
Shifting Programming Education Assessment from
Exercise Outputs Toward Deeper Comprehension
André L. Santos #

Instituto Universitário de Lisboa (ISCTE-IUL), ISTAR-IUL, Portugal

Abstract
Practice and assessment in introductory programming courses are typically centered on problems
that require students to write code to produce specific outputs. While these exercises are necessary
and useful for providing practice and mastering syntax, their solutions may not effectively measure
the learners’ real understanding of programming concepts. Misconceptions and knowledge gaps
may be hidden under an exercise solution with correct outputs. Furthermore, obtaining answers
has never been so easy in the present era of chatbots, so why should we care (much) about the
solutions? Learning a skill is a process that requires iteration and failing, where feedback is of
utmost importance. A programming exercise is a means to build up reasoning capabilities and
strategic knowledge, not an end in itself. It is the process that matters most, not the exercise
solution. Assessing if the learning process was effective requires much more than checking outputs.

I advocate that introductory programming learning could benefit from placing more emphasis on
assessing learner comprehension, over checking outputs. Does this mean that we should not check if
the results are correct? Certainly not, but a significant part of the learning process would focus on
assessing and providing feedback regarding the comprehension of the written code and underlying
concepts. Automated assessment systems would reflect this shift by comprising evaluation items for
such a purpose, with adequate feedback. Achieving this involves numerous challenges and innovative
technical approaches. In this talk, I present an overview of past and future work on tools that
integrate code comprehension aspects in the process of solving programming exercises.

2012 ACM Subject Classification Social and professional topics → Computer science education;
Applied computing → Computer-assisted instruction

Keywords and phrases Introductory programming, assessment, comprehension

Digital Object Identifier 10.4230/OASIcs.ICPEC.2023.1

Category Invited Talk

Acknowledgements I thank the ICPEC organizing committee for this Invited Talk.

1 Do programming learners fully understand their code?

Studies have shown that programming assignments that are successfully solved do not
necessarily have a matching learner confidence [13, 11], while a significant number of students
may struggle to explain their own code [15]. In other words, a learner’s ability to write a
correct solution to a problem does not imply mastery of the underlying concepts, algorithms,
and programming primitives. Despite reaching solutions that work, the learner may hold
misconceptions [7, 18] about the written code. Even if a learner did not cheat and actually
wrote the code, the latter could have been obtained through tinkering and trial-and-error
until reaching a working solution. In my experience as a programming instructor, I often get
surprised when a third-year student almost graduating cannot interpret rather elementary
aspects of program execution and errors. (I ask myself: How did the student reach this point
without understanding these matters? Systematically hammering out programs until they
work as expected?)

© André L. Santos;
licensed under Creative Commons License CC-BY 4.0

4th International Computer Programming Education Conference (ICPEC 2023).
Editors: Ricardo Alexandre Peixoto de Queirós and Mário Paulo Teixeira Pinto; Article No. 1; pp. 1:1–1:5

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:andre.santos@iscte-iul.pt
https://orcid.org/0000-0002-8247-7413
https://doi.org/10.4230/OASIcs.ICPEC.2023.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


1:2 Shifting Programming Education from Exercise Outputs Toward Comprehension

These days we have just reached the era of chatbots capable of correctly solving most
introductory programming assignments [8]. These systems, such as the popular ChatGPT1,
not only solve problems but also have a generative nature that allows them to output different
solutions for those, with accompanying detailed explanations. Until now one could easily find
code snippets for typical programming problems by browsing the Web. However, the learner
had to make at least a minimal effort regarding the interpretation and integration of the
search. With the advent of the latest chatbots, that effort is reduced to the minimum possible
– copy and paste the problem statement. Furthermore, there are barely any constraints
regarding the written or programming language. This implies that one may easily pass an
online programming exam blindly, just using the outputs of chatbots. Some solutions will
fail or not be optimal, but the overall score is likely to be positive. Therefore, obtaining
solutions has never been so easy, and this is likely to remain as such.

If just reading solutions would be adequate to learn to program, chatbots would not even
be necessary, and students simply would be provided with a bundle of problem statements and
corresponding solutions.2 Most programming exercises are “classical”, for which thousands
of solutions exist out there. The ease of obtaining solutions implies that they lose their value.
However, the real benefit of solving a programming exercise is not reaching a solution, but
rather the process of developing it – the problem interpretation, the strategy to approach
it, how to express it, handling common errors and bugs that will occur, and in turn, their
interpretation and strategy to overcome those. If a learner obtains immediate working
solutions without going through this process and just focuses on checking whether they meet
the desired outcome, will certainly acquire weaker skills. In analogy with natural languages,
it is like training to write sentences by modifying existing ones, but not being able to express
oneself by writing on a blank sheet.

Even in a pre-chatbot era, overreliance on automatic assessment systems could lead to an
“autograder insanity” phenomenon [5], where students replace the task of testing their own
solutions with highly frequent resubmissions to the system until they obtain a high score.
Not imposing limits and/or penalties for overusing the submission system may incentivize a
trial-and-error and tinkering approach to problem-solving. I believe this is a poor educational
practice, because one may reach a solution with high quality, but not fully understand all
aspects that characterize it as such. While in a small programming exercise against an
autograder a trial-and-error tactic may suffice to reach a working solution, in real settings
that strategy may be highly inefficient due to aspects pertaining to state space size, system
complexity, and development settings.

Access to (reliable) information is generally perceived as beneficial. Still, I argue that the
absence of learning strategies that are adapted to this new reality may hinder programming
learning processes (and other subjects). Struggling students will likely use the means at
their disposal to overcome their difficulties, especially when they are considered legitimate. I
believe that if the activities for fulfilling programming course requirements remain focused
on obtaining solutions, the widespread use of chatbots might lead to a shallow acquisition of
programming skills.

1 https://chat.openai.com/
2 Worked examples [4] are an effective learning means, but their aim is not to replace deliberate practice.

https://chat.openai.com/


A. L. Santos 1:3

2 How can courseware help to improve program comprehension?

I believe that the instructional design of programming courses could place more emphasis
on assessing the learner’s comprehension of programming concepts, algorithms, and code
understanding while downplaying the accomplishment of reaching a solution that produces
the expected outputs. In this perspective, an exercise would not be completed until some
assessment of program comprehension is carried out. My hypothesis is that deemphasizing
solution outputs will, to some degree, shift the learners’ attention and learning time to
understanding.

A possible approach to assess code understanding is to pose questions about learners’
code [16]. Given that having a human tutor to carry out this role systematically for each
individual learner is likely not to be feasible in practice due to instructor availability and
cost, such an approach would better scale using automated assessment systems. A recent
survey [17] concluded that such systems generally do not comprise this sort of meta-cognition
feedback on the submitted code solutions. Jask [21] is a research prototype capable of
generating question-answer pairs about Java code against methods. Our early experiment
with introductory programming students revealed a high failure rate (> 60%) on questions
involving program dynamics (e.g., variable tracing, call stack) [21], while their solutions
were producing the expected outputs. Another study with questions on JavaScript [14] has
revealed similar failure rates and found that students that repeatedly fail these questions are
more likely to drop out. The results confirm that correct exercise solutions do not imply
an understanding of the inner workings of programs. This fragility may become evident as
problems and algorithms get more complex, but that was not yet evaluated.

Questions about learners’ code could be applied in a post-submission fashion in an
automated assessment system, where a learner would face questions about the submitted
code solution. Upon submitting a solution, the system could also ask questions about other
solutions for the same exercise from other students. This would lead the learner to carry out
code comprehension tasks related to the same matter, possibly strengthening the related
skills by having to interpret similar or different solutions.

Questions about learners’ code may be posed at different moments and target different
concerns. For example, an inquisitive code editor [10] may prompt questions to learners when
the written code reveals a hypothetical misconception, fostering users to reflect on their code.
Another possibility for asking questions is during debugging (when errors occur) [1], leading
users to reflect on the cause of the errors (instead of trying something else straight away).

Another form of assisting programming learners during exercise solving is by providing
feedback and appropriate hints. When a learner cannot progress in an exercise the first
temptation might be to look for the solution somewhere else, such as a chatbot. However,
in their current form, chatbots may straightly provide a complete solution. As discussed
earlier, this may cause the learner to go through the exercise with minimal reflection, despite
that chatbots are also capable of outputting detailed explanations of the provided solutions.
Jinter [9] is a system to provide fine-grained hints for progressing and receiving feedback in
programming exercises. Instead of providing straight answers, the hints attempt at leading
the learner to a viable path, while demanding some reflection. Other approaches have focused
on providing feedback for improving the code, for instance, with respect to code quality [2]
and refactoring [12].

Following a different research line – educational programming environments (e.g., Ville [19],
BlueJ [6], Thonny [3], PandionJ [20]) – I postulate that the programming environments
themselves could improve their role in program comprehension. Namely, by providing

ICPEC 2023



1:4 Shifting Programming Education from Exercise Outputs Toward Comprehension

additional insights that would be otherwise unnoticeable or of difficult access, such as
providing facilities for users to: see execution history, ask questions about program behavior,
trace output to program statements, detail error explanations and location, and present
information about execution performance (time and memory). Hypothetically, the absence
of available information to help understand what went wrong in a program incentivizes a
learner to search for other forms of overcoming the problem.

To conclude, chatbots have the potential of being a fabulous aid to programming learners
that are stuck in their progress. The great novelty of chatbots relates to their immediacy and
conversational nature, while they do not provide anything that is not explained elsewhere.
Programming education will have to adapt to this new reality, but I argue that educators
should not overvalue chatbots as if they were a silver bullet – in the end, one still has to
understand how programs work. Time will tell how chatbots affect the learning processes of
programming.

References
1 Fatima Abu Deeb and Timothy Hickey. Reflective debugging in Spinoza V3.0. In Australasian

Computing Education Conference, ACE ’21, pages 125–130, New York, NY, USA, 2021.
Association for Computing Machinery. doi:10.1145/3441636.3442313.

2 Francisco Alfredo, André L. Santos, and Nuno Garrido. Sprinter: A didactic linter for structured
programming. In Alberto Simões and João Carlos Silva, editors, Third International Computer
Programming Education Conference, ICPEC 2022, June 2-3, 2022, Polytechnic Institute of
Cávado and Ave (IPCA), Barcelos, Portugal, volume 102 of OASIcs, pages 2:1–2:8. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:10.4230/OASIcs.ICPEC.2022.2.

3 Aivar Annamaa. Introducing Thonny, a Python IDE for learning programming. In Proceedings
of the 15th Koli Calling Conference on Computing Education Research, Koli Calling ’15,
pages 117–121, New York, NY, USA, 2015. Association for Computing Machinery. doi:
10.1145/2828959.2828969.

4 Robert K. Atkinson, Sharon J. Derry, Alexander Renkl, and Donald Wortham. Learning from
examples: Instructional principles from the worked examples research. Review of Educational
Research, 70(2):181–214, 2000. doi:10.3102/00346543070002181.

5 Elisa Baniassad, Lucas Zamprogno, Braxton Hall, and Reid Holmes. Stop the (autograder)
insanity: Regression penalties to deter autograder overreliance. In Proceedings of the 52nd ACM
Technical Symposium on Computer Science Education, SIGCSE ’21, pages 1062–1068, New
York, NY, USA, 2021. Association for Computing Machinery. doi:10.1145/3408877.3432430.

6 Jens Bennedsen and Carsten Schulte. BlueJ visual debugger for learning the execution of
object-oriented programs? ACM Transactions on Computing Education, 10(2):8:1–8:22, June
2010. doi:10.1145/1789934.1789938.

7 Luca Chiodini, Igor Moreno Santos, Andrea Gallidabino, Anya Tafliovich, André L. Santos,
and Matthias Hauswirth. A curated inventory of programming language misconceptions. In
Proceedings of the 26th ACM Conference on Innovation and Technology in Computer Science
Education V. 1, ITiCSE ’21, pages 380–386, New York, NY, USA, 2021. Association for
Computing Machinery. doi:10.1145/3430665.3456343.

8 James Finnie-Ansley, Paul Denny, Brett A. Becker, Andrew Luxton-Reilly, and James
Prather. The robots are coming: Exploring the implications of openai codex on introductory
programming. In Proceedings of the 24th Australasian Computing Education Conference,
ACE ’22, pages 10–19, New York, NY, USA, 2022. Association for Computing Machinery.
doi:10.1145/3511861.3511863.

9 Jorge Gonçalves and André L. Santos. Jinter: a hint generation system for Java exercises. In
28th annual ACM conference on Innovation and Technology in Computer Science Education
(ITiCSE) (to appear), 2023.

https://doi.org/10.1145/3441636.3442313
https://doi.org/10.4230/OASIcs.ICPEC.2022.2
https://doi.org/10.1145/2828959.2828969
https://doi.org/10.1145/2828959.2828969
https://doi.org/10.3102/00346543070002181
https://doi.org/10.1145/3408877.3432430
https://doi.org/10.1145/1789934.1789938
https://doi.org/10.1145/3430665.3456343
https://doi.org/10.1145/3511861.3511863


A. L. Santos 1:5

10 Austin Z. Henley, Julian Ball, Benjamin Klein, Aiden Rutter, and Dylan Lee. An inquisitive
code editor for addressing novice programmers’ misconceptions of program behavior. In
43rd IEEE/ACM International Conference on Software Engineering: Software Engineering
Education and Training, ICSE (SEET) 2021, Madrid, Spain, May 25-28, 2021, pages 165–170.
IEEE, 2021. doi:10.1109/ICSE-SEET52601.2021.00026.

11 Cazembe Kennedy and Eileen T. Kraemer. Qualitative observations of student reasoning. In
The 24th Annual Conference on Innovation and Technology in Computer Science Education,
ITiCSE ’19, pages 224–230. ACM, 2019. doi:10.1145/3304221.3319751.

12 Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. A tutoring system to learn code
refactoring. In Proceedings of the 52nd ACM Technical Symposium on Computer Science
Education, SIGCSE ’21, pages 562–568, New York, NY, USA, 2021. Association for Computing
Machinery. doi:10.1145/3408877.3432526.

13 Päivi Kinnunen and Beth Simon. My program is ok – am I? computing freshmen’s experiences
of doing programming assignments. Computer Science Education, 22(1):1–28, 2012. doi:
10.1080/08993408.2012.655091.

14 Teemu Lehtinen, Lassi Haaranen, and Juho Leinonen. Automated questionnaires about
students’ JavaScript programs: Towards gauging novice programming processes. In Proceedings
of the 25th Australasian Computing Education Conference, ACE 2023, Melbourne, VIC,
Australia, 30 January 2023 - 3 February 2023, pages 49–58. ACM, 2023. doi:10.1145/
3576123.3576129.

15 Teemu Lehtinen, Aleksi Lukkarinen, and Lassi Haaranen. Students struggle to explain their
own program code. In Carsten Schulte, Brett A. Becker, Monica Divitini, and Erik Barendsen,
editors, ITiCSE ’21: Proceedings of the 26th ACM Conference on Innovation and Technology
in Computer Science Education V.1, Virtual Event, Germany, June 26 - July 1, 2021, pages
206–212. ACM, 2021. doi:10.1145/3430665.3456322.

16 Teemu Lehtinen, André L. Santos, and Juha Sorva. Let’s ask students about their programs,
automatically. In 29th IEEE/ACM International Conference on Program Comprehension,
ICPC 2021, Madrid, Spain, May 20-21, 2021, pages 467–475. IEEE, 2021. doi:10.1109/
ICPC52881.2021.00054.

17 José Carlos Paiva, José Paulo Leal, and Álvaro Figueira. Automated assessment in computer
science education: A state-of-the-art review. ACM Trans. Comput. Educ., 22(3), June 2022.
doi:10.1145/3513140.

18 Yizhou Qian and James Lehman. Students’ misconceptions and other difficulties in introductory
programming: A literature review. ACM Trans. Comput. Educ., 18(1), October 2017. doi:
10.1145/3077618.

19 Teemu Rajala, Mikko-Jussi Laakso, Erkki Kaila, and Tapio Salakoski. Ville: A language-
independent program visualization tool. In Proceedings of the Seventh Baltic Sea Conference
on Computing Education Research - Volume 88, Koli Calling ’07, pages 151–159, Darlinghurst,
Australia, Australia, 2007. Australian Computer Society, Inc. URL: http://dl.acm.org/
citation.cfm?id=2449323.2449340.

20 André L. Santos. Enhancing visualizations in pedagogical debuggers by leveraging on code
analysis. In Mike Joy and Petri Ihantola, editors, Proceedings of the 18th Koli Calling
International Conference on Computing Education Research, Koli, Finland, November 22-25,
2018, pages 11:1–11:9. ACM, 2018. doi:10.1145/3279720.3279732.

21 André L. Santos, Tiago Soares, Nuno Garrido, and Teemu Lehtinen. Jask: Generation of
questions about learners’ code in Java. In Brett A. Becker, Keith Quille, Mikko-Jussi Laakso,
Erik Barendsen, and Simon, editors, ITiCSE 2022: Innovation and Technology in Computer
Science Education, Dublin, Ireland, July 8 - 13, 2022, Volume 1, pages 117–123. ACM, 2022.
doi:10.1145/3502718.3524761.

ICPEC 2023

https://doi.org/10.1109/ICSE-SEET52601.2021.00026
https://doi.org/10.1145/3304221.3319751
https://doi.org/10.1145/3408877.3432526
https://doi.org/10.1080/08993408.2012.655091
https://doi.org/10.1080/08993408.2012.655091
https://doi.org/10.1145/3576123.3576129
https://doi.org/10.1145/3576123.3576129
https://doi.org/10.1145/3430665.3456322
https://doi.org/10.1109/ICPC52881.2021.00054
https://doi.org/10.1109/ICPC52881.2021.00054
https://doi.org/10.1145/3513140
https://doi.org/10.1145/3077618
https://doi.org/10.1145/3077618
http://dl.acm.org/citation.cfm?id=2449323.2449340
http://dl.acm.org/citation.cfm?id=2449323.2449340
https://doi.org/10.1145/3279720.3279732
https://doi.org/10.1145/3502718.3524761

	1 Do programming learners fully understand their code?
	2 How can courseware help to improve program comprehension?

