middle complexity concerning their integration with LEMMA, an objective
quantification is still necessary. We therefore plan to extend LEMMA with support for all of
these patterns and identify even further applicable patterns, e.g., from Cloud Computing [62].
We are also interested in applying our approach with other works targeting the model-
based assessment and restoration of architectural pattern conformance in microservice
implementations. As a result, it would become possible to detect pattern applications and
deviations from source code, and exploit the presented approach for the correct resolution of
such deviations. We are also interested in extending LEMMA with means to anticipate the
composability of pattern-specific code generators, e.g., by expressing composition relationships
between pattern-specific technology aspects on the model-level.
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Appendix

A Model-Driven Engineering

MDE is a paradigm that promotes the use of models in the software engineering process [10].
In the sense of MDE, a model is a software artifact that describes selected aspects of a
software system in an abstracted fashion and can replace more concrete artifacts for certain
purposes. For instance, a model may be a partial representative for source code focusing on
capturing component interfaces [50] or coordination [65]. A major goal of MDE is to increase
models’ usage beyond documentation and turn them into first-class citizens in software
engineering, e.g., by deriving executable code from them or facilitate quality assessment [66].

MDE formalizes construction specifications for models as modeling languages [10]. A
modeling language consists of (i) an abstract syntax defining available modeling concepts;
(ii) one or more concrete syntaxes whose constructs allow concept instantiation by users;
and (iii) semantics that assign meaning to concepts. MDE suggests the realization of model
processors to elevate models from documentation to engineering artifacts. Examples of model
processors comprise code generators, static analyzers, and interpreters [10].

Given its focus on abstraction, MDE is particularly applicable in the design, development,
and operation of complex software systems [19], and their architectures [56]. Its adoption has
benefited software engineering in heterogeneous domains such as cyber-physical systems [34],
Industry 4.0 [67], Internet of Things [31], and Service-Oriented Architecture (SOA) [3].

B Model-Driven Microservice Engineering with LEMMA

The successful adoption of MDE for SOA (Appendix A) stimulated research on its application
to MSA [23, 2, 63, 61, 28, 25]. LEMMA (Language Ecosystem for Modeling Microservice
Architecture) [49] is an approach to MDE-for-MSA [21] that copes with MSA’s complexity
by concern-driven decomposition. To this end, it provides integrated modeling languages
for the modeling of a microservice architecture from different viewpoints [24]. A viewpoint
addresses selected stakeholder concerns, and prescribes notations and processing instructions
for architecture models reifying such concerns. Figure 4a shows LEMMA’s viewpoints, their
stakeholders, modeling languages and model types, and Table 4 describes them.

LEMMA provides an import mechanism to let modeling languages prescribe reference
relationships between modeling concepts. This mechanism supports model integration across
viewpoints to increase models’ information content. Figure 4b depicts the import relationships
between LEMMA’s model types. The following import relationships can be established:

Domain Model: Domain models can import domain concepts from other domain models
to use these external concepts as types for local concepts.
Service Model: Service models can import microservices from other service models to
capture service dependencies. Furthermore, service models can import domain concepts
from domain models to use them as types of operation parameters. To configure a
microservice to exploit a certain technology, service models can be augmented with
information captured by imported technology models, e.g., protocols or aspects (Table 4).
Mapping Model: Mapping models import microservices and, transitively, domain
concepts from service models as well as technology information from technology models.
They can then augment microservices and domain concepts with technology information.
Technology Model: Technology models import other technology models to specify
conversion directions between technology-specific types.
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Figure 4 (a) LEMMA’s viewpoints, their stakeholders, modeling languages and model types.
(b) Import relationships between LEMMA model types.

Operation Model: Operation models import other operation models to identify de-
pendencies between operation nodes. Moreover, they can import technology and service
models for node configuration and container-based microservice deployment, respectively.

Next to viewpoint-specific modeling languages, LEMMA also bundles its own MPF to
facilitate the implementation of model processors by technology-savvy MSA stakeholders, e.g.,
microservice developers and operators (Table 4). The MPF applies the Phased Construction
pattern [32] to structure model processing into the following phases:
1. Model Parsing: Parses input LEMMA models into object graphs to allow their efficient

traversal. The phase is automated and does not require knowledge of MDE technologies.
2. Model Validation: Supports the implementation of validity checks as part of model

processors. For instance, a code generator for event-based microservices might first ensure
that modeled microservices exhibit operations that actually permit event handling.

3. Code Generation: Since code generation is among the key drivers for practical MDE
adoption [66, 4, 33], LEMMA’s MPF integrates a corresponding phase. However, since
the MPF does not impose any requirements on generated code, the Code Generation
phase may also be exploited to reify results from other model processing purposes, e.g.,
quality attribute values calculated during static model analysis [49].

LEMMA’s MPF draws on popular MSA technologies and mechanisms such as the Java
programming language [57, 7] and class-based Inversion of Control [26, 58]. Therefore,
it provides specialized Java annotations for the Model Validation and Code Generation
phases. The MPF detects these annotations at runtime on classes and methods, and handles
annotated elements as intended by the phase, e.g., for signaling errors in validated models.

C Complexity Assessment for Extending LEMMA with Support for All
Architectural Patterns in Sect. 2
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Table 4 Description of LEMMA’s viewpoints, stakeholders, modeling languages and model types.

Viewpoint Stakeholders Modeling Languages

Domain Domain Experts,
Microservice Developers,

Software Architects

Domain Data Modeling Language: Enables to construct
domain models with domain-specific data structures, collec-
tions, and enumerations via Domain-driven Design [15].

Service Microservice Developers,
Software Architects

Service Modeling Language: Supports the construction of
service models for microservices, interfaces, and operations.
Service Technology Mapping Modeling Language: Enables
the construction of mapping models that assign technology-
specific information to domain or service model elements.
Models can therefore remain technology-agnostic and
reusable across alternative technology choices [36].

Technology Microservice Operators,
Microservice Developers,

Software Architects

Technology Modeling Language: Allows the construction of
technology models that capture types of service program-
ming languages, communication protocols, and operation
technologies. In addition, generic technology aspects can
be specified to augment elements in LEMMA models, e.g.,
data structures and microservices, with technology-specific
information like database mappings or endpoint locations.

Operation Microservice Operators,
Software Architects

Operation Modeling Language: Constructs operation models
for microservice deployment and infrastructure including
its usage by services.

Table 5 Assessed complexity of extending LEMMA with support for the architectural MSA
patterns described in Sect. 2.

Cate-
gory

Pattern LEMMA
Viewpoints

Quantitiesa) Complexity
of Extensionb)

Dom. Serv. Op. Concepts Constraints LOCc)

C
om

m
un

ic
at

io
n

API Gateway � # # # #

Comment: Requires only one infrastructure component.

API
Composition

� � �     

Comment: No built-in modeling concepts for API composition.

Gateway
Routing

� # # # #

Comment: Requires identification of API gateway as router.

Gateway
Offloading

� �  #   

Comment: Number of concepts likely increases with offloaded service functionality.

Event Sourcing � � � # G#  G#

Comment: Requires persisting message broker component. Services interacting with
broker must only send/receive domain events.

Log Aggregator � # # # #

Comment: Requires only one infrastructure component.
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Cate-
gory

Pattern LEMMA
Viewpoints

Quantitiesa) Extension
Complexityb)

Dom. Serv. Op. Concepts Constraints LOCc)

D
ep

lo
ym

en
t

Sidecar � G# G#  G#

Comment: Requires Sidecar identification and assignment to business-oriented service.

Microservice
Chassis

�     

Comment: By contrast to Sidecar: Requires delegating of all cross-cutting concerns.

Backend for
Frontend

� � � # #  G#

Comment: Additional separate backends for highly diverse, client-specific frontends.

Database is the
Service

� # G# # #

Comment: Requires validation that each service has its own database.

D
es

ig
n

Processing
Resource

� � # #  N/A

Comment: Fully supported by LEMMA’s domain and service modeling concepts.

Parameter Tree � G# G# # G#

Comment: Requires identification of domain concept containments.

API Key � � � # G#   

Comment: Requires identification of API key fields and mature security infrastructure.

D
ev

O
ps

Externalized
Configuration

� � # G# G# G#

Comment: Requires configuration provider component to be used by services.

Monitor � # #   

Comment: Requires monitor component to be used by services.

Application
Metrics

� # #   

Comment: Requires metrics collector component to be used by services.

Distributed
Tracing

� �     

Comment: No built-in modeling concepts for service interaction.

Health Check � # #   

Comment: Requires health checker component to be used by services.

M
ig

ra
tio

n

Strangler � � � # #  N/A

Comment: Fully supported by LEMMA’s modeling concepts for the viewpoints.

Anti-Corr.
Layer

� � # #  N/A

Comment: Fully supported by LEMMA’s domain and service modeling concepts.

Decompose by
Business Cap.

� N/A N/A N/A N/A

Comment: Pre-MSA systems are out of LEMMA’s scope.
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Cate-
gory

Pattern LEMMA
Viewpoints

Quantitiesa) Extension
Complexityb)

Dom. Serv. Op. Concepts Constraints LOCc)

Decompose by
Subdomain

� N/A N/A N/A N/A

Comment: Pre-MSA systems are out of LEMMA’s scope.

O
rc

he
st

ra
tio

n

Container � # #  N/A

Comment: Fully supported by LEMMA’s Operation Modeling Language.

Serv. Registry � # # # #

Comment: Requires only one infrastructure component.

Serv.
Discovery

� # # # #

Comment: Requires only one infrastructure component.

Load Balancer � # # # #

Comment: Requires only one infrastructure component.

Circuit Breaker � # # G# #

Comment: Requires identification of circuit breaker capability on services.

Saga � � �     

Comment: No built-in modeling concepts for service interactions.

Symbol key: # = Low; G# = Middle;  = High.
a) Assessed relative across all patterns.
b) Assessed based on quantities, and experiences with Domain Event (Sect. 3) and CQRS (Sect. 4).
c) Assessed quantity of generated code.
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