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Abstract

Software security is an important topic that is gaining more and more attention due to the rising
number of publicly known cybersecurity incidents. Previous research has shown that one way to
address software security is by means of a serious game, the CyberSecurity Challenges, which are
designed to raise awareness of software developers of secure coding guidelines. This game, which has
been proven to be very successful in the industry, makes use of an artificial intelligence technique
(laddering technique) to implement a chatbot for human-machine interaction.

Recent advances in machine learning led to a breakthrough, with the implementation of ChatGPT
by OpenAI. This algorithm has been trained in a large amount of data and is capable of analysing
and interpreting not only natural language, but also small code snippets containing source code
in different programming languages. With the advent of ChatGPT, and previous state-of-the-art
research in secure software development, a natural question arises: to which extent can ChatGPT
aid software developers in writing secure software?.

In this paper, we draw on our experience in the industry, and also on extensive previous work
to analyse and reflect on how to use ChatGPT to aid secure software development. Towards this,
we run a small experiment using five different vulnerable code snippets. Our interactions with
ChatGPT allow us to conclude on advantages, disadvantages and limitations of the usage of this
new technology.
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1 Introduction

According to ISO 25000 [16], one aspect of software development is security. Software
security has been gaining much attention over the last decade due to the increasing number
of cybersecurity incidents that are caused by poor software development practices. As a
consequence, industrial standards such as IEC 62.443 mandate the implementation of a
secure software development life cycle, to address and lower the number of vulnerabilities in
products and services. The development of secure software is not only an important topic
for the industry (e.g. in critical infrastructures), but it is also an important subject taught
in may engineering and informatics courses at several universities.

There are several known methods to improve the quality of software. Among others,
some of these methods include: performing secure code reviews, usage of static application
security testing (SAST), and employment of security testing techniques such as unit testing,
penetration testing, and fuzzing. These methods to improve software security are generally
based on the fact that software should comply to a set of secure coding guidelines; secure
coding guidelines are policies aimed at minimizing vulnerabilities and bugs in software. One
way to ensure that software follows secure coding guidelines is by means of the usage of static
application security testing tools. However, not all secure coding guidelines are decidable [3],
i.e. there exist some secure coding guidelines for which no theoretical Turing Machine (TM)
can be constructed such that, given some source code the TM identifies compliance or non
compliance to the guideline. As a result from this theoretical perspective, an immediate
problem is raised: full automation of secure coding is not possible. Software developers are
ultimately responsible for the security of the code they write. However, in a 2019 survey
with more than 4000 software developers from the industry, Patel [21] has shown that more
than 50% of them cannot recognize vulnerabilities in source code.

A way to address this problem is to raise awareness of secure coding among software
developers. Similar to Patel, in [11], Gasiba has shown that industrial software developers’
lack awareness of secure coding guidelines. He extended the work by Hänsch et al. to the
field of secure coding, defining secure coding awareness in three dimensions: perception,
protection, and behavior.

The recent advances in technology, in particular in Machine Learning (ML), allow new
techniques to be used to assist software developers to write secure code. In [8], Gasiba et al.
have shown that artificial intelligence can to be used to raise awareness of software developers.
The authors devised an intelligent coach by means of an artificial intelligent technique - the
laddering technique - which is mostly used in chatbots [22]. The intelligent coach, which
allowed Human-Machine interaction (HMi) in a controlled environment (the Sifu platform),
was shown to be very successful to raise awareness of secure coding guidelines of software
developers in the industry.

In this paper, we extend previous work by exploring the usage of ChatGPT [19] as a
means of HMi. ChatGPT, which was released in November 2022, is built on top of the GPT-3
family of large language models, and was developed by the American research laboratory
OpenAI. The language model has been fine-tuned with both supervised and reinforcement
learning techniques.

Given the authors’ experience, previous work, as also the theoretical limitations inherent
to the secure coding field, this work aims to broaden the understanding on the extent
ChatGPT can aid software developers to write secure code. This work seeks to understand
to which extent ChatGPT can recognize vulnerabilities in source code, and to which extent
ChatGPT can rewrite code to eliminate the present security vulnerabilities. The reason the
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authors have chosen ChatGPT for experimentation, as opposed to other existing generative
models (in particular models trained for cybersecurity), is the fact that, to the best of our
knowledge, not only is ChatGPT available to the wide public, but also allows to maintain a
conversation while remembering previous requests and answers. Theregore, we achieve the
present study by means of interactions with ChatGPT based on five exercises taken from
the serious game CyberSecurity Challenges (CSC), and analysis of the answers in terms of
secure coding. In the present work, we also reflect on the usage of ChatGPT and similar
technologies as a means to teach software developers to write secure code, both in academia
and also in the industry.

This work provides a valuable insight to both industry practitioners, but also to researchers,
by giving an overview of the advantages, disadvantages but also limitations of using Human-
Machine interactions as a means to raise awareness of secure coding. This paper also opens
the doors and gives a first step towards a new and rich field of research: using Machine
Learning algorithms and generative AI to raise awareness of secure coding by means of HMi.

In Section 2 we present related work that was used as basis for our research. In Section 3
we describe the setup and experiment that we used to address our research question. Section
4 presents the result as the outcome of our experiments. A discussion and reflection on the
obtained results is provided in Section 5. Finally, Section 6 concludes the paper and gives an
outline of future work.

2 Related Work

Several previous work was used as a basis for the current publication. Industrial security
standards such as ISO/IEC 62.443 [15] motivate the work. In particular, the 4.1 part of the
standard describes the implementation of processes to address the life cycle of secure software
development. One important aspect that the standard mandates is the establishment of
several secure coding practices, e.g. the implementation of secure coding guidelines during
the development of software. Some influential secure coding guidelines are provided by the
Open Web Application Security Project (OWASP) in the form of Top-10 rules [18], and
the secure coding guidelines provided by the Software Engineering Institute of the Carnegie
Mellon University [5]. A further cybersecurity standard widely used in the industry is given
by the MITRE corporation in form of Common Weakness Enumeration [6].

One way to address IT security is given by the German BSI Grundschutzkatalog [4]
standard, which recognizes serious games as a means to raise awareness of IT security. A
serious game, as defined by Dörner et al. [7], is a game that is developed with a purpose that
is not only entertainment. Gasiba et al. have developed a game with the purpose to raise
awareness of software developers of secure coding guidelines. This game (the CyberSecurity
Challenges) is based on a platform which the authors called Sifu [8, 11], and has been shown
to motivate software developers to think about security. In their game, the player is presented
with a secure coding challenge containing software vulnerabilities. The player interacts with
an intelligent coach, which is a software component that implements an artificial intelligence
(AI) engine, in order to solve the challenge. The goal of the intelligent coach is to provide
hints to the players on the reasons why software is not compliant to secure coding rules.
The game is played through several interactions with the intelligent coach, until a solution
to the given challenge is considered acceptable by the AI algorithm. The criteria for an
acceptable solution includes: (1) initial vulnerability present in the challenge is removed, (2)
no additional vulnerabilities are introduced, and (3) the code respects the desired semantics,
i.e. behaves as expected. The AI mechanism implemented in the Sifu plaform makes use
of the chatbot laddering technique [22]. The hints that are provided to the player are thus
given in an increasing level of clarity and exactness.
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Although there exist other ways to increase software security, e.g. by means of static
application security testing tools, our work focuses on the human factor. We motivate our
choice by the fact that secure coding is a topic that cannot be fully solved by means of
automation [13, 20, 2]. In [1], Acar et al. discuss how software developers search for advice for
their coding activities, and conclude that software developers need assistance to understand
this advice. Additionally, in 2019, Patel [21] conducted a large-scale study with over 4000
software developers. One of the results of his survey shows that more than half of software
developers cannot recognize vulnerabilities in source code. Similar results were obtained by
Gasiba et al. [9, 10].

Recent work has been published on the usage of machine learning algorithm to detect
security vulnerabilities in source code. Harrer et al. [14] studied two feature extraction
methods for C/C++ code and use this to build a control flow graph and to determine if the
code contains vulnerabilities or not, without classifying them. In [23], Tang et al. extend
previous work by not only looking for the presence of vulnerabilities, but also in classifying
them according to MITRE’s Common Weakness Enumeration (CWE) [6]. While previous
approaches dealt with the C and C++ programming languages, Louati et al. extended
this work for the C# programming language in [17]. To the best of our knowledge, all
previous work show good indicators that machine learning is adequate to detect and classify
vulnerabilities in software.

One machine learning algorithm that is currently raising lots of interest in the research
community is the ChatGPT. ChatGPT is a language model developed by OpenAI that uses
machine learning to generate human-like text. It is trained on a large dataset of text from
the internet and is capable of understanding and responding to natural language inputs. It
can be used for a wide range of tasks such as language translation, question answering, and
text completion.

Not only is the algorithm based on machine learning, but its implementation allows a
natural dialog between man and machine. ChatGPT processes queries from users, which are
written in English, and compute an answer in an conversational way. ChatGPT not only
processes the answer based on the current query, but also based on previous queries. Although
it is mostly trained for natural languages, it can also interpret programming languages, such
as C and C++. In the present work, we use this feature to conduct an interactive dialog
with the algorithm based on five challenges from the CSC game.

3 Experiment

To setup our experiment, we selected five different challenges from the CyberSecurity
Challenges, based on C/C++, and contained in the Sifu platform. Table 1 shows a summary
of the selected challenges, and the corresponding CWE identifier. These challenges were
chosen based both on the prevalence of the programming errors, but also based on practical
experience in teaching cybersecurity from the authors’. The authors’ used the 2023 January
13 version of ChatGPT, which is based on the GPT-3 training data.

The first challenge contains code of a C function that has a standard buffer overflow
vulnerability. The buffer overflow in this challenge is evident through the usage of the
strcpy function. The function in the second challenge, which is developed in C++, contains
vulnerability based on undefined behavior. Depending on the compiler, the implemented
function can produce different results. The third challenge makes use of a vulnerable C
function, the gets function. Due to the problems that this function can cause, it has been
deprecated and removed in the C11 standard. The fourth challenge corresponds to code that
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Table 1 Selected Challenges from Sifu Platform, According to CWE ID.

ID Vulnerability Description
1 CWE-121 Stack-Based Buffer Overflow
2 CWE-758 Reliance on Undefined, Unspecified, or Implementation-Defined Behavior
3 CWE-242 Use of Inherently Dangerous Function
4 CWE-190 Integer Overflow or Wraparound
5 CWE-208 Observable Timing Discrepancy

contains an integer overflow vulnerability. The integer overflow can be triggered by calling
the function with large integer values. Finally, the fifth and last chosen challenge contains a
side-channel leakage vulnerability. The information leakage occurs due to the fact that the
function performs string string comparison and the running time epends on its inputs. The
last chosen challenge is more typical in embedded systems.

Listing 1 Vulnerable Code Snippet Containing CWE-208.
int is_equal ( const char* a, const char* b, size_t len) {

for ( size_t i = 0; i < len ; i++) {
if (a[i] != b[i])

return 1;
}
return 0;

}

Listing 1 shows the source code corresponding to the fifth challenge. The problem with
the code is that, the for loop will break depending on the contents of the input a and input b.
Whenever the first difference is found, the for loop breaks and the function results 1. If both
vectors contain the same values, the for loop will take the longest time to run, dependent on
the length of the vectors. In the Sifu platform, the user is also given the information that
the input a and b are of the same length, and that this length is equal to len.

For this example, the desired answer from the player corresponds to the code shown in
listing 2. In this listing, the function does not return immediately when the first unequal
values are observed. The run time of the function will be constant, and only dependent on
the length of the vectors. Since the returned value of the comparison does not depend on the
contents of the input vectors a and b but only on their length, no information is leaked by
running the algorithms, i.e. an attacker able to manipulate one of the inputs cannot gain
information about the other input by means of the time the algorithm takes to run.

Listing 2 Desired Challenge Solution.
int is_equal ( const char* a, const char* b, size_t len) {

if (a == NULL || b == NULL) return -1;

int result = 0;
for ( size_t i = 0; i < len; i++) {

result |= a[i] ^ b[i];
}
return result ;

}

ICPEC 2023
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Figure 1 shows how the interaction was carried out with ChatGPT. For each challenge, a
different code snippet S containing vulnerable code is provided. To test the algorithm, the
author conducted several human interactions with the ML algorithm, for each code snippet
S, corresponding to the five chosen challenges.

Code Snippet Human 
Interaction ChatGPT

S Qn An

Figure 1 Interaction with ChatGPT.

The interactions with ChatGPT consisted of a separate session of questions Qn posed to
the algorithm and its corresponding answers An.

Table 2 Human Interactions with ChatGPT.

Nr Question Expected Answer
1 What is the vulnerability present in the following code snippet S Correct vulnerability identification
2 What is the corresponding CWE number? CWE number according to table 1
3 Please fix the code Correct fix of the code

4..15 There is still a vulnerability in the code, please fix it Improved code
>15 The code contains vulnerability XXX, please fix it Improved code

The strategy to ask questions was the following. In the first question, we ask ChatGPT
to identify the vulnerability by name. Since ChatGPT is verbose, we expected it to output
a description of the problem. In the second question, we wanted to get the CWE number
corresponding to the vulnerability to test if it matches our design. The design of both of
these questions has the goal to identify how ChatGPT can support a software developer in
finding and understanding secure code problems.

In the next phase (i.e. starting with question 3), we asked ChatGPT to fix the code, based
on its previous answers. Our expectation is that the fixed code will correctly address the
challenge vulnerability. We also carried out additional questions (4..14), where we claimed
to ChatGPT that there were additional vulnerabilities and that ChatGPT should fix them.
The goal of this last question was to determine how far could the algorithm could detect
further problems and iteratively improve the code. Finally, on the sixteenth question, we
claimed to ChatGPT that the code contained the intended vulnerability, and that ChatGPT
should fix it.

The experiments were carried out through the online interface of ChatGPT on the 15th
January 2023. It consisted of a total of 43 interactions with the ChatGPT user interface,
corresponding to 5 for CWE-121, 5 for CWE-758, 5 for CWE 242, 11 for CWE-190, and 17
for CWE-208. The version of ChatGPT reported in the user interface was “ChatGPT 9 Jan
Version”.

4 Resuls

Table 3 shows a summary of the challenges and their corresponding identified vulnerability
by ChatGPT. Since the CWE identified by ChatGPT was not matching exactly the CWE
from the challenge, we decided to compare the solution based on the proximity of the answer
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from ChatGPT. We concluded that, for the first three challenges, the vulnerabilities that
were identified were corresponding to a specialization of the problem. While the challenge
CWE considered the general case, ChatGPT was more precise in its findings. Therefore, we
concluded that the answer from ChatGPT was acceptable in those circumstances.

Table 3 Vulnerabilities Identified by ChatGPT.

ID
Designed
Challenge

Vulnerability

ChatGPT
Identified

Vulnerability

Assessment
is

Acceptable?
Description

1 CWE-121 CWE-120 YES Correctly identified that buffer overflow occurs due to copying string
2 CWE-758 CWE-835 YES Correctly identified an infinite loop due to undefined behavior
3 CWE-242 CWE-121 YES Technically correct assessment, but failed to identify that gets is deprecated
4 CWE-190 CWE-835 NO Assessment of problem misses the major issue, in favor of smaller detail
5 CWE-208 CWE-121 NO While technically correct, the assessment is wrong due to missing context

For the fourth and fifth challenge (CWE-190 and CWE-121), ChatGPT did not correctly
identify the problem with the code. For the CWE-190 challenge, ChatGPT found another
problem, which although correct, was not the major problem with the code. Since the major
problem with the code was not identified, we decided not to accept ChatGPT’s solution. For
the CWE-208 challenge, ChatGPT completely missed the problem. Even though we asked
several times (4..15) to find and fix vulnerabilities in the code, ChatGPT could not identify
it. In the 16th iteration, we told ChatGPT that the code had the CWE-208 vulnerability
and that ChatGPT should solve fix the code.

Due to the interesting nature of this special case, we present the solution from ChatGPT
at question 16. Listing 3 shows the solution presented by ChatGPT. In this case, ChatGPT
used the CRYPTO_memcmp from OpenSSL to solve the problem

Listing 3 ChatGPT Solution to CWE-208 Challenge (using OpenSSL).
# include <openssl / crypto .h>

int is_equal ( const char* a, const char* b, size_t len) {
if(a == NULL || b == NULL) return -1;
size_t a_len = strnlen (a, len );
size_t b_len = strnlen (b, len );
if (len == 0 || len > a_len || len > b_len) {

len = a_len < b_len ? a_len : b_len;
}
if (a[a_len] != ’\0’ || b[b_len] != ’\0’) {

return -1;
}
return CRYPTO_memcmp (a, b, len );

}

Since we were not expecting that ChatGPT would use an external library, on iteration 17
we asked ChatGPT to provide us with a solution without using OpenSSL. The answer from
ChatGPT is presented in Listing 4.

Listing 4 ChatGPT Solution to CWE-208 Challenge (without using OpenSSL).
int is_equal ( const char* a, const char* b, size_t len) {

if(a == NULL || b == NULL) return -1;
size_t a_len = strnlen (a, len );
size_t b_len = strnlen (b, len );
if (len == 0 || len > a_len || len > b_len) {

len = a_len < b_len ? a_len : b_len;
}

ICPEC 2023



2:8 I’m Sorry Dave, I’m Afraid I Can’t Fix Your Code

if (a[a_len] != ’\0’ || b[b_len] != ’\0’) {
return -1;

}
int result = 0;
for( size_t i = 0; i < len; i++) {

result |= a[i] ^ b[i];
}
return result ;

}

In this listing, we can see that the desired solution (see listing 2) is present in the code.
However, additional tests are performed in relation to the length of the input arrays, which
are unnecessary, given the context in which the function is used. Furthermore, ChatGPT
has assumed that both inputs represent a string and therefore tests for the case that the
inputs are null-terminated. We note that these modifications to the source code introduced
by ChatGPT change the semantic of the function.

5 Discussion

According to our experience in teaching secure coding in the industry, and as a result of
the interactions taken with ChatGPT, we can conclude that this ML algorithm has a very
high potential to be used to assist software developers in writing secure code. In more
than 60% of the code that we provided to ChatGPT, it was able to correctly identify the
problem with the source code, and to provide a good fix., This was very surprising since, as
briefly discussed in the introduction, the problem of secure coding leads to non-decidable
problems. We hypothesize that the reason for this success has to do with the fact that the
code snippets that were supplied to ChatGPT were relatively small (i.e. less than 40 lines of
code). Further investigations would be needed on the efficiency of ChatGPT in identifying
software vulnerabilities in large code basis.

Another surprise was the fact that the explanations about the problems contained in the
challenges was matching very well with the actual problem. ChatGPT’s explanation was not
only 3/5 of the time correct, but it was also precise in the identification and explanation of
the problem. We see this as a clear advantage for ChatGPT as a teaching tool. Nevertheless,
due to the fact that only a small number of snippets were tried, and that the code snippets
were small in size, more investigation needs to be carried out to fully understand the usage
of ChatGPT for teaching purposes.

Another point that surprised us was the fact that, not only could ChatGPT interpret the
code, but could also suggest fixes to it. In particular, some of the code fixes suggested by
ChatGPT could be considered to be creative. This is a clear indicator of how advanced the
implementation of the algorithm is.

However, several limiting factors have also been found while interacting with ChatGPT.
We were surprised of how good the model is, but we also found limitations to its use,

as it is lacking on some aspects. In the following we summarize the major aspects that we
found that can limit the usage of this technology:
Missing Context. ChatGPT lacks the context in which the code is being used. This can

lead to superfluous corrections and bug fixes which are not necessary due to the boundary
conditions

Change Semantics. One major problem that was identified in the fourth challenge was that
the solution given by ChatGPT changed the semantic of the code in a very subtle way;
this means that code before fixing and after fixing can behave slightly different. This
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can be a strong deterrent factor to use this technology in practice (e.g. for safety-critical
systems). Changes in the code should be semantic-preserving and ChatGPT currently
does not guarantee this

Code Complexity. Code produced by ChatGPT has the potential to have more computa-
tional complexity than the original (vulnerable) code. This can potentially introduce
computational inefficiencies, which is a critical aspect for real-time systems

Code Maintainability. Code produced by ChatGPT lacks maintainability characteristics,
e.g. due to increased complexity or missing comments

Limited Learning. ChatGPT has been tuned with data up to 2021. This means that
potential new threats and vulnerabilities that have been found since then might not be
well processed by the system. Further investigations would need to be carried out to test
the algorithm in this circumstances

Learning Interference. ChatGPT can learn from user interactions. For the algorithm to
be used in a professional environment (especially in safety-critical systems and critical
infrastructures), some protections need to be added such that the algorithm behind
ChatGPT cannot learn incorrect data and therefore does not give bad answers.

Combining our experience, previous research , and our experiment with ChatGPT, we
conclude with a reinforcement of the conclusions done in [8], and in [11]. In particular,
we reinforce the conclusion that using an AI/ML engine can be an excellent approach for
teaching and raising awareness of secure coding in software. Further research could integrate
ChatGPT into the Sifu platform to further validate the approach with real-world scenarios
and software developers in the field.

This work shows the potential that ChatGPT has to be used not only as a teaching tool,
but also as a tool to assist professional software developers in the industry. We think that
the tool can can assist software developers to think outside the box and find creative new
solutions to complex problems. One example of the usage of generative AI technology to
assist software developers write code is GitHub’s Copilot [12]. However, as per conclusions
on the present work, while Copilot can help software developers write code faster, further
investigation is needed to understand the extent to which this software development model
can introduce or eliminate the introduction of vulnerabilities in software.

Additionally, careful reflection and care must be carried out when using AI models in
an industrial environment, since the model can potentially learn also from input which is
provided to it. This could potentially lead to serious leakages of information to the wide
public, e.g. on software weaknesses in the products and services offered by the company.
Therefore, according to our experience, we consider in-house usage of AI for assisting software
development to be the appropriate means to use the technology in an industrial context.

Finally, we would like to reflect on the possible usage of ChatGPT as a means to
understand the output of SAST tools. Our experience has shown that software developers
do not always understand the output that is provided by SAST tools and, therefore, cannot
recognize the corresponding vulnerability in software. We think that ChatGPT could be
used to analyse the result of these tools and to aid software developers to understand this
output and therefore to write better code. However, further research is needed to validate
this point.

In conclusion, we would like to highlight a further possible problem which is related to
software plagiarism. ChatGPT learns from many different sources (containing many different
types of software licenses) and summarizes the output of these while processing the answers
to the questions. One potential problem and danger of using ChatGPT is the fact that, since
it can produce code that is equal to some random source, or may be considered derivative
work, this could lead to potential legal problems.
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Our experience and previous research has shown that AI-based technologies can be used
to effectively raise awareness of software developers, both in an industrial setting and also in
the academia. Nevertheless, while we observe good indicators for ChatGPT as tool to teach
cybersecurity, we are not entirely convinced that this is the case, especially for the industry,
as not only the answers provided by the model can be partially wrong, it is not clear the
status of the copyright infringement of the provided solutions.

To wrap-up our final conclusions, we add a text generated by ChatGPT itself:
ChatGPT is not able to fix code or help developers write secure code. While it is able to

understand and respond to natural language inputs related to coding and cybersecurity, it does
not have the capability to understand or execute code. It can provide general information and
suggestions based on the information it has been trained on, but it cannot guarantee that the
suggestions will be accurate or complete. Additionally, ChatGPT is not able to identify or fix
specific vulnerabilities in code.

While ChatGPT can be a useful tool for developers, it should not be relied upon as a sole
solution for ensuring the security of code. Developers should use a combination of techniques,
such as threat modeling, penetration testing, and code review, to identify and fix vulnerabilities
in their code. Additionally, it is important for developers to stay informed about the latest
threats and vulnerabilities, and to follow secure coding practices.

5.1 Threats to Validity
The present work is based on the ChatGPT version from January 13 2023, with the training
model GPT-3. As the model is being rapidly improved, part of our results might not be
reflected in later versions of the improved model. This can potentially limit or invalidate
part of the conclusions in the present work. While the authors’ believe that the generative
AI technology will experience a significant improvement, leading to potential better results
as those hereby presented, we also claim that there are fundamental theoretical limitations
that will certainly impose limits to its usefulness and practical applicability.

6 Conclusion

Software security is not only an important topic of software development, it has been gaining
much attention over the last years. The reason for this, is the fact that there is an increasing
number of cybersecurity incidents taking place that have negative consequences for society in
general. A possible root-cause of cybersecurity incidents is related with poor coding practices.
Therefore, to reduce the number of incidents, software developers should know and employ
best practices while developing software. These practices are generally taught either in the
university, or during an internal training in the industry.

In this paper, we look at the potential of using Machine Learning algorithms to both assist
software developers to write secure code, but also as a tool to raise awareness of secure coding.
Previous work has shown that artificial intelligence techniques can be successfully used to
train software developers in secure coding guidelines. This paper presents a preliminary
exploration of the usage of ChatGPT to raise secure coding awareness. Our work follows not
only from the experience of the authors, but also on their extensive work in the field. In this
paper, we reflect on the advantages and disadvantages of the usability of ChatGPT or similar
algorithms and show that, while ChatGPT has a clear potential to be used as an aid to
software development, there are some limitations to its usage. In further work, the authors
would like to integrate ChatGPT with CyberSecurity Challenges – a serious game to raise
awareness of secure coding guidelines of software developers in the industry. Our preliminary
research presented in the present work lead us to expect good results of this integration.
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